
Analysis of a GPU implementation of Viola-Jones’
Algorithm for Features Selection

Germán Lescano1,2, Pablo Santana-Mansilla1,2 and Rosanna Costaguta1
1Instituto de Investigación en Informática y Sistemas de Información (IIISI)

Facultad de Ciencias Exactas y Tecnologías (FCEyT)
Universidad Nacional de Santiago del Estero (UNSE)

Santiago del Estero, CP 4200, Argentina
{gelescano,psantana,rosanna}@unse.edu.ar

2Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Abstract

Faces and facial expressions recognition is an
interesting topic for researchers in machine vision.
Viola-Jones algorithm is the most spread algorithm
for this task. Building a classification model for face
recognition can take many years if the
implementation of its training phase is not optimized.
In this study, we analyze different implementations
for the training phase. The aim was to reduce the time
needed during training phase when using one
computer with a cheap graphical processing unit
(GPU). The execution times were analyzed and
compared with previous studies. Results showed that
combining C language, CUDA, etc., it is possible to
reach acceptable times for training phase. Further
research may involve the measurement of the
performance of our approach computers with better
GPU capacity and exploring a multi-GPU approach.

Keywords: Adaboost, Viola-Jones Algorithm,
feature selection, CUDA.

1. Introduction

Face and facial expressions recognition is an
interesting topic for researchers in machine vision [9].
An important stage in a face recognition algorithm is
the building of a classification model that can
discriminate faces. Building a classification model
require a training phase during which a sample of
images is analyzed with the aim of extracting those
features that best describe a face.

Viola and Jones [11] proposed an algorithm that
can detect faces in real time. It is widely used in a
variety of software and hardware applications that
incorporate elements of computer vision, like the face
detection module in video conferencing, human-
computer interaction, and digital photo cameras [6].
This algorithm can be implemented on a wide range
of small low power devices, including hand-helds
devices and embedded processors. However, a

drawback of this algorithm is that the training phase
is extremely time-consuming.

In this work, we propose and analyze
implementations for the training phase of Viola-Jones
algorithm. These implementations try to reduce the
execution times when working on a single computer
and involves the use of parallel computing,
specifically CUDA architecture. CUDA is a parallel
computing platform and programming model created
by NVIDIA [12]. It enables dramatic increases in
computing performance by harnessing the power of
the GPU. In order to reduce execution times, we had
focus on feature selection because this process has a
notable impact on training times.

This paper is organized as follows. In section 2,
the training phase of Viola-Jones algorithm is
described. In section 3, details about the proposed
implementation are given. In section 4, we compare
our proposal with other alternatives we found in the
literature. In section 5, conclusions and future
research directions are presented.

2. The Training Phase

Viola and Jones [11] propose a variant of Adaboost
algorithm [2] for the training phase. This algorithm
selects a small number of features that best describe a
face. These features are known as weak classifier.
Once weak classifiers are selected, the algorithm
combine them to get a strong classifier.

In Viola-Jones algorithm, features are modeled
like rectangles which are subdivided in black and
white regions, a reminiscent of Haar basis functions
[8]. Fig. 1 shows an example of typical features. To
compute a feature, the sum of pixels within the white
rectangles are subtracted from the sum of pixels
within the black rectangles.

Fig. 1 Haar-Like patterns frequently employed [11].

Eq (1) shows the definition of a weak classifier. In

- Invited paper -

JCS&T Vol. 17 No. 1 April 2017

68

this equation f is a feature, 𝜃 is a threshold, 𝑝 ∈
{−1,1} is the polarity that indicates the direction of
the inequality and x is a sub-window of an image.

Each iteration of the training phase tries to select
the single rectangle feature that best separates the
positive (face images) and negative examples (not
face images). For each feature, the weak classifier
determines the optimal threshold of classification
function, such that the minimum number of examples
is misclassified. Fig. 2 shows the flow chart of the
algorithm proposed by Viola and Jones [11].

Fig. 2 Boosting algorithm of training phase.

Training phase begins with the initialization of
weights related to training images. Weights of
positives images are initialized with 1/2m and weights
of negative images with 1/2l, where m is the number
of face images and l is the number of not face images.
Then, the algorithm iterates to get the T weak
classifiers that are required. The T number is given as
a parameter. Within each iteration four processes are
run. In the first process, weights are normalized with
the function in Eq (2). In the second process, a weak
classifier is selected. This means that this process
determines the values of the feature, the polarity and
the threshold that minimize the classification error
defined in Eq (3). Fig. 3 shows a flowchart of the
weak classifier selection process that was designed
from the interpretation proposed by Morelli and
Padovani [5] in their pseudo-code. In the third
process, the weak classifier selected is added to the
set of weak classifiers. In the last process, weights of
images are updated again with the function in Eq (4).

Once the T is reached, the algorithm combines the
chosen weak classifiers to get a strong classifier
which output is showed in Eq (5).

Fig. 3 Algorithm for weak classifiers selection.

In the process of selecting a weak classifier (Fig.
3), for each feature, the images into the samples are
sorted by feature value in ascendant way. The
Adaboost optimal threshold for that feature can then
be computed in a single pass over this sorted list. On
each iteration over the sorted list, four sums are
evaluated for each element: the total sum of positive
examples weights T+, the total sum of negative
example weights T-, the sum of positive weights
below the current example S+ and the sum of negative
weights below the current example S-. Furthermore,
an error is computed for each feature using the Eq (6).

ℎሺ𝑥, 𝑓, 𝑝, 𝜃ሻ = ቄ
1 𝑠𝑖 𝑝𝑓ሺ𝑥ሻ < 𝑝𝜃
0 𝑒𝑛 𝑜𝑡𝑟𝑜 𝑐𝑎𝑠𝑜

(Eq. 1)

𝑤𝑡,𝑖 =
𝑤𝑡,𝑖

σ 𝑤𝑡,𝑗
𝑛
𝑗=1

(Eq. 2)

𝜀𝑡 = 𝑚𝑖𝑛𝑓,𝑝,𝜃 ෍ 𝑤𝑖ȁℎሺ𝑥𝑖 , 𝑓, 𝑝, 𝜃ሻ − 𝑦𝑖ȁ

𝑖

 (Eq. 3)

𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝛽𝑡
1−𝑒𝑖

where ei=0 if example xi is classified
correctly, ei = 1 otherwise, and 𝛽𝑡 =

𝜀𝑡

1−𝜀𝑡

(Eq. 4)

1 𝑖𝑓 σ 𝛼𝑡ℎ𝑡ሺ𝑥ሻ ≥
1

2
σ 𝛼𝑡

𝑇
𝑡=1

𝑇
𝑡=1 , where

𝛼𝑡 = 𝑙𝑜𝑔
1

𝛽𝑡
 , or 0 otherwise

(Eq. 5)

JCS&T Vol. 17 No. 1 April 2017

69

This value represents the error that we would produce
if the element were considered the threshold for the
feature. Once all errors have been computed, the
lowest one is selected.

3. Implementing Training Phase on a
GPU

Five experimental settings were proposed to
implement the training phase of Viola-Jones
algorithm. These implementations differ in terms of
data allocation and key functions processing (data
sorting for example). As four out of five
implementations needed execution times that surpass
2 hours, we decided to focus on the fifth
implementation. Table 1 summarizes implementation
one to four and shows execution time that they needed
to choose a weak classifier. More details of first to
fourth implementation can be found in [14].

In this section, we describe an implementation of
the training phase of Viola-Jones algorithm in order
to be executed in a cheap GPU. C language was
chosen to code this implementation because it enables
us to make decision of programming at low-level and
it is compatible with CUDA. Execution time of the
implementation was evaluated throughout the
processing of 5000 images of faces and 10,000
images of not faces. This quantity is similar to the
experiment of Viola-Jones. The images used in our
experiments were simulated from a seed of face
images (165) and not face images (165).

The weak classifier selection is a function that is
executed several times in the training phase and has a
lot of data processing. In the flowchart of Fig. 3, we
can see that the function begins computing the sum of
weights corresponding to the 15,000 positive and
negative images. Then the first loop iterates by
162,336 features. Each interaction of the loop gets,
from the training images, the features values
corresponding to the feature analyzed and sorts them.
Then, the second loop is executed with the aim of
computing the sum of positive weights below the
current example S+ and the sum of negative weights
below the current example S-.

Table 1 Summary of implementations reported in [14]

Implementation 1 Description.
- Data are retrieved from
files.
- There are about 2500
millions of hard drive
accesses.
- Sort method: Bubble
Execution time: 4.84
years

Implementation 2 Description
- Information about
162336 feature of each
training file are stored in a
unique file.
- Sort method: QuickSort
- All operations are
sequential.
Execution time: 31.42 hs

Implementation 3 Description
- Thrust for sorting task.
- Reduction Thrust was
used to compute
operations within the
second loop in Fig. 3
- Data transference
between RAM and GPU
memory within the second
loop in Fig. 3
Execution time: 17.08
days

Implementation 4 Description
- Information about
weights and class
associate with an image
are allocated in GPU
memory until the first
loop in Fig. 3 was true.
- Harris Algorithm [3] was
used to parallelize sum
operations within the
second loop in Fig. 3.
Execution time: 23.43hs

In order to store information of training images we

decided to use a 15,000 x 4 matrix. This matrix is
allocated in memory and has the following data for
each image: the identifier of each training file, the
category of the image (face or not face), its weight
and the category (face or not face) assigned by the
classifier algorithm. In addition, we used as many
files as training images in order to save the features
of the images. Each file has 162,336 lines (this
number corresponds to the total quantity of features
that can be generated for an image of 24 x 24 pixels)
and each line registers information of one feature.
Specifically, each line indicates the kind of the feature
(someone of the five types showed in Fig. 1), x

𝜀 = minሺ𝑆+ + ሺ𝑇− − 𝑆−ሻ, 𝑆− + ሺ𝑇+ − 𝑆+ሻሻ (Eq. 6)

JCS&T Vol. 17 No. 1 April 2017

70

position of sub image, y position of sub image, weight
of sub image, height of sub image, value of the feature
(difference between white rectangles and black
rectangles), and its identification.

When training process starts a 15,000 x 162,336
matrix is created. Each line in this matrix stores the
sixth column of each line of a file with information of
image features. This step allowed us to reduce the
execution time. To be sure data were not paged by the
operative system we used cudaHostAlloc instruction
that allocates a buffer of page-locked host memory
[7].

We used the Thrust library for sorting the matrix
of image features by the column corresponding to the
feature that is selected in the first loop showed in Fig.
3. Thrust is a parallel algorithms library that enhances
programmer productivity while enabling
performance portability between GPUs and multicore
CPUs [13].

Table 2 Execution times required to get a weak classifier

Number
of

Streams

Execution
Time (seconds)

16 0.0517

32 0.0525

64 0.0532

128 0.0534

256 0.0538

512 0.0543

1,024 0.0535

2,048 0.0532

4,096 0.0534

8,192 0.0444

Streams were used to improve the performance of
the algorithm. These streams compute the operations
involved in the second loop showed in Fig. 3. In each
iteration of the loop, a stream loads in asynchrony
way, from the memory of CPU to the memory of
GPU, each row of matrix of image features. While
this data is loaded, two kernels are thrown in order to
compute data available in GPU memory. One kernel
sorts the loaded row by the feature which is analyzed.
The other kernel runs operations involved in the
second loop. The results of these calculations are
copied asynchronously to an array that stores, for
each feature, the error that would be committed if the
value in the sample for this feature were chosen as
threshold value. This array is stored in pinned
memory.

At the end of the execution of all the streams, the
min_element function of Thrust library is used to find
the smallest error in the above-mentioned array. This
final step allows one to get the selected feature, the
threshold value and its corresponding error.
Table 2 shows the execution times to process a feature
using 15,000 training images and different numbers
of streams. We employed a computer with the
following hardware configuration: i7 processor of 3.4
Ghz and GPU GeForce GT 730 with 2 GB of global
memory.

With this implementation and using 8,192
streams, the processing of 15,000 training image with
162,336 features will take about 2hs.

4. Discussion

A bibliographical exploration regarding to time
reduction when building images classifiers with
boosting algorithm allowed us to identify research
works such as Huang and Shi [4], Abualkibash et al.
[1] and Tsai et al. [10].

Huang and Shi [4] worked with 65,230 features
and 18,676 samples. In their experiments, Huang and
Shi used computers with a 1.8 Ghz processor.
Abualkibash et al. [1] describe the same experiment
that was made by Huang and Shi [4], yet Abualkibash
et al. [1] utilized computers equipped with quad-core
processors. Details about processing capacity of
CPUs are not given in Abualkibash et al. [1]. Fig.4
shows a comparison of execution time obtained
during fifth experimental setting (described in 3) with
execution time during experiments conducted by
Huang and Shi [4] and Abualkibash et al. [1] (further
details are given in [14]).

Fig. 4 Execution time during experiments conducted by
Huang and Shi [4], Abualkibash et al. [1] and alternative 5

Regarding to Tsai et al. [10], they used a GPU
Nvidia Tesla K20c. This GPU has 2496 cores, 706
Mhz of memory frequency, and 5 GB of global
memory. Tsai et al. [10] made three experiments: the
first one with 1,119 features and 19,575 samples; the
second experiment with 6,090 features and 19,161
features; and the last experiment with 10,640 features

JCS&T Vol. 17 No. 1 April 2017

71

and 19,140 samples. The results of these three
experiments can be seen in Table 3.

Table 3 Comparison between execution time of alternative
5 and execution time during experiments conducted by

Tsai et al. [10]

Experiments Time to select a feature
Tsai et al.

[10]
Alternative 5

implemented in
Geforce GT 730
of 2GB memory

1,119 features
19,575
samples

0.788 sec
1.413 min

 (1,119 streams)

6,090 features
19,161
samples

1.157 sec
7.313 min

(4,096 streams)

10,640
features
19,140
samples

1.217 sec

6.2497 min
(8,192 streams)

Considering results that are showed in Fig. 4 and

Table 3 one could conclude that the fifth experimental
setting proposed in this paper is not a good option to
reduce the time of classifiers building. Nevertheless,
one should consider that the fifth alternative of
solution was tested in a computer with a GPU of
limited processing capacity. For this reason, it would
be interesting to run the fifth solution in a computer
with better hardware capacities and then compare it
with the results achieved by Huang and Shi [4],
Abualkibash et al. [1] and Tsai et al. [10]. For
example, a GPU like the one used by Tsai et al. [10]
not only has more computing capacity but also it is
possible to execute more streams.

As the laboratory at the university had not have
more powerful computers than the described in point
4 (i7 processor of 3.4 Ghz and GPU Geforce GT 730),
it was decided to hired the computer instance
g2.2xlarge from amazon.com. The instance
g2.2xlarge has: 8 virtual CPU Intel Xeon E5-2670; 15
GB of RAM; and a GPU Nvidia Grid K520 with 4
GB of RAM, 797 Mhz of frequency and 1536 cores.

Table 4 shows a comparison of time needed for
executing the experiments of Table 2 (the same
number of features and sample files) in the hired
instance and the GPU GeForce GT 730. It was
expected that execution in the GPU available in
g2.2xlarge instance would be faster than the
execution in GeForce GT 730. Nonetheless, the
results do not confirm the previous assumption. A
reason might be the virtualization effect although this
needs further research.

Table 4 Comparison of execution time when
implementing solution 5 in GeForce GT 730 and in

instance g2.2xlarge.

Experiments Time to
select a
feature

(Alternative
5

implemented
in GeForce

Gt 730)

Time to select
a feature
 (Alternative 5
implemented

in GPU of
g2.2xlarge)

1,119 features
19,575
samples

1.413 min 4.1789 min

6,090 features
19,161
samples

7.313 min 22.039 min

10,640
features
19,140
samples

6.2497 min 38.472 min

5. Conclusions

This work analyzed several implementations of
training process for generating a classifier with the
capacity of face recognition. The aim was to reduce
the time needed to train the classifier using a single
computer. The focus was the process for selection of
weak classifiers because this stage is the most
invoked during classifiers building and it is the most
demanding in terms of execution time. With the
several alternatives implemented, sequential and
parallel through CUDA architecture, it was possible
to achieve substantial improvements.

The use of GPUs for developing and accelerating
applications is a feasible alternative because here are
cheap GPU in the market. In addition, there is an
effort made by manufacturer of GPU for developing
software that helps programmers to use GPUs, for
example NVIDIA with her CUDA platform. With the
use a GPU, applications can compute many data
without wasting too much time.

Further research may involve the measurement of
the performance of fifth experimental setting in a
computer with bigger computing capacity in its GPU
and exploring a multi-GPU approach. Collaterally,
we believe that further research is needed for evaluate
if virtualization affects the GPU performance.

References

[1] Abualkibash, M.; ElSayed, A.; Mahmood, A.:
Highly scalable, parallel and distributed Adaboost
algorithm using light weight threads and web services
on a network of multi-core machines. International

JCS&T Vol. 17 No. 1 April 2017

72

Journal of Distributed and Parallel Systems (IJDPS),
4(3): 29-40, May 2013.

[2] Freund, Y.; Schapire, R.E.: A decision-theoretic
generalization of on-line learning and an application
to boosting. Journal of Computer and System
Sciences, 55(1): 23-37. August 1997.

[3] Harris, M.: Optimizing parallel reduction in
CUDA. Reporte técnico. 2007. Disponible en:
http://docs.nvidia.com/cuda/samples/6_Advanced/re
duction/doc/reduction.pdf

[4] Huang, Z.; Shi, X.: A distributed parallel
AdaBoost algorithm for face detection. 2010 IEEE
International Conference on Intelligent Computing
and Intelligent Systems (ICIS). Vol 1: 147-150, Oct
2010.

[5] Morelli A., Padovani S.: Detección y
Reconocimiento de Cara. Tesis de Licenciatura en
Ciencias de la Computación. Universidad de Buenos
Aires. 2011.

[6] Obukhov, A.: Haar Classifiers for Object
Detection with CUDA. In: Wen-Mei W. Hwu (Ed.),
GPU Computing Gems. 517-544. Burlington, MA
01803, USA, 2011.

[7] Sanders, J.; Kandrot, E.: CUDA C on multiple
GPUs. In: CUDA by Example. An Introduction to
General-Purpose GPU Programming. 213-236.
Boston, MA 02116, USA, 2011.

[8] Papageorgiou, C.; Oren, M.; Poggio, T.: A general
framework for object detection. International
Conference on Computer Vision. 555-562, 04
January - 07 January, 1998.

[9] Taheri, S.; Patel, V.; Chellappa, R.: Component-
Based Recognition of Faces and Facial Expressions.
IEEE Transactions on Affective Computing, 4(4): pp.
360-371, October-December 2013.

[10] Tsai, P.; Hsu, Y.; Chiu, C; Chu, T.: Accelerating
AdaBoost algorithm using GPU for multi-object
recognition. 2015 IEEE International Symposium on
Circuits and Systems (ISCAS), 738-741, May 2015.

[11] Viola P., Jones M.: Robust Real-Time Face
Detection. International Journal of Computer Vision,
57(2): 137–154, May 2004.

[12] NVidia CUDA technology,
http://www.nvidia.com/object/cuda_home_new.html

[13] Thrust, http://thrust.github.io/

[14] Lescano, G.; Santana-Mansilla, P.; Costaguta,
R.: Experiences accelerating features selection in
Viola-Jones algorithm. XXII Congreso Argentino de
Ciencias de la Computación (CACIC 2016), Nov
2016

JCS&T Vol. 17 No. 1 April 2017

73

http://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf
http://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf
http://www.nvidia.com/object/cuda_home_new.html
http://thrust.github.io/

