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Abstract 

Faces and facial expressions recognition is an 
interesting topic for researchers in machine vision. 
Viola-Jones algorithm is the most spread algorithm 
for this task. Building a classification model for face 
recognition can take many years if the 
implementation of its training phase is not optimized. 
In this study, we analyze different implementations 
for the training phase. The aim was to reduce the time 
needed during training phase when using one 
computer with a cheap graphical processing unit 
(GPU). The execution times were analyzed and 
compared with previous studies. Results showed that 
combining C language, CUDA, etc., it is possible to 
reach acceptable times for training phase. Further 
research may involve the measurement of the 
performance of our approach computers with better 
GPU capacity and exploring a multi-GPU approach.   

Keywords: Adaboost, Viola-Jones Algorithm,
feature selection, CUDA.

1. Introduction

Face and facial expressions recognition is an 
interesting topic for researchers in machine vision [9]. 
An important stage in a face recognition algorithm is 
the building of a classification model that can 
discriminate faces. Building a classification model 
require a training phase during which a sample of 
images is analyzed with the aim of extracting those 
features that best describe a face.  

Viola and Jones [11] proposed an algorithm that 
can detect faces in real time. It is widely used in a 
variety of software and hardware applications that 
incorporate elements of computer vision, like the face 
detection module in video conferencing, human-
computer interaction, and digital photo cameras [6]. 
This algorithm can be implemented on a wide range 
of small low power devices, including hand-helds 
devices and embedded processors. However, a 

drawback of this algorithm is that the training phase 
is extremely time-consuming. 

In this work, we propose and analyze 
implementations for the training phase of Viola-Jones 
algorithm. These implementations try to reduce the 
execution times when working on a single computer 
and involves the use of parallel computing, 
specifically CUDA architecture. CUDA is a parallel 
computing platform and programming model created 
by NVIDIA [12]. It enables dramatic increases in 
computing performance by harnessing the power of 
the GPU. In order to reduce execution times, we had 
focus on feature selection because this process has a 
notable impact on training times.  

This paper is organized as follows. In section 2, 
the training phase of Viola-Jones algorithm is 
described. In section 3, details about the proposed 
implementation are given. In section 4, we compare 
our proposal with other alternatives we found in the 
literature.  In section 5, conclusions and future 
research directions are presented. 

2. The Training Phase

Viola and Jones [11] propose a variant of Adaboost 
algorithm [2] for the training phase. This algorithm 
selects a small number of features that best describe a 
face. These features are known as weak classifier. 
Once weak classifiers are selected, the algorithm 
combine them to get a strong classifier. 

In Viola-Jones algorithm, features are modeled 
like rectangles which are subdivided in black and 
white regions, a reminiscent of Haar basis functions 
[8].  Fig. 1 shows an example of typical features. To 
compute a feature, the sum of pixels within the white 
rectangles are subtracted from the sum of pixels 
within the black rectangles. 

Fig. 1 Haar-Like patterns frequently employed [11]. 

Eq (1) shows the definition of a weak classifier. In 
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this equation f is a feature, 𝜃 is a threshold, 𝑝 ∈
{−1,1} is the polarity that indicates the direction of 
the inequality and x is a sub-window of an image.  

Each iteration of the training phase tries to select 
the single rectangle feature that best separates the 
positive (face images) and negative examples (not 
face images). For each feature, the weak classifier 
determines the optimal threshold of classification 
function, such that the minimum number of examples 
is misclassified. Fig. 2 shows the flow chart of the 
algorithm proposed by Viola and Jones [11]. 

Fig. 2 Boosting algorithm of training phase. 

Training phase begins with the initialization of 
weights related to training images. Weights of 
positives images are initialized with 1/2m and weights 
of negative images with 1/2l, where m is the number 
of face images and l is the number of not face images. 
Then, the algorithm iterates to get the T weak 
classifiers that are required. The T number is given as 
a parameter. Within each iteration four processes are 
run. In the first process, weights are normalized with 
the function in Eq (2). In the second process, a weak 
classifier is selected. This means that this process 
determines the values of the feature, the polarity and 
the threshold that minimize the classification error 
defined in Eq (3). Fig. 3 shows a flowchart of the 
weak classifier selection process that was designed 
from the interpretation proposed by Morelli and 
Padovani [5] in their pseudo-code. In the third 
process, the weak classifier selected is added to the 
set of weak classifiers. In the last process, weights of 
images are updated again with the function in Eq (4). 

Once the T is reached, the algorithm combines the 
chosen weak classifiers to get a strong classifier 
which output is showed in Eq (5). 

Fig. 3 Algorithm for weak classifiers selection. 

In the process of selecting a weak classifier (Fig. 
3), for each feature, the images into the samples are 
sorted by feature value in ascendant way. The 
Adaboost optimal threshold for that feature can then 
be computed in a single pass over this sorted list.  On 
each iteration over the sorted list, four sums are 
evaluated for each element: the total sum of positive 
examples weights T+, the total sum of negative 
example weights T-, the sum of positive weights 
below the current example S+ and the sum of negative 
weights below the current example S-. Furthermore, 
an error is computed for each feature using the Eq (6). 

ℎሺ𝑥, 𝑓, 𝑝, 𝜃ሻ = ቄ
1 𝑠𝑖 𝑝𝑓ሺ𝑥ሻ < 𝑝𝜃
0 𝑒𝑛 𝑜𝑡𝑟𝑜 𝑐𝑎𝑠𝑜  

(Eq. 1) 

𝑤𝑡,𝑖 =
𝑤𝑡,𝑖

σ 𝑤𝑡,𝑗
𝑛
𝑗=1

(Eq. 2) 

𝜀𝑡 = 𝑚𝑖𝑛𝑓,𝑝,𝜃 ෍ 𝑤𝑖ȁℎሺ𝑥𝑖 , 𝑓, 𝑝, 𝜃ሻ − 𝑦𝑖ȁ

𝑖

 (Eq. 3) 

𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝛽𝑡
1−𝑒𝑖

where ei=0 if example xi is classified 
correctly, ei = 1 otherwise, and 𝛽𝑡 =

𝜀𝑡

1−𝜀𝑡

(Eq. 4) 

1 𝑖𝑓 σ 𝛼𝑡ℎ𝑡ሺ𝑥ሻ ≥
1

2
σ 𝛼𝑡

𝑇
𝑡=1

𝑇
𝑡=1 , where 

𝛼𝑡 = 𝑙𝑜𝑔
1

𝛽𝑡
 , or 0 otherwise 

(Eq. 5) 
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This value represents the error that we would produce 
if the element were considered the threshold for the 
feature. Once all errors have been computed, the 
lowest one is selected. 

 

3. Implementing Training Phase on a 
GPU 

Five experimental settings were proposed to 
implement the training phase of Viola-Jones 
algorithm. These implementations differ in terms of 
data allocation and key functions processing (data 
sorting for example). As four out of five 
implementations needed execution times that surpass 
2 hours, we decided to focus on the fifth 
implementation. Table 1 summarizes implementation 
one to four and shows execution time that they needed 
to choose a weak classifier. More details of first to 
fourth implementation can be found in [14].  

In this section, we describe an implementation of 
the training phase of Viola-Jones algorithm in order 
to be executed in a cheap GPU. C language was 
chosen to code this implementation because it enables 
us to make decision of programming at low-level and 
it is compatible with CUDA. Execution time of the 
implementation was evaluated throughout the 
processing of 5000 images of faces and 10,000 
images of not faces. This quantity is similar to the 
experiment of Viola-Jones. The images used in our 
experiments were simulated from a seed of face 
images (165) and not face images (165).  

The weak classifier selection is a function that is 
executed several times in the training phase and has a 
lot of data processing. In the flowchart of Fig. 3, we 
can see that the function begins computing the sum of 
weights corresponding to the 15,000 positive and 
negative images. Then the first loop iterates by 
162,336 features. Each interaction of the loop gets, 
from the training images, the features values 
corresponding to the feature analyzed and sorts them. 
Then, the second loop is executed with the aim of 
computing the sum of positive weights below the 
current example S+ and the sum of negative weights 
below the current example S-.  

 
 
 
 
 
 
 
 

Table 1 Summary of implementations reported in [14] 

Implementation 1 Description.  
- Data are retrieved from 
files.  
- There are about 2500 
millions of hard drive 
accesses. 
- Sort method: Bubble 
Execution time: 4.84 
years 

Implementation 2 Description 
- Information about 
162336 feature of each 
training file are stored in a 
unique file. 
- Sort method: QuickSort 
- All operations are 
sequential. 
Execution time: 31.42 hs 

Implementation 3 Description 
- Thrust for sorting task. 
- Reduction Thrust was 
used to compute 
operations within the 
second loop in Fig. 3 
- Data transference 
between RAM and GPU 
memory within the second 
loop in Fig. 3 
Execution time: 17.08 
days 

Implementation 4 Description 
- Information about 
weights and class 
associate with an image 
are allocated in GPU 
memory until the first 
loop in Fig. 3 was true. 
- Harris Algorithm [3] was 
used to parallelize sum 
operations within the 
second loop in Fig. 3.  
Execution time: 23.43hs 

 
In order to store information of training images we 

decided to use a 15,000 x 4 matrix. This matrix is 
allocated in memory and has the following data for 
each image: the identifier of each training file, the 
category of the image (face or not face), its weight 
and the category (face or not face) assigned by the 
classifier algorithm. In addition, we used as many 
files as training images in order to save the features 
of the images. Each file has 162,336 lines (this 
number corresponds to the total quantity of features 
that can be generated for an image of 24 x 24 pixels) 
and each line registers information of one feature. 
Specifically, each line indicates the kind of the feature 
(someone of the five types showed in Fig. 1), x 

𝜀 = minሺ𝑆+ + ሺ𝑇− − 𝑆−ሻ, 𝑆− + ሺ𝑇+ − 𝑆+ሻሻ (Eq. 6) 
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position of sub image, y position of sub image, weight 
of sub image, height of sub image, value of the feature 
(difference between white rectangles and black 
rectangles), and its identification.  

When training process starts a 15,000 x 162,336 
matrix is created.  Each line in this matrix stores the 
sixth column of each line of a file with information of 
image features.  This step allowed us to reduce the 
execution time. To be sure data were not paged by the 
operative system we used cudaHostAlloc instruction 
that allocates a buffer of page-locked host memory 
[7]. 

We used the Thrust library for sorting the matrix 
of image features by the column corresponding to the 
feature that is selected in the first loop showed in Fig. 
3. Thrust is a parallel algorithms library that enhances
programmer productivity while enabling 
performance portability between GPUs and multicore 
CPUs [13]. 

Table 2 Execution times required to get a weak classifier 

Number 
of 

Streams 

Execution 
Time (seconds) 

16 0.0517 

32 0.0525 

64 0.0532 

128 0.0534 

256 0.0538 

512 0.0543 

1,024 0.0535 

2,048 0.0532 

4,096 0.0534 

8,192 0.0444 

Streams were used to improve the performance of 
the algorithm. These streams compute the operations 
involved in the second loop showed in Fig. 3. In each 
iteration of the loop, a stream loads in asynchrony 
way, from the memory of CPU to the memory of 
GPU, each row of matrix of image features. While 
this data is loaded, two kernels are thrown in order to 
compute data available in GPU memory. One kernel 
sorts the loaded row by the feature which is analyzed. 
The other kernel runs operations involved in the 
second loop. The results of these calculations are 
copied asynchronously to an array that stores, for 
each feature, the error that would be committed if the 
value in the sample for this feature were chosen as 
threshold value. This array is stored in pinned 
memory.  

At the end of the execution of all the streams, the 
min_element function of Thrust library is used to find 
the smallest error in the above-mentioned array. This 
final step allows one to get the selected feature, the 
threshold value and its corresponding error. 
Table 2 shows the execution times to process a feature 
using 15,000 training images and different numbers 
of streams. We employed a computer with the 
following hardware configuration: i7 processor of 3.4 
Ghz and GPU GeForce GT 730 with 2 GB of global 
memory. 

With this implementation and using 8,192 
streams, the processing of 15,000 training image with 
162,336 features will take about 2hs. 

4. Discussion

A bibliographical exploration regarding to time 
reduction when building images classifiers with 
boosting algorithm allowed us to identify research 
works such as Huang and Shi [4], Abualkibash et al. 
[1] and Tsai et al. [10].  

Huang and Shi [4] worked with 65,230 features 
and 18,676 samples. In their experiments, Huang and 
Shi used computers with a 1.8 Ghz processor. 
Abualkibash et al. [1] describe the same experiment 
that was made by Huang and Shi [4], yet Abualkibash 
et al. [1] utilized computers equipped with quad-core 
processors.  Details about processing capacity of 
CPUs are not given in Abualkibash et al. [1]. Fig.4 
shows a comparison of execution time obtained 
during fifth experimental setting (described in 3) with 
execution time during experiments conducted by 
Huang and Shi [4] and Abualkibash et al. [1] (further 
details are given in [14]). 

Fig. 4 Execution time during experiments conducted by 
Huang and Shi [4], Abualkibash et al. [1] and alternative 5 

Regarding to Tsai et al. [10], they used a GPU 
Nvidia Tesla K20c. This GPU has 2496 cores, 706 
Mhz of memory frequency, and 5 GB of global 
memory. Tsai et al. [10] made three experiments: the 
first one with 1,119 features and 19,575 samples; the 
second experiment with 6,090 features and 19,161 
features; and the last experiment with 10,640 features 
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and 19,140 samples. The results of these three 
experiments can be seen in Table 3. 

Table 3 Comparison between execution time of alternative 
5 and execution time during experiments conducted by 

Tsai et al. [10] 

Experiments Time to select a feature 
Tsai et al. 

[10] 
Alternative 5 

implemented in 
Geforce GT 730 
of 2GB memory 

1,119 features 
19,575 
samples 

0.788 sec 
1.413 min  

 (1,119 streams) 

6,090 features 
19,161 
samples 

1.157 sec 
7.313 min  

(4,096 streams) 

10,640 
features 
19,140 
samples 

1.217 sec 

6.2497 min 
(8,192 streams) 

 
Considering results that are showed in Fig. 4 and 

Table 3 one could conclude that the fifth experimental 
setting proposed in this paper is not a good option to 
reduce the time of classifiers building. Nevertheless, 
one should consider that the fifth alternative of 
solution was tested in a computer with a GPU of 
limited processing capacity. For this reason, it would 
be interesting to run the fifth solution in a computer 
with better hardware capacities and then compare it 
with the results achieved by Huang and Shi [4], 
Abualkibash et al. [1] and Tsai et al. [10]. For 
example, a GPU like the one used by Tsai et al. [10] 
not only has more computing capacity but also it is 
possible to execute more streams. 

As the laboratory at the university had not have 
more powerful computers than the described in point 
4 (i7 processor of 3.4 Ghz and GPU Geforce GT 730), 
it was decided to hired the computer instance 
g2.2xlarge from amazon.com. The instance 
g2.2xlarge has: 8 virtual CPU Intel Xeon E5-2670; 15 
GB of RAM; and a GPU Nvidia Grid K520 with 4 
GB of RAM, 797 Mhz of frequency and 1536 cores. 

Table 4 shows a comparison of time needed for 
executing the experiments of Table 2 (the same 
number of features and sample files) in the hired 
instance and the GPU GeForce GT 730. It was 
expected that execution in the GPU available in 
g2.2xlarge instance would be faster than the 
execution in GeForce GT 730. Nonetheless, the 
results do not confirm the previous assumption. A 
reason might be the virtualization effect although this 
needs further research. 

Table 4 Comparison of execution time when 
implementing solution 5 in GeForce GT 730 and in 

instance g2.2xlarge. 

Experiments Time to 
select a 
feature 

(Alternative 
5 

implemented 
in GeForce 

Gt 730) 

Time to select 
a feature 
 (Alternative 5 
implemented 

in GPU of   
g2.2xlarge) 

1,119 features 
19,575 
samples 

1.413 min 4.1789 min 

6,090 features 
19,161 
samples 

7.313 min 22.039 min 

10,640 
features 
19,140 
samples 

6.2497 min 38.472 min 

 

5. Conclusions 

This work analyzed several implementations of 
training process for generating a classifier with the 
capacity of face recognition. The aim was to reduce 
the time needed to train the classifier using a single 
computer. The focus was the process for selection of 
weak classifiers because this stage is the most 
invoked during classifiers building and it is the most 
demanding in terms of execution time. With the 
several alternatives implemented, sequential and 
parallel through CUDA architecture, it was possible 
to achieve substantial improvements.   

The use of GPUs for developing and accelerating 
applications is a feasible alternative because here are 
cheap GPU in the market. In addition, there is an 
effort made by manufacturer of GPU for developing 
software that helps programmers to use GPUs, for 
example NVIDIA with her CUDA platform. With the 
use a GPU, applications can compute many data 
without wasting too much time. 

Further research may involve the measurement of 
the performance of fifth experimental setting in a 
computer with bigger computing capacity in its GPU 
and exploring a multi-GPU approach. Collaterally, 
we believe that further research is needed for evaluate 
if virtualization affects the GPU performance. 
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