LA ASIMETRIA BILATERAL Y LA INESTABILIDAD DEL DESARROLLO. UN CASO DE APLICACION EN RESTOS OSEOS HUMANOS DEL SITIO PUNTA DE TEATINOS (NORTE DE CHILE)

José A. Cocilovo
Héctor H. Varela
Silvia Quevedo

PALABRAS CLAVE: Asimetría bilateral, Caracteres métricos, Población prehistórica

RESUMEN: En organismos con simetría bilateral, durante la morfogénesis, las unidades anatómicas pares alcanzan un tamaño y forma semejantes, aunque no del todo idénticos, como producto de la homeostasis del desarrollo. La diferencia entre estas unidades se distribuye como una variable aleatoria y es comúnmente conocida como asimetría bilateral (AB). Es causada por el efecto de factores localizados principalmente ambientales que actúan durante el crecimiento de los individuos y se considera una medida de la estabilidad del desarrollo. El objetivo del presente trabajo es la evaluación de este rasgo en un grupo de pescadores del período arcaico tardío exhumado en Punta de Teatinos del Norte Semiárido de Chile (4905±100 AP -

 e-mail: jcocilovo@exa.unrc.edu.ar

 e-mail: jcocilovo@exa.unrc.edu.ar

4000±95 AP). La experiencia pudo ser realizada por la calidad de la información disponible obtenida por uno de los autores (SQ). Los datos de mediciones bilaterales del cráneo y del esqueleto postcranial fueron analizados en forma sencilla desde el punto de vista de las respectivas distribuciones y de los estadísticos que permiten caracterizarlas. Este análisis se completa con una breve exposición sobre los estadísticos referidos a la descomposición de la varianza fenotípica para cada rasgo. En la mayoría de los casos se observaron distribuciones semejantes al modelo normal y las diferencias entre medias derechas e izquierdas no son significativas, indicando un proceso de desarrollo estable durante la vida de los individuos. Hay casos en los cuales los valores de la diferencia se apartan pronunciadamente de la media, originando distribuciones no normales, dependientes de ciertas perturbaciones producidas en el cráneo de algunos individuos, así como en los miembros superiores e inferiores, más frecuentes en niños que en adultos. Los datos obtenidos se discuten en el marco de toda la información disponible sobre el proceso de adaptación a la vida marítima de este particular grupo de pescadores. Rev. Arg. Antrop. Biol. 8(1): 121-144, 2006.

KEY WORDS: Bilateral asymmetry, Metric traits, Prehistoric population

ABSTRACT: During morphogenesis and as a result of developmental homeostasis, anatomical pair units in bilaterally symmetrical organisms reach similar -but not completely identical- size and shape dimensions. The difference between these units is distributed as a random variable commonly known as bilateral asymmetry (BA). It is considered to be caused by the effect of located factors, mainly environmental, that act during the growth of the individuals and can be used as a measurement of developmental stability. The aim of this work was to evaluate this feature in a group of fishermen of the late arcaic period exhumed at Punta de Teatinos in the Semi-arid North of Chile (4905±100 AP - 4000±95 AP). Because of the quality of available information obtained by one of the authors (SQ) this study was made possible. The distributions of cranial and post-cranial traits were analyzed in a simple way and completed with a short exposition on statistical data regarding the decomposition of the phenotypic variation for each feature. Generally the variable distributions were similar to the normal distribution. No sufficient tests could be obtained to show significant bilateral differences between right and left mean values indicating that a stable development process operated during the life of individuals. Uncommon distributions and extreme values were observed, due to certain disorders in the skull, arms and legs of some individuals, being more frequently in children than in adults. Data were discussed within the framework of available information about the adaptation process to marine resources of this particular group of fishermen. Rev. Arg. Antrop. Biol. 8(1): 121-144, 2006.
INTRODUCCION

El fenotipo es el producto complejo de la interacción entre factores ambientales y genéticos que actúan a nivel molecular, citológico, orgánico y sistémico, para generar una forma y una función final óptima que garantiza la vida y la reproducción de los individuos. Durante el proceso de crecimiento y desarrollo se produce un conjunto de cambios armónicos que sustentan la morfogénesis y finaliza en un producto adaptado a las particulares condiciones imperantes en un momento determinado.

Así, en organismos con simetría bilateral se espera que las estructuras anatómicas equivalentes situadas a ambos lados del plano sagital, alcancen durante su crecimiento un tamaño y una forma final semejantes, bajo el supuesto de que representan el mismo carácter y experimentan la influencia de los mismos factores endógenos y exógenos actuando durante la homeostasis del desarrollo. En el ser humano esto se observa con respecto a la forma y el tamaño de los huesos parietales, temporales, maxilares, dientes, músculos y huesos de los miembros superiores e inferiores. Toda desviación de esta norma puede estar vinculada en ciertos casos, con factores puramente ambientales, genético-ambientales o predominantemente genéticos.

Pero como en biología no existe la semejanza absoluta, las estructuras anatómicas pares no son similares en tamaño y en forma, siempre difieren entre sí, a veces ligera y sutilemente, originando una variable aleatoria (la diferencia entre la unidad derecha y la izquierda) que expresa la mayor o menor estabilidad del desarrollo (homeostasis). Esta particular propiedad de los organismos vivos se conoce en general con el nombre de “asimetría bilateral” (AB) y a ella, desde la década de 1960, se ha dedicado un enorme esfuerzo de investigación en los más variados campos de trabajo. Por ejemplo, en humanos hay estudios realizados en la región craneofacial (Poosha et al., 1984; Hershkovitz et al., 1990; 1992), en dientes (Greene, 1984) y en variables corporales (Schell et al., 1985). También fue estudiada en monos rhesus (Willmore et al., 2005), en aves (Kark et al., 2001; Kellner y Alford, 2003; Zduniak y Antczak, 2003), en la mosca de la fruta (Polak y Starmer, 2001; Dworkin, 2005) y en otros organismos.

El objetivo principal de este trabajo es el análisis estadístico de la distribución de las diferencias bilaterales o asimetría bilateral (AB) en Punta de Teatinos, una población antigua del litoral marítimo del Norte Semiárido de Chile. Para este grupo se dispone de abundante información sobre marcadores óseos relacionados con enfermedades nutricionales, infecciosas y actividad física de los individuos (Quevedo, 1998; Quevedo et al., 2000; Varela et al., en prensa). Estos hechos
proponen un perfil determinado que puede estar acompañado de variaciones en el crecimiento y desarrollo normal, susceptibles de ser cuantificadas en el esqueleto mediante el estudio de las diferencias bilaterales entre estructuras simétricas. Se espera obtener así un cuadro más completo sobre la calidad de vida y el proceso de adaptación experimentado por la población.

ANTECEDENTES

Los trabajos clásicos sobre el análisis de la AB registran, entre los más comunes, tres conceptos asociados: el de “asimetría fluctuante” (AF), el de “asimetría direccional” (AD) y el de “antisimetría” (AS). El primero se aplica cuando las diferencias bilaterales se presentan distribuidas aleatoriamente [\(~\mathcal{N}(0,\sigma^2)\)], el segundo cuando el desarrollo de un rasgo es mayor de un lado que del otro y el tercero cuando la variable se distribuye en forma bimodal con media cero (Van Valen, 1962 en Hershkovitz et al., 1992). Una completa y accesible exposición de conceptos, de recomendaciones y de procedimientos útiles para el estudio del tema puede consultarse en Palmer (1994).

A continuación se exponen algunas referencias bibliográficas seleccionadas, con la finalidad de ayudar a la comprensión del tema y a las ideas instaladas en el ámbito internacional acerca de las causas que producen las diferencias bilaterales en el ser humano.

En un estudio de la asimetría direccional (AD), buscando la predominancia de un lado sobre el otro, en la dentición de niños Beduinos, las pruebas obtenidas no fueron determinantes en relación a los diámetros mesiodistal y bucolingual (Hershkovitz et al., 1987). Es posible que la evaluación de este tipo de variables se encuentre seriamente limitada por el error de medición y por el escaso tamaño de las muestras, tal como fuera probado para AF por Greene (1984). En materiales de Punta de Teatinos, se demostró que la correlación bilateral (r) entre piezas dentales antimétricas es menor que las estimaciones realizadas para variables del cráneo y del esqueleto postcraneal, lo que sugiere la existencia de un componente ambiental mayor (1-r) integrando la varianza fenotípica.

La AD fue analizada en medidas corporales, en individuos adolescentes blancos de un suburbio de Filadelfia, controlando los resultados para la condición de lateralidad manual. Las mediciones de los brazos son significativamente asimétricas a favor del lado derecho, mientras que el panículo subescapular y los miembros inferiores no presentan asimetría. Entre individuos de manualidad derecha la circunferencia del brazo y la anchura biepicondilar fueron significativamente mayores en ese mismo lado. Sin embargo, por el reducido tamaño de la muestra, no se obtuvieron pruebas suficientes en sujetos de manualidad izquierda (Schell et al., 1985).
Las propiedades de las mediciones bilaterales para la discriminación de poblaciones fueron analizadas en restos craneanos de dos tribus de Beduinos del siglo XIX, “Tayaha” (región de Negev) y “Towara” (Sur de Sinai). Se dispuso de una completa reconstrucción histórica desde los primeros asentamientos en los siglos X y XIV hasta sus descendientes actuales. Dichas tribus constituyen entidades social y geográficamente aisladas y practican el apareamiento dentro del propio grupo, a menudo dentro de familias extensas con preferencias por el matrimonio entre primos primos, con un coeficiente de endogamia de 0,0908. Los resultados de un conjunto de 31 variables bilaterales comparados con seis rasgos convencionales, indican un mayor poder discriminatorio de aquellas y una mejor reclasificación de los individuos dentro del propio grupo, por medio de las funciones discriminantes (Hershkovitz et al., 1990). En estas condiciones, bajo endogamia (F>1/16 para primos hermanos), está claro que una proporción relevante de la varianza fenotípica puede ser puramente ambiental. Este hecho y el mayor número de variables explica las diferencias en los resultados entre mediciones bilaterales y unilaterales. Un subproducto de este trabajo es el valor global del coeficiente de correlación entre rasgos bilaterales del cráneo de 0,80 con un intervalo entre 0,928 para la cuerda porion-bregma y 0,639 para la longitud basion-mastoides, los cuales sirven de referencia para grupos aislados adaptados a la vida del desierto.

Dos años más tarde, los autores citados emplearon las mismas muestras para un análisis más detallado de la asimetría bilateral y concluyen que las medidas derechas de la calvaria poseen mayores valores (AD positiva), mientras que en la base predominan las del lado izquierdo (AD negativa). Los resultados para las variables de la región facial fueron ambiguos con valores positivos y negativos. Aunque AD no varía con el sexo ni la edad de los individuos, sí permite diferenciar ambas tribus. Con respecto a AF tampoco fue posible demostrar la influencia de la edad. Aunque el sexo fue un factor de variación menor, la región facial presentó el valor medio mayor y la calvaria el menor (Hershkovitz et al., 1992). Es decir, por esta experiencia se infiere que el efecto ambiental localizado es mayor en el esplancnocráneo que en el neurocráneo, lo cual debe ser evaluado bajo las condiciones de vida imperantes en la antigüedad y teniendo en cuenta también las observaciones anteriores con respecto a la endogamia propia de esta población.

La investigación de la AF y las dificultades para comprender sus causas trajo como consecuencia la elaboración de varias hipótesis: 1) el rasgo se incrementa en individuos con elevados niveles de morbilidad, 2) disminuye de acuerdo con la mayor heterocigosidad, 3) la varianza fenotípica de la AF tiene un componente genético significativo. Los antecedentes existentes tienden a apoyar o a refutar algunas de las tres explicaciones expuestas. Una buena síntesis sobre el particular se puede encontrar en Livshits y Kobyiansky (1991). Aunque en general se admi-
te que la expresión fenotípica de esta variable posee un considerable componente ambiental, muchas experiencias parecen haber demostrado que también existe una cierta proporción de variabilidad genética asociada. Con respecto a la primera hipótesis, es razonable esperar una mayor inestabilidad del desarrollo como consecuencia de enfermedades congénitas, lo cual nada nos dice sobre la posible componente genética de la AF. Lo mismo puede expresarse con respecto al nivel de heterocigosidad, que sustenta de partida una mayor estabilidad del desarrollo. Con respecto a la tercera explicación, no es fácil extraer conclusiones generales por la diversidad de los diseños experimentales aplicados, cuyas conclusiones son verdaderamente contradictorias (ver Tabla 5 en Livshits y Kobyliansky, 1991). Ni siquiera el enorme esfuerzo realizado por los citados autores al analizar las correlaciones de individuos emparentados en cerca de 300 familias, permitió alcanzar una sólida prueba acerca de la proporción de varianza genética contenida en la expresión fenotípica de la AF (ver Tabla 6 en Livshits y Kobyliansky, 1991).

Utilizando un diseño experimental especial, Livshits y Smouse (1993a) estudiaron una muestra de 208 individuos de edad avanzada que vivían en residencias próximas a Tel Aviv, sin lograr pruebas suficientes para demostrar la asociación entre AF y heterocigosidad (basada en once marcadores genéticos), ni entre esa variable y la masa corporal de los sujetos o su desviación del valor medio muestral. Simultáneamente, estos autores reafirman estos hechos en otro trabajo, empleando una muestra de 400 israelíes adultos y técnicas de análisis multivariado (Livshits y Smouse, 1993b). Las principales conclusiones se refieren a la ausencia de correlación de los valores de asimetría fluctuante entre sí y con respecto a otras variables antropométricas, las correcciones aplicadas para tamaño y forma no produjeron resultados apreciables y no pudo probarse la relación entre la magnitud de la asimetría y las desviaciones de los sujetos de la modalidad morfométrica. Sin embargo, una rescatable información se obtuvo del análisis de correlación entre ocho rasgos bilaterales de la cabeza y el cuerpo, con coeficientes distribuidos en el intervalo de 0,903 y 0,977, lo cual implica una proporción de la varianza explicada entre 82% y 95% y una muy baja componente ambiental especial.

De acuerdo con Falconer y Mackay (1996) y Lynch y Walsh (1998), la teoría genética de los caracteres cuantitativos explica que los valores fenotípicos (P) son el resultado del valor genotípico (G) producido por la acción de los genes y el valor ambiental (E) determinado por un conjunto de factores no genéticos que influyen en el fenotipo de los individuos. En consecuencia, la varianza fenotípica (V_P) se considera integrada por la varianza genética (V_G) y la varianza ambiental (V_E). Esta última puede ser descompuesta en la varianza ambiental general (V_Eg) y la varianza ambiental especial (V_Es) que es equivalente pero no igual a la varianza de la AB.
La V_{Eg} es producida por factores ambientales generales que influyen en todos los individuos de una población y la V_{Es} por factores ambientales restringidos y localizados, que actúan internamente durante el desarrollo y producen las diferencias entre mediciones dentro del individuo. Se puede lograr la separación de la V_{Es} mediante la medición de la repetibilidad (r), es decir, calculando la correlación intraclase de mediciones repetidas del mismo carácter, por ejemplo: realizadas en el lado izquierdo y derecho de una unidad anatómica determinada. Es suficiente recordar aquí que $r = \frac{(V_G + V_{Eg})}{V_p}$ es decir, la proporción de la varianza fenotípica explicada por la llamada varianza genética máxima y $1-r = \frac{V_{Es}}{V_p}$ es la proporción de la varianza fenotípica explicada por la varianza ambiental especial. Como estas cantidades son el resultado de un cociente entre valores que tienen significados diferentes, dos estimaciones de r semejantes en poblaciones distintas pueden no tener el mismo significado por el balance entre numerador ($V_G + V_{Eg}$) y denominador (V_p).

MATERIAL Y MÉTODOS

El yacimiento Punta de Teatinos se encuentra ubicado aproximadamente a 12 km al norte de La Serena, en el Norte Semiárido de Chile. Los restos hallados corresponden a un grupo que practicó una economía marítima de pesca, recolección de moluscos y vegetales, sin cerámica, cultígenos ni actividades ganaderas. Vivieron aproximadamente entre el 4905 AP y 1090 AP en la bahía de Coquimbo, superponiéndose dos niveles de ocupación, correspondiendo el primero a la fase Arcaico III, mientras que el segundo es más tardío y se lo asocia a un momento anterior al complejo Molle. Se cuenta con los siguientes fechados radiocarbónicos: 4905±100AP, 4560±95AP, 4000±95AP y 1920±60AP (Schiappacasse y Niemeyer, 1968; Quevedo, 1976; 1998). Otros yacimientos parecidos se han descrito en la Quebrada Honda y en Tilgo, en la costa de Coquimbo, unos 20 km al norte de Punta de Teatinos. La persistencia tan prolongada en el tiempo del grupo arcaico tardío determinó que éste entrara en contacto con otra cultura más reciente que tenía modalidades diferentes de efectuar sus inhumaciones. Este segundo grupo comenzó su proceso de desarrollo en los primeros años de la era cristiana. En este trabajo se emplearon individuos pertenecientes exclusivamente al periodo Arcaico.

Durante las excavaciones realizadas en este cementerio se rescataron 211 individuos, de los cuales para esta experiencia se consideraron 54 cráneos de ambos sexos y de edad juvenil, adulto, maduro y senil (Tabla 1) y distintos elementos del esqueleto postcraneano correspondientes a 163 sujetos: 64 femeninos, 65 masculinos y 34 infantiles (Tabla 2). La excelente preservación de los
restos permitió determinar sexo y edad con bastante exactitud. El diagnóstico del sexo se basó en la morfología del cráneo y de la pelvis, obteniéndose grados de sexualidad craneanos y pélvicos para cada individuo en edad reproductiva (Ferembach et al., 1980). La determinación de la edad fue realizada mediante la observación de rasgos de la morfología esquelética (Mckern y Steward, 1957), relacionados con remodelación de hueso (Acádi y Nemeskéri, 1970) y con características de la síntesis púbica empleando los moldes de Suchey-Brooks (Suchey y Katz, 1986; Brooks y Suchey, 1990). Esta información, así como la correspondiente a las mediciones del esqueleto postcraneano, fue obtenida por Quevedo y los datos de cráneo por Cocilovo. La colección correspondiente a este sitio está depositada en el Museo Nacional de Historia Natural de Santiago, Chile.

Tabla 1
Punta de Teatinos, cráneo, distribución de la muestra por edad y sexo

<table>
<thead>
<tr>
<th>EDAD</th>
<th>Femeninos</th>
<th>Masculinos</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juvenil-adulto</td>
<td>15</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Maduro</td>
<td>10</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>Senil</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Total general</td>
<td>28</td>
<td>26</td>
<td>54</td>
</tr>
</tbody>
</table>

Tabla 2
Punta de Teatinos, esqueleto postcraneano, distribución de la muestra por edad y sexo

<table>
<thead>
<tr>
<th>EDAD</th>
<th>Masculino</th>
<th>Femenino</th>
<th>Indeterminado</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantil</td>
<td>4</td>
<td></td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>15-20</td>
<td>5</td>
<td>12</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>20-25</td>
<td>11</td>
<td>7</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>25-30</td>
<td>17</td>
<td>16</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>30-35</td>
<td>11</td>
<td>14</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>35-40</td>
<td>9</td>
<td>10</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>40-45</td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Indeterminado</td>
<td>2</td>
<td>1</td>
<td>34</td>
<td>163</td>
</tr>
</tbody>
</table>
ASIMETRÍA BILATERAL E INESTABILIDAD DEL DESARROLLO

En el cráneo fueron relevadas nueve mediciones simétricas (Tabla 3) correspondientes al lado derecho e izquierdo en individuos de ambos sexos y de edades juvenil (4), adulto (16), maduro (26) y senil (8). Para la realización del análisis la primera clase de edad fue incluida en este conjunto, por presentar signos de cese del crecimiento con la sincondrosis esfenobasilar parcial o totalmente osificada.

Tabla 3
Punta de Teatinos, cráneo, estadísticos de posición, dispersión y prueba de diferencias entre medias

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Media (mm)</th>
<th>DS</th>
<th>Probabilidad*</th>
<th>g.l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura pómulo derecho</td>
<td>53</td>
<td>20,00</td>
<td>2,37</td>
<td>0,8079</td>
<td>105</td>
</tr>
<tr>
<td>Altura pómulo izquierdo</td>
<td>54</td>
<td>20,06</td>
<td>2,33</td>
<td>0,2646</td>
<td>105</td>
</tr>
<tr>
<td>Anchura órbita derecha</td>
<td>53</td>
<td>39,13</td>
<td>1,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchura órbita izquierda</td>
<td>54</td>
<td>39,57</td>
<td>1,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura órbita izquierda</td>
<td>54</td>
<td>34,24</td>
<td>1,57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura órbita derecha</td>
<td>54</td>
<td>34,20</td>
<td>1,75</td>
<td>0,9042</td>
<td>106</td>
</tr>
<tr>
<td>Longitud cignon-asterion derecha</td>
<td>53</td>
<td>117,43</td>
<td>4,48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitud cignon-asterion izquierda</td>
<td>53</td>
<td>117,53</td>
<td>4,65</td>
<td>0,9822</td>
<td>104</td>
</tr>
<tr>
<td>Longitud porion-bregma derecha</td>
<td>53</td>
<td>121,64</td>
<td>4,62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitud porion-bregma izquierda</td>
<td>52</td>
<td>120,19</td>
<td>4,34</td>
<td>0,0363</td>
<td>103</td>
</tr>
<tr>
<td>Altura órbito-alveolar derecha</td>
<td>52</td>
<td>37,25</td>
<td>5,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura órbito-alveolar izquierda</td>
<td>53</td>
<td>38,09</td>
<td>5,50</td>
<td>0,2952</td>
<td>103</td>
</tr>
<tr>
<td>Altura mínima rama montante derecha</td>
<td>46</td>
<td>45,96</td>
<td>5,41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura mínima rama montante izquierda</td>
<td>51</td>
<td>46,33</td>
<td>5,43</td>
<td>0,5623</td>
<td>87</td>
</tr>
<tr>
<td>Anchura rama montante derecha</td>
<td>42</td>
<td>41,31</td>
<td>3,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchura rama montante izquierda</td>
<td>40</td>
<td>40,93</td>
<td>3,72</td>
<td>0,5574</td>
<td>80</td>
</tr>
<tr>
<td>Anchura mínima rama montante derecha</td>
<td>47</td>
<td>32,66</td>
<td>2,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchura mínima rama montante izquierda</td>
<td>47</td>
<td>32,70</td>
<td>2,68</td>
<td>0,9758</td>
<td>92</td>
</tr>
</tbody>
</table>

* Prueba t diferencia entre medias, dos colas; N: número de observaciones; DS: desvío estándar; g.l.: grados de libertad para prueba “t” diferencia entre medias.

En el esqueleto postcraneano se consideraron siete variables bilaterales referidas a las longitudes de huesos largos (Tabla 4) en individuos juveniles, adultos, maduros y seniles (femeninos y masculinos) y en infantiles (entre 2 y 12 años), las correspondientes solamente a la diáfisis por la pérdida en todos los casos de las epífisis. Por esta razón, el análisis se presenta según dos grupos de edad, definido uno como infantil y el otro genéricamente como adulto, incluyendo las restantes fases etarias. Se advierte que los resultados presentados para estos dos grupos de edad no son equivalentes pues se refieren a variables distintas. En todos los casos se emplearon piezas enteras, sin señales de golpes o quebraduras.
Tabla 4
Punta de Teatinos, esqueleto postcraneano, individuos infantiles, estadísticos de posición, dispersión y prueba de diferencias entre medias, longitud huesos largos

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Media (mm)</th>
<th>DS</th>
<th>Probabilidad*</th>
<th>g.l.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número derecho</td>
<td>26</td>
<td>157,7</td>
<td>29,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número izquierdo</td>
<td>30</td>
<td>156,9</td>
<td>30,6</td>
<td>0,92</td>
<td>54</td>
</tr>
<tr>
<td>Cúbito derecho</td>
<td>26</td>
<td>138,8</td>
<td>27,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cúbito izquierdo</td>
<td>24</td>
<td>134,5</td>
<td>24,3</td>
<td>0,55</td>
<td>48</td>
</tr>
<tr>
<td>Radio derecho</td>
<td>30</td>
<td>124,8</td>
<td>25,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio izquierdo</td>
<td>24</td>
<td>121,0</td>
<td>22,7</td>
<td>0,58</td>
<td>52</td>
</tr>
<tr>
<td>Clavícula derecha</td>
<td>14</td>
<td>81,3</td>
<td>15,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clavícula izquierda</td>
<td>14</td>
<td>82,2</td>
<td>12,7</td>
<td>0,86</td>
<td>26</td>
</tr>
<tr>
<td>Fémur derecho</td>
<td>26</td>
<td>219,9</td>
<td>46,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fémur izquierdo</td>
<td>25</td>
<td>214,8</td>
<td>44,8</td>
<td>0,69</td>
<td>49</td>
</tr>
<tr>
<td>Tibia derecha</td>
<td>25</td>
<td>189,5</td>
<td>39,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibia izquierda</td>
<td>25</td>
<td>181,8</td>
<td>39,7</td>
<td>0,50</td>
<td>48</td>
</tr>
<tr>
<td>Peroné derecho</td>
<td>20</td>
<td>175,8</td>
<td>38,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peroné izquierdo</td>
<td>27</td>
<td>181,0</td>
<td>37,0</td>
<td>0,64</td>
<td>45</td>
</tr>
</tbody>
</table>

*Prueba t diferencia entre medias, dos colas; N: número de observaciones; DS: desvío estándar; g.l.: grados de libertad para prueba “t” diferencia entre medias.

Las razones que justifican la conformación de los grupos referidos al cráneo y esqueleto postcraneano, obedecen a circunstancias particulares que determinaron el relevamiento de los datos, por el grado de conservación de los materiales y por la ausencia de pruebas para demostrar diferencias en la expresión bilateral de los rasgos tanto entre uno y otro sexo, como entre las edades de los individuos adultos (Tablas 1 y 2).

El procesamiento de la información fue realizado en planillas de cálculo Excel™. Los valores de la asimetría bilateral (AB) se obtuvieron efectuando la diferencia entre las mediciones del lado derecho y del izquierdo. Para cada variable se estimaron las medidas de posición, dispersión y forma de la distribución mediante los coeficientes de asimetría (g₁) y de curtosis (g₂).

Las pruebas estadísticas se basan en la distribución t de Student y fueron diseñadas para evaluar las diferencias entre valores medios izquierdos y derechos y el ajuste a la distribución normal de los valores de las diferencias bilaterales. En el primer caso, empleando toda la información disponible, las pruebas permiten es-
Asimetría bilateral e inestabilidad del desarrollo

Table 5
Punta de Teatinos, esqueleto postcraneano individuos adultos, estadísticos de posición, dispersión y prueba de diferencias entre medias, longitud huesos largos

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Media (mm)</th>
<th>DS</th>
<th>Probabilidad*</th>
<th>g.l.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Húmero derecho</td>
<td>81</td>
<td>286,32</td>
<td>18,51</td>
<td>0,97</td>
<td>171</td>
</tr>
<tr>
<td>Húmero izquierdo</td>
<td>92</td>
<td>286,21</td>
<td>18,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cúbito derecho</td>
<td>77</td>
<td>243,70</td>
<td>17,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cúbito izquierdo</td>
<td>83</td>
<td>244,27</td>
<td>19,83</td>
<td>0,85</td>
<td>158</td>
</tr>
<tr>
<td>Radio derecho</td>
<td>96</td>
<td>225,47</td>
<td>19,98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio izquierdo</td>
<td>93</td>
<td>224,87</td>
<td>17,04</td>
<td>0,82</td>
<td>187</td>
</tr>
<tr>
<td>Clavícula derecha</td>
<td>77</td>
<td>132,10</td>
<td>11,70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clavícula izquierda</td>
<td>74</td>
<td>133,09</td>
<td>10,64</td>
<td>0,59</td>
<td>149</td>
</tr>
<tr>
<td>Fémur derecho</td>
<td>66</td>
<td>397,09</td>
<td>24,46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fémur izquierdo</td>
<td>69</td>
<td>397,77</td>
<td>26,28</td>
<td>0,88</td>
<td>133</td>
</tr>
<tr>
<td>Tibia derecha</td>
<td>85</td>
<td>339,60</td>
<td>25,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibia izquierda</td>
<td>78</td>
<td>339,91</td>
<td>26,24</td>
<td>0,94</td>
<td>161</td>
</tr>
<tr>
<td>Peroné derecho</td>
<td>75</td>
<td>328,67</td>
<td>26,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peroné izquierdo</td>
<td>65</td>
<td>328,38</td>
<td>26,21</td>
<td>0,95</td>
<td>138</td>
</tr>
</tbody>
</table>

*Prueba t: diferencia entre medias, dos colas; N: número de observaciones; DS: desvió estándar; g.l.: grados de libertad para prueba “t” diferencia entre medias.
Tabla 6
Punta de Teatinos, cráneo, distribución de los valores de la diferencia bilateral, estadísticos de posición, dispersión y forma de la distribución

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>Media (mm)</th>
<th>ES</th>
<th>g_1</th>
<th>ES</th>
<th>Valor $t = 0$</th>
<th>p</th>
<th>g_2</th>
<th>ES</th>
<th>Valor $t = 0$</th>
<th>p</th>
<th>g.l.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura del pómulo</td>
<td>53</td>
<td>0,00</td>
<td>0,33</td>
<td>0,00</td>
<td>0,33</td>
<td>0,00</td>
<td>1,00</td>
<td>0,31</td>
<td>0,64</td>
<td>0,48</td>
<td>0,63</td>
<td>52</td>
</tr>
<tr>
<td>Anchura de la órbita</td>
<td>53</td>
<td>-0,45</td>
<td>0,18</td>
<td>-0,41</td>
<td>0,33</td>
<td>-1,26</td>
<td>0,21</td>
<td>0,35</td>
<td>0,64</td>
<td>0,55</td>
<td>0,59</td>
<td>52</td>
</tr>
<tr>
<td>Altura de la órbita</td>
<td>54</td>
<td>0,04</td>
<td>0,14</td>
<td>0,02</td>
<td>0,32</td>
<td>0,00</td>
<td>0,95</td>
<td>1,17</td>
<td>0,64</td>
<td>1,84</td>
<td>0,07</td>
<td>53</td>
</tr>
<tr>
<td>Longitud cigion-asterion</td>
<td>52</td>
<td>0,17</td>
<td>0,27</td>
<td>-0,02</td>
<td>0,33</td>
<td>-0,06</td>
<td>0,95</td>
<td>-0,76</td>
<td>0,65</td>
<td>-1,17</td>
<td>0,000</td>
<td>51</td>
</tr>
<tr>
<td>Longitud porion-bregma</td>
<td>52</td>
<td>1,52</td>
<td>0,36</td>
<td>0,06</td>
<td>0,33</td>
<td>0,17</td>
<td>0,87</td>
<td>-0,59</td>
<td>0,65</td>
<td>-0,91</td>
<td>0,37</td>
<td>51</td>
</tr>
<tr>
<td>Altura órbito alveolar</td>
<td>51</td>
<td>-0,67</td>
<td>0,34</td>
<td>-0,09</td>
<td>0,33</td>
<td>-0,26</td>
<td>0,80</td>
<td>-0,16</td>
<td>0,66</td>
<td>-0,24</td>
<td>0,81</td>
<td>50</td>
</tr>
<tr>
<td>Altura mínima rama montante</td>
<td>39</td>
<td>0,10</td>
<td>0,25</td>
<td>0,27</td>
<td>0,38</td>
<td>0,70</td>
<td>0,49</td>
<td>0,31</td>
<td>0,74</td>
<td>0,42</td>
<td>0,68</td>
<td>38</td>
</tr>
<tr>
<td>Anchura rama montante</td>
<td>34</td>
<td>0,47</td>
<td>0,34</td>
<td>1,27</td>
<td>0,40</td>
<td>3,15</td>
<td>0,003</td>
<td>3,82</td>
<td>0,79</td>
<td>4,85</td>
<td>0,000</td>
<td>33</td>
</tr>
<tr>
<td>Anchura mínima rama montante</td>
<td>44</td>
<td>0,07</td>
<td>0,25</td>
<td>-0,01</td>
<td>0,36</td>
<td>0,04</td>
<td>0,97</td>
<td>-0,32</td>
<td>0,70</td>
<td>-0,46</td>
<td>0,65</td>
<td>43</td>
</tr>
</tbody>
</table>

N: número de observaciones; ES: error estándar de la media; g_1: coeficiente de asimetría y ES; g_2: coeficiente de curtosis y ES; g.l.: grados de libertad para las pruebas de distribución normal. Pruebas de hipótesis basadas en la distribución t para dos colas. p: probabilidad.

Tabla 7
Punta de Teatinos, esqueleto postcraniano, individuos adultos, distribución de los valores de la diferencia bilateral, estadísticos de posición, dispersión y forma de la distribución, longitud de los huesos largos

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>Promedio (mm)</th>
<th>ES</th>
<th>g_1</th>
<th>ES</th>
<th>Valor $t = 0$</th>
<th>p</th>
<th>g_2</th>
<th>ES</th>
<th>Valor $t = 0$</th>
<th>p</th>
<th>g.l.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número</td>
<td>75</td>
<td>-0,853</td>
<td>0,365</td>
<td>0,121</td>
<td>0,277</td>
<td>0,436</td>
<td>0,664</td>
<td>0,151</td>
<td>0,548</td>
<td>0,276</td>
<td>0,783</td>
<td>74</td>
</tr>
<tr>
<td>Cúbito</td>
<td>61</td>
<td>0,426</td>
<td>0,329</td>
<td>0,705</td>
<td>0,306</td>
<td>2,301</td>
<td>0,025</td>
<td>1,096</td>
<td>0,604</td>
<td>1,816</td>
<td>0,074</td>
<td>60</td>
</tr>
<tr>
<td>Radio</td>
<td>84</td>
<td>0,714</td>
<td>0,336</td>
<td>0,515</td>
<td>0,263</td>
<td>1,962</td>
<td>0,053</td>
<td>0,547</td>
<td>0,52</td>
<td>1,052</td>
<td>0,296</td>
<td>83</td>
</tr>
<tr>
<td>Clavícula</td>
<td>64</td>
<td>-0,859</td>
<td>0,416</td>
<td>0,273</td>
<td>0,299</td>
<td>0,913</td>
<td>0,365</td>
<td>-0,206</td>
<td>0,59</td>
<td>-0,349</td>
<td>0,728</td>
<td>63</td>
</tr>
<tr>
<td>Fémur</td>
<td>47</td>
<td>0,043</td>
<td>0,525</td>
<td>0,937</td>
<td>0,347</td>
<td>2,703</td>
<td>0,01</td>
<td>0,756</td>
<td>0,681</td>
<td>1,11</td>
<td>0,273</td>
<td>46</td>
</tr>
<tr>
<td>Tibia</td>
<td>65</td>
<td>0,323</td>
<td>0,358</td>
<td>0,085</td>
<td>0,297</td>
<td>0,287</td>
<td>0,775</td>
<td>0,051</td>
<td>0,586</td>
<td>0,086</td>
<td>0,932</td>
<td>64</td>
</tr>
<tr>
<td>Peroné</td>
<td>48</td>
<td>-0,813</td>
<td>0,475</td>
<td>-0,21</td>
<td>0,343</td>
<td>-0,613</td>
<td>0,543</td>
<td>0,269</td>
<td>0,674</td>
<td>0,399</td>
<td>0,692</td>
<td>47</td>
</tr>
</tbody>
</table>

N: número de observaciones; ES: error estándar de la media; g_1: coeficiente de asimetría y ES; g_2: coeficiente de curtosis y ES; g.l.: grados de libertad para las pruebas de distribución normal. Pruebas de hipótesis basadas en la distribución t para dos colas. p: probabilidad.
ASIMETRÍA BILATERAL E INESTABILIDAD DEL DESARROLLO

Tabla 8
Punta de Teatinos, esqueleto postcraneano, individuos infantiles, distribución de los valores de la diferencia bilateral, estadísticos de posición, dispersión y forma de la distribución, longitud de la diáfrasis de los huesos largos

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>Promedio (mm)</th>
<th>ES</th>
<th>g₁</th>
<th>ES</th>
<th>Valor t=0</th>
<th>p</th>
<th>g₂</th>
<th>ES</th>
<th>Valor t=0</th>
<th>p</th>
<th>g.l.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Húmero</td>
<td>26</td>
<td>0,154</td>
<td>0,327</td>
<td>-1,726</td>
<td>0,466</td>
<td>-3,798</td>
<td>0,001</td>
<td>3,613</td>
<td>0,887</td>
<td>4,076</td>
<td>0,00</td>
<td>25</td>
</tr>
<tr>
<td>Cúbito</td>
<td>21</td>
<td>-0,262</td>
<td>0,365</td>
<td>-2,168</td>
<td>0,501</td>
<td>-4,326</td>
<td>0,000</td>
<td>6,47</td>
<td>0,972</td>
<td>6,656</td>
<td>0,00</td>
<td>20</td>
</tr>
<tr>
<td>Radio</td>
<td>22</td>
<td>0,455</td>
<td>1,879</td>
<td>-0,079</td>
<td>0,491</td>
<td>-0,16</td>
<td>0,874</td>
<td>0,204</td>
<td>0,953</td>
<td>0,214</td>
<td>0,83</td>
<td>21</td>
</tr>
<tr>
<td>Clavícula</td>
<td>11</td>
<td>-0,682</td>
<td>5,314</td>
<td>-1,594</td>
<td>0,661</td>
<td>-2,412</td>
<td>0,037</td>
<td>2,222</td>
<td>1,279</td>
<td>1,737</td>
<td>0,11</td>
<td>10</td>
</tr>
<tr>
<td>Fémur</td>
<td>22</td>
<td>-0,545</td>
<td>3,117</td>
<td>-0,032</td>
<td>0,491</td>
<td>-0,064</td>
<td>0,949</td>
<td>0,466</td>
<td>0,953</td>
<td>-0,49</td>
<td>0,63</td>
<td>21</td>
</tr>
<tr>
<td>Tibia</td>
<td>20</td>
<td>-1,125</td>
<td>6,197</td>
<td>-2,253</td>
<td>0,512</td>
<td>-3,399</td>
<td>0,000</td>
<td>8,01</td>
<td>0,992</td>
<td>8,072</td>
<td>0,80</td>
<td>19</td>
</tr>
<tr>
<td>Peroné</td>
<td>24</td>
<td>-0,25</td>
<td>2,804</td>
<td>-0,114</td>
<td>0,472</td>
<td>-0,241</td>
<td>0,812</td>
<td>0,545</td>
<td>0,918</td>
<td>-0,594</td>
<td>0,56</td>
<td>23</td>
</tr>
</tbody>
</table>

N: número de observaciones; ES: error estándar de la media; g₁: coeficiente de asimetría y ES; g₂: coeficiente de curtosis y ES; g.l.: grados de libertad para las pruebas de distribución normal. Pruebas de hipótesis basadas en la distribución t para dos colas. p: probabilidad.

La similitud entre los valores medios del lado derecho e izquierdo de mediciones, supuestamente referidas al mismo carácter y la distribución simétrica de las diferencias individuales, indican la prevalencia de un proceso de desarrollo estable a nivel epigenético, resultante de la acción de un gran número de factores ambientales. En cambio, cuando dichas distribuciones manifiestan una fuerte simetría, se piensa en la acción de unos pocos factores principales, entre los cuales no se descarta una cierta influencia genética (Palmer, 1994). En este trabajo no se tuvieron en cuenta los distintos tipos de asimetría definidos en la literatura sobre el tema y se hacen inferencias solamente con respecto a las propiedades de las diferencias bilaterales (AB) en una muestra arqueológica. Por simplicidad, tampoco se exploran las distribuciones de estadísticos de análisis multivariado.

Empleando exclusivamente valores pareados, se calcularon también las estadísticas relacionadas con los componentes de la varianza fenotípica (\(V_p\)), la varianza ambiental especial (\(V_{AE}\)), la varianza genética máxima (\(V_G+V_{EG}\)), la repetibilidad (r), su error estándar (ES) y el valor de la componente ambiental especial (1-r) para cada variable y grupo muestral.

RESULTADOS

La distribución conjunta de las mediciones izquierda y derecha para algunas variables del cráneo y de los miembros se presentan en las Figuras 1/4, en las cuales se consigna el valor \(R^2\) (proporción de la varianza explicada por la correla-
ción bilateral). En estos gráficos se representan los valores de la derecha en el eje de las abscisas y los de la izquierda en el de las ordenadas. La mayor o menor concentración de los puntos con respecto a la recta de regresión indica la dispersión de los mismos y la magnitud de la variación ambiental especial.

Figura 1
Punta de Teatinos, diferencia bilateral, distribución de la longitud cigion-asterion (mm).

Figura 2
Punta de Teatinos, diferencia bilateral, distribución de la altura mínima de la rama montante de la mandíbula (mm).
Figura 3
Punta de Teatinos, diferencia bilateral, individuos adultos, distribución de la longitud del húmero (mm).

Figura 4
Punta de Teatinos, diferencia bilateral, individuos adultos, distribución de la longitud del fémur (mm).

En las Figuras 5 y 6 se dan dos ejemplos de distribuciones de valores de la diferencia bilateral (valores ambientales especiales).

Las pruebas de diferencias entre valores medios de las variables tomadas en el lado derecho e izquierdo, excepto en la distancia porción-bregma, no aportaron resultados estadísticamente significativos, tanto en el cráneo como en el esqueleto postcraneal de niños y adultos (Tablas 3/5). Esto significa que no existen razones para pensar en la existencia de distribuciones con medias distintas a cero, bajo las condiciones prevalecientes en esta experiencia.
Figura 5
Punta de Teatinos, diferencia bilateral, individuos adultos, distribución de la altura de la órbita (mm).

Figura 6
Punta de Teatinos, diferencia bilateral, individuos adultos, distribución de la longitud del radio (mm). Entre las clases 6 y 9 no hay datos.

El análisis de la forma de las distribuciones de las diferencias bilaterales (Tablas 6/8), por medio de los coeficientes g_1 y g_2, proporcionó en algunos casos, pruebas en favor de distribuciones no normales. Por ejemplo, en el maxilar inferior, la anchura de la rama montante manifiesta una marcada asimetría positiva, indicando la predominancia de valores mayores que la media y leptocurtosis (mayor empinamiento que la normal), mientras que la longitud zigion-asterion es más aplanada (platicúrtica) que la distribución de referencia.
Los problemas de distribución no normal, son más frecuentes en el esqueleto postcraneano. En los individuos adultos (Tabla 7) se observan casos de asimetría positiva en el cúbito y en el fémur, predominando en ambos casos los valores mayores que la media. En individuos infantiles (Tabla 8) se observan distribuciones de la longitud de la diáfisis con asimetría negativa (húmero, cúbito, clavícula y tibia), asociadas con lepotucrosis en el húmero, cúbito y tibia.

Con respecto a los estadísticos de la descomposición de la varianza fenotípica (Tablas 9, 10 y 11) se encuentran en el cráneo repetibilidades estimadas dentro del intervalo de 0,64-0,96, correspondiendo el extremo inferior al ancho de la órbita y el superior a la altura mínima de la rama montante del maxilar inferior. En el esqueleto postcraneano de individuos infantiles, los valores se encuentran muy próximos a la unidad y en el de los adultos oscilan entre 0,96 y 0,99.

Tabla 9
Punta de Teatinos, cráneo, estadísticos de la descomposición de la varianza fenotípica

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>Vp</th>
<th>VEs</th>
<th>Vgm</th>
<th>r</th>
<th>ES</th>
<th>1-r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura del pómulo</td>
<td>53</td>
<td>5,62</td>
<td>0,58</td>
<td>5,03</td>
<td>0,90</td>
<td>0,027</td>
<td>0,10</td>
</tr>
<tr>
<td>Anchura de la órbita</td>
<td>53</td>
<td>2,54</td>
<td>0,92</td>
<td>1,62</td>
<td>0,64</td>
<td>0,083</td>
<td>0,36</td>
</tr>
<tr>
<td>Altura de la órbita</td>
<td>54</td>
<td>2,45</td>
<td>0,56</td>
<td>1,89</td>
<td>0,77</td>
<td>0,055</td>
<td>0,23</td>
</tr>
<tr>
<td>Longitud cigion-asterion</td>
<td>52</td>
<td>20,10</td>
<td>1,88</td>
<td>18,22</td>
<td>0,91</td>
<td>0,025</td>
<td>0,09</td>
</tr>
<tr>
<td>Longitud porion-bregma</td>
<td>53</td>
<td>21,39</td>
<td>4,44</td>
<td>16,94</td>
<td>0,79</td>
<td>0,052</td>
<td>0,21</td>
</tr>
<tr>
<td>Altura órbito alveolar</td>
<td>51</td>
<td>27,80</td>
<td>3,14</td>
<td>24,66</td>
<td>0,89</td>
<td>0,030</td>
<td>0,11</td>
</tr>
<tr>
<td>Altura mínima rama montante</td>
<td>39</td>
<td>29,24</td>
<td>1,18</td>
<td>28,06</td>
<td>0,96</td>
<td>0,013</td>
<td>0,04</td>
</tr>
<tr>
<td>Anchura rama montante</td>
<td>34</td>
<td>9,44</td>
<td>1,97</td>
<td>7,47</td>
<td>0,79</td>
<td>0,065</td>
<td>0,21</td>
</tr>
<tr>
<td>Anchura mínima rama montante</td>
<td>44</td>
<td>6,27</td>
<td>1,31</td>
<td>4,97</td>
<td>0,79</td>
<td>0,057</td>
<td>0,21</td>
</tr>
</tbody>
</table>

Tabla 10
Punta de Teatinos, esqueleto postcraneano, individuos infantiles, estadísticos de la descomposición de la varianza fenotípica, longitud de la diáfisis de los huesos largos

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>Vp</th>
<th>VEs</th>
<th>Vgm</th>
<th>r</th>
<th>ES</th>
<th>1-r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Húmero</td>
<td>26</td>
<td>891,02</td>
<td>1,35</td>
<td>889,68</td>
<td>0,998</td>
<td>0,006</td>
<td>0,002</td>
</tr>
<tr>
<td>Cúbito</td>
<td>26</td>
<td>730,14</td>
<td>1,36</td>
<td>728,77</td>
<td>0,998</td>
<td>0,0008</td>
<td>0,002</td>
</tr>
<tr>
<td>Radio</td>
<td>30</td>
<td>652,88</td>
<td>1,00</td>
<td>651,88</td>
<td>0,998</td>
<td>0,0007</td>
<td>0,002</td>
</tr>
<tr>
<td>Clavícula</td>
<td>14</td>
<td>230,18</td>
<td>2,65</td>
<td>227,53</td>
<td>0,988</td>
<td>0,0072</td>
<td>0,012</td>
</tr>
<tr>
<td>Fémur</td>
<td>26</td>
<td>2164,59</td>
<td>1,64</td>
<td>2162,95</td>
<td>0,999</td>
<td>0,0003</td>
<td>0,001</td>
</tr>
<tr>
<td>Tibia</td>
<td>25</td>
<td>1559,01</td>
<td>3,73</td>
<td>1555,29</td>
<td>0,998</td>
<td>0,0011</td>
<td>0,002</td>
</tr>
<tr>
<td>Peroné</td>
<td>20</td>
<td>1446,72</td>
<td>1,38</td>
<td>1445,35</td>
<td>1,00</td>
<td>0,0004</td>
<td>0,001</td>
</tr>
</tbody>
</table>

N: número de observaciones; Vp: varianza fenotípica; VEs: varianza ambiental especial; r: repetibilidad; ES: error estándar de la repetibilidad; 1-r: proporción de la varianza ambiental especial.
Tabla 11
Punta de Teatinos, esqueleto postcraneano, individuos adultos, estadísticos de la descomposición de la varianza fenotípica, longitud de los huesos largos

<table>
<thead>
<tr>
<th>Estadísticos</th>
<th>N</th>
<th>(V_p)</th>
<th>(V_E)</th>
<th>(V_{gm})</th>
<th>r</th>
<th>ES</th>
<th>1-r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Húmero</td>
<td>81</td>
<td>342,75</td>
<td>5,28</td>
<td>281,04</td>
<td>0,98</td>
<td>0,00</td>
<td>0,02</td>
</tr>
<tr>
<td>Cúbito</td>
<td>77</td>
<td>291,08</td>
<td>3,34</td>
<td>240,36</td>
<td>0,99</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>Radio</td>
<td>96</td>
<td>399,07</td>
<td>4,95</td>
<td>220,52</td>
<td>0,98</td>
<td>0,00</td>
<td>0,02</td>
</tr>
<tr>
<td>Clavícula</td>
<td>77</td>
<td>136,91</td>
<td>5,82</td>
<td>126,28</td>
<td>0,96</td>
<td>0,01</td>
<td>0,04</td>
</tr>
<tr>
<td>Fémur</td>
<td>66</td>
<td>598,51</td>
<td>6,34</td>
<td>390,75</td>
<td>0,98</td>
<td>0,00</td>
<td>0,02</td>
</tr>
<tr>
<td>Tibia</td>
<td>85</td>
<td>655,43</td>
<td>4,15</td>
<td>335,45</td>
<td>0,99</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>Peroné</td>
<td>75</td>
<td>709,79</td>
<td>5,64</td>
<td>323,03</td>
<td>0,98</td>
<td>0,00</td>
<td>0,02</td>
</tr>
</tbody>
</table>

DISCUSIÓN Y CONCLUSIONES

En las pruebas de las diferencias entre valores medios de la medición izquierda y derecha (Tablas 3/5), aunque no es posible garantizar distribuciones normales en todos los casos, no se esperan resultados muy diferentes, debido a los elevados valores de probabilidad obtenidos. En general se podría pensar en un proceso de crecimiento y desarrollo estable. Sin embargo, esta condición no se cumpliría en todos los casos, principalmente en aquellos en los que se comprobaron diferencias bilaterales significativas, distribuciones no normales y elevada varianza ambiental especial.

Mientras que en el cráneo las repetibilidad variaban dentro de un intervalo amplio, reflejando la influencia de efectos localizados, en el esqueleto postcraneano el componente ambiental especial es de escasa magnitud, influyendo en el crecimiento y desarrollo de los individuos, proceso que parece haber dependido más de factores ambientales generales y comunes a toda la población.

Los resultados obtenidos en este tema son difícilmente generalizables porque reflejan propiedades de los individuos y de la población. Por esta razón, si en el mejor de los casos la muestra fuera aleatoria y representativa de la población local, tampoco la información obtenida podría ser empleada para hacer predicciones sobre otros grupos. Pensando en un modelo sencillo, sin mayores complicaciones y suponiendo ausencia de interacción genético-ambiental, los componentes de la varianza fenotípica \(V_C\) y \(V_E\) no son constantes, varían espacial y temporalmente, dependiendo de las frecuencias génicas y de las particulares condiciones ambientales que predominaron durante el crecimiento y desarrollo de los individuos. A continuación se discuten algunos resultados con referencia a su consistencia interna y a los obtenidos por otros autores.

En niños, aunque no pudieron ser demostradas grandes diferencias bilaterales, tanto en miembros superiores como en inferiores, estas parecen favorecer a los componentes derechos, en algunos casos implicando varios milímetros de más, mientras
que en individuos adultos tales diferencias fueron difíciles de observar. Esto mismo fue comprobado en adolescentes blancos de Filadelfia (Schell et al., 1985).

En el cráneo adulto, los valores de repetibilidad se presentan dentro del intervalo de 0,64 (anchura de la órbita) y 0,96 (altura mínima de la rama montante). Valores semejantes fueron calculados por Hershkovitz et al. (1990) en beduinos aunque para variables diferentes. Pero es sugestivo que los valores de la diferencia media correspondiente a la órbita sean menores para la altura que para la anchura (Hershkovitz et al., 1992) lo cual se refleja en nuestros datos (Tabla 6), aunque son mayores las repetibilidades estimadas por aquellos autores. En este trabajo la longitud porion-bregma tiene un valor de correlación bilateral menor y una mayor diferencia media que en el caso citado. Mayores valores de repetibilidad entre rasgos de la cabeza y del cuerpo se obtuvieron en una muestra de individuos adultos de Tel Aviv, pero también se comprobó la ausencia casi total de correlación de estas variables entre sí, y con otras mediciones somatométricas (Livshits y Smouse, 1993a), hecho que se repite también en Punta de Teatinos. Si la asimetría bilateral refleja el efecto de factores ambientales localizados durante el desarrollo, tal como predice la teoría sobre la descomposición de la varianza ambiental, entonces esto constituye un resultado consistente que debería ser aceptado sin mayores cuestiones por su distribución aleatoria y su independencia.

El grado de adaptación funcional durante la vida en esta localidad fue medido sobre la base de una serie de marcadores registrados en el material óseo. En efecto, se estableció una concordancia entre la abrasión dentaria y el contenido de oligoelementos en huesos (estrónio, bario y zinc) indicando el consumo de alimentos con contenidos abrasivos, basado en el aprovechamiento de mariscos y productos vegetales. El recuento de líneas de Harris, efectuado en 72 individuos, reflejó una prevalencia de 60%, mientras que las líneas de hipoplasia del esmalte dentario tuvieron una frecuencia de 22% en niños, 46% en hombres y 59% en mujeres. A pesar de estos datos, la proporción de rasgos relacionados con problemas nutricionales es baja: 6% de criba orbitaria y ausencia de hiperostosis porótica. En el 64% de los casos se detectaron enfermedades infecciosas (como periostitis y osteomielitis), siendo mayor la frecuencia entre los 35 y 40 años de edad. En casi el 30% de la muestra se comprobaron lesiones traumáticas más frecuentes en el esqueleto postcraneano, involucrando fracturas de costillas, cúbito y radio, que en algunos casos se presentan en forma múltiple (Quevedo et al., 2000).

En general, algunos factores ambientales y culturales pueden haber influido más en las formas de las distribuciones, en particular por las alteraciones funcionales del aparato masticatorio producidas por el desgaste diferencial y la pérdida de piezas dentarias. Esto pudo afectar la forma y el tamaño del esqueleto craneofacial.
Las observaciones de traumas en el cráneo se refieren a señales de golpes en el frontal y en los parietales, los cuales no parecen haber afectado los resultados referidos a la magnitud de la asimetría fluctuante. Sí en cambio, es posible prever una asociación entre la deformación artificial y la plagiocefalía, por la asimetría direccional de la longitud porción bregma (el promedio de la medición derecha es mayor que el de la izquierda) y la mayor varianza ambiental especial de la anchura orbitaria, aunque no se hayan comprobado dichos efectos en las diferencias bilaterales de las restantes variables craneanas.

La evaluación de la inestabilidad del desarrollo en términos de AB puede ser inferida además por las distribuciones distintas de la normal de algunas variables, principalmente a nivel de la rama del maxilar inferior y del esqueleto postcraneano en individuos infantiles, aunque esto no se traduzca directamente en los valores de la varianza ambiental especial.

Un factor influyente es la nutrición y la distribución energética en el grupo dependiente de la disponibilidad y calidad de los recursos. Por esta razón, aquí adquiere importancia la información antes citada sobre el recuento de líneas de Harris, la hipoplasia del esmalte dentario y la proporción de enfermedades infecciosas, influyendo en el crecimiento y desarrollo y en la forma de las distribuciones de los huesos largos. Estas consecuencias se miden por la varianza ambiental (V_E) y contribuyen tanto a las diferencias entre individuos (V_Ec) como dentro de individuos (V_Eg).

En síntesis, el proceso de adaptación del grupo de Punta de Teatinos tuvo dos componentes importantes: uno general y permanente relacionado con las condiciones de vida comunes a una población de pescadores arcaicos y otro particular, vinculado con la experiencia vital de cada individuo, manifestándose ambos en forma independiente y determinando junto con la composición genética, un fenotipo particular que caracteriza a esta localidad desde el punto de vista biológico.

El presente tema de investigación alcanza además una proyección significativa para los trabajos dedicados al estudio de las relaciones de parentesco entre las poblaciones y a las inferencias sobre los factores evolutivos que actuaron en el pasado, pues permite eliminar de las estimaciones de distancias una proporción, a veces importante, de la varianza ambiental de los caracteres métricos.

En efecto, en San Pedro de Atacama se realizó la primera evaluación de la magnitud del componente ambiental especial en la variación fenotípica del cráneo, estimándose repetibilidades entre 0,88 y 0,65 correspondiendo a valores del componente ambiental especial entre 0,12 y 0,35. En este mismo estudio se proporcionó el cálculo de la repetibilidad multivariada obtenida a partir de la correlación canónica entre mediciones del lado derecho e izquierdo, consideradas simultáneamente, la cual alcanzó el valor medio de 0,85 para las cuatro primeras variables canóicas que acumularon el 92% de la variación total (Varela y Cocilovo,
En otra experiencia similar realizada en el Valle de Azapa, la repetibilidad media para todos los rasgos analizados fue de 0,82, con un intervalo entre 0,89 y 0,71, siendo en promedio el 17,5% la proporción de varianza fenotípica explicada por la varianza ambiental especial, variando esta cantidad dentro de un intervalo 0,11-0,29. La similitud de estas cifras estaría indicando la existencia de factores ambientales y genéticos comunes en el crecimiento y desarrollo del cráneo de la población del Norte de Chile.

Estas cifras indican que en las poblaciones citadas, la proporción de varianza genética máxima integrante de la varianza fenotípica, garantiza las estimaciones de parentesco basadas en distancias D^2 de Mahalanobis. Esto es particularmente cierto bajo el supuesto de que los efectos ambientales comunes a todos los individuos se distribuyan aleatoriamente con media igual a cero. Si así fuese el caso, el valor fenotípico medio sería igual al valor genotípico medio. Esta información es de vital importancia y confiere sustento a otros trabajos en los cuales se analizó la estructura de la población local, como por ejemplo en San Pedro de Atacama (Varela y Cocilovo, 2000), en el Valle de Azapa (Cocilovo et al., 2001) y en grupos arcaicos de la costa norte de Chile (Cocilovo et al., 2004) entre otros, permitiendo avanzar en la aplicación de modelos específicos de deriva y migración para comprender el proceso microevolutivo (Varela y Cocilovo, 2002; Varela et al., 2004).

A pesar de la semejanza global expresada por los valores de repetibilidad para grupos del Norte de Chile, en particular se observan variaciones menores que requieren un análisis más detallado de la información obtenida. Contando con muestras más abundantes, sería deseable realizar una evaluación a nivel regional de la asimetría bilateral y la repetibilidad, tanto de rasgos métricos como no métricos, poniendo a prueba la posible asociación con factores espaciales y temporales, económicos, sociales y culturales. No está de más recomendar la incorporación de este tipo de datos en los estudios que se hagan en el futuro en poblaciones antiguas y actuales, con la finalidad de hacer inferencias más precisas sobre la estabilidad del desarrollo de los individuos y una evaluación más completa del proceso adaptativo.

AGRADECIMIENTOS

Este trabajo fue realizado con subsidios del Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) 1960113 y 1960169 de Chile y del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 0603/98), de la Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SeCyT-UNRC, 1999-2000) de Argentina. Deseamos agradecer a la Mg. Silvia G. Valdano por su asesoramiento e intervención en la redacción del presente manuscrito y a los consultores anónimos cuyas recomendaciones fueron de gran utilidad.
BIBLIOGRAFÍA CITADA

Varela HH, Cocilovo JA, Costa MA y Quevedo SG Evaluación de la adaptación en poblaciones arcaicas del norte de Chile. México, Antropología Física Latinoamericana (en prensa).