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Abstract. The Barankin bound is locally the greatest possible lower
bound for the variance of any unbiased estimator of a deterministic pa-
rameter, under certain relatively mild conditions. Much more essential,
Barankin’s work determines the sufficient and necessary conditions un-
der which an unbiased estimator with finite variance exists. Nevertheless,
the computing of this bound, along with the proof of existence or non-
existence of the estimator, has shown to be extremely challenging in most
cases. Thereby, many approaches have been made to attain easily com-
putable approximations of the bound, given it exists. Focusing on the
rather central matter of existence, we provide a simple theoretical frame
within which our approximations of the bound give a clear insight on
whether an unbiased estimator does exist.
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1 Introduction

In 1949, E. W. Barankin in [1] provided an oustanding landmark in the field of
deterministic parameter estimation, studying exhaustively the issue of unbiased
estimators with finite variance, giving a full characterization of them therein.
Among the many results he displayed, he provided the necessary and sufficient
conditions for such an estimator to exist, assuming certain rather not restraining
hypothesis, and he as well supplied the expression for the minimum achievable
variance of them. Further, he proved that, within his assumptions, the very well
known and heavily used lower bounds of Cramér-rao and Bhattacharyya can
be naturally derived from his results, being both lower bounds beneath that
optimum of his.

Nonwithstanding, despite the exact form of the minimum achievable vari-
ance having been provided, it is a highly complex one to compute and virtually
unmanageable in most cases. In fact, it is too difficult a task to even prove the
existence of an unbiased estimator of finite variance. Thus, great efforts with
many different approaches have been made throughout the last forty years in an
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attempt to compute approximations of the bound efficiently (assuming it does
exist), or at least to be able to find tight lower bounds for the Barankin bound
itself, giving birth to entire families of new bounds. The literature abounds (see,
for instance, [9], [10], [12], [14]), yet no approach has proved to be ultimately
satisfactory.

We intend to focus our scope on the matter of the existence of unbiased
estimators, by providing a theoretical background such that the computed ap-
proximations of the Barankin bound reveal some insight on whether the esti-
mator exists or not. Therein, we provide a simple algorithm, well known in the
literature, to approximate the bound. However, further we shall discuss the be-
haviour of these approximations also in the case that the finite variance unbiased
estimator does not exist, attempting to shed some light on the subject.

Lastly, we shall apply the method to a classical, yet unsolved, estimation
problem, the single-tone frequency estimation, and analyse the results in virtue
of the frame exposed.

2 The Barankin Bound

2.1 Preeliminaries, Terminology and Notation

Let (X,X,u) be a measure space, and @ any parameter set such that F =
{py,0 € O} is a parametric family of probability densities. Let g : @ — R be
any real function of the parameter set. Our purpose is to attain an estimate
of g(), and analyse the existence and characterization of unbiased estimators
therein. Should f : X — R be an unbiased estimator of g(6) for all § € O, then

(/MMMZM®7 Voo, (2.1)

which from a classical probabilistic perspective can be written as Eg[f] =
g(0), for all € 6. Let 0y be the true value of the parameter from which the
samples of X are obtained. We wish for our estimator to be of minimum variance
at fp among all other unbiased estimators. That is to say, we wish to find fy,
unbiased, such that for all unbiased f

[ (fo = 9t60)) pagn < [ (7 = 9(00)) "y d (22

Nonwithstanding, we will consider a more general form of (2.2). Instead of
the variance, we shall work with the p-th central moment, or p-variance, with
1 < p < 40 being the usual variance simply a particular case. Hence, for all
unbiased f, the best unbiased estimator fy shall satisfy

[ (fo=9t60)) poy i < [ (£ = 9(60)) "va, d. (23

Since / (fo — g(00)>pp90 dp = / (fo — 9(90)>p dPy, , considering the Banach

space L,(X,X,Py,) allows (2.3) to become a norm minimization issue, in light
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of / (fo—9(00))" dPay = 1110 — 9(00) I3 Fusther, let & =  — g(60) and h(0) =

g(0) — g(0o), it is readily seen f is an unbiased estimator of ¢g(#) if and only if ¢
is an unbiased estimator of h(6), and (2.3) is reinterpreted as the minimizing of

llel[5-
Now, let Barankin’s main hypothesis come into play. Assume Py << Py, for
dP
all § € O, such that the Radon-Nikodym derivatives my = dIPG exist for all
o

0 € O, and further, that these mg lie in L,(X,X,Py,), with % + % = 1. Let us
have then the set

dP
B, = {7r9 € Ly(X,X,Pg,) W €O :mp= " }

dPy,

the unbiasedness condition in (2.1) is then redefined as

[ (- 960)podu= [ omdra,=nie) . wee.
Moreover, since we are interested in finding estimators with finite p-variance,

these estimators should lie in L, (X, X, Py, ). Thus, let 01, be the set of all unbi-
ased estimators with finite p-variance, i.e.

m, = {(p € Ly(X,X,Pg,): V0 € O /gmrg dPg, = h(e)}.

Therefore, we wish to find ¢ € M, such that ||¢o||, is minimum. However,
should 91, be empty, there will be no unbiased estimator with finite p-variance.
Barankin’s outstanding work provides the necessary and sufficient conditions for
the existence of such an unbiased estimator, as well as the expression for its
p-variance, given it does exist.

2.2 Barankin’s Main Theorem
We shall now expose Barankin’s main result, among the many displayed in his

article. Onwards, we will asumme g(f) to be a non-constant function since this
case is trivial; it’s treatment can be seen in [1], p. 482, Theorem 1.

Theorem 1 (Barankin).

1. M, # 0 if and only if IM € R:Vn € N : V(mg, ) ;1 C By, : V(a;)ly CR:

En:azh(ﬁz) iaﬂrgi
=1 i=1

2. If M, # 0, then Yo € My, - ||¢]lp > Mo, such that

<M- (2.4)

P
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My = inf {M ER:Vn e N:V(m, )iy C By, :

:V(a;)i—y CR: <M -

Zaih(@) Zamei } (2.5)

3. If My, # 0, then Ipg € My, : ||ollp = Mo, and moreover, for all p1,p2 €
My, Nerllp = ll@2llp = Mo only if o1 = 2, Py, —a.e..

Proof.

1. — Sufficiency. Let M, # 0 and ¢ € M,,, thus p € L,(X, X, u) and / pmo dPg,
h(f) foralld € ©. Let n € N, (mg,)_; C By, y (a;)"_; C R, then it follows

n n

> aih(0;) = Zai(/wgi d]P’gO> = /@(iam‘gi) dPy, .

=1 i=1

Since By, C L,(X,X, ), we have Zaﬂrgi € L,(X,X, ). Thus, from
i=1
Holder’s inequality,

Soainit)] = | o S am.) ata| < el || arma
i=1 i=1 i=1 q
Therefore, setting M = ||p]|, proves the sufficiency.
n n
— Necessity. Let M € R such that Z a;h(6;)] < M - Zaﬂr@i , for all
i=1 i=1 a

n €N, all (m,)7~; C By, and all (a;)"_; C R. Now, let T, : By, — R
be a linear functional, such that Ty, (7g) = h(¢). Hence, we have

ZaiTsBGO (71—91’) Zalh(&) Zaiﬂ'gi
i=1 i=1 i=1

The Helly-Banach theorem for the extension of linear functionals (see [4],
p. 55, Theorem 4) states precisely (2.6) is the necessary and sufficient
condition for the existence of a norm preserving linear extension of Ty,
to all of L,. Further, the uniqueness of this functional can be proved by
means of the Taylor-Foguel theorem, given L, is strictly convex (see [5]).
Thus there exists a unique T : L, (X, X, Pg,) —> R such that T is bounded
and linear and extends T, , and moreover ||T'|| = M. Finally, the Riesz
Representation theorem asserts the existence of ¢y € L,(X,X,Py,) such

<M.

(2.6)

)
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that T(f) = /fgpo dPg, for all f € Ly(X,X,Py,) and ||¢oll, = |T|| = Mo.

In particular, setting f = mg for any my € Bg,,
T(ra) = [ oma da, = T, (7o) = (). (27)

Equation (2.7) simply states the fact g is unbiased for all § € O, thus
wo € M, and the statement is proved.

2. Let M, # 0 and ¢ € M,,. In view of the above we have Vn € N : V(my,)7; C
%90 : V(a’i)?zl g R7

< |lellp -

zn:azh(@l) En:aﬂrgi
i=1 i=1

Hence, |||, lies in the set defined in (2.5) and ||¢||, > M.

p

3. Assume M, # 0. It has been already been established the existence of ¢q €
M, such that ||poll, = Mo. Let @1, p2 € M, such that ||p1]], = ||2ll, =
My. We have then

< leallo +lleally _ Mo+ Mo
p 2 2

H801+<P2
2

= M,.

In addition, it is readily seen that w lies in 91,,. Let 0 € O,
h(6) + h(6
/L;‘”mdmo _ 16) + 1(6) )“; ©) _ ho).

Hence, in virtue of the above H#H > My, and hereby Hw H =
p P

My. We have then ||p1 4+ p2||p, = 2Mo = ||p1]]p + ||¢2]|p- However, according
to Minkowski’s inequality strict equality conditions, given 1 < p < 400,
there exists a > 0 such that ¢ = aps, Py, — a.e. Thus

Mo = [leallp = [lawallp = laf - [[e2]lp = |af - Mo.
Consider the case My = 0, then ||p1]l, = 0 and ¢1 = 0, Py, — a.e..As
a consequence, for all 8 € 6, /gowrg dPy, = 0. It follows h(f) = 0 for

all # € O, which is absurd since we had assumed h to be a non-constant
function. Therefore, My # 0, which brings |a| = 1. We have then « = 1, and
p1 = 2, Py, — a.e., completing the proof.
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Changing the emphasis into a more statistical point of view it is we get the
more popular expression for the Barankin lower bound. Let opmin = ||©ol|p,
then (2.4) and (2.5) can be reinterpreted as

Z a;h(0;)

Op,min = sup e — (2.8)
VYneN:V(0,)7, CO:V(a;)"_, CR:
E a;Tg,
i=1

122721 aimo, 1470
Thereby, M, # 0, i.e. there exists an unbiased estimator with finite p-
variance, if and only if ¢}, ymin in (2.8) exists, in which case o}, min itself is the
minimum p-variance achievable by any unbiased estimator. Particularly, consid-
ering the usual variance, with p = 2, we have

q

,Inin n n .
VYneN:V(0;);_, CO:V(a;);j—, CR:
177, aime, ||27#0 > > aiaj(me,,m,)

i=1j=1

Given n € N and (0;)"_; C O, we shall denominate B,, € R™*" such that
(Bn)ij = (me,,my,) as the Barankin matrix that results from the test-points
(92‘):’;1 co.

2.3 Another of the Many Results from Barankin

We shall make use of another theorem from Barankin for our own results, a
theorem which very much served as a motivation for the initiative here proposed.

Theorem 2 (Barankin). Let MMy # 0, then ¢o is the unique element of Mo
which lies in the closure of span By, .

The proof of this theorem can be seen in [1], p. 494, Theorem 10.

3 Theoretical Background for the Computations

The approach here exposed is based upon the ideas put forward by Frederick
Glave in [2], attempting to provide a formal theoretical frame.

Theorem 2 served as starting ground, as above stated. According to this the-
orem, if an unbiased estimator exists, the one achieving the minimum variance,
o, must lie in the closure of span By, . Hence, there exists a sequence in span By,
which converges in Ly to it. Furthermore, in [1], p. 489, Theorem 7 Barankin
even provides the expression of a sequence in span By, which converges to g,
given a sequence of real numbers which converges to the minimum variance is
known.
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We wish therefore to obtain a sequence lying in span‘Bg, which converges
to g, without any prior knowledge about the minimum variance. As a matter
of fact, since even proving the existence or non-existence of an unbiased estima-
tor shows to be a humongous enterprise, we wish for our sequence to provide
information in any of the two cases.

3.1 A Useful Lemma

The following lemma, though elementary, shall prove to be a fundamental step-
ping stone.

Lemma 1. Let (¢n)nen be a Cauchy sequence in L,(X,X, Py, ), that is to say
there exists ¢ € Ly(X,X,Pp,) such that ||on — ¢|lp, —> 0. Then ¢ € M, if and
only if for all € ©, lim /(pnﬂ'g dPy, = h(0).

n—roo

Proof.

Necessity. Let (¢n)nen C Ly(X, X, Pg,) such that ||¢, — ¢||, — 0, and let
@ € My,. Then, for any 6 € O, the asymptotic unbiasedness follows readily from
the use of Holder’s inequality, and the fact that my belongs to Ly(X, X, Py, ),

’/@mredﬂpeo —h(e)’ = ‘/wnﬂedpeo —/tﬂﬂedﬁ”eo

<Imollq - llen = #llp — 0.

= ‘/(son — p)my dPy,

Sufficiency. Let again (¢n)nen C Lp(X, X, u) such that ||¢, — ¢ll, — 0,
and that for all § € ©, lim /cpnmg dPy, = h(0). For any given 0 € ©, we have
mo € Lg(X, X, Py,). Thrilz,oothe functional G : L,(X,X,Pp,) — R, such that
G(f) = / fmo dPy,, is bounded and linear. Hence, G is a continuous functional,

and since (¢, )nen converges in L, to ¢ we have G(¢,) — G(p); i.e.,

/gmrg dPy, = li_>m /Lpnﬂ'g dPy, = h(0).

Therefore, ¢ € M, and the sufficiency is thereby proved.

Lemma 1 simply establishes that any sequence that converges in Lo to an
unbiased estimator is asymptotically unbiased, and that any converging sequence
which is asymptotically unbiased converges to an unbiased estimator.
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3.2 Construction of the Sequence to Compute the Approximations

We proceed now to design the sequence that will allow us to obtain the approx-
imations of the Barankin bound.

Definition 1. Let (0,),en C 29 such that 6,, = (Or,n) iy with (My)nen €N,
for all n € N, and let B,, be the Barankin matriz that results from the test-
points in O,. If B! exists for all n € N, then it is well defined the sequence
(¢n)nen C spanBy, such that

a1,n h(el,n)
mn as,y, h(62,
On = Z ag,nme,.,  where T = Bt o ,YneN. (3.1)
Pt : :
Amyp,n h(Onm,n))

The linear systems of equations in (3.1) are derived from the compelling of
©n to be unbiased in all test-points of ©,,. In other words,

mn

/gpnﬂg_m dPg, =Y ain(mo, . 70,,.) = h0in) » Vi=1,2,...,my.
=1

Thus, the obtained ¢, is an unbiased estimator for all 8 € ©,, and fur-
thermore, it can be easily seen it is the minimum variance estimator, among all
estimators unbiased on ©,,, by means of another result from Barankin’s work
which we have not exposed in this article. Another characterization of unbiased
estimators in Lo, the Barankin integral equation; see [1], p. 495, Corollary 10-1.

3.3 On the Convergence and Reliability of the Constructed
Sequence

We will make use of the following simple lemma for our main result.

Lemma 2. Let (mg, mp) : @ — R be continuous for all § € O, for any given
fized 0' € ©. Let (O, p) be a metric space with distance p : ©2 — R . Then, if
dP
A is a dense subset of ©, it follows B = {779 €By,: e A:mg = dH’fe} 5 a
0
dense subset of By, . ’

Proof.

Let A = (6,)nen be a dense subset of ©. Let my € By, , then we have

|lmg — 7o |15 = (o, m0) + (mor, Tor) — 2(m, 1)
= [(mg, mg) — (mg,mg:)] + [(mer, mgr) — (mg, er)]

= |<7T9,7T9> — <7T9,7'&'9/> + ’<7T9/,7T9/> — <7T9,7T9/> . (3.2)
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Since (g, mg/) is continuous, it is readily seen that for any given € > 0 there
exists 6’ € A such that |<7T9,7T9> — <7T9,7T9/> < 6/2 and |<7T'9/,7T9/> — <7T9,7T9/> <
g/2. Thus, from (3.2) there exists mg: € B such that ||mg — m||3 < €, and B is
dense in By, .

Alas, we state the central theorem of this work.

Theorem 3. Let (mg,mg:) : @ — R be continuous for all 6 € O, for any
gwen fized 8’ € O and assume h € C(O). Let (O,p) be a metric space with
distance p : ©% — R, and further, let (0, )nen be a dense subset of © such that
the Barankin matriz that results from any finite subset of (0, )nen is invertible.
Moreover, let (pn)nen C spanBy, be the sequence defined in (3.1), such that

LEJN@n = (0n)nen, and ©,, C O, 11 for all n € N. Then the following statements

follow

1. |[nll2 < llentill2, for allm € N.
2. (|lenll)nen is a Cauchy sequence if and only if Ma # 0, in which case

[lonllza — l|l@oll2, and (on)nen converges in Lo to pg.

Proof.

1. Since ¢,, is unbiased for all 8 € ©,,, we have /gpnﬂgk‘n dPg, = h(O,n) for

all k =1,2,...,m,. Thus, we have the variance of ¢,, can be expressed as

mMn ™Mn

ol = (nond = [ 00> atma,, oy =3 ot [ oumo, . dPo, =

k=1 k=1
= Z ak’nh(ek’n). (33)
k=1
Now, let m € N such that m > n,

Mo, M,

<S0n790m> = /Spm Zak,nﬂ—Okm d]PGO = Zak,n/@mﬂ-ekm d]PGO -

k=1 k=1
- Zak,nh(ekm) = <(Pn7 (Pn>' (34>
k=1

It is interesting to observe (3.4) resembles the above mentioned Barankin
integral equation. In virtue of (3.3) and (3.4) it is straightforward to see

[lom = @nll3 = lleml3 = llenll3. Since [[om = @nll2 > 0, we have [lpn[l2 <
[|om]]2 for all m > n, hence the proposition is proved.
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2. — Sufficiency. Let § € © and n € N. Then ¢,, is unbiased for all 8 € 9,,

and therefore, for all § € ©; such that [ < n. Now, let 6,, € O such that
k < n, we have then for the bias of ,, at 6,

’/(pnﬂ'g dPg, — h(@)' = ‘/(pmre dPy, — /gpnﬂ'gm dPg, + h(0m) — h(@)‘

< ‘/%ﬂe dPg, _/@nﬂ-em dPg,

< |{@n, mo) = (#n, o, )| + [(0m) — R(O)].  (3.5)

In virtue of lemma 2, (7p, Jnen is a dense subset of By,. In light of (-, )
being a continuous function of both its arguments and /& being continuous
as well, given any € > 0 there exists O € (6,,)nen such that both |h(fx)—
h(9)| < e/2 and | (¢, m9) — (n, Toy )| < €/2 for all n € N. Now, let m = N

and n > N in (3.5), hereby ‘/ on o dPg, — h(0)

+ [ 1(0m) — h(0)]

< ¢ for all n > N. Thus

lim /gonﬂ'g dPy, = h(9).

n—oo

Assume My # (). Then, from (3.3) and theorem 1, we have

E ak ’I’Lﬂ-ek n

In consequence, ||on||2 < ||¢oll2 for all n € N, and since ||¢nll2 < |l@nt1]l2
as well, we have (||@n||)nen is a Cauchy sequence. Since ||, — ¢nll3 =
lom|3—|¢n||3 We also have (p,, )nen is a Cauchy sequence in Lo; i.e. there
exists ¢ € Lo(X,X,Py,) such that ||¢n, — |l — 0. In virtue of lemma
1, ¢ € My. Given (pn)nen C spanBy,, ¢ lies in the closure of span By, .
Then according to theorem 2, we have ¢ = ¢g. In addition, ||¢, — ¢ol|3
can be expressed as

||son|\2—zakn (Ok,n) < lloll2 - —||900|\2'\|<Pn\|2-

k=1

llom — goll2 = ||<P0\|§+|\90n||§*2/80n800d19’00-
Since g lies in Lo(X, X, Py, ), G : La(X, X, Py,) — R such that G(f)

fpodPy, is a bounded linear functional. Ergo, lim [ ¢,podPs, =
n—oo

@5 dPg, = |03 Since [|on — @oll2 — 0, we have ||@n|l2 — [|¢oll2,

which finally proves the sufficiency.

Necessity. Let us now assume 9y = (). To follow with, assume (||¢n|2)nen
is a Cauchy sequence. Since ||¢m — @nll3 = lomll3 = |l@nll3; (#n)nen is
a Cauchy sequence as well, and yet again there exists ¢ € Lo(X,X,Py,)

such that ||¢, — ¢|l2 — 0. Nevertheless, since lim /(pnﬂ‘g dPy, = h(0)

n—oo

for all 8 € O, according to lemma 1, we have ¢ € 915, which is absurd.
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What theorem 3 is asserting, is that under the stated conditions the sequence
(||on|])nen defined in (3.1) will converge to the Barankin bound, given it exists,
or will diverge otherwise. Thus, without having prior knowledge about the ex-
istence of an unbiased estimator, by choosing appropiate (©,,),cn one might
verify through simulation whether the variance of the sequence diverges or not.

The monotonicity of the sequence’s variance provides also certain assurance
on the reliability of the computations. The Barankin matrix shows to be ex-
tremely ill-conditioned as n goes higher, and the verification of the monotonicity
feature proves to be vastly useful concerning the precision needed for the numer-
ical operations to yield accurate results.

Furthermore, in the case that the unbiased estimator with finite variance does
not exist, the sequence will still be asymptotically unbiased, though its variance
shall not be finite.

4 A Classical Case Study: Single-Tone Frequency
Estimation

The estimation of the frequency of a single tone embedded in additive Gaussian
white noise is an emblematic problem in the field of electronics and detection the-
ory, one of multiple applications and subject to innumerable approaches. Many
algorithms of all kinds have been developed to tackle this standard spectral anal-
ysis problem, (see, for instance, [3], [6], [7]) and almost every new methodology
attempting to approximate the Barankin bound has had it as its test case (see
[14).

In particular, the single-tone is famous especially for being a victim of the so
called threshold effect at low levels of signal to noise ratio that ML estimates of-
ten exhibit in many relevant problems (see [3]), an issue which has had attracted
attention of its own though intimately related to the Barankin bound (see [11],
[13], [8]).

Nevertheless, even whether the bound exists or not is a matter yet unresolved,
and thus, so does the existence of an unbiased estimator with finite variance.

4.1 Problem Formulation

Consider a complex-valued sinusoidal signal buried in noise

Xp+jYe=Aexp [0ty + )| +m, , where t, =to+kT, k=0,1,...,N—1,
(4.1)

where the amplitude A and the phase « are known. The parameter to be
estimated is the frequency 6, whereas N complex samples are taken at a constant
sampling rate of 1/T with the first one taken at ¢ = ty. The noise 7, is assumed
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to be zero mean complex-valued, circular and white Gaussian, with variance o2.

The set @ C R is yet to be specified.
With this model, we have the probability density function is

N-1

po(x) = ﬁexp <— % Z ([xk — Acos(6t, —|—0¢)]2+

k=0
2
+ [gr — Asin(t, + )] ) . (42)
where t =ty + kT, with £k =0,1,...., N — 1.

4.2 Analysis of the Barankin Actors

Let 6y be the true value of the unknown parameter out of which the samples are
obtained, i.e. the value at which the estimator variance is desired to be minimum.
The Radon-Nikodym derivatives are in this case simply mp(z) = po(x)/po, (),
thus, from (4.2) we have

2

N-1 ,
1 ({xk — Acos(0ty + a)} + [yk — Asin(0ty, + a)} _
k=0

mo(x) = exp ( T 952
_ [l‘k — Acos(boty + a)} ’ - {yk — Asin(fpty + oz)} 2))

After some tedious algebra, the elements of the Barankin matrix, (B,,)
yield

K

o2

- A2 sin ((6; — 0,) %5~

(mo,, mg,;) = exp ( [ sin ((6; — 6;)%)
sin ((6; — 60) %L . d

_ in ((91 _ 90)%) cos ((91 —bp) [to + (N - 1)2})_

~sin (0 — 60) )

sin ((6; — 60) T)

) cos ((ei—ej){tO‘*'(N_l)ZD_

cos ((@ —60)[to+ (N - 1)%} >] ) (43)

In view of (4.3), using the usual definition for the sinc function, we have
(7, /) is continuous for all § € O, for any fixed §’ € O. Since ||my||3 = (7g, mp)
it is clear mg lies in Lo(X, X, Py, ), no matter what set © C R is. Furthermore, it
can be shown that given © is properly restricted and 6; # 6; for all ¢ # j, the
Barankin matrix is invertible for all n € N. Thus, in this case, the conditions of
theorem 3 are fullfilled, and we are able to freely construct the sequence (¢;, )nen
by choosing appropiately the sets (0, ),en C 2°.
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4.3 Simulation Results

The simulations were carried out with the following arbitrary choice of param-
eters, © = [0,1], 6g = 0.3, to = 0.2, T = 0.07, N = 20, considering that
with the given © the Barankin matrix is invertible under the stated condi-
tions. The sets chosen for the succesive iterations were @, = (k/n)zzo with
n = 10, 50,100,200, 300, such that @,, C ©,11. Therefore, the propositions
proven in theorem 3 hold.

We also show in our results the very well known Cramér-Rao lower bound
for the variance (see [3], p. 592.),

2 602

O min Z .
A2[662N + 6tgTN(N — 1) + T2N(N — 1)(2N — 1)]

In spite of the mentioned threshold effect, it is known ML estimates’s vari-
ances converge to the Cramér-Rao bound at high signal to noise ratios, suggest-
ing that in this situations the Barankin and the Cramér-Rao bounds coincide.
Thus, this should be verified for the variance of our sequence.

Our results are displayed in Fig. 4.1, showing the variance of ¢,, as a function
of the signal to noise ratio, SN R = A% /a2, for the different number of test points
n stated above, as well as the Cramér-Rao bound. It is readily seen that at high
levels of SNR, given n is sufficiently large, our curves achieve the Cramér-Rao
bound as expected, and moreover, the variance of ¢, seem to converge for all
levels of signal to noise ratio, strongly suggesting the Barankin bound does exist,
and thus that there exists an unbiased estimator for the frequency of the complex
single-tone.

5 Conclusion

In this paper, we have discussed Barankin’s main theorem and with it a land-
mark in deterministic parametrical estimation theory. We have provided a theo-
retical frame in order to attain reliable numerical approximations of the bound,
given it does exists, and to be able to discern if it does not. It was shown the
analysed sequence’s variance converges if and only if the unbiased estimator ex-
ists. Moreover, the sequence is in all circumstances asymptotically unbiased and
monotonically increasing. This monotonicity proves to be extremely effective as
to assuring the numerical precision utilized is high enough to yield accurate, or
rather, reliable results. On these grounds, given the finite variance unbiased es-
timator does not exist, the variance of the sequence will monotonically diverge.
Therein, through numerical simulation we are able to develop some insight con-
cerning the so far elusive matter of the existence. Lastly, we applied the exposed
methodology to an iconic, and yet unresolved, problem of spectral analysis, the
single-tone frequency estimation.
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———Cramér-Rao
n=10
——n=50
n=100
——n=200
n=300
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SNR = A2/0”

Fig. 4.1. Variances ||, ||2 for n = 10, 50, 100, 200, 300, parameters © = [0, 1], o = 0.3,
to = 0.2, T = 0.07, N = 20, and sets O,, = (k/n)::(y as functions of the signal to
noise ratio, SNR = A?/o?; as well as the Cramér-Rao bound.

This work was partially financed by CONICET, Universidad de Buenos Aires,
grant No. UBACyT 20020100100503.

Author Santiago Gonzalez Zerbo is on a TIC scholarship, granted by FON-
CyT.

References

[1] E. W. Barankin,, “Locally Best Unbiased Estimates”, The Annals of Mathemat-
ical Statistics, Vol.20, pp. 477-501 (1949).

[2] F. E. Glave, “A new look at the Barankin lower bound”, IEEE Trans. Inf. Theory,
Vol. IT-18, pp. 349356, (1972).

[3] D. C. Rife and R. R. Boorstyn, “Single tone parameter estimation from
discrete-time observations”, IEEE Trans. Inf. Theory, Vol. IT-20, pp. 591598, (1974).

[4] S. Banach, “Théorie des opérations linéaires”, Garasinski, Warsaw, (1932).

[5] S. Foguel, “On a theorem by A. E. Taylor”, Proc. Amer. Math. Soc. Vol. 9, p.
325, (1958).

[6] S. M. Kay, “A fast and accurate single frequency estimator”, IEEE Trans. Acoust.,
Speech, Signal Processing, Vol. 37, pp. 19871990, (1989).

[7] H. Fu, P. Kam, “MAP/ML FEstimation of the Frequency and Phase of a Single
Sinusoid in Noise”, IEEE Transactions on Signal Processing, Vol. 55, NO. 3, (2007).

[8] H. Fu, P. Kam, "On Threshold SNR in Estimating the Frequency and Phase of
a Noisy Single Sinusoid”, Vehicular Technology Conference (VIC Spring), IEEE
79th, (2014).

44 JAIIO - SIO 2015 - ISSN: 2451-7569

141



SIO 2015, 13° Simposio Argentino de Investigacién Operativa.

[9] D. G. Chapman, H. Robbins, “Minimum variance estimation without reqularity
assumptions”, Ann. Math. Stat., Vol. 21, pp. 581-586, (1951).

[10] R. McAulay, E. M. Hofstetter, “Barankin bounds on parameter estimation”,
IEEE Trans. Inf. Theory, Vol. IT-17, pp. 669676, (1971).

[11] L. Knockaert, “The Barankin bound and threshold behavior in frequency estima-
tion”, IEEE Trans. Signal Process., Vol. 45, no. 9, pp. 23982401, (1997).

[12] T. L. Marzetta, “Computing the Barankin bound, by solving an unconstrained
quadratic optimization problem”, Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., pp. 38293832, (1997).

[13] L. Najjar-Atallah, P. Larzabal, “Threshold Region Determination of ML Esti-
mation in Known Phase Data-Aided Frequency Synchronization”, IEEE Signal Pro-
cessing Letters, Vol. 12, NO. 9, pp. 605-608, (2005).

[14] E. Chaumette, J. Galy, A. Quinlan, P. Larzabal, “A New Barankin Bound
Approzimation for the Prediction of the Threshold Region Performance of Mazimum
Likelihood Estimators”, IEEE Transactions on Signal Processing, Vol. 56, NO. 11,
(2008).

44 JAIIO - SIO 2015 - ISSN: 2451-7569

142



