

UNIVERSIDAD NACIONAL DE LA PLATA

FACULTAD DE CIENCIAS EXACTAS

DEPARTAMENTO DE QUÍMICA

Trabajo de Tesis Doctoral

ESTUDIO Y APLICACIÓN DE TÉCNICAS MATEMÁTICAS DE LA TEORÍA QSAR-QSPR EN QUÍMICA ANALÍTICA Y QUÍMICA DE LOS ALIMENTOS

Tesista: Cristian Xavier Rojas Villa

Director: Reinaldo Pis Diez

Codirector: Pablo R. Duchowicz

2017

El presente trabajo de Tesis se desarrolló en el Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), dependiente del Departamento de Química de la Facultad de Ciencias Exactas de la Universidad Nacional de la Plata (UNLP).

Se presenta en consideración de las autoridades de dicha Facultad para acceder al grado académico de Doctor de la Facultad de Ciencias Exactas Área Química.

AGRADECIMIENTOS

Deseo expresar mi agradecimiento a todas las personas que hicieron posible el desarrollo de la presente tesis doctoral:

A mis directores Reinaldo Pis Diez y Pablo R. Duchowicz, por dirigir el trabajo de tesis y por su invaluable enseñanza y aporte tanto en lo científico como en lo personal.

A todas las personas que he conocido en el INIFTA, mi lugar de trabajo, particularmente a los integrantes del Grupo de Estudio Teórico de Sistemas Químicos, Físicos y Biológicos: Eduardo A. Castro, Francisco M. Fernández, Pablo R. Duchowicz, Andrew G. Mercader, Ofelia Oña, Javier Garcia y José F. Aranda, con quienes he compartido gratos momentos en el transcurso de estos años.

A Roberto Todeschini y su Grupo de Quimiometría y QSAR de la Universidad de Milán–Bicocca: Davide Ballabio, Andrea Mauri y Viviana Consonni, por la cálida acogida durante mi estancia doctoral de investigación, por todo el soporte científico y acceso a los diversos programas quimioinformáticos que facilitaron el desarrollo del trabajo. También a las personas con quienes compartí en el laboratorio: Matteo Cassotti, Francesca Grisoni, Serena Nembri, y Agustín Herrera. Asimismo, al Ministerio de Asunto Exteriores y Cooperación Internacional del Gobierno Italiano (FARNESINA) por la beca otorgada.

A las autoridades de la Universidad del Azuay por el permiso institucional y apoyo económico brindado dentro del programa de formación y capacitación del recurso humano.

A Piercosimo Tripaldi por haberme inmerso en el mundo del análisis multivariado de los datos y enseñarme desde joven el valor de investigar, siendo un constante respaldo en todos los trabajos científicos que hemos realizado. Asimismo a Andrés Pérez, con quien he discutido y ejecutado algunas ideas de investigación durante este tiempo.

A los integrantes del Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB) de la Universidad Nacional de La Plata: Lucas Alberca, Juan Francisco Morales, Alan Talevi, Luciana Gavernet y Carolina Carrillo; con quienes tuve el placer de intercambiar varias ideas de investigación durante el curso de Posgrado Descubrimiento de Fármacos Asistido por Computadora y el Workshop Internacional de Diseño de Fármacos y Enfermedades Tropicales Desatendidas.

A Wayne Hanson, por su desinteresada contribución en la revisión técnica del inglés de todos los trabajos científicos y por todas sus valiosas sugerencias para mejorar la calidad técnica de los mismos. De igual manera, a Adrián Rojas por el valioso aporte en la edición de figuras de los artículos científicos, pósters y de la presente tesis.

A mis amigos Francesco Piazza y Elisa Accornero por su hospitalidad durante mi estadía en su departamento. De igual manera, a mis amigos Diego Suárez, Fernando Cárdenas y Juan de Dios Alvarado, quienes durante estos años de formación me han animado a seguir adelante y no decaer. A mis amigos de la Universidad Nacional de Córdoba: Rommel, Ricardo, Viviana y Jorge, así como a todos los demás amigos a quienes he conocido durante estos años y con quienes he compartido inolvidables momentos y reuniones, particularmente a José, Irene, Christian, Elizabeth, Santiago, Salvador, Alejandro, Julie, Zuly, Efrén, Nasly.

A la Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación de la República del Ecuador (SENESCYT), por la Beca Doctoral otorgada dentro del Programa "Convocatoria Abierta 2013 Primera Fase".

Finalmente, mi mayor gratitud va para mi esposa Fer y mi familia: Mariana, María Fernanda, Freddy, Marcelo, José Alejandro, Francisco, Blanca, Rodrigo, David y Miguel. Ustedes han sido mi apoyo en todo sentido durante estos años y han entendido mi ausencia en momentos importantes de sus vidas. Esta tesis está dedicada con profundo cariño a toda mi familia

A la memoria de mi padre José Tomás

Un buen científico debe tener la imaginación de un niño, la determinación de un joven, la racionalidad de un adulto y la experiencia de un anciano. La dificultad radica en tener todas estas cualidades al mismo tiempo

Roberto Todeschini en Molecular Descriptors for Chemoinformatics: Wiley– VCH (2009)

ÍNDICE

LISTA DI	E AB	REVIATURAS	i
MATERI	AL AI	NEXO	iii
CAPÍTUL ACTIVID	-0 1: AD/P	RELACIONES CUANTITATIVAS ESTRUCTURA– ROPIEDAD (QSAR/QSPR)	
1.1	Intr	oducción	1
1.2	De	finición y formalismo	2
1.3	Ob	jetivos de un modelo QSAR	4
1.4	Ap	licaciones de un modelo QSAR	4
1.	4.1.	Naturaleza de la respuesta	4
1.	4.2.	Naturaleza de los compuestos químicos	5
1.	4.3.	Áreas de aplicación	5
1.5	Со	mponentes y etapas de un modelo QSAR	5
1.	5.1.	Preparación de los datos	6
1.	5.2.	Procesamiento de los datos	6
1.	5.3.	Validación y predicción de los datos	7
1.	5.4.	Interpretación de los datos	7
1.6	Ent	foques específicos QSAR	7
1.	6.1.	Enfoque de Hansch	7
1.	6.2.	Enfoque de Free–Wilson	8
1.	6.3.	Métodos de Contribución de Grupos	8
1.	6.4.	Cribado de alto rendimiento	9
1.	6.5.	Barrido virtual	9
1.7	Pri	ncipios del modelado QSAR	10
1.	7.1.	Actividad/propiedad definida	10
1.	7.2.	Algoritmo inequívoco	10
1.	7.3.	Dominio de aplicabilidad definido	11
1. pred	7.4. lictivio	Medida apropiada de la bondad de ajuste, robustez y dad	11
1. ser p	7.5. posibl	Interpretación del mecanismo de acción de los descriptores le)	s (de 11
1.8	Re	ferencias	12
CAPÍTUL	.0 2:	DESCRIPTORES MOLECULARES	
2.1	Intr	oducción	15
2.2	His	toria	16
2.3	De	finición y requisitos	17

:	2.4	Rep	resentación de la estructura molecular	19
	2.4.	.1.	Grafos moleculares	20
	2.4.	.2.	Representación matricial	21
:	2.5	Cod	lificación de la estructura molecular	23
:	2.6	Cura	ado de las estructuras moleculares	24
	2.6.	.1.	KNIME	25
:	2.7	Prin	cipales tipos de descriptores moleculares	26
	2.7.	.1.	Descriptores constitucionales	26
	2.7.	2.	Descriptores de anillo	27
	2.7.	.3.	Índices topológicos	27
	2.7.	.4.	Descriptores tipo P_VSA	30
	2.7.	.5.	Propiedades moleculares	30
	2.7.	6.	Fragmentos centrados en el átomo y número de grupos	
	funcio	nale	s 31	
	2.7.	7.	Descriptores geométricos	31
	2.7.	.8.	Descriptores topo-geométricos	34
:	2.8	Des	criptores para moléculas desconectadas	35
:	2.9	Hue	Ilas digitales moleculares	36
	2.9.	.1.	Huellas digitales moleculares de conectividad ampliada	37
dic	2.10 nitales	P	rogramas para el cálculo de descriptores moleculares y huel	las วด
ule	2 1(0.1	DRAGON	40
	2 11	R. 1.	eferencias	43
САР	έτιι σ) 3: 1	MÉTODOS QUIMIOMÉTRICOS EN OSAR/OSPR	10
	3 1	Intro		49
	3.2	Estr	uctura multivariada de los datos	
	3.3	Pret	ratamiento de los datos	50
	3.3.	.1.	Escalado de los datos	51
;	3.4	Téc	nicas de exploración de la estructura de los datos	52
	3.4.	.1.	Análisis de componentes principales	52
	3.4.	2.	Escalado multidimensional	52
	3.4.	3.	Análisis de conglomerados	53
:	3.5	Téc	nicas de reducción de variables	54
	3.5.	.1.	Correlación entre pares de variables	54
	3.5.	.2.	Método V–WSP	55
	3.5.	.3.	Otros métodos basados en técnicas multivariable	55

3.0	Téc	nicas de selección de variables	55
3.6	6.1.	Búsqueda exacta	55
3.6	6.2.	Métodos de regresión a pasos	56
3.6	6.3.	Algoritmos Genéticos	56
3.6	6.4.	Método de Reemplazo	57
3.7	Téc	nicas de modelado de datos	58
3.7	' .1.	Métodos de regresión	58
3.7	. 2.	Métodos de clasificación	63
3.7	' .3.	Análisis de consenso	68
3.8	Téc	nicas de validación	68
3.8	8.1.	Validación cruzada o interna	69
3.8	8.2.	Validación externa	72
3.9	Dor	ninio de Aplicabilidad	73
3.9	9.1.	AD basado en el valor de influencia	74
3.9	9.2.	AD basado en la similitud <i>k</i> NN	75
3.10	R	eferencias	76
CAPÍTUL	0 4:	APLICACIONES EN QUÍMICA ANALÍTICA	
4.1	Мос	delo QSPR para índices de retención medidos en la columna	
apolar (2V–1 82	01	
apolar (4.1	DV–1 82 .1.	01	
apolar (4.1 4.1	DV–1 82 .1. .2.	01 Introducción Materiales y métodos	 82 82
apolar (4.1 4.1 4.1	DV–1 82 .1. .2. .3.	01 Introducción Materiales y métodos Resultados y discusión	82 82 82
apolar (4.1 4.1 4.1 4.1	DV—1 82 .1. .2. .3. .4.	01 Introducción Materiales y métodos Resultados y discusión Conclusiones	82 82 82 90
apolar (4.1 4.1 4.1 4.1 4.2 polar Ca	DV-1 82 .1. .2. .3. .4. Mod arbov	01 Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención medidos en la columna vax 20M	 82 82 84 90 90
apolar (4.1 4.1 4.1 4.2 polar Ca 4.2	DV-1 82 .1. .2. .3. .4. Moc arbov	01 Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención medidos en la columna vax 20M Introducción	82 82 84 90 90 90
apolar (4.1 4.1 4.1 4.2 polar Ca 4.2 4.2	DV-1 82 .1. .2. .3. .4. Mod arbov 2.1. 2.2.	01 Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención medidos en la columna vax 20M Introducción Materiales y métodos	82 82 84 90 90 90 91
apolar (4.1 4.1 4.1 4.2 polar Ca 4.2 4.2 4.2	DV-1 82 .1. .2. .3. .4. Mod arbov 2.1. 2.2. 2.3.	01 Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención medidos en la columna vax 20M Introducción Materiales y métodos Resultados y discusión	82 82 84 90 90 90 91 91
apolar (4.1 4.1 4.2 polar Ca 4.2 4.2 4.2 4.2	DV-1 82 .1. .2. .3. .4. Mod arbov 2.1. 2.2. 2.3. 2.4.	01 Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención medidos en la columna vax 20M Introducción Materiales y métodos Resultados y discusión Conclusiones	82 82 84 90 90 91 91 100
apolar (4.1 4.1 4.2 polar Ca 4.2 4.2 4.2 4.2 4.2 4.3 columna	DV-1 82 .1. .2. .3. .4. Mod 2.1. 2.2. 2.3. 2.4. Mod a pola	01 Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención medidos en la columna vax 20M Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención de aromas medidos en ar DB–225MS	82 82 84 90 90 91 191 100 la 100
apolar (4.1 4.1 4.2 polar Ca 4.2 4.2 4.2 4.2 4.3 columna 4.3	DV-1 82 .1. .2. .3. .4. Mod arbov 2.1. 2.2. 2.3. 2.4. Mod a pola 3.1.	01 Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención medidos en la columna vax 20M Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención de aromas medidos en ar DB–225MS Introducción	82 82 84 90 90 91 100 la 100 100
apolar (4.1 4.1 4.1 4.2 polar Ca 4.2 4.2 4.2 4.2 4.2 4.3 columna 4.3 4.3	DV-1 82 .1. .2. .3. .4. Mod arbov 2.1. 2.2. 2.3. 2.4. Mod a pola 3.1. 3.2.	01 Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención medidos en la columna vax 20M Introducción Materiales y métodos Conclusiones delo QSPR para índices de retención de aromas medidos en ar DB–225MS Introducción Materiales y métodos	82 82 90 90 91 100 100 100
apolar (4.1 4.1 4.1 4.2 polar Ca 4.2 4.2 4.2 4.2 4.3 columna 4.3 4.3 4.3	DV-1 82 .1. .2. .3. .4. Mod arbov 2.1. 2.2. 2.3. 2.4. Mod a.1. 3.2. 3.3.	01 Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención medidos en la columna vax 20M Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención de aromas medidos en ar DB–225MS Introducción Materiales y métodos Resultados y discusión	82 82 90 90 91 100 100 100 103
apolar (4.1 4.1 4.2 polar Ca 4.2 4.2 4.2 4.2 4.3 columna 4.3 4.3 4.3 4.3	DV-1 82 .1. .2. .3. .4. Mod arbov 2.1. 2.2. 2.3. 2.4. Mod a.1. 3.1. 3.2. 3.4.	01 Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención medidos en la columna vax 20M Introducción Materiales y métodos Resultados y discusión Conclusiones delo QSPR para índices de retención de aromas medidos en ar DB–225MS Introducción Materiales y métodos Resultados y discusión Conclusiones	82 82 90 90 91 100 100 100 100 103 106

4.4	.1.	Introducción	107
4.4	.2.	Materiales y métodos	109
4.4	.3.	Resultados y discusión	109
4.4	.4.	Conclusiones	112
4.5	Мос	delo QSPR para índices de retención de aromas medidos e	n la
columna	a apo	blar HP–1	112
4.5	5.1.	Introducción	112
4.5	5.2.	Materiales y métodos	113
4.5	5.3.	Resultados y discusión	114
4.5	6.4.	Conclusiones	116
4.6	Ref	erencias	117
CAPITUL	0 5:	APLICACIONES EN QUÍMICA DE LOS ALIMENTOS	
5.1 calidad	Moo	delo QSPR basado en índices de retención para el control c	le 125
5 1	1 uc a		125
5.1	. ı. 2	Materiales y métodos	125
5.1	.Z. 2	Posultados y discusión	120
5.1	.J. 1		125
5.2	. ч . Мо	delo OSPR para el dulzor relativo	135
5.2	10100		135
5.2		Materiales y métodos	137
5.2	∠ .) 3	Pasultados y discusión	130
5.2		Conclusiones	1/3
5.2	4 . 	tolo OSAR para digeriminar los gustos dulco y amargo	143
5.5		latroducción	1144
5.3	າ. າ. ເວ	Materiales y métodes	144
5.5).Z.	Regultados y discusión	143
5.5).J.		147
5.3 E /	0.4. Ma	Conclusiones	151
ى م		Jelo QSAR para discriminar los gustos duice e insipido	151
5.4	.1.	Introduccion	151
5.4	·.Z.	Resultadas y discusión	152
5.4	.3.	Resultados y discusion	152
5.4	.4.		155
5.5	IVIO	אכט סוםנם basado en un sistema experto para predecir el d	Juizor 156
5.5	5.1.	Introducción	156
5.5	5.2	Materiales v métodos	
0.0		······································	

	5.5	.3.	Resultados y discusión 1	61
	5.5	.4.	Conclusiones 1	71
	5.6	Ref	ferencias1	72
C	ONCLUS	SION	IES GENERALES Y PROYECCIONES FUTURAS 1	81
Ρ	UBLICA	CION	NES Y TRABAJOS PRESENTADOS EN EVENTOS	
C	IENTIFIC	COS	1	85
Т	ABLAS	ANE	XAS (en CD)1	89
	Tabla 1208 sa	1A. bore	Nombres químicos e índices de retención experimentales de es y aromas medidos en la columna apolar OV–1011	89
	Tabla 1184 sa	2A.	Nombres químicos e índices de retención experimentales de es y aromas medidos en la columna polar Carbowax 20M 2	220
	Tabla retenció DB–225	3A. on ex 5MS	Nombres químicos, número de registro CAS e índices de perimentales de las 269 fragancias medidas en la columna po	lar 250
	Tabla retenció ligerame	i 4A. on ex ente	Nombres químicos, número de registro CAS e índices de perimentales de las 266 fragancias medidas en la columna polar HP5–MS2	257
	Tabla retenció apolar H	i 5A. on ex ∃P–1	Nombres químicos, número de registro CAS e índices de perimentales de las 262 fragancias medidas en la columna	264
	Tabla retenció SPME/0	i 6A. on ex GC/M	Nombres químicos, número de registro CAS e índices de perimentales de 137 compuestos volátiles de arroz medidos e //S2	n 271
	Tabla compue	7A. stos	Nombres químicos y dulzor relativo experimental de 233 dulcificantes2	275
	Tabla compue	8A. stos	Nombres químicos y respuesta experimental de los 508 dulces y amargos2	282
	Tabla compue	9A. stos	Nombres químicos y respuesta experimental de los 566 dulces e insípidos2	293
	Tabla compue	10A stos	A. Nombres químicos y respuesta experimental de los 649 dulces y no dulces	305

LISTA DE ABREVIATURAS

3D-MoRSE	Representación molecular 3D de estructuras basada en la difracción de electrones
AC	Exactitud
	Dominio de aplicabilidad
	Absorción distribución metabolismo v eliminación
	Red neuronal artificial
RE	Eliminación hacia atrás
BNN	
	red neuronal artificial de retropropagación
BSM	Método de subconjuntos balanceados
CATS	Rúsqueda de plantillas químicamente avanzadas
	Análisis comparativo de campos moleculares
	análisis comparativo de campos moleculares
	Solucionador de identificación química
	Análisis discriminanto
	Analisis discriminante Huellas digitales moleculares de conectividad ampliada
EUFFS EDc	Huellas digitales moleculares de conectividad ampliada
FF 5 E 9	Solocción hacia adolanto
CA:	
GAS GC	Cromatografía de gases
CC MS	Cromatografía de gases espectrometría de masa
GCM	Métodos de contribución de grupos
	Descriptores de ensamblado de pesos de átomos, geometría y
OLIANAI	topología
GEA	Algoritmo funcional genético
GPCR	Recentor acontado a proteínas G
	Orbital molecular de más alta energía ocupado
HTS	Cribado de alto rendimiento
1	Índice de retención cromatográfico
kNN	k-vecinos más cercanos
I _M ANN	red neuronal artificial de Levenberg-Marguardt
	Análisis discriminante lineal
	Máquina de aprendizaje lineal
LMO	Dejar-varios-fuera
	Dejar-uno-fuera
LSER	relaciones lineales para la energía de solvatación
LUMO	Orbital molecular no ocupado de más baja energía
LVs	Variables latentes
MCIs	Índices de conectividad molecular
MDS	Escalado multidimensional
MLR	Regresión lineal múltiple
MPA	Teoría de enlace multipunto
MSS	Suma de los cuadrados del modelo
N3	N-vecinos más cercanos
NER	Tasa de aciertos
OECD	Organización para la Cooperación Económica y el Desarrollo
PAHs	hidrocarburos aromáticos policíclicos
PCA	Análisis de componentes principales

PSO	optimización por enjambre de partículas
PPP	Presencia de potenciales farmacóforos
OLS	Mínimos cuadrados ordinarios
PLS	Mínimos cuadrados parciales
PLSDA	Análisis discriminante de mínimos cuadrados parciales
PRESS	Suma de los cuadrados de predicción
QAAR	Relaciones cuantitativas actividad–actividad
QDA	Análisis discriminante cuadrático
QPAR	Relaciones cuantitativas propiedad-actividad
QPPR	Relaciones cuantitativas propiedad-propiedad
QSAR	Relación cuantitativa estructura-actividad
QSPR	Relación cuantitativa estructura-propiedad
QSRR	Relaciones cuantitativas estructura-retención
QSRSR	Relaciones cuantitativas estructura-dulzor relativo
QSTR	Relaciones cuantitativas estructura-toxicidad
QSCR	Relaciones cuantitativas estructura-citotoxicidad
QShAR	Relaciones cuantitativas forma–actividad
QSiAR	Relaciones cuantitativas similitud–actividad
QSRR	Relaciones cuantitativas estructura-retención
QSRR	Relaciones cuantitativas estructura-reactividad
QTTR	Relaciones cuantitativas toxicidad-toxicidad
RDF	Función de distribución radial
RF	bosques al azar
RM	Método de reemplazo
RS	Dulzor relativo
RSS	Suma de cuadrados de los residuos
SIMCA	Modelado suave independiente por analogía de clases
SVM	Máquinas de soporte vectorial
SWR	Regresión a pasos
Tls	Índices topológicos
TSS	Suma total de los cuadrados
VS	Barrido virtual
VSA	Área superficial de van der Waals
VSI	Identificador del estado de valencia
V–WSP	Método de reducción de variables basado en el algoritmo WSP
WHIM	Descriptores moleculares invariantes holísticos ponderados

MATERIAL ANEXO

En el CD que se adjunta al ejemplar de tesis se encuentran disponibles todas las Tablas que detallan las bases de datos utilizadas en las diversas aplicaciones QSAR/QSPR. Asimismo, se incluye una copia de todos los artículos científicos publicados.

Capítulo 1

RELACIONES CUANTITATIVAS ESTRUCTURA–ACTIVIDAD/PROPIEDAD (QSAR/QSPR)

1.1 Introducción

Las relaciones cuantitativas estructura-actividad/propiedad (QSAR/QSPR) (Hansch et al., 1995; Todeschini & Consonni, 2009; Dearden, 2016), también denominados estudios in silico, nacieron a inicios de los años sesenta, con el trabajo de Corwin Hansch et al. Con su trabajo estimularon un gran interés en la predicción de propiedades, especialmente en el área de la guímica medicinal y el diseño de fármacos. Sin embargo, la teoría QSAR/QSPR ha evolucionado a través de los años a partir de modelos de regresión simple basados en pocos descriptores, los cuales eran seleccionados de manera intuitiva, hasta transformarse en una herramienta importante de amplia aplicación. particularmente en las ciencias químicas, biológicas, toxicológicas, ambientales, medicinales, farmacológicas y de alimentos. En la actualidad, la metodología QSAR/QSPR continúa en desarrollo y expansión, como lo indica la gran variedad de métodos QSAR modernos aue han sido propuestos para la predicción de las propiedades/actividades de compuestos desconocidos, generando una fuerte tendencia al incremento en el número de publicaciones en este campo de investigación (Galvez & Garcia-Domenech, 2010; Gangwal et al., 2016).

La metodología QSAR busca predecir las actividades/propiedades de las moléculas, con las cuales se podrá realizar inferencias sobre información del fenómeno o mecanismo involucrado. Los estudios QSAR complementan otros estudios teóricos o experimentales que buscan elucidar racionalmente las interrogantes de tipo químico involucradas en dichos problemas (Kubinyi, 2008). En la actualidad el desarrollo de modelos QSAR predictivos ha sido propuesto por diferentes organismos internacionales como una herramienta útil para explorar mediante técnicas racionales la información contenida en la estructura química de las moléculas (Todeschini *et al.*, 2009).

El estudio sobre relaciones estructura/actividad publicado en 1962 por Hansch, Maloney y Fujita, estableció la dependencia de los reguladores de crecimiento de plantas con las constantes de Hammett y la hidrofobicidad. Este enfoque, en el que se relacionan las propiedades fisicoquímicas con las actividades biológicas, se lo denominó "*Análisis de Hansch*" (Hansch *et al.*, 1995; Franke & Gruska, 2003). En 1964 Free y Wilson presentaron un modelo de contribuciones aditivas de los sustituyentes químicos para actividades biológicas en base a la presencia/ausencia de los mismos. Este modelo se lo llamó "*Enfoque de novo*" y se basa en el supuesto de que cada sustituyente en la molécula brinda un efecto aditivo y constante a la actividad biológica, independientemente de la presencia de los demás sustituyentes (Kubinyi, 1988; Franke & Gruska, 2003). Estos dos trabajos pioneros son los que sentaron las bases para el desarrollo del campo de conocimiento que actualmente se conoce como QSAR/QSPR.

1.2 Definición y formalismo

El modelado QSAR se refiere al desarrollo de correlaciones matemáticas entre una respuesta (actividad/propiedad/toxicidad) y atributos químicos definidos (descriptores moleculares, huellas digitales moleculares) de las moléculas analizadas. El nombre específico que toma el estudio depende de la naturaleza de la respuesta a ser modelada; así, se pueden diferencias dos grandes clases, denominadas relaciones cuantitativas estructura–actividad/propiedad (QSAR/QSPR). Sin embargo, esta nomenclatura también se puede aplicar cuando se estudian respuestas más específicas, por ejemplo (Kaliszan, 2007; Todeschini & Consonni, 2009; Roy *et al.*, 2015a; Rojas *et al.*, 2016):

- Relaciones cuantitativas estructura-retención (QSRR).
- Relaciones cuantitativas estructura-dulzor relativo (QSRSR).
- Relaciones cuantitativas estructura-toxicidad (QSTR).
- Relaciones cuantitativas estructura-citotoxicidad (QSCR).
- Relaciones cuantitativas estructura-reactividad (QSRR).
- Relaciones cuantitativas propiedad–propiedad (QPPR).
- Relaciones cuantitativas propiedad-actividad (QPAR).
- Relaciones cuantitativas actividad-actividad (QAAR).
- Relaciones cuantitativas toxicidad-toxicidad (QTTR).
- Relaciones cuantitativas similitud–actividad (QSiAR).
- Relaciones cuantitativas forma–actividad (QShAR).

El término QSAR se usa frecuentemente para referirse a todos estos tipos específicos de estudios, los cuales permiten predecir la actividad de las moléculas (nuevas o hipotéticas) en función de características moleculares de las mismas. Así, el formalismo básico de la teoría QSAR se puede representar matemáticamente de la siguiente manera (Todeschini & Consonni, 2009; Hongmao, 2015; Roy *et al.*, 2015a):

Actividad / Propiedad Biológica = f(Estructura Química) (1.1)

Las propiedades fisicoquímicas son aquellos atributos de las moléculas que se extraen de forma experimental (punto de fusión, tiempo de degradación, etc.); mientras que la estructura química denota a la información que se extrae de forma teórica (descriptores moleculares y/o huellas digitales moleculares). En la Figura 1.1. se presenta el rol de los descriptores moleculares y/o huellas digitales moleculares en la formulación de modelos matemáticos QSAR/QSPR.

Figura 1.1. Esquema general de un estudio QSAR/QSPR

El formalismo presentado en la Ec. 1.1 se puede aplicar tanto a modelos continuos (regresión) como a modelos discretos (clasificación) (Chaudhry et al., 2007; Todeschini & Consonni, 2009; Hongmao, 2015; Liaw & Svetnik, 2015). En los modelos de regresión. la actividad/propiedad es una variable cuantitativa continua; es decir, toma cualquier valor dentro de la escala de medida de dicha respuesta; por ejemplo el dulzor relativo o el índice de retención. Por otro lado, los modelos de clasificación consideran a la respuesta como una variable cualitativa nominal; es decir, la actividad se presenta en forma de categorías no ordenadas, por ejemplo, compuestos dulces (clase 1), compuestos amargos (clase 2) y compuestos insípidos (clase 3). En clasificación, el balance entre las clases tiene gran influencia en la calidad del modelo QSAR/QSPR, debido a que los modelos tienden a sesgarse hacia la clase más numerosa. Por este motivo, es común que el grupo de calibración sea formado tomando en consideración las numerosidad de las clases (Hongmao, 2015).

1.3 Objetivos de un modelo QSAR

El objetivo principal de cualquier estudio QSAR es el desarrollo racional de un modelo matemático predictivo acompañado de una interpretación de la información química involucrada. Dicho modelo puede ser desarrollado a partir de los compuestos para los cuales se disponga de una determinada respuesta de actividad/propiedad y permite realizar la predicción de la actividad/propiedad para un número mayor de moléculas (Hamzeh-Mivehroud *et al.*, 2015). Por lo tanto, el desarrollo de modelos QSAR es de utilidad en procesos de investigación; así como en diversos campos donde es importante la predicción de actividades/propiedades de los compuestos químicos (Cronin, 2010; Roy *et al.*, 2015a). El formalismo de la teoría QSAR también tiene otros objetivos que se enlistan a continuación (Cronin, 2010; Roy *et al.*, 2015b):

- 1. Predicción de una actividad/propiedad química de interés.
- 2. Reducción y reemplazo de la experimentación de laboratorio usando animales. La experimentación normalmente es larga y costosa.
- 3. Barrido virtual de bibliotecas de datos.
- 4. Comprensión de los mecanismos de acción dentro de un grupo de sustancias químicas.
- Optimización de moléculas con actividades/propiedades deseadas y optimización de la síntesis química (minimizar la eliminación de desechos y reducir el costo).
- 6. Refinamiento estructural de moléculas objetivo sintéticas.
- 7. Identificación de compuestos peligrosos en las etapas iniciales del diseño de los mismos.
- Predicción de la toxicidad de los compuestos en seres humanos mediante la exposición ocasional u ocupacional. Así también, la predicción de la toxicidad sobre especies ambientales.
- 9. Aplicaciones con fines regulatorios por parte de agencias gubernamentales.

1.4 Aplicaciones de un modelo QSAR

El modelado QSAR es una opción adecuada para el monitoreo racional de la actividad o propiedad de los compuestos químicos; por lo que resulta de utilidad para diversos campos científicos. Las áreas de aplicación de la teoría QSAR han crecido a lo largo del tiempo y son muy variadas. De esta forma, las aplicaciones de los modelos QSAR se agrupan de tres maneras distintas (Roy *et al.*, 2015a):

1.4.1. Naturaleza de la respuesta

Desde el punto de vista de la naturaleza de la respuesta se pueden agrupar en actividades, propiedades y toxicidades. Ejemplos de actividades biológicas son las antioxidantes, antibacteriales, antimalaria, antihipertensivas, antihistamínicos, antiepilépticos, antidepresivos, anti– VIH, antidiuréticos, etc. Por otro lado, las propiedades incluyen: coeficiente de partición octanol/agua, temperatura de transición vítrea, índices de retención en cromatografía, hidrólisis, oxidación atmosférica, biodegradación, bioacumulación, etc. Finalmente, las toxicidades: aguda en peces, acuática persistente, aguda por inhalación, aguda oral, de órganos (por ejemplo, hepatotoxicidad, cardiotoxicidad, nefrotoxicidad), irritación/corrosión de la piel y ojos, carcinogenicidad, etc.

1.4.2. Naturaleza de los compuestos químicos

Considerando la naturaleza de los compuestos químicos se pueden diferenciar entre compuestos químicos de beneficio para la salud (fármacos y aditivos alimentarios), compuestos químicos usados en procesos industriales y de laboratorio (solventes, perfumería, surfactantes y reactivos en general) y compuestos químicos que tienen efectos nocivos para la salud (pesticidas, toxinas, xenobióticos, agentes carcinógenos, compuestos orgánicos volátiles, contaminantes orgánicos persistentes, etc.).

1.4.3. Áreas de aplicación

Las áreas de aplicación de la teoría QSAR pueden subdividirse en tres tipos: diseño de fármacos, ciencia de los materiales y toxicología predictiva. El diseño de fármacos involucra el modelado ADME (Absorción, Distribución, Metabolismo y Excreción), el cual permite monitorear el perfil farmacocinético de un potencial fármaco antes de su síntesis, permitiendo mejorar la eficacia en el diseño de compuestos dentro de un sistema biológico. Por otra parte, el modelado QSAR se aplica en ciencia de materiales para el estudio de polímeros, líquidos iónicos, catálisis, nanomateriales, fullerenos, surfactantes, biomateriales, cerámicos, etc. Finalmente, la toxicología predictiva comprende la evaluación de la toxicidad sistémica (toxicidad sobre órganos específicos) y el control de riesgos ecotoxicológicos (daños en el ecosistema).

1.5 Componentes y etapas de un modelo QSAR

El modelado QSAR consiste en datos cuantitativos y el uso de técnicas quimiométricas apropiadas. Los datos cuantitativos de los compuestos químicos se obtienen a partir de dos fuentes: 1) medición de la actividad/propiedad de interés e 2) información química codificada en los descriptores moleculares, que se obtienen mediante diversas

teorías que se aplican a la representación de las moléculas. Debido a la gran cantidad de información que se obtiene, el uso de computadores es necesario para llevar a cabo el desarrollo de los modelos QSAR. Existen 4 pasos básicos que se siguen en los estudios QSAR (Roy *et al.*, 2015b; Golbraikh *et al.*, 2017):

1.5.1. Preparación de los datos

Los datos deben ser ordenados de una manera conveniente y útil. Para iniciar un estudio QSAR es necesario poseer un conjunto de compuestos químicos con una respuesta de interés (actividad/propiedad). Algunos ejemplos de actividades/propiedades son: EC50 (concentración efectiva en el 50% de la población), IC50 (concentración requerida para el 50% de inhibición), LD50 (dosis requerida para matar la mitad del total de la población, coeficiente de partición octanol/agua, índices de retención, dulzor relativo.

Cuando se trabaja con respuestas que tienen una amplia escala, es necesario realizar una transformación (normalmente logarítmica), de tal forma que los valores numéricos de la actividad sean lo más cercanos posibles (al menos de 3 o 4 unidades logarítmicas). Otro aspecto importante en la preparación de los datos es la representación de las estructuras químicas de tal forma que sea posible el cálculo de los descriptores moleculares (variables independientes), los cuales serán relacionados con la actividad/propiedad. De esta manera, se puede construir la matriz de datos QSAR con la cual se trabajará en las etapas posteriores.

1.5.2. Procesamiento de los datos

Antes de iniciar el desarrollo de un modelo QSAR, es importante el pretratamiento de los datos. Esto incluye:

- Eliminación de moléculas duplicadas. Por ejemplo, moléculas que tienen la misma estructura (por ejemplo, la misma notación de cadena SMILES) cuando se trabaja con modelos independientes de la conformación.
- Eliminación de descriptores con valores faltantes.
- Eliminación de descriptores constantes o casi constantes; así como los que se encuentran correlacionados más arriba de un cierto umbral.

Para el desarrollo de un modelo predictivo QSAR es indispensable la división de la matriz de datos QSAR en dos conjuntos o grupos: grupo de entrenamiento o calibración (training set) y grupo de predicción (test

set). Este tipo de división se puede realizar de forma casual (usando números aleatorios) o usando diversos métodos quimiométricos (análisis de conglomerados, Kennard–Stone, etc.). El grupo de calibración se usa para el desarrollo del modelo, para lo cual se usan técnicas de regresión o clasificación acopladas con métodos de selección de variables.

1.5.3. Validación y predicción de los datos

El modelo desarrollado sobre el grupo de calibración es validado usando métodos de validación interna o cruzada (cross-validation) y una validación externa mediante los valores de respuesta obtenidos con el grupo de predicción. También se tiene que definir el dominio de aplicabilidad (AD), y en algunos casos se pueden utilizar otros criterios disponibles para la validación de modelos QSAR.

1.5.4. Interpretación de los datos

Una vez que el modelo QSAR ha sido validado, la interpretación de la información codificada en los descriptores moleculares se usa para explorar el mecanismo de acción del conjunto de compuestos químicos considerados. Asimismo, es posible el uso del modelo para el diseño de nuevas sustancias químicas con una actividad/propiedad deseada.

1.6 Enfoques específicos QSAR

Actualmente existen varios enfoques QSAR reportados en la literatura con una amplia gama de nombres, lo cual dificulta establecer un sistema de clasificación bien definido. Un intento por clasificar los enfoques QSAR podría hacerse considerando (Todeschini *et al.*, 2009):

- 1. El objetivo que debe ser alcanzado: diseño de fármacos, análisis de similitud molecular y cribado de alto rendimiento.
- 2. El tipo de propiedad molecular que se modela: análisis ADME, QSAR ambiental, LSERs y QSAR binario.
- 3. El tipo de descriptores moleculares que componen el modelo: 2D–QSAR, 3D–QSAR y 4D–QSAR.
- 4. El método matemático o algoritmo computacional usado para estimar los parámetros del modelo: Métodos de contribución de grupos, análisis estructural y técnicas QSAR basadas en grillas.

A continuación algunos de los enfoques QSAR se describirán con mayor detalle.

1.6.1. Enfoque de Hansch

En términos generales se puede pensar que la actividad biológica de un grupo de compuestos químicos congenéricos pueden ser descritos por el siguiente modelo matemático (Hansch *et al.*, 1962):

$$\log \frac{1}{C_{50}} = a\pi + b\varepsilon + cS + d \tag{1.2}$$

donde C_{50} es la actividad toxicológica de interés, correlacionada a un término hidrofóbico (π), un término electrónico (ϵ), un término estérico (S) y un término que depende del tipo de actividad que se modela (d).

El término electrónico era originalmente la constante de sustituyente de Hammett y el término estérico la constante de sustituyente de Taft. Estas dos contribuciones juntas fueron las que sentaron las bases para el desarrollo QSAR por parte de Hansch y Fujita.

1.6.2. Enfoque de Free–Wilson

El enfoque de Free–Wilson (Free & Wilson, 1964) se basa en el supuesto de que para un grupo de compuestos congenéricos, la actividad/propiedad puede ser modelada utilizando en modo aditivo la contribución de los sustituyentes. Es decir, se considera que los efectos de tales sustituyentes presentes en la molécula sean independientes entre sí y que puedan ser simplemente sumados. Una vez identificado un esqueleto común para los compuestos congenéricos de la base de datos, se realiza una regresión en busca de un modelo:

$$\prod_{y_{i}} = b_{0} + \sum_{s=1}^{S} \sum_{k=1}^{Ns} b_{ks} I_{i,ks}$$
(1.3)

donde *S* es el número de sitios de sustitución y *Ns* es el número de sustituyentes diferentes posibles. Los descriptores del *i*-ésimo compuesto se indican con la variable $I_{i,ks}$, siendo $I_{i,ks} = 1$ si el sustituyente se encuentra presente en el *s*-ésimo sitio e $I_{i,ks} = 0$ en caso contrario. Los coeficientes b_{ks} indican la importancia del *k*-ésimo sustituyente en cada *s*-ésimo sitio para la respuesta en estudio y_i , donde b_0 es la ordenada al origen del modelo, que corresponde a la respuesta media calculada de los compuestos considerados para construir el modelo.

1.6.3. Métodos de Contribución de Grupos

Los métodos de contribución de grupos (GCM) (Reinhard & Drefahl, 1999; Duchowicz *et al.*, 2006) se basan en la búsqueda de una relación cuantitativa entre la propiedad estructural y una respuesta fisicoquímica o biológica:

$$P = f(G_1, G_2, \dots, G_m; n_1, n_2, \dots, n_m)$$
(1.4)

donde *P* es la propiedad de interés, la cual es función de la contribución de *m* grupos funcionales G_i y de su frecuencia n_j . La contribución de los grupos funcionales se expresa mediante cantidades numéricas asociadas a los elementos estructurales de la molécula en forma de átomos individuales: pares de átomos, fragmentos moleculares y grupos funcionales. El modo en el cual cada grupo estructural se representa, depende del esquema elegido. La contribución de los grupos se estima utilizando métodos de regresión multivariable a partir de un grupo de moléculas cuyas propiedades son conocidas. El modelo lineal se puede escribir como:

$$y_{i} = k_{0} + \sum_{j=1}^{m} G_{j} I_{ij}$$
 (1.5)

donde k_0 es la constante del modelo, *j* recorre los *m* grupos presentes (definidos en base al esquema GCM elegido), G_i es la contribución del *j*– ésimo grupo e I_{ij} es una variable que considera la presencia o ausencia del *j*–ésimo grupo en la *i*–ésima molécula.

1.6.4. Cribado de alto rendimiento

El cribado de alto rendimiento o high throughput screening (HTS) (Pereira & Williams, 2007; Young, 2009) es un enfoque ampliamente usado en la industria farmacéutica para el descubrimiento de fármacos mediante el uso de la robótica. Los experimentos del HTS se realizan en placas de microvaloración que contienen cientos o miles de platos con un formato definido, donde se colocan las soluciones de los compuestos a ser evaluados. La información obtenida de los experimentos es recopilada mediante sensores sensibles para formar grandes bases de datos, las cuales serán posteriormente controladas y analizadas. El proceso de automatización permite el ensayo de la actividad/propiedad de miles de compuestos tipo fármaco en un tiempo reducido, pudiéndose identificar rápidamente los compuestos activos de interés.

1.6.5. Barrido virtual

El barrido virtual (VS) (Vogt & Bajorath, 2010; Talevi *et al.*, 2011; Taft & da Silva, 2014) es un grupo de técnicas computacionales heterogéneas que permiten explorar las representaciones digitales de compuestos químicos registrados en bases de datos (públicas o privadas) con la finalidad de identificar potenciales candidatos con ciertas restricciones estructurales o determinados requisitos, los cuales

están de alguna manera vinculados a las propiedades/actividades deseadas. Es una técnica teórica debido a que los compuestos químicos a ser analizados han sido ya sintetizados y registrados en las bases de datos. Esto permite que el barrido virtual sea eficiente con respecto a otras técnicas que requieren mayor tiempo y dinero para diseñar un compuesto (por ejemplo el HTS). Asimismo, se la puede usar con la finalidad de reposicionar fármacos ya existentes, evitando de esta manera todo el estudio que conlleva su aprobación por parte de los organismos reguladores (Talevi & Bruno-Blanch, 2016).

1.7 Principios del modelado QSAR

Para garantizar que las predicciones de los modelos QSAR sean confiables, se deben cumplir algunas condiciones. Las autoridades reguladoras necesitan asegurarse que un modelo QSAR haya sido estrictamente validado previo a su aplicación para la evaluación reglamentaria de compuestos químicos. Para que un modelo QSAR pueda ser aceptado para usos regulatorios debe:

- 1. Demostrar la validez del modelo.
- 2. La molécula a ser predicha (grupo de predicción) debe caer dentro del dominio de aplicabilidad del modelo.
- 3. La confiabilidad en el enfoque del modelado tiene que ser bien documentada de tal forma que se proporcione transparencia en el algoritmo subyacente.

Para abordar el procedimiento de validación de los modelos QSAR, existen principios referenciados y adoptados por la Organización para la Cooperación Económica y el Desarrollo (OECD, 2007). Así, cualquier modelo QSAR debe cumplir con 5 principios básicos internacionalmente reconocidos y que destacan varios aspectos relevantes para su aceptación regulatoria.

1.7.1. Actividad/propiedad definida

Debido a que una determinada actividad/propiedad puede ser medida siguiendo protocolos experimentales diferentes y bajo diferentes condiciones experimentales, el objetivo de este primer principio es el de garantizar claridad en la definición de la actividad/propiedad que será modelada y predicha por el modelo.

1.7.2. Algoritmo inequívoco

Debido a que varios enfoques de modelización han sido propuestos a lo largo del tiempo, este objetivo busca asegurar transparencia en el algoritmo utilizado para el desarrollo del modelo QSAR. En el caso de modelos desarrollados con fines comerciales, esta información no siempre está disponible de forma pública, lo que genera un inconveniente para su aceptación regulatoria; es decir, la calidad de un modelo no puede ser establecida independientemente de la información del algoritmo utilizado para su desarrollo.

1.7.3. Dominio de aplicabilidad definido

Este principio se refiere al hecho de que los modelos QSAR son modelos reduccionistas, los cuales están inevitablemente asociados con las limitaciones en términos de los tipos de estructuras químicas consideradas, de las propiedades fisicoquímicas y los mecanismos de acción para los cuales los modelos pueden generar predicciones confiables. En teoría, la aplicabilidad de un modelo QSAR está limitado a los compuestos químicos que son estructuralmente similares a los que fueron usados para calibrar el modelo.

1.7.4. Medida apropiada de la bondad de ajuste, robustez y predictividad

Para una mejor evaluación de la calidad de un modelo, es esencial saber si el modelo es robusto, si no está sobreajustado y si es capaz de predecir confiablemente la actividad/propiedad para moléculas externas. Este principio brinda toda la información necesaria para un modelo QSAR obtenido mediante validación interna (bondad de ajuste y robustez) y validación externa (capacidad predictiva) mediante el uso de un conjunto de calibración y de predicción, respectivamente.

1.7.5. Interpretación del mecanismo de acción de los descriptores (de ser posible)

Este quinto principio sugiere proporcionar interpretación de los descriptores moleculares del modelo y su importancia para la actividad/propiedad que se modela (siempre que sea posible). Esta interpretación mecanicista entre los descriptores y la actividad/propiedad puede añadir mayor confianza en el modelo desarrollado; sin embargo, no siempre es posible obtener tal interpretación desde un punto de vista científico. El hecho que no se pueda dar una interpretación mecanicista al modelo, no significa que tal modelo no sea potencialmente útil dentro de un contexto regulatorio y que tenga que ser rechazado.

1.8 Referencias

- Cronin, M. T. (2010). Quantitative Structure-Activity Relationships (QSARs)-Applications and Methodology. In T. Puzyn, J. Leszczynski & M. T. Cronin (Eds.), *Recent Advances in QSAR Studies*, (pp. 3-11): Springer.
- Chaudhry, Q., Chrétien, J., Craciun, M., Guo, G., Lemke, F., Müller, J.-A., Neagu, D., Piclin, N., Pintore, M., & Trundle, P. (2007). Algorithms for (Q) SAR Model Building. In E. Benfenati (Ed.), *Quantitative Structure-Activity Relationships (QSAR) for Pesticide Regulatory Purposes*, (pp. 111-147): Elsevier.
- Dearden, J. C. (2016). The History and Development of Quantitative Structure-Activity Relationships (QSARs). *International Journal of Quantitative Structure-Property Relationships, 1*(1), 1-44.
- Duchowicz, P. R., Castro, E. A., Toropov, A., & Benfenati, E. (2006). Applications of Flexible Molecular Descriptors in the QSPR–QSAR Study of Heterocyclic Drugs. In S. P. Gupta (Ed.), QSAR and Molecular Modeling Studies in Heterocyclic Drugs I, (pp. 1-38).
- Franke, R., & Gruska, A. (2003). General Introduction to QSAR. In R. Benigni (Ed.), *Quantitative Structure-Activity Relationhsip (QSAR)* models of mutagens and carcinogens, (pp. 1-40): CRC press.
- Free, S. M., & Wilson, J. W. (1964). A Mathematical Contribution to Structure-Activity Studies. *Journal of Medicinal Chemistry*, 7(4), 395-399.
- Galvez, J., & Garcia-Domenech, R. (2010). Molecular Topology in QSAR and Drug Design Studies. In E. Castro (Ed.), *QSPR-QSAR Studies on Desired Properties for Drug Design*, (pp. 63-94): Research Signpost.
- Gangwal, R. P., Damre, M. V., & Sangamwar, A. T. (2016). Overview and Recent Advances in QSAR Studies. In A. G. Mercader, P. R. Duchowicz & P. M. Sivakumar (Eds.), *Chemometrics Applications and Research: QSAR in Medicinal Chemistry*, (pp. 1-32): CRC Press.
- Golbraikh, A., Wang, X. S., Zhu, H., & Tropsha, A. (2017). Predictive QSAR Modeling: Methods and Applications in Drug Discovery and Chemical Risk Assessment. In J. Leszczynski, A. Kaczmarek-Kędziera, T. Puzyn, M. G. Papadopoulos, H. Reis & M. K. Shukla (Eds.), *Handbook of Computational Chemistry*, (pp. 2303-2340): Springer.
- Hamzeh-Mivehroud, M., Sokouti, B., & Dastmalchi, S. (2015). An Introduction to the Basic Concepts in QSAR-Aided Drug Design.
 In K. Roy (Ed.), *Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment*): IGI Global.
- Hansch, C., Maloney, P. P., Fujita, T., & Muir, R. M. (1962). Correlation of Biological Activity of Phenoxyacetic Acids with Hammett

Substituent Constants and Partition Coefficients. *Nature*, *194*, 178–180.

- Hansch, C., Leo, A., & Hoekman, D. (1995). *Exploring QSAR: Fundamentals and Applications in Chemistry and Biology*: American Chemical Society.
- Hongmao, S. (2015). *A Practical Guide to Rational Drug Design*: Elsevier/Woodhead Publishing.
- Kaliszan, R. (2007). QSRR: Quantitative Structure-(Chromatographic) Retention Relationships. *Chemical reviews, 107*, 3212-3246.
- Kubinyi, H. (1988). Free Wilson Analysis. Theory, Applications and Its Relationship to Hansch Analysis. *Molecular Informatics*, 7(3), 121-133.
- Kubinyi, H. (2008). *QSAR: Hansch Analysis and Related Approaches* (Vol. 1): John Wiley & Sons.
- Liaw, A., & Svetnik, V. (2015). QSAR Modeling: Prediction of Biological Activity from Chemical Structure. In A. L. Gould (Ed.), *Statistical Methods for Evaluating Safety in Medical Product Development*, (pp. 66-83): Wiley.
- OECD. (2007). Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. In): OECD Publishing.
- Pereira, D., & Williams, J. (2007). Origin and Evolution of High Throughput Screening. *British journal of pharmacology, 152*(1), 53-61.
- Reinhard, M., & Drefahl, A. (1999). Handbook for Estimating Physicochemical Properties of Organic Compounds: Wiley.
- Rojas, C., Duchowicz, P. R., Pis Diez, R., & Tripaldi, P. (2016).
 Applications of Quantitative Structure-Relative Sweetness Relationships in Food Chemistry. In A. G. Mercader, P. R. Duchowicz & P. M. Sivakumar (Eds.), *Chemometrics Applications and Research: QSAR in Medicinal Chemistry*, (pp. 317-339): Apple Academic Press.
- Roy, K., Kar, S., & Das, R. N. (2015a). A Primer on QSAR/QSPR Modeling: Fundamental Concepts: Springer.
- Roy, K., Kar, S., & Das, R. N. (2015b). Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment: Academic Press.
- Taft, C. A., & da Silva, C. H. T. d. P. (2014). Current State-of-the-art for Virtual Screening and Docking Methods. In C. A. Taft & C. H. T. d. P. da Silva (Eds.), *New Developments in Medicinal Chemistry*, vol. 2 (pp. 3-169).
- Talevi, A., Castro, E. A., & Bruno-Blanch, L. E. (2011). Virtual Screening: An Emergent, Key Methodology for Drug Development in an Emergent Continent-A Bridge Towards Patentability. In E. A. Castro & A. K. Haghi (Eds.), Advances Methods and Applications

in Chemoinformatics: Research Progress and New Applications, (pp. 229-245).

- Talevi, A., & Bruno-Blanch, L. E. (2016). Virtual Screening Applications in the Search of Novel Antiepileptic Drug Candidates. In A. Talevi & L. Rocha (Eds.), Antiepileptic Drug Discovery: Novel Approaches, (pp. 237-258).
- Todeschini, R., Consonni, V., & Gramatica, P. (2009). Chemometrics in QSAR. In R. Tauler, B. Walczak & S. D. Brown (Eds.), *Comprehensive Chemometrics: Chemical and Biochemical Data Analysis*, (pp. 129-170): Elsevier.
- Todeschini, R., & Consonni, V. (2009). *Molecular Descriptors for Chemoinformatics*: Wiley-VCH.
- Vogt, M., & Bajorath, J. (2010). Virtual Screening Methods Based on Bayesian Statistics. In H. Lodhi & Y. Yamanishi (Eds.), *Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques*, (pp. 190-211): Medical Information Science Reference.
- Young, D. C. (2009). Computational Drug Design: A Guide for Computational and Medicinal Chemists: John Wiley & Sons.

DESCRIPTORES MOLECULARES

2.1 Introducción

Los descriptores moleculares son de gran importancia en el campo de las relaciones cuantitativas estructura–actividad/propiedad, debido a que constituyen las variables independientes con las cuales se predicen las actividades/propiedades de interés. De esta forma, es imprescindible poder representar de forma apropiada la estructura molecular, para con el uso de herramientas quimiométricas adecuadas desarrollar los modelos QSAR/QSPR. Así, los científicos se han enfocado en cómo capturar y convertir (de forma teórica) la información codificada en una estructura química en números que se puedan usar para relacionarlos cuantitativamente con actividades/propiedades biológicas u otras propiedades experimentales de interés (Gasteiger & Engel, 2006).

Los descriptores moleculares son un conjunto de parámetros capaces de describir una estructura molecular de forma cuantitativa. Sin embargo, este conjunto de parámetros no es único, debido a que se los puede extraer a partir de diferentes formas de representación de la molécula. En consecuencia, se pueden distinguir dos grandes clases de descriptores moleculares: los experimentales y los teóricos. Los descriptores experimentales son aquellos que se obtienen mediante experimentos estandarizados, por ejemplo, coeficiente de partición octanol/agua, refractividad molar, polarizabilidad, etc.; mientras que los descriptores teóricos son aquellos que se obtienen aplicando algoritmos matemáticos bien definidos a una representación inequívoca de la estructura molecular (Todeschini & Consonni, 2009).

El creciente interés de los científicos en el desarrollo de descriptores moleculares, junto con los avances en la quimiometría ٧ quimioinformática, han permitido relacionar de diversas formas la estructura molecular con las actividades/propiedades de los compuestos químicos. Por lo tanto, las áreas de aplicación de los descriptores es variada: fisicoquímica, química medicinal, farmacología, protección ambiental, toxicología y ecotoxicología, ciencia de los alimentos, barrido virtual, cribado de alto rendimiento, entre otras. Asimismo, existen aplicaciones más recientes de los descriptores en sistemas más complicados; tales como sales (estructuras desconectadas), nanoestructuras, péptidos, polímeros y líquidos iónicos (Mauri et al., 2016).

2.2 Historia

El desarrollo histórico de los descriptores moleculares se encuentra estrechamente relacionado con el concepto de estructura molecular y se considera como uno de los conceptos más importantes del siglo XIX. De esta forma, el desarrollo histórico de los descriptores refleja la creatividad de los científicos basado en sus capacidades para imaginar cómo representar una estructura química y al mismo tiempo obtener información a partir de dicha representación. Los descriptores moleculares pueden considerarse el desarrollo más importante de la idea de Alexander Crum Brown plasmado en su tesis titulada "On the Theory of Chemical Combination", presentada en el año 1861 en la Universidad de Edimburgo. La tesis de Crum Brown indica que fue un investigador pionero en el campo de la química matemática, debido a que desarrolló un sistema de representación gráfica de los compuestos químicos el cual es muy similar al que se usa en la actualidad. Su representación gráfica fue la primera que permitió visualizar claramente la valencia y los enlaces de los átomos en compuestos orgánicos (Consonni & Todeschini, 2009).

Más adelante, Crum Brown publicó el trabajo titulado "*Theory of Isomeric Compounds*", en el cual relaciona la matemática y la química mediante el análisis de varios tipos de isómeros usando una representación gráfica. En 1868 y en colaboración con T. R. Fraser propusieron que la acción de un compuesto en un determinado sistema biológico está definida como una función de su constitución química (Franke & Gruska, 2003; Kubinyi, 2008):

$$\Phi = f(C) \tag{2.1}$$

En esta relación, ellos indican que una modificación de la constitución química (Δ C) se reflejaría en un efecto sobre la actividad biológica (Δ Φ), y se puede considerar la primera proposición general de una relación cuantitativa estructura–actividad.

Por otro lado, Wilhelm Körner en 1874 publicó los resultados de su trabajo relacionados a la síntesis de compuestos bencénicos disustituidos, donde estableció el efecto de las posiciones *orto, meta* y *para* de los sustituyentes (descriptores). De esta manera, Körner pensó que los diferentes colores que mostraban tales compuestos estarían relacionados a diferencias en la estructura molecular (Consonni & Todeschini, 2009). Alrededor de 1935, Hammett también estableció el efecto de los sustituyentes en reacciones orgánicas (particularmente en la ionización de ácidos benzóicos), donde buscó relaciones lineales para la energía libre mediante el uso de constantes estéricas, electrónicas e hidrofóbicas para diversos sustituyentes y el uso de un modelo aditivo para determinar la actividad congenérica de los compuestos (Hansch *et al.*, 1995).
En 1947 se introducen los primeros descriptores basados en la teoría de grafos moleculares, el índice de Wiener y el número de Platt, con la finalidad de modelar los puntos de ebullición de hidrocarburos. Más adelante, en la década de 1950, Taft estableció relaciones lineales para la energía de solvatación (LSER) basadas en parámetros estéricos, polares y de resonancia para derivados congenéricos. A inicios de la década de 1960 se propusieron otros descriptores moleculares basados principalmente en la teoría de grafos, y casi una década después se comenzaron a utilizar los descriptores cuánticos en los estudios QSAR. Asimismo, la representación topológica de la estructura molecular llevada a cabo en los trabajos de Alexandru Balaban, Milan Randić, Lemont Kier y Lowell Hall (Roy & Das, 2012), permitió realizar avances significativos en el desarrollo de nuevos descriptores; así como extender estos conceptos para buscar una representación geométrica de la molécula para el desarrollo de descriptores 3D y huellas digitales moleculares (Doucet & Panaye, 2010).

Por otra parte, a finales de la década de 1980 se propusieron estudios QSAR basados en el análisis comparativo de campos moleculares (CoMFA) y en el análisis comparativo del índice de similitud molecular (CoMSIA) (Kubinyi, 1998; da Silva et al., 2010; Doucet & Panaye, 2010; Martin, 2010). El primer tipo de análisis mide las energías de interacción entre una molécula y grupos de interacción ("probes") en diversos puntos del espacio 3D. Los grupos de interacción pueden ser la molécula de agua, el grupo metilo o el átomo de hidrógeno; los cuales se usan para medir las energías de interacción en miles de puntos de una malla cuadriculada en la que se introduce la molécula. Así, se obtiene un campo escalar de valores de energía de interacción que caracterizan la molécula analizada. De forma similar, CoMSIA mide la similitud de las moléculas en función de sus propiedades fisicoquímicas; es decir, los resultados muestran regiones de la molécula con afinidad o falta de afinidad a la presencia de un grupo de interacción con propiedades fisicoquímicas específicas.

2.3 Definición y requisitos

Los descriptores moleculares son formalmente representaciones matemáticas de una molécula, los cuales se obtienen a través de la aplicación de un algoritmo específico a una representación molecular definida, o a un procedimiento experimental específico (Consonni & Todeschini, 2010; Mauri *et al.*, 2016).

La definición formal de descriptor molecular fue propuesta por Todeschini y Consonni en el año 2000: *"el descriptor molecular es el resultado final de un procedimiento lógico y matemático que transforma la información química codificada en una representación simbólica de una molécula en un número útil o el resultado de algún experimento estandarizado"* (Todeschini & Consonni, 2009). Debido a esta definición amplia, el campo de los descriptores moleculares es multidisciplinario y engloba diferentes teorías en diferentes niveles. Así, para el desarrollo de nuevos descriptores es necesario poseer conocimientos de algebra, teoría de grafos, teoría de la información, química computacional, teorías de reactividad química y fisicoquímica. Por otro lado, para el análisis e interpretación de los mismos son necesarios conocimientos de estadística, quimiometría, principios básicos de modelado QSAR/QSPR, conocimiento específico del problema, bases de programación y entrenamiento en el uso de computadores y programas específicos (Gasteiger & Engel, 2006).

En la actualidad existen miles de descriptores que han sido propuestos en la literatura; por tal motivo se han definido reglas básicas que deben cumplir para ser aceptados como tal (Randić, 1996; Guha & Willighagen, 2012):

- 1. Ser invariante al etiquetado y enumerado de los átomos.
- 2. Ser invariante a la roto-traslación de la molécula.
- 3. Ser definido por un algoritmo inequívoco.
- 4. Poseer una aplicabilidad bien definida en las estructuras moleculares.

Además, para ser potencialmente útil, un descriptor molecular debería cumplir los siguientes requisitos:

- 5. Tener una interpretación estructural.
- 6. Tener buena correlación al menos con una propiedad experimental.
- 7. No tener relación trivial con otros descriptores.
- 8. No estar basado en propiedades experimentales.
- 9. Ser preferencialmente continuo.
- 10. Preferencialmente poseer mínima degeneración.
- 11. Ser preferencialmente simple.
- 12. Preferencialmente ser aplicable a una amplia clase de moléculas.
- 13. Preferencialmente ser capaz de discriminar isómeros.
- 14. Preferencialmente poseer valores calculados en un rango numérico adecuado para el conjunto de moléculas sobre las cuales se utilizará.

Las primeras cuatro reglas se usan para saber si un descriptor molecular está bien definido, pero no permiten identificar si un descriptor molecular será o no será apropiado para predecir una propiedad/actividad específica. Las siguientes diez reglas se relacionan con el uso de un descriptor, el cual debe ser interpretable, relacionado al menos con una propiedad experimental pero no estrechamente relacionado con los demás descriptores. La continuidad y baja degeneración indica que un descriptor debe ser capaz de considerar las variaciones (incluso mínimas) en la estructura molecular.

2.4 Representación de la estructura molecular

Las sustancias químicas se pueden representar siguiendo diferentes reglas y criterios. Dependiendo de la representación molecular que se utilice, se encontrará diferente tipo de información reflejada en los descriptores moleculares calculados (Testa & Kier, 1991). En términos generales, las estructuras moleculares se las puede representar por esquemas gráficos que indican el tipo de complejidad estructural (Figura 2.1) o por medio de notaciones lineales de cadena (Tabla 2.1).

Figura 2.1. Representación de la estructura química de la sacarosa: (a) representación 2D y (b) representación conformación molecular

La fórmula química es la forma más simple de representar una molécula, en la cual se encuentra codificada la frecuencia de ocurrencia de los tipos de átomos. Evidentemente, esta representación no indica ningún tipo de información relacionada con la conectividad atómica ni conformación molecular. Por consiguiente, los descriptores moleculares calculados bajo este formato se los denomina 0D o constitucionales. Por ejemplo: número de átomos de carbono o de nitrógeno en una molécula.

Тіро	Notación			
Nombre comercial	Sacarosa			
Nombre IUPAC	(2R,3R,4S,5S,6R)–2–[(2S,3S,4S,5R)–3,4–dihydroxy–2,5–			
	bis(hydroxymethyl)oxolan–2–yl]oxy–6–			
	(hydroxymethyl)oxane-3,4,5-triol			
Fórmula molecular	$C_{12}H_{22}O_{11}$			
Número CAS	57–50–1			
SMILES canónico	C(C1C(C(C(C(01)OC2(C(C(C(02)CO)O)O)CO)O)O)O)O			
SMILES isomérico	C([C@@H]1[C@H]([C@@H]([C@H](C0H)(O1)O[C@]2([

 Tabla 2.1. Diversos tipos de notación lineal para la estructura química de la sacarosa

La lista de subestructura consiste en una lista de fragmentos estructurales que se encuentran dentro de la molécula. Estos fragmentos no representan la topología completa de la estructura química, por lo que se los puede calcular e interpretar con facilidad. Los descriptores moleculares obtenidos de esta representación se denominan 1D y son comúnmente usados en los análisis de similitud/diversidad o para el barrido virtual de grandes bases de datos. Como ejemplos de estos descriptores se pueden citar los descriptores de *conteo de grupos funcionales* o *fragmentos centrados en el átomo*.

La representación en dos dimensiones de las moléculas es la más común y se la denomina representación topológica. Esta representación incluye la información de la conectividad entre los átomos que constituyen la molécula, la cual se realiza en términos de los denominados grafos moleculares. Los descriptores moleculares calculados en base a la representación topológica se denominan descriptores 2D. Aquí se encuentran índices topológicos, índices de conectividad, índices de información, autovalores de Burden, entre otros.

La representación geométrica de la disposición los átomos de una molécula en el espacio de tres dimensiones adiciona información a las conectividades atómicas. Los descriptores moleculares obtenidos a partir de esta representación se denominan 3D. Aquí se encuentran los descriptores 3D–MoRSE, WHIM, GETAWAY, CATS 3D, RDF, etc. Debido a que los compuestos químicos existen en diversas conformaciones de equilibrio, las cuales minimizan su energía, los valores de los descriptores 3D cambian en función de la conformación usada para su cálculo (Garcia *et al.*, 2016).

2.4.1. Grafos moleculares

Los grafos moleculares (Polansky, 1991; Janežič *et al.*, 2015) son el tipo de representación molecular 2D comúnmente usado. Un grafo G = (V, E), es una representación matemática de un grupo de vértices (V) y un grupo de aristas entre los vértices (E). En un grafo molecular los átomos corresponden a los vértices; mientras que las aristas corresponden a los enlaces químicos entre pares de átomos. Un grafo molecular es no dirigido (cuando los vértices no tienen orientación), ponderado y disperso. En la ponderación se asigna un número a cada vértice, que normalmente corresponden a los órdenes de los enlaces. Finalmente, el grafo es disperso cuando el número de aristas es mucho

menor que el cuadrado del número de vértices $|E| \square |V|^2$.

La aplicación de la teoría de grafos a la estructura molecular permite manejar los grafos químicos mediante algoritmos útiles y bien definidos para explorar las propiedades estructurales de las moléculas (Balaban, 1985). Particularmente, la teoría de grafos puede usarse para calcular matrices que dependen de las conexiones en el grafo y la definición de los invariantes del grafo. Los invariantes son representaciones numéricas de un grafo de aquellas propiedades que dependen únicamente de la estructura abstracta de los grafos y no de la representación de los mismos. Los invariantes de grafo pueden ser valores simples, una secuencia de números o una característica polinomial derivada del grafo. Los invariantes se pueden usar para reconocer rápidamente isomorfismo del grafo, debido a que, para cualquier invariante, dos grafos con diferentes valores no pueden ser isomorfos. Sin embargo, dos grafos con el mismo valor de invariante pueden o no ser isomorfos. La teoría de invariantes de grafos es la base fundamental para la definición de los índices topológicos (Todeschini & Consonni, 2009; Bonchev, 2015).

Generalmente un grafo se representa de dos maneras diferentes: como una colección de listas de adyacencia o como una matriz de adyacencia. Las listas de adyacencia son una colección de |V| listas, una para cada *i*-ésimo átomo, donde cada lista A dj [i] incluye los átomos conectados al *i*-ésimo átomo junto con el correspondiente orden de enlace.

2.4.2. Representación matricial

Varias matrices se pueden calcular a partir de un grafo molecular, las cuales se conocen como matrices grafo-teóricas y permiten el cálculo de muchos descriptores moleculares. Estos descriptores moleculares dependen del tipo de información que se incluye en dichas matrices. La mayoría de las matrices grafo-teóricas se derivan a partir de grafos que no incluyen los átomos de hidrógenos (libre de hidrógenos); sin embargo, también pueden ser calculadas considerando el grafo completo (con átomos de hidrógeno), cuando dicho átomo es útil para obtener una mejor representación de la estructura molecular (puentes de hidrógeno, donante/aceptor de enlaces de hidrógeno). La ventaja de representar una estructura molecular en forma de matriz es que se pueden aplicar varios operadores a las diferentes matrices grafo-teóricas, lo que permite calcular diversos grupos de descriptores moleculares. Así, un gran número de matrices grafo-teóricas ha sido propuesto en la literatura: entre las cuales, las más importantes son (Todeschini & Consonni, 2009; Janežič et al., 2015):

1. **Matrices de vértices:** son matrices cuadradas de dimensión $|V| \times |V|$, cuyas filas y columnas representan a los átomos (vértices del grafo), y cada elemento de la matriz codifica una propiedad asociada a un par de átomos.

- 2. **Matrices de aristas:** son matrices cuadradas de dimensión $|E| \times |E|$, cuyos elementos codifican la información de pares de enlaces.
- Matrices de incidencia: contienen información concerniente a las relaciones entre dos diferentes conjuntos de objetos; tales como átomos, enlaces, ciclos, subestructuras o trayectos moleculares; por lo que no son matrices cuadradas y cuya dimensión depende de los objetos considerados.

Las matrices de vértices son las más usadas para el cálculo de descriptores moleculares, y entre ellas las más representativas son las matrices de adyacencia, de distancias topológicas, Laplaciana y detour.

Matriz de adyacencia

La matriz de adyacencia **A** es una matriz cuadrada simétrica de dimensión $|V| \times |V|$ donde cada elemento a_{ij} es definido de la siguiente manera:

$$\begin{bmatrix} \mathbf{A} \end{bmatrix}_{ij} \equiv \mathbf{a}_{ij} = \begin{cases} 1 & si(i,j) \in E \\ 0 & caso contrario \end{cases}$$
(2.2)

es decir, los átomos son adyacentes si existe un enlace químico entre ellos.

Matriz de distancias topológicas

La matriz de distancias topológicas **D** es una matriz cuadrada simétrica de dimensión $|V| \times |V|$, en la que cada elemento d_{ij} es igual a la distancia topológica entre los vértices *i* y *j*:

$$\begin{bmatrix} \mathbf{D} \end{bmatrix}_{ij} \equiv \mathbf{d}_{ij} = \begin{cases} \begin{vmatrix} \min p_{ij} \\ si & i <> j \\ 0 & si & i = j \end{cases}$$
(2.3)

donde $\left| {}^{\min} \boldsymbol{p}_{ij} \right|$ es el número de aristas a lo largo de la ruta entre los átomos *i* y *j*.

Matriz de distancias geométricas

La matriz de distancias geométricas **G** representa las distancias entre pares de átomos en el espacio 3D. Es una matriz simétrica de dimensión $|V| \times |V|$, cuyos elementos diagonales $r_{ii} = 0$ y los elementos fuera de la

diagonal r_{ij} corresponden a las distancias Euclidianas entre los pares de átomos *i* y *j* presentes en la molécula.

Matriz Laplaciana

La matriz Laplaciana **L** o matriz de Kirchhoff es una matriz cuadrada simétrica de dimensión $|V| \times |V|$ definida como una matriz aumentada; es decir, se la obtiene al combinar una matriz cuadrada y una matriz diagonal (cuyos elementos diagonales son las propiedades atómicas). De forma más específica, la matriz **L** se obtiene como la diferencia entre la matriz de vértices y la matriz de adyacencia. La matriz de vértices es una matriz en la que los elementos diagonales corresponden a los grados de vértices δ_i , que son el número de átomos (excluido el H) adyacentes al átomo *i*:

$$\begin{bmatrix} \mathbf{L} \end{bmatrix}_{ij} = \begin{cases} \delta_i & si \ i = j \\ -1 & si \ (i,j) \in E \\ 0 & si \ (i,j) \notin E \end{cases}$$
(2.4)

donde los grados de vértices se calculados como la suma de las filas de la matriz **A**:

$$\delta_i = \sum_{j=1}^{|V|} \boldsymbol{a}_{ij} \tag{2.5}$$

Matriz detour

La matriz detour Δ o matriz de trayectoria máxima, es una matriz de vértices simétrica definida como:

$$\begin{bmatrix} \Delta \end{bmatrix}_{ij} = \begin{cases} \begin{vmatrix} \max p_{ij} \end{vmatrix} & \text{si } i <> j \\ 0 & \text{si } i = j \end{cases}$$
(2.6)

donde $\left| \prod_{ij} p_{ij} \right|$ es el número de bordes a través del camino más largo entre los vértices *i* y *j*; es decir, la distancia detour.

2.5 Codificación de la estructura molecular

La información de la estructura molecular se almacena en los denominados archivos de datos químicos. Sin embargo, a pesar de la gran cantidad de tipos de formatos existentes para dichos archivos químicos (O'Boyle *et al.*, 2011), todos ellos representan la estructura

molecular brindando información específica de tipo atómica o molecular, por lo que no pueden capturar todos los datos químicos posibles. Particularmente, se tienen dos tipos de archivos químicos, el primero relacionado a la representación topológica de las moléculas y el segundo a la representación geométrica de la estructura molecular.

Generalmente, el primer caso incluye todos los tipos de notación lineal, entre los cuales el más utilizado es la notación de cadena SMILES (simplified molecular–input line–entry system) (Weininger, 1988); mientras que para el segundo caso, los archivos que pueden almacenar la información de las coordenadas tridimensionales de los átomos son los formatos MDL y SYBYL. Sin embargo, se ha propuesto el formato CML (Chemical Markup language) para proporcionar un formato estándar para el almacenamiento de datos químicos basados en el dialecto XML (Murray-Rust & Rzepa, 2001).

2.6 Curado de las estructuras moleculares

Un aspecto importante previo al cálculo de los descriptores o huellas digitales moleculares es comprobar que las estructuras moleculares sean correctas. Desafortunadamente, las estructuras químicas disponibles en publicaciones científicas o en bases de datos (públicas o comerciales) no están exentas de errores.

En años recientes, el curado de las estructuras moleculares ha sido fuertemente enfatizado en varias publicaciones, donde se han expuesto los problemas relacionados al uso de datos incorrectos en estudios QSAR y en quimioinformática (Young *et al.*, 2008; Tropsha, 2010). El curado se aplica a la base de datos completa y se compone de 5 pasos principales (Fourches *et al.*, 2010):

- 1. Eliminación de estructuras químicas que no pueden ser procesadas por algunos programas de cálculo de descriptores.
- 2. Conversión y limpieza de las estructuras químicas.
- 3. Estandarización y normalización de quimiotipos específicos.
- 4. Eliminación de compuestos repetidos.
- 5. Control manual final.

En el primer paso, los compuestos inorgánicos, organometálicos y las mezclas de sustancias químicas son los casos más comunes a ser excluidos durante el curado de las estructuras. Esta exclusión se realiza cuando el programa utilizado para el cálculo de descriptores moleculares no admite este tipo de compuestos. El segundo paso se relaciona propiamente a la preparación de la base de datos, donde las estructuras químicas deben ser codificadas en formatos computacionales específicos (SMILES, SYBYL o MDL). Esta conversión se puede realizar diseñando la estructura química en un editor molecular o directamente descargándolas a partir de una biblioteca de compuestos comerciales o de acceso público. Posteriormente, un control exhaustivo debe ser

realizado sobre las estructuras generadas con la finalidad de buscar estructuras incorrectas.

En el tercer paso se considera el hecho de que una molécula (incluso un fragmento o grupo funcional), puede ser representada de diferentes formas. Por ejemplo, los anillos aromáticos que se representan en el formato de Kekulé (Figura 2.2a) o en el formato aromático (Figura 2.2b); el grupo funcional nitro (R–NO₂) que posee múltiples mesómeros y cuya estructura puede ser representada usando la notación neutra (Figura 2.2c) o cargada (Figura 2.2d). Debido a que las representaciones son diversas, en principio afectaría a los valores de los descriptores moleculares. Por lo tanto, se debe elegir la misma forma de representación y aún más importante es que ese tipo de normalización se aplique a todas las estructuras moleculares.

Finalmente, se debe realizar un control manual de todas las estructuras moleculares codificadas, a pesar de que constituya una tarea tediosa y demandante de tiempo (dependiendo del tamaño de la base de datos). Sin embargo, es un paso vital para identificar moléculas no diseñadas correctamente y para corregir cualquier inconveniente que haya aparecido en los pasos anteriores.

Figura 2.2. Representación molecular del anillo aromático en el formato de Kekulé (a) y en el formato de enlaces conjugados (b); y del grupo funcional nitro en la forma neutra (c) y cargada (d)

2.6.1. KNIME

Debido a que el curado de las estructuras moleculares para los estudios QSAR/QSPR requiere el control de todos los errores anteriormente mencionados, un curado manual resulta tedioso, especialmente cuando se manejan bases de datos grandes. Para tal efecto se puede recurrir a programas quimioinformáticos, por ejemplo KNIME (Berthold *et al.*, 2008).

KNIME (Konstanz Information Miner) es un programa gratuito y de acceso abierto, que permite realizar minería de datos. Se inicia con el acceso a los datos para posteriormente realizar transformaciones, filtrados, etc., hasta llegar a realizar predicciones, visualizaciones y reportes de resultados. Para este efecto, se encuentran a disposición varios módulos (denominados nodos). El programa se encuentra organizado en diferentes secciones, de las cuales las más importantes son:

- Editor del diagrama de flujo.
- Repositorio de nodos.
- Descripción de nodos.

El repositorio de nodos contiene todos los nodos instalados y organizados en categorías y subcategorías. Para programar un diagrama de flujo, los nodos necesarios son buscados en el repositorio y arrastrados al editor del diagrama. Entonces, los nodos se conectan según el orden deseado mediante los puertos de entrada/salida y posteriormente se los configura para realizar las operaciones requeridas.

KNIME brinda acceso a los nodos instalados por defecto. Sin embargo, es posible instalar extensiones de KNIME que permiten el acceso a nodos adicionales específicos, los cuales han sido desarrollados por la comunidad de usuarios de KNIME. En el campo de la quimioinformática existen algunos nodos útiles que han sido incluidos en el repositorio, tales como ChemAxon tools, the Chemistry Development Kit CDK, DRAGON, CIR (Solucionador de identificación química), PaDEL (Pharmaceutical Data Exploratory Laboratory) y otros más, los que permiten la recopilación de datos, el curado, modelado y predicción de las actividades/propiedades de nuevos compuestos químicos.

2.7 Principales tipos de descriptores moleculares

En esta sección se van a describir diversos tipos de descriptores moleculares, particularmente aquellos utilizados durante el desarrollo de la presente tesis.

2.7.1. Descriptores constitucionales

Son los descriptores moleculares más simples que se pueden calcular a partir de una estructura molecular (Mauri *et al.*, 2016). En este grupo de descriptores se encuentran los que representan la estructura molecular sin tomar en cuenta ni la topología ni la geometría. Algunos ejemplos de descriptores constitucionales son:

• Peso molecular.

- Número de átomos: átomos terminales, heteroátomos, átomos ponderados.
- Número de enlaces múltiples: dobles, triples, aromáticos.
- Número de enlaces rotables.
- Frecuencia de ocurrencia absoluta o relativa de un átomo específico y tipos de enlace.

2.7.2. Descriptores de anillo

Los descriptores de anillo codifican la información relacionada a la presencia de anillos (estructuras cíclicas o anillos aromáticos) en una molécula. Algunos tipos de esta clase de descriptores son:

- Número de anillos.
- Número de circuitos o ciclos.
- Tamaño total del anillo.
- Perímetro del anillo.
- Conteo de puentes en el anillo.
- Grado de ciclizado molecular.
- Índice de complejidad del anillo.
- Relación aromática.

2.7.3. Índices topológicos

Los índices topológicos (TIs) (Todeschini & Consonni, 2009; Bonchev, 2015; Roy *et al.*, 2015a), también conocidos como descriptores moleculares topológicos, se derivan de una representación topológica de la estructura química (2D); por ejemplo, un grafo molecular. De esta manera, estos índices no consideran ninguna información acerca de la distribución espacial de los átomos. Existen diferentes categorías de TIs y serán tratadas a continuación.

Número de trayectos moleculares

Son descriptores que cuentan el número de caminos, trayectos de ida, y trayectos de ida y vuelta en un grafo molecular libre de hidrógenos usando diferentes longitudes topológicas. Cuando se trabaja con moléculas grandes, se realiza una transformación logarítmica, de tal forma que permita obtener trayectos de tamaño apropiado para su uso (Kode srl., 2016).

Índices de conectividad molecular

Los índices de conectividad molecular (MCIs) (Kier & Hall, 1986) se calculan a partir de un grafo molecular libre de hidrógenos, donde cada vértice se pondera por su grado; es decir, el número total de átomos conectados. Estos índices son utilizados muy asiduamente. Su fórmula general es:

$$\boldsymbol{X}\boldsymbol{k} = \sum_{j=1}^{K} \left(\prod_{i=1}^{n} \delta_{i} \right)_{j}^{-1/2}$$
(2.7)

donde *j* recorre todos los trayectos de orden *k*, incluyendo los *n* vértices (n = k + 1 para subgrafos acíclicos); *K* es el número total de los trayectos de orden *k* presentes en el grafo molecular. El producto se realiza sobre los grados de vértice δ de todos los vértices involucrados en cada subgrafo. Entre los índices de conectividad más conocidos se tienen:

- Índice de conectividad de Randić.
- Índices de conectividad molecular de Kier-Hall.
- Índices de conectividad promedio.
- Índices de conectividad de solvatación.
- Índice modificado de Randić.
- Índice de conectividad de Kupchik.

El índice de conectividad de Randić (Randić, 1975), también conocido como índice de ramificación, fue el primer índice de conectividad propuesto para medir el grado de ramificación de hidrocarburos.

Índices de información

Los índices de información (Todeschini & Consonni, 2009; Roy *et al.*, 2015b; Kode srl., 2016) son descriptores moleculares que indican el contenido de información de las moléculas; mediante el uso de diversos criterios para definir las clases de equivalencia (es decir, equivalencia de los átomos en una molécula), tal como la identidad química, formas de enlace en el espacio, topología molecular y simetría. La mayoría de estos índices se derivan de un grafo molecular y se basan en la partición de sus elementos o de los elementos de la matriz en clases de equivalencia siguiendo diversos criterios.

Autovalores de Burden

Son descriptores moleculares derivados de un grafo molecular libre de hidrógenos y calculados a partir de la matriz de Burden **B** (Burden, 1989), la cual es una matriz ponderada que proporciona los denominados autovalores de Burden, y es definida de la siguiente forma:

$$\begin{bmatrix} \mathbf{B} \end{bmatrix}_{ij} = \begin{cases} \pi_{ij}^* \times 10^{-1} & \mathbf{s}i(i,j) \in \mathbf{E} \\ Z_i & \mathbf{s}ii = j \\ 0.001 & \mathbf{s}i(i,j) \notin \mathbf{E} \end{cases}$$
(2.8)

Los elementos diagonales B_{ii} son los números atómicos Z_i de los átomos. Los elementos no diagonales B_{ij} representan dos átomos enlazados que son iguales a $\pi^* \times 10^{-1}$, donde π^* es el orden de enlace convencional, igual a 1, 2, 3, y 1.5 para enlaces simples, dobles, triples y aromáticos, respectivamente. Los B_{ij} pertenecientes a enlaces terminales son multiplicados por 0.01; mientras los demás elementos se los fija a un valor de 0.001.

Índices ETA

Los índices del átomo topoquímico ampliado (ETA) (Roy & Ghosh, 2003; Roy & Das, 2012; Roy *et al.*, 2015b), se calculan a partir de un grafo molecular libre de hidrógenos; en el que cada vértice se asume que está compuesto por un núcleo y un entorno electrónico de valencia. La electronegatividad ETA se obtiene combinando el conteo del núcleo de un átomo con su respectivo número de electrones de valencia.

Índices de Adyacencia de Arista

Los índices de adyacencia de arista (Kode srl., 2016) son índices calculados a partir de la matriz de adyacencia, la cual brinda información relacionada a la conectividad entre las aristas (enlaces) del grafo molecular.

Índices del estado Electrotopológico por tipo de átomo

Los índices del estado Electrotopológico por tipo de átomo (Kier & Hall, 1999), son descriptores moleculares usados para describir a una molécula mediante la información relacionada a sus diferentes tipos de átomos. Comúnmente, estos índices se derivan a partir de algunas propiedades provenientes de átomos del mismo tipo y de su entorno estructural. Así, estos índices combinan la información estructural sobre la accesibilidad electrónica asociada a cada tipo de átomo, un indicador de la presencia/ausencia de dicho tipo de átomo y el número de ocurrencia del mismo.

Cada tipo de átomo se define inicialmente por su identidad (basada en el número atómico Z) y su estado de valencia el cual está basado en el identificador VSI:

$$VSI = \delta^{v} + \delta \tag{2.9}$$

donde δ^{ν} es el grado de vértice de valencia y δ es el grado de vértice del átomo.

2.7.4. Descriptores tipo P_VSA

Los descriptores tipo P_VSA (Labute, 2000) indican la cantidad de área superficial de van der Waals (VSA) con una determinada propiedad P dentro de un rango definido. Las propiedades P que se usan son: logP, refractividad molar, masa, volumen de van der Waals, electronegatividad de Sanderson, polarizabilidad, energía de ionización, estado intrínseco. De esta forma, los descriptores tipo P_VSA corresponden a una partición del área superficial molecular condicionada por los valores atómicos de P.

PPP			Tipos		
Donante de	enlaces	de	Átomo de oxígeno de un grupo OH		
hidrógeno (D)			Átomo de nitrógeno de un grupo NH o NH ₂		
Aceptor de	enlaces	de	Átomo de oxígeno		
hidrógeno (A)			Átomo de nitrógeno no adyacente a un átomo de		
			hidrógeno		
Positivo (P)			Átomo con carga positiva		
			Átomo de nitrógeno de un grupo NH ₂		
Negativo (N)			Átomo con carga negativa		
			Átomo de carbono, azufre o fósforo de un grupo		
			COOH, SOOH o POOH		
Lipofílico (L)			Átomo de cloro, bromo o yodo		
			Átomo de azufre adyacente únicamente a dos		
			átomos de carbono (C–S–C)		
			Átomo de carbono adyacente únicamente a átomos		
			de carbono		
Aromático (ar)			Átomo en una subestructura aromática		
Conjugado (con)			Átomo en una subestructura conjugada		
Halógeno (hal)			Cualquier átomo halógeno		
Cíclico (cyc)			Átomo que pertenece a ciclos		
Terminal (ter)			Átomo con un enlace no hidrogénico		

 Tabla 2.2.
 Potenciales farmacóforos

Recientemente se han propuesto los descriptores P_VSA_ppp_w (Kode srl., 2016), los cuales se basan en la presencia de potenciales farmacóforos (PPP); es decir, dado un determinado PPP, los descriptores P_VSA se calculan como la suma de las contribuciones VSA de todos los átomos asignados a aquel PPP. Los potenciales farmacóforos se detallan en la Tabla 2.2.

2.7.5. Propiedades moleculares

Engloban a descriptores moleculares heterogéneos que describen propiedades fisicoquímicas y biológicas, y ciertas características obtenidas por modelos teóricos (Kode srl., 2016). Algunas de estas propiedades son:

- Conteo de insaturaciones e índice de insaturación.
- Factor hidrofílico.
- Refractividad molar.
- Área de superficie polar topológica.
- Coeficientes de partición octanol–agua de Moriguchi y de Ghose–Crippen–Viswanadhan.
- Volúmenes de van der Waals calculados a partir del volumen de McGowan y de la ecuación de Zhao–Abraham–Zissimos.
- Índice de densidad de empaquetamiento.

2.7.6. Fragmentos centrados en el átomo y número de grupos funcionales

Estos dos tipos de descriptores resultan del conteo de fragmentos y grupos funcionales presentes en la molécula. El algoritmo de cálculo considera la composición química y las conectividades atómicas. Los fragmentos centrados en el átomo (Viswanadhan *et al.*, 1989; Ghose *et al.*, 1998) realizan conteos de los distintos fragmentos (tipos de átomos específicos) presentes en la estructura molecular, en la que cada fragmento es un átomo en la molécula descrito por sus átomos vecinos. Por otro lado, el número de grupos funcionales indica el número de grupos funcionales químicos presentes en una molécula (Kode srl., 2016).

2.7.7. Descriptores geométricos

Los descriptores geométricos se derivan de una representación 3D de la estructura molécula; es decir, a partir de la posición de los átomos en el espacio cartesiano XYZ. También se pueden calcular descriptores geométricos derivados de una representación a partir de un grafo 3D (índices topográficos), donde además de las posiciones de los átomos, también se consideran las conexiones entre los mismos. En cualquiera de los casos, estos descriptores se calculan a partir de una geometría molecular optimizada por métodos computacionales o a partir de las coordenadas cristalográficas (Mauri *et al.*, 2016).

Los descriptores geométricos proporcionan información adicional a la proporcionada por los descriptores constitucionales y topológicos. Sin embargo su uso es "complejo", debido a que los valores que toman estos descriptores van a depender de dos aspectos fundamentales:

1. Tipo de optimización geométrica utilizada, la cual puede ser computacionalmente costosa y requiere tiempo considerable cuando la base de datos a analizar es grande.

2. Flexibilidad molecular, la cual indica que un compuesto químico se encuentra en diferentes conformaciones moleculares.

Descriptores RDF

Los descriptores de función de distribución radial (RDF) (Hemmer *et al.*, 1999) se basan en la distribución de las distancias en la geometría molecular, los cuales se pueden interpretar como la distribución de probabilidad de encontrar un átomo dentro de un volumen esférico de radio R.

Descriptores 3D–MoRSE

Los descriptores de representación molecular 3D de estructuras basadas en la difracción de electrones (3D–MoRSE) (Schuur *et al.*, 1996) obtienen información a partir de las coordenadas XYZ mediante la transformación usada en los estudios de difracción de electrones para obtener curvas de dispersión teóricas.

Descriptores WHIM

Los descriptores moleculares invariantes holísticos ponderados (WHIM) (Todeschini *et al.*, 1994; Todeschini & Gramatica, 2002) son descriptores geométricos que se basan en índices estadísticos calculados a partir de las proyecciones de los átomos a lo largo de los ejes principales. Estos descriptores capturan información importante relacionada con el tamaño, forma y simetría de la molécula, así como la distribución de átomos con respecto a los ejes principales de la molécula (marco de referencia invariante). De esta forma, los átomos se proyectan en cada uno de los ejes y se evalúa la dispersión y distribución alrededor del centro geométrico.

Descriptores GETAWAY

Por otro lado, los descriptores de ensamblado de pesos de átomos, geometría y topología (GETAWAY) (Consonni *et al.*, 2002a; Consonni *et al.*, 2002b) son derivados de la matriz de influencia molecular (**H**), la cual es una matriz tipo "influencia" similar a la definida para el diagnóstico en regresión.

$$\mathbf{H} = \mathbf{M} \left(\mathbf{M}^{\mathsf{T}} \mathbf{M} \right)^{-1} \mathbf{M}^{\mathsf{T}}$$
(2.10)

La matriz de información molecular **M**, es una matriz simétrica que consiste en coordenadas cartesianas centradas con respecto a todos los átomos de la molécula. Los elementos diagonales (h_{ii}) de la matriz **H** son denominados valores de influencia o leverages y codifican la información de la influencia de cada átomo de la molécula en la determinación de su

forma; mientras que cada elemento fuera de la diagonal (h_{ij}) indica la capacidad de interacción entre el *i*-ésimo y el *j*-ésimo átomo.

Perfiles moleculares de Randić

Los perfiles moleculares de Randić (Randić, 1995a, 1995b; Randić & Razinger, 1995) son secuencias de descriptores propuestos por Milan Randić y calculados a partir de las distancias interatómicas geométricas de la molécula. Debido a que estos descriptores caracterizan bien la forma de las moléculas, son particularmente útiles para realizar análisis de similitud/diversidad.

Descriptores de carga y descriptores cuánticos

Los descriptores de carga o descriptores electrónicos (Todeschini & Consonni, 2009; Roy *et al.*, 2015a) describen la distribución de cargas en una molécula o en regiones particulares de la misma, como por ejemplo átomos, enlaces, fragmentos moleculares. Para calcular estos descriptores la molécula debe haber sido previamente optimizada mediante algún método mecanocuántico apropiado (por ejemplo los métodos semiempíricos) (Garcia *et al.*, 2016). Las cargas eléctricas presentes en la molécula son la fuerza motriz de las interacciones electrostáticas, y es bien conocido que la densidad de electrones local o cargas tienen un rol importante en muchas propiedades fisicoquímicas y reacciones químicas (Roy *et al.*, 2015a). Entre los descriptores cuánticos usados en estudios QSAR/QSPR se tiene (Karelson *et al.*, 1996; Doucet & Panaye, 2010):

- Dipolo o momento dipolar: es un descriptor usado para describir la polaridad de una molécula; representando el comportamiento de resistencia y orientación de la misma en presencia de un campo electrostático Se calcula usando las cargas atómicas parciales y las coordenadas atómicas.
- 2. Orbital molecular de más alta energía ocupado (HOMO): es el nivel de energía más alto en la molécula que contiene electrones y sirve para medir la nucleofilicidad de la misma. Cuando la molécula actúa como una base de Lewis (es decir, un donante de pares de electrones) en la formación de enlaces, los electrones son donados por este orbital.
- 3. Orbital molecular no ocupado de más baja energía (LUMO): es el nivel de energía más bajo en la molécula que no contiene electrones y sirve para medir la electrofilicidad de la misma. Cuando la molécula actúa como un ácido de Lewis (aceptor de pares de electrones) en la formación de enlaces, los electrones entrantes se dirigen a este orbital.

- 4. Superdelocalizabilidad: es un descriptor de reactividad de los orbitales ocupados y desocupados. Indica la contribución realizada por un átomo específico de la molécula a la energía de estabilización durante la formación de complejos de transferencia de carga con otra molécula; así como a la capacidad de un compuesto de formar enlaces a través de la transferencia de carga.
- 5. Polarizabilidad: es un descriptor que representa la habilidad de una molécula para formar dipolos instantáneos, y que se encuentra relacionado con la hidrofobicidad. Asimismo, la polarizabilidad electrónica de una molécula comparte características comunes con la superdelocalizabilidad electrofílica.

2.7.8. Descriptores topo-geométricos

En este grupo se detallan aquellos tipos de descriptores que, dada su definición, se pueden calcular ya sea a partir de una representación topológica o una representación geométrica de la molécula.

Pares de átomos

Los pares de átomos (Carhart *et al.*, 1985) son representaciones de cadena de la estructura química que consideran pares de átomos (excepto los pares con el átomo de hidrógeno) y la separación interatómica entre ellos. Los pares de átomos 2D consideran la distancia topológica (por ejemplo de 1 a 10) y los pares de átomos 3D usan la distancia Euclidiana para medir la separación entre átomos.

Descriptores CATS

Los descriptores CATS (búsqueda de plantillas químicamente avanzadas) (Schneider *et al.*, 1999; Renner *et al.*, 2006) son similares a los pares de átomos. La definición del tipo de átomo en estos descriptores está relacionado con la presencia de potenciales farmacóforos (PPP), donde un PPP es un tipo de átomo generalizado definido teniendo en cuenta algunos aspectos fisicoquímicos. Los PPP propuestos para el cálculo de los descriptores CATS son los cinco primeros PPP descritos en la Tabla 2.2: donante de enlaces de hidrógeno (D), aceptor de enlaces de hidrógeno (A), positivo (P), negativo (N), lipofílico (L). De esta manera, en los descriptores CATS 2D, a cualquier átomo de una molécula se le puede asignar cero, uno o dos tipos de PPP; usándose la distancia topológica (entre 0 y 9) para medir la distancia entre ellos. Por otro lado, los descriptores CATS 3D (Fechner *et al.*, 2003) no permiten la asignación de múltiples PPP y

utilizan la distancia Euclidiana como medida de distancia en el espacio tridimensional.

Descriptores basados en la matriz 2D y 3D

Los descriptores basados en la matriz 2D (Kode srl., 2016) son índices topológicos que se calculan mediante la aplicación de un conjunto de operadores algebraicos a las diferentes matrices grafo-teóricas obtenidas a partir de un grafo molecular libre de hidrógenos. Análogamente, los descriptores basados en la matriz 3D o índices topográficos se calculan a partir de la matriz de distancias geométricas, en la que se considera la distancia Euclidiana en lugar de la distancia topológica para medir la separación entre los átomos.

Autocorrelaciones 2D y 3D

Las autocorrelaciones 2D (Kode srl., 2016) describen cómo una determinada propiedad se distribuye a lo largo de la estructura molecular topológica. Son autocorrelaciones calculadas a partir de un grafo molecular libre de hidrógenos ponderado por las propiedades fisicoquímicas escaladas con respecto al valor del átomo de carbono. autocorrelaciones Aquí se incluyen las de Broto–Moreau. autocorrelaciones centradas de Broto-Moreau, autocorrelaciones de Geary, autocorrelaciones de Moran y autocorrelaciones de carga topológica. Por otro lado. las autocorrelaciones 3D son autocorrelaciones espaciales basadas en las distancias geométricas (Euclidianas) entre los átomos presentes en la superficie molecular. Un tipo particular de estos descriptores son las autocorrelaciones basadas en las distancias topológicas (TDB) (Klein et al., 2004), en el cual se contemporáneamente distancias topológicas consideran las y geométricas a un desplazamiento determinado.

2.8 Descriptores para moléculas desconectadas

La mayoría de los descriptores moleculares existentes han sido desarrollados para capturar la información estructural de moléculas orgánicas, pequeñas y con todos sus átomos conectados. La disponibilidad de datos para sistemas conformados por estructuras desconectadas, ha permitido que en estudios recientes se evalúe la factibilidad de aplicar los descriptores moleculares clásicos a este tipo de estructuras. Los sistemas de estructuras moleculares desconectadas comprenden las sales, mezclas de compuestos y los líquidos iónicos. Indudablemente, la caracterización de sistemas con estructuras desconectadas es mucho más compleja, debido a que se debería también considerar las interacciones entre las mezclas que conforman el sistema (Mauri *et al.*, 2016).

Uno de los principales inconvenientes cuando se trabaja con sistemas que contienen estructuras desconectadas, es saber la forma en que se deben representar dichas estructuras mediante descriptores moleculares adecuados (Oprisiu *et al.*, 2013). Los descriptores calculados sobre estos sistemas, según el algoritmo de cálculo, se pueden dividir en dos clases:

- 1. Descriptores moleculares cuya definición matemática es invariante a la conexión de todos los átomos en la molécula.
- 2. Descriptores moleculares que pueden ser calculados únicamente a partir de grafos moleculares donde todos los átomos estén conectados.

Los descriptores moleculares del primer tipo incluyen a los constitucionales, el conteo de grupos funcionales y fragmentos centrados en el átomo. La interpretación de estos descriptores para las estructuras conectadas y estructuras desconectadas es la misma. Por otro lado, para el segundo tipo de descriptores se requiere establecer la forma en que serán calculados en cada sistema de moléculas desconectadas. Una estrategia es calcular los descriptores sobre cada molécula conectada del sistema y posteriormente obtener un único valor mediante la suma, el promedio o el valor absoluto de la diferencia de los valores del descriptor (Oprisiu *et al.*, 2013; Cassotti *et al.*, 2014).

2.9 Huellas digitales moleculares

Las huellas digitales moleculares (FPs) (Shemetulskis *et al.*, 1996) son vectores booleanos (cuyos elementos se denominan bits) de dimensión fija que definen un conjunto de patrones de la molécula en un índice. Los patrones pueden ser un trayecto de longitud predefinida, siendo cada trayecto caracterizado por la naturaleza de los átomos y enlaces a través del mismo, o una subestructura circular a partir de un átomo específico. Las FPs se generan de manera tal que permitan capturar las características estructurales locales presentes en las moléculas. Particularmente identifican un grupo de fragmentos que componen la estructura molecular.

Existen dos tipos principales de patrones que se pueden identificar: trayectos y átomos centrados. En consecuencia, se pueden obtener 2 tipos de FPs: huellas digitales moleculares de trayectoria (PFPs) y huellas digitales moleculares de conectividad ampliada (ECFPs). Los patrones se generan a partir de la propia molécula y debido a que estos patrones difieren de un compuesto a otro, el significado de cualquier bit no está bien definido.

El número de los distintos fragmentos producidos por cualquier estructura puede ser muy largo, y va a depender del tipo de patrón usado y el tamaño de la molécula. Con la finalidad de reducir la longitud, las huellas digitales se tratan mediante una función de hash, en el que cada patrón se usa como semilla para un generador de números pseudo–casuales, cuya salida es un conjunto de bits. El algoritmo de hashing produce varias características estructurales que pueden colisionar; es decir, ser representadas por un mismo bit. La ausencia de un bit significa que la característica no está presente en la molécula; mientras que la presencia del bit simplemente sugiere que la característica podría estar presente.

Las huellas digitales moleculares fueron inicialmente desarrolladas para la búsqueda rápida de bases de datos, debido a que son capaces de identificar subestructuras comunes. Sin embargo, las FPs también se las aplica en estudios QSAR, particularmente en el desarrollo de modelos basados en similitudes locales (Cassotti *et al.*, 2014).

2.9.1. Huellas digitales moleculares de conectividad ampliada

Las huellas digitales moleculares de conectividad ampliada (ECFPs) (Rogers & Hahn, 2010) son FPs topológicas circulares que codifican la presencia/ocurrencia de fragmentos centrados en el átomo identificados mediante una variante del algoritmo de conectividad ampliado de Morgan. Este tipo de representación molecular también se denomina huellas digitales moleculares de Morgan o huellas digitales moleculares circulares (Mauri *et al.*, 2016). Las ECFPs se las puede aplicar en campos como:

- Cribado de alto rendimiento: para identificar moléculas falsas positivas y/o falsas negativas.
- Barrido virtual de bibliotecas: para identificar los compuestos activos.
- Análisis de conglomerados para analizar similitudes moleculares.
- Reconocimiento de patrones moleculares.
- Relaciones cuantitativas estructura-actividad basadas en similitudes locales.

Generación de patrones

Constituye el primer paso para el cálculo de las ECFPs y consiste en la identificación de todas las subestructuras posibles en una molécula. Para las ECFPs, los fragmentos centrados en el átomo constituyen subestructuras circulares que generan "árboles" de una longitud establecida, fijada en un vértice particular del grafo molecular (Kode srl., 2016) y que dependerá de la longitud del patrón. La Figura 2.3 esquematiza las etapas para la generación de huellas digitales moleculares de conectividad ampliada.

Longitud del patrón

La longitud del patrón indica el radio máximo a ser explorado desde el átomo centrado; es decir, el número de enlaces máximos a recorrer. La longitud del patrón indica la forma en que se explora el entorno circundante al átomo central. Por ejemplo, a radio 0 se obtienen subestructuras representadas únicamente por los átomos individuales, a radio 1 se obtiene la información de todos los átomos directamente enlazados al átomo centrado; mientras que a radio 2 se obtiene la información de todos los átomos dentro de un diámetro de 4 enlaces químicos. Seguidamente, cada fragmento se codifica mediante la notación lineal SMARTS (Daylight Chemical Information Systems, 2011). Finalmente se eliminan fragmentos iguales o equivalentes; es decir, aquellos fragmentos que contienen exactamente el mismo grupo de enlaces. Generar mayor cantidad de subestructuras permite obtener mayor información estructural; pero contemporáneamente aumenta el porcentaje de bits igual a 1 (opacidad).

Función de Hash

Es un algoritmo matemático que permite llevar varios vectores de entrada con dimensión variable a una dimensión fija, de tal forma que sea posible el tratamiento matricial de los datos. En el caso de las ECFPs, esta función se usa para mapear una subestructura dada dentro de un vector booleano de una longitud fija (dimensión final de la huella digital molecular) y se usa el operador lógico "o" para generar una huella digital molecular de toda la molécula. Es decir, cada subestructura es mapeada a la FP final mediante un cierto número de bits. Esta función es determinística, lo que permite que cada subestructura sea siempre mapeada por el mismo conjunto de bits.

El número de bits por patrón corresponde al número de bits que se usan para codificar con la función de hash una misma subestructura. La probabilidad de colisión se reduce al aumentar el número de bits por patrón, pero al mismo tiempo incrementa la opacidad.

Figura 2.3. Esquema de generación de huellas digitales moleculares de conectividad ampliada para el 1,2–dibromoetileno

2.10 Programas para el cálculo de descriptores moleculares y huellas digitales moleculares

El campo de los descriptores moleculares y huellas digitales está ganando mayor popularidad e interés por parte de los investigadores, con el desarrollo de programas y plataformas en línea orientadas a calcular dichas características químicas de las moléculas y para posteriormente usarlas para la predicción de actividades/propiedades moleculares. Una lista de los principales programas y plataformas para el cálculo de descriptores y/o huellas digitales se muestra en la Tabla 2.3. Existen programas de acceso libre (CORAL, EPI Suite™, PaDEL– Descriptor, etc.) y programas con licencia comercial (CODESSA PRO, DRAGON, etc.).

Tabla 2.3. Lista de programas y plataformas en línea disponibles para el cálculo de descriptores moleculares y huellas digitales moleculares

Programa o Plataforma	Enlace WEB
ADAPT	http://research.chem.psu.edu/pcjgroup/adapt.html
ADMET Predictor	http://www.simulations-plus.com/
ADRIANA.Code	https://www.mn-am.com/products/adrianacode
Cerius ²	http://lms.chem.tamu.edu/cerius2.html
CODESSA PRO	http://www.codessa-pro.com/
CORAL	http://www.insilico.eu/coral/CORALSEA.html
CORINA Symphony	https://www.mn-am.com/products/corinasymphony
DRAGON	https://chm.kode-solutions.net/products_DRAGON.php
E-DRAGON	http://www.vcclab.org/lab/eDRAGON/
EPI Suite™	https://www.epa.gov/tsca-screening-tools
GRID	http://www.moldiscovery.com/software/grid/
ISIDA Fragmentor	http://infochim.u-strasbg.fr/
JOELib	http://www.ra.cs.uni-tuebingen.de/
MARVIN Beans	https://www.chemaxon.com/
MOE	http://www.chemcomp.com/
Molcode	http://www.molcode.com/
Molconn–Z	http://www.edusoft-lc.com/molconn/
MOLE-db	http://michem.disat.unimib.it/mole_db/
MOLGEN	http://www.molgen.de/
Open Babel	http://openbabel.org/
PaDEL–Descriptor	http://www.yapcwsoft.com/dd/padeldescriptor/
PCLIENT	http://www.vcclab.org/lab/pclient/
Pentacle	http://www.moldiscovery.com/software/pentacle/
PowerMV	http://www.niss.org/research/software/powermv
PreADMET	https://preadmet.bmdrc.kr/
QikProp	https://www.schrodinger.com/qikprop
RDKit	http://www.rdkit.org/
ToMoCoMD_CARDD	http://tomocomd.com/
VolSurf+	http://www.moldiscovery.com/software/vsplus/

Durante el desarrollo de la presente tesis se ha usado el programa DRAGON (versión 6 y versión 7) para el cálculo de los descriptores moleculares y de las huellas digitales de conectividad ampliada.

2.10.1. DRAGON

El programa DRAGON como tal fue lanzado en el año 1997; sin embargo, este programa nació en el año 1994 bajo el nombre de WHIM/3D QSAR con la finalidad de calcular los descriptores WHIM. DRAGON calcula descriptores moleculares a partir de diferentes representaciones y teorías, los cuales posteriormente se pueden usar en estudios QSAR/QSPR. Desde el año 1997, el programa se actualiza con frecuencia mediante la inclusión de nuevos descriptores y blogues de descriptores, algoritmos que permitan optimizar su precisión y tiempo de cómputo, capacidad de leer diversos tipos de formatos de representación molecular (Mauri et al., 2006). El nombre del programa se debe al dragón mitológico que se encuentra en las puertas de lštar de Babilonia en el museo de Pérgamo en Berlín, cuyo cuerpo está formado por otros diversos animales (Figura 2.4). De esta forma, un descriptor molecular puede ser pensado como este dragón, es decir, tener diversos significados los cuales dependen del punto de vista (Todeschini & Consonni, 2009).

Figura 2.4. Mušhuššu: Dragón mitológico de las puertas de Ištar de Babilonia (museo de Pérgamo)

DRAGON es uno de los programas más usados para el cálculo de los descriptores moleculares, debido al gran número de descriptores disponibles y su capacidad ilimitada para trabajar con complejos de iones metálicos. La versión 6 (Talete srl, 2015), lanzada en el año 2010, permite el cálculo de 4885 descriptores moleculares; mientras que la versión 7 (Kode srl., 2016), disponible desde el año 2016, permite el cálculo de 5270 descriptores moleculares y huellas digitales moleculares, tanto para estructuras moleculares conectadas y desconectadas. Por otra parte, 62 propiedades moleculares se encuentran también disponibles en la aplicación dProperties (Talete srl, 2012).

Para el cálculo de los descriptores RDF, tipo P_VSA, autocorrelaciones 3D, autovalores de Burden, 3D–MoRSE, WHIM y GETAWAY, se ha implementado el uso de seis propiedades atómicas como criterio de ponderación:

- Masa atómica (m).
- Volumen de van der Waals (v).
- Electronegatividad del átomo (e).
- Polarizabilidad del átomo (p).
- Energía de ionización (i).
- Estado intrínseco (s).

Bloque	No.	Bloque	No.
Índices constitucionales	47	Descriptores WHIM	114
Descriptores de anillo	32	Descriptores GETAWAY	273
Índices topológicos	75	Perfiles moleculares de Randić	41
Cuenta de caminos y trayectos	46	Conteo de grupos funcionales	154

 Tabla 2.4. Bloques lógicos de descriptores presentes en DRAGON

Índices de conectividad	37	Fragmentos centrados	115
Índices de información	50	Índices del estado Electrotopológico por tipo de átomo	172
Descriptores basados en la matriz 2D	607	Descriptores basados en la matriz 3D	99
Autocorrelaciones 2D	213	Autocorrelaciones 3D	80
Autovalores de Burden	96	CATS 2D	150
Descriptores tipo P VSA	55	Pares de átomos 2D	1596
Índices ETA	23	Pares de átomos 3D	36
Índices de la matriz o	de 324	Descriptores de carga	15
adyacencia			
Descriptores geométricos	38	Propiedades moleculares	20
Descriptores RDF	210	Índices tipo fármaco	28
Descriptores 3D–MoRSE	224	CATS 3D	300

Adicional al cálculo de descriptores, este programa permite realizar un análisis preliminar de los descriptores calculados:

- Correlación entre pares de descriptores.
- Análisis de componentes principales.
- Análisis gráfico de los descriptores.
- Importación y exportación de variables externas.
- Eliminación de descriptores constantes y casi constantes.

DRAGON también puede ser usado como nodo para el desarrollo de diagramas de flujo de trabajo QSAR/QSPR en el programa KNIME. Los 5270 descriptores moleculares calculados por la versión más reciente de DRAGON se encuentran agrupados en 30 bloques lógicos (Tabla 2.4).

2.11 Referencias

- Balaban, A. T. (1985). Applications of Graph Theory in Chemistry. Journal of chemical information and computer sciences, 25(3), 334-343.
- Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., & Wiswedel, B. (2008). KNIME: The Konstanz Information Miner. In C. Preisach, H. Burkhardt, L. Schmidt-Thieme & R. Decker (Eds.), *Data Analysis, Machine Learning and Applications*, (pp. 319-326): Springer.
- Bonchev, D. (2015). On the Concept for Overall Topological Representation of Molecular Structure. In S. C. Basak, G. Restrepo & J. L. Villaveces (Eds.), Advances in Mathematical Chemistry and Applications, (pp. 42-75): Elsevier.
- Burden, F. R. (1989). Molecular Identification Number for Substructure Searches. *Journal of chemical information and computer sciences*, 29(3), 225-227.
- Carhart, R. E., Smith, D. H., & Venkataraghavan, R. (1985). Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications. *Journal of chemical information and computer sciences*, *25*(2), 64-73.
- Cassotti, M., Consonni, V., Mauri, A., & Ballabio, D. (2014). Validation and Extension of a Similarity-Based Approach for Prediction of Acute Aquatic Toxicity Towards Daphnia magna. *SAR and QSAR in Environmental Research, 25*(12), 1013-1036.
- Consonni, V., Todeschini, R., & Pavan, M. (2002a). Structure/Response Correlations and Similarity/Diversity Analysis by GETAWAY Descriptors. 1. Theory of the Novel 3D Molecular Descriptors. *Journal of chemical information and computer sciences, 42*(3), 682-692.
- Consonni, V., Todeschini, R., Pavan, M., & Gramatica, P. (2002b). Structure/Response Correlations and Similarity/Diversity Analysis by GETAWAY Descriptors. 2. Application of the Novel 3D Molecular Descriptors to QSAR/QSPR Studies. *Journal of chemical information and computer sciences*, *42*(3), 693-705.
- Consonni, V., & Todeschini, R. (2009). Molecular Descriptors. In T. Puzyn, J. Leszczynski & C. M. T. (Eds.), *Recent Advances in QSAR Studies: Methods and Applications*, (pp. 29-102): Springer.
- Consonni, V., & Todeschini, R. (2010). Structure-Activity Relationships by Autocorrelation Descriptors and Genetic Algorithms. In H. Lodhi & Y. Yamanishi (Eds.), *Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques*, (pp. 60-93): IGI Global.
- da Silva, V. B., de Almeida, J. R., & da Silva, C. H. T. d. P. (2010). General Aspects of Molecular Interaction Fields in Drug Design. In

C. A. Taft & C. H. T. d. P. da Silva (Eds.), *New Developments in Medicinal Chemistry*, vol. 1 (pp. 70-78).

Daylight Chemical Information Systems, I. (2011). Daylight Theory Manual.

- Doucet, J. P., & Panaye, A. (2010). *Three Dimensional QSAR: Applications in Pharmacology and Toxicology*: CRC Press.
- Fechner, U., Franke, L., Renner, S., Schneider, P., & Schneider, G. (2003). Comparison of Correlation Vector Methods for Ligand-Based Similarity Searching. *Journal of Computer-Aided Molecular Design*, 17(10), 687-698.
- Fourches, D., Muratov, E., & Tropsha, A. (2010). Trust, but Verify: on the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research. *Journal of chemical information and modeling*, *50*(7), 1189-1204.
- Franke, R., & Gruska, A. (2003). General Introduction to QSAR. In R. Benigni (Ed.), *Quantitative Structure-Activity Relationhsip (QSAR)* models of mutagens and carcinogens, (pp. 1-40): CRC press.
- Garcia, J., Duchowicz, P. R., & Castro, E. A. (2016). Considering the Molecular Conformational Flexibility in QSAR Studies. In A. G. Mercader, P. R. Duchowicz & P. M. Sivakumar (Eds.), *Chemometrics Applications and Research: QSAR in Medicinal Chemistry*, (pp. 129-158): CRC Press.
- Gasteiger, J., & Engel, T. (2006). *Chemoinformatics: A Textbook*: Wiley-VCH.
- Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1998). Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. *The Journal of Physical Chemistry A, 102*(21), 3762-3772.
- Guha, R., & Willighagen, E. (2012). A Survey of Quantitative Descriptions of Molecular Structure. *Current topics in medicinal chemistry*, *12*(18), 1946-1956.
- Hansch, C., Leo, A., & Hoekman, D. (1995). *Exploring QSAR: Fundamentals and Applications in Chemistry and Biology*: American Chemical Society.
- Hemmer, M. C., Steinhauer, V., & Gasteiger, J. (1999). Deriving the 3D Structure of Organic Molecules from Their Infrared Spectra. *Vibrational spectroscopy*, *19*(1), 151-164.
- Janežič, D., Miličević, A., Nikolić, S., & Trinajstić, N. (2015). *Graph-Theoretical Matrices in Chemistry*: CRC Press.
- Karelson, M., Lobanov, V. S., & Katritzky, A. R. (1996). Quantumchemical Descriptors in QSAR/QSPR Studies. *Chemical reviews*, *96*(3), 1027-1044.
- Kier, L. B., & Hall, L. H. (1986). *Molecular Connectivity in Structure-Activity Analysis*: Research Studies.

- Kier, L. B., & Hall, L. H. (1999). *Molecular Structure Description. The Electrotopological State*: Academic Press.
- Klein, C. T., Kaiser, D., & Ecker, G. (2004). Topological Distance Based 3D Descriptors for Use in QSAR and Diversity Analysis. *Journal of chemical information and computer sciences*, 44(1), 200-209.
- Kode srl. (2016). Dragon version 7. Software for Molecular Descriptor Calculation. <u>http://chm.kode-solutions.net/</u>.
- Kubinyi, H. (1998). Similarity and Dissimilarity: A Medicinal Chemist's View. In 3D QSAR in Drug Design: Ligand-Protein Interactions and Molecular Similarity, vol. 2 (pp. 225-252): Kluwer Academic Publishers.
- Kubinyi, H. (2008). *QSAR: Hansch Analysis and Related Approaches* (Vol. 1): John Wiley & Sons.
- Labute, P. (2000). A Widely Applicable Set of Descriptors. *Journal of Molecular Graphics and Modelling, 18*(4), 464-477.
- Martin, Y. C. (2010). *Quantitative Drug Design. A Critical Introduction* (Second ed.): CRC Press.
- Mauri, A., Consonni, V., Pavan, M., & Todeschini, R. (2006). Dragon Software: An Easy Approach to Molecular Descriptor Calculations. MATCH Communications in Mathematical and in Computer Chemistry, 56(2), 237-248.
- Mauri, A., Consonni, V., & Todeschini, R. (2016). Molecular Descriptors. In J. Leszczynski (Ed.), *Handbook of Computational Chemistry*, (pp. 1-29). Dordrecht: Springer.
- Murray-Rust, P., & Rzepa, H. S. (2001). Chemical Markup, XML and the World-Wide Web. 2. Information Objects and the CMLDOM. *Journal of chemical information and computer sciences, 41*(5), 1113-1123.
- O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An Open Chemical Toolbox. *Journal of cheminformatics, 3*(33), 1-14.
- Oprisiu, I., Novotarskyi, S., & Tetko, I. V. (2013). Modeling of Non-Additive Mixture Properties Using the Online CHEmical Database and Modeling Environment (OCHEM). *Journal of cheminformatics*, *5*(1), 1-7.
- Polansky, O. E. (1991). Elements of Graph Theory for Chemists. In D. Bonchev & D. Rouvray (Eds.), *Chemical Graph Theory: Introduction and Fundamentals*, vol. 1 (pp. 41-96).
- Randić, M. (1975). Characterization of Molecular Branching. *Journal of the American Chemical Society*, *97*(23), 6609-6615.
- Randić, M. (1995a). Molecular Profiles Novel Geometry-Dependent Molecular Descriptors. *New journal of chemistry, 19*(7), 781-791.
- Randić, M. (1995b). Molecular Shape Profiles. *Journal of chemical information and computer sciences, 35*(3), 373-382.

- Randić, M., & Razinger, M. (1995). On Characterization of Molecular Shapes. *Journal of chemical information and computer sciences*, 35(3), 594-606.
- Randić, M. (1996). Molecular Bonding Profiles. *Journal of Mathematical Chemistry*, *19*(3), 375-392.
- Renner, S., Fechner, U., & Schneider, G. (2006). Alignment-Free Pharmacophore Patterns–A Correlation-Vector Approach. In T. Langer & R. D. Hoffmann (Eds.), *Pharmacophores and pharmacophore searches*, (pp. 49-79): Wiley-VCH.
- Rogers, D., & Hahn, M. (2010). Extended-Connectivity Fingerprints. *Journal of chemical information and modeling*, *50*(5), 742-754.
- Roy, K., & Ghosh, G. (2003). Introduction of Extended Topochemical Atom (ETA) Indices in the Valence Electron Mobile (VEM) Environment as Tools for QSAR/QSPR Studies. Internet Electronic Journal of Molecular Design, 2(9), 599-620.
- Roy, K., & Das, R. N. (2012). On Extended Topochemical Atom (ETA) Indices for QSPR Studies. In E. A. Castro & A. K. Haghi (Eds.), Advanced Methods and Applications in Chemoinformatics: Research Progress and New Applications, (pp. 380-412): IGI Global.
- Roy, K., Kar, S., & Das, R. N. (2015a). *A Primer on QSAR/QSPR Modeling: Fundamental Concepts*: Springer.
- Roy, K., Kar, S., & Das, R. N. (2015b). Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment: Academic Press.
- Schneider, G., Neidhart, W., Giller, T., & Schmid, G. (1999). "Scaffold-Hopping" by Topological Pharmacophore Search: A Contribution to Virtual Screening. *Angewandte Chemie International Edition*, 38(19), 2894-2896.
- Schuur, J. H., Selzer, P., & Gasteiger, J. (1996). The Coding of the Three-Dimensional Structure of Molecules by Molecular Transforms and Its Application to Structure-Spectra Correlations and Studies of Biological Activity. *Journal of chemical information and computer sciences*, 36(2), 334-344.
- Shemetulskis, N. E., Weininger, D., Blankley, C. J., Yang, J., & Humblet, C. (1996). Stigmata: An Algorithm to Determine Structural Commonalities in Diverse Datasets. *Journal of chemical information and computer sciences, 36*(4), 862-871.
- Talete srl. (2012). dProperties. Software for Molecular Property Calculation. <u>http://www.talete.mi.it/</u>.
- Talete srl. (2015). Dragon version 6. Software for Molecular Descriptor Calculation. <u>http://www.talete.mi.it/</u>.
- Testa, B., & Kier, L. B. (1991). The Concept of Molecular Structure in Structure-Activity Relationship Studies and Drug Design. *Medicinal research reviews, 11*(1), 35-48.

- Todeschini, R., Lasagni, M., & Marengo, E. (1994). New Molecular Descriptors for 2D and 3D Structures. Theory. *Journal of chemometrics*, 8(4), 263-272.
- Todeschini, R., & Gramatica, P. (2002). New 3D Molecular Descriptors: the WHIM Theory and QSAR Applications. In H. Kubinyi, G. Folkers & Y. C. Martin (Eds.), 3D QSAR in drug design, (pp. 355-380): Springer.
- Todeschini, R., & Consonni, V. (2009). *Molecular Descriptors for Chemoinformatics*: Wiley-VCH.
- Tropsha, A. (2010). Best Practices for QSAR Model Development, Validation, and Exploitation. *Molecular Informatics, 29*(6 -7), 476 488.
- Viswanadhan, V. N., Ghose, A. K., Revankar, G. R., & Robins, R. K. (1989). Atomic Physicochemical Parameters for Three Dimensional Structure Directed Quantitative Structure-Activity Relationships. 4. Additional Parameters for Hydrophobic and Dispersive Interactions and Their Application for an Automated Superposition of Certain Naturally Occurring Nucleoside Antibiotics. *Journal of chemical information and computer sciences*, 29(3), 163-172.
- Weininger, D. (1988). SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. *Journal of chemical information and computer sciences, 28*(1), 31-36.
- Young, D., Martin, T., Venkatapathy, R., & Harten, P. (2008). Are the Chemical Structures in Your QSAR Correct? *QSAR* & *Combinatorial Science*, 27(11 -132451337

MÉTODOS QUIMIOMÉTRICOS EN QSAR/QSPR

3.1 Introducción

La Quimiometría ha sido definida en términos generales por la Sociedad Internacional de Quimiometría (2002) como la ciencia de extraer información de las medidas realizadas en un sistema o proceso químico, mediante la aplicación de métodos matemáticos o estadísticos. Sin embargo, fue Svante Wold, en el año 1972, quien inventó el término quimiometría, con la finalidad de describir la disciplina de extraer información relevante de experimentos químicos. Posteriormente, Wold redefinió el concepto para indicar la forma de obtener y representar información relevante de datos medidos en sistemas químicos (Wold, 1995).

Una definición más precisa, y ceñida a la proposición de Svante Wold y Bruce Kowalsky cuando fundaron la primera Sociedad de Quimiometría en 1974 (Wold, 2015), es la siguiente: quimiometría es la disciplina química que usa la matemática, estadística y la lógica formal para: 1) diseñar o seleccionar procedimientos experimentales óptimos, 2) maximizar la información química relevante de un análisis de datos químicos, y 3) obtener conocimiento de los sistemas químicos en estudio (Massart *et al.*, 1997).

Uno de los fundamentos de la quimiometría es el uso de un enfoque multivariado para explorar sistemas complejos químicos y diseñar racionalmente los experimentos. Los sistemas complejos por naturaleza necesitan varias variables para ser descritos e indudablemente, la quimiometría ofrece los métodos adecuados para recabar la mayor información posible de dichos sistemas.

Las técnicas quimiométricas se caracterizan por analizar todas las variables simultáneamente, permitiendo obtener una visión holística del sistema complejo. En la Figura 3.1. se observa la importancia de la quimiometría en el desarrollo de QSAR/QSPR.

Figura 3.1. Importancia de la quimiometría en el desarrollo de modelos QSAR/QSPR

3.2 Estructura multivariada de los datos

El análisis multivariado involucra la observación y análisis de varias variables simultáneamente, tal como sucede en los sistemas complejos, donde existen muchas variables que describen una muestra o un sistema (conjunto de muestras). Para el análisis multivariado los datos son arreglados en forma de matriz (o matrices), la cual se denota como **X**, donde el número de filas (*n*) representa las muestras y el número de columnas (*p*) las variables. De esta forma, cada objeto de esta matriz, x_{ij} , representa el valor de la *j*-ésima variable para la *i*-ésima muestra. Cuando se trabaja con técnicas de modelado (regresión o clasificación), se presenta información adicional en forma de un vector respuesta, denotado con **Y**. En este vector, cada entrada y_i , contiene la respuesta cuantitativa o cualitativa para la *i*-ésima muestra.

En todas las aplicaciones de esta tesis, cada fila de la matriz **X** representa un compuesto químico para el cual se han calculado descriptores moleculares y/o huellas digitales moleculares, los cuales son representados en las columnas.

3.3 Pretratamiento de los datos

Previo a cualquier análisis multivariado, es siempre necesario un pretratamiento de los datos. El primer paso consiste en verificar que no existan errores de transcripción, así como la presencia de datos faltantes (representados como celdas vacías o con códigos numéricos propios de cada programa quimioinformático). Asimismo, es útil identificar si alguna

de las variables que describen el sistema son constantes (todos los valores iguales) o casi constantes (un valor diferente de todos los demás), dado que no aportan información y es siempre útil reducir la dimensionalidad del sistema.

Un control más exhaustivo consiste en verificar el tipo de variables que describen el sistema, pudiendo clasificarlas en:

- Variables binarias: indican la presencia o ausencia de la característica de dicha variable en la muestra. Se las identifica con 0 (ausencia) y 1 (presencia).
- Variables discretas ordinales: indican la presencia de una propiedad ordenada de forma ascendente (1, 2, 3, 4, etc.).
- Variables continuas: son las que pueden tomar cualquier valor dentro de un intervalo dado.

3.3.1. Escalado de los datos

El escalado de los datos (Vandeginste *et al.*, 1998) permite poner en una misma escala todas las variables en estudio independientemente de sus unidades de medida, es decir, permite confrontar las variables que provienen de diversas fuentes de medida dado que en el análisis multivariado es muy común el buscar relaciones entre tales variables; tal es el caso de todos los métodos que se basan en el cálculo de distancias: análisis de conglomerados, escalado multidimensional, clasificación, etc. Los tipos de escalado de variables comúnmente utilizados en quimiometría son los que se describen a continuación:

- *Centrado:* permite centrar los datos respecto al valor medio de cada variable, es decir, el valor central será igual a cero. El centrado no modifica la varianza de los datos.
- *Escalado con respecto al valor máximo:* en este tipo de escalado el valor máximo para cada variable es igual a 1.
- Escalado de intervalo: este escalado coloca un doble vínculo a cada variable, es decir, el valor mínimo es igual a cero y el valor máximo es igual a uno.
- Autoescalado: es el método de escalado de datos usado con mayor frecuencia, el cual consiste en un centrado, seguido de una normalización a varianza unitaria. Las variables autoescaladas tienen media cero y desviación estándar igual a uno.
- *Escalado a varianza unitaria:* es un tipo de escalado en el que se coloca como restricción que la varianza de la variable transformada sea igual a 1.

3.4 Técnicas de exploración de la estructura de los datos

3.4.1. Análisis de componentes principales

El análisis de componentes principales (PCA) (Wold et al., 1987; Jolliffe, 2002; Bro & Smilde, 2014) es el método quimiométrico mayormente usado para mostrar la estructura multivariable de los datos. PCA fue descrito por primera vez por Karl Pearson en el año 1901 y desarrollado formalmente por Harold Hotelling en el año de 1933. En esta técnica se proyectan los datos en un hiperespacio ortogonal reducido y definido por las componentes principales significativas. Las componentes son combinaciones lineales de las variables originales, donde la primera componente tiene la máxima varianza, la segunda componente tiene la segunda máxima varianza y así sucesivamente. De esta forma es posible retener un número de componentes reducido en comparación al número de variables originales (reduce la dimensión de los datos). El número de componentes significativas se puede elegir en base de la varianza explicada por cada componente. Una de las ventajas que presenta PCA es una resolución matemática que permite de observar de manera gráfica la información, en el gráfico de puntuaciones (scores) o proyección de las muestras y el gráfico de cargas (loadings) o proyección de las variables. También se puede obtener un gráfico combinado (biplot) mediante la superposición del gráfico de puntuaciones y cargas. De esta manera, PCA ayuda a evaluar la correlación que existe entre las variables y su relevancia, identificar grupos, tendencias, datos atípicos (outliers), etc., mediante la visualización únicamente de la información útil.

3.4.2. Escalado multidimensional

Un objetivo dentro de la visualización de los datos es el buscar cómo y qué tan cerca se encuentran las muestras entre sí. En algunos casos, esto se puede lograr realizando un diagrama de dispersión; sin embargo, cuando existen varias variables describiendo el sistema, se tendría que buscar una alternativa para visualizar los datos en un espacio multidimensional.

El escalado multidimensional (MDS) es una técnica que permite reconstruir las similitudes/disimilitudes entre pares de objetos mediante el uso de distancias y proyectarlas en un número pequeño de dimensiones (Kruskal, 1964; Winsberg & Carroll, 1989). Este significa que el MDS busca acomodar los objetos en un espacio definido por un cierto número de dimensiones de forma tal que se reproduzcan las distancias observadas. Así, el MDS permite obtener un gráfico de dispersión de los objetos en un espacio reducido, en el cual se observa
una reproducción de las distancias originales y que permite un análisis rápido y fácil de las relaciones entre los objetos.

Al igual que el PCA, se debe considerar la selección del número apropiado de dimensiones. Con MDS, el número de dimensiones se puede lograr en función de los residuos entre las distancias originales y las distancias representadas en las dimensiones seleccionadas; es decir, mientras más bajo es el residuo, mejor es la aproximación de las distancias en las proyecciones.

3.4.3. Análisis de conglomerados

El objetivo del análisis de conglomerados es detectar las similitudes entre las muestras, con las cuales se busca identificar grupos consistentes en los datos (Massart & Kaufman, 1983). Es una técnica alternativa al análisis de componentes principales para describir la estructura de los datos. Las similitudes entre las muestras se construyen mediantes distancias, es decir, muestras símiles estarán a una distancia pequeña, mientras que muestras disímiles estarán a una distancia grande.

Métodos jerárquicos

Los métodos jerárquicos usan las medidas de distancia (indicadores de vinculación), para cuantificar las similitudes entre grupos de muestras o conglomerados. Los métodos jerárquicos aglomerativos (Vandeginste *et al.*, 1998) requieren que se defina una medida de uso para el cálculo de la matriz de distancias y posterior definición de la correspondiente matriz de similitudes. El algoritmo inicia con un número de conglomerados igual al número de observaciones. Posteriormente, se identifican los dos objetos más similares y son unidos en un único nuevo conglomerado a un cierto nivel de similitud. Seguidamente, se recalculan las similitudes de este nuevo conglomerado con respecto a los objetos restantes y se une al objeto con mayor similitud. El proceso continúa hasta que se genera un único conglomerado que agrupa a todas las observaciones. El resultado de este proceso iterativo se muestra de forma gráfica en el dendrograma.

Métodos no jerárquicos

Los métodos no jerárquicos se basan en técnicas denominadas de reposición. Aquí, luego de una partición inicial de los datos, los mismos se mueven entre los conglomerados hasta que se cumpla un cierto criterio. De estos métodos el más representativo es el *k*-medias (Kaufman & Rousseeuw, 2005), el cual reposiciona los datos de acuerdo a la comparación de las distancias de cada objeto con respecto al centroide de cada conglomerado. El número de conglomerados y la medida de distancia son establecidos por el usuario a priori.

El algoritmo inicia con una partición casual de los objetos en un número preestablecido de conglomerados, para los cuales se determina su centroide y se calcula la distancia de cada objeto con respecto a cada centroide. Los objetos se asignan al conglomerado más cercano y, si al menos un objeto se mueve a otro conglomerado, se recalculan los centroides y las asignaciones.

3.5 Técnicas de reducción de variables

Los métodos de reducción no supervisados de variables son técnicas quimiométricas útiles cuando se trabaja con bases de datos que contienen grandes cantidades de variables y en las que se puede encontrar redundancia, multicolinealidad, ruido y correlación casual. La presencia de estas variables irrelevantes puede cambiar el patrón de los datos e influenciar los modelos finales. La reducción no supervisada de variables se lleva a cabo sin considerar la respuesta experimental (Whitley et al., 2000; Questier et al., 2005; Consonni et al., 2009). Es indudable que estas patologías estén presentes en las bases de datos QSAR/QSPR, donde se analizan las relaciones entre las actividades/propiedades y los descriptores moleculares. Por consiguiente, es importante que se retengan únicamente los descriptores relevantes, a partir de los cuales se puedan obtener modelos de regresión o clasificación parsimoniosos (es decir, con pocas variables) y que proporcionen predicciones confiables (Bagheri et al., 2013).

Estas técnicas son comúnmente usadas como un filtro preliminar para remover variables según un criterio y de esta manera proporcionar bases de datos depuradas (variables relevantes), lo que se traduce en menor costo computacional durante la selección supervisada de variables, robustez del modelo final y fiabilidad de las predicciones realizadas con dicho modelo.

3.5.1. Correlación entre pares de variables

Una práctica común en la reducción de las variables es la que se desarrolla por análisis de los pares de variables que se encuentran correlacionadas más allá de un cierto umbral de corte (*thr*), evitando así la presencia de redundancia y variables correlacionadas en los modelos QSAR/QSPR (Todeschini *et al.*, 2009). Este aspecto es particularmente importante cuando se desarrollan modelos lineales multivariados. El análisis de correlación entre pares de variables se realiza por comparación del coeficiente absoluto de correlación de Pearson (R_{ij}) con el valor de umbral de corte preestablecido (normalmente 0.95). Si se cumple $R_{ij} \ge thr$, se eliminará el descriptor que presenta la mayor correlación promedio con las demás variables.

3.5.2. Método V-WSP

El método de reducción de variables V–WSP selecciona un subgrupo representativo de variables de un conjunto de datos, de tal forma que se encuentre una mínima correlación entre ellas en un espacio multidimensional definido (Ballabio *et al.*, 2014). Este método es una modificación del algoritmo propuesto por Wootton, Sergent y Phan–Tan–Luu (WSP) para diseño de experimentos, en el cual se selecciona un subconjunto de puntos a partir de un conjunto de candidatos de tal forma que se encuentren a una mínima distancia (por ejemplo la Euclidiana) en un espacio multidimensional definido.

Dada una matriz de datos de $n \times p$, el método de reducción V–WSP sigue el siguiente algoritmo:

- 1. Elegir una variable inicial *j* como semilla y un valor umbral de correlación (*thr*).
- 2. Calcular el coeficiente lineal de correlación de Pearson (*R*) entre la variable *j* y todas las demás
- 3. Eliminar las variables *d* cuyo valor absoluto $R_{di} \ge thr$
- 4. Se fija la variable *j* y se selecciona entre las restantes variables aquella que tenga la correlación absoluta más alta con *j*.
- 5. Repetir los pasos 2, 3 y 4 hasta que no existan variables para ser seleccionadas.

3.5.3. Otros métodos basados en técnicas multivariable

La reducción de variables se puede también realizar mediante un análisis de componentes principales, es decir, se retienen únicamente las variables que tienen valor alto de carga (loading) en las componentes significativas, o se eliminan las variables con valores altos de carga en las últimas componentes (Jolliffe, 1972, 1973). Otras formas de reducir variables se logran mediante: 1) la aplicación del análisis de conglomerados (k-medias, métodos jerárquicos, Jarvis-Patrick, etc.) a la matriz transpuesta de los datos; 2) la utilización de mapas de Kohonen (dada su simplicidad de uso y eficiencia); 3) el uso del diseño D-optimal (diseño experimental) ó 4) el uso del índice de correlación multivariado K, para ordenar las variables según su correlación global con todas las demás (Todeschini *et al.*, 2009).

3.6 Técnicas de selección de variables

3.6.1. Búsqueda exacta

La búsqueda exacta es el método de selección de variables más simple pero computacionalmente demandante. Este método garantiza que todos los posibles modelos de las p variables sea explorado, partiendo desde modelos con 1 variable hasta los de p variables. Esta característica lo convierte en un método demandante computacionalmente. El número de combinaciones posibles de las p variables está dada por 2^p –1. Por consiguiente, el método se torna engorroso cuando se tienen bases de datos con grandes números de variables.

Se puede reducir el tiempo de cálculo y la interpretabilidad de los modelos cuando se limita a desarrollar modelos con un cierto número k de variables. En este caso se deben calcular todas las posibles combinaciones de las p variables tomadas desde 1 hasta k. Por ejemplo, dado un número p de variables, el número total de modelos t, desde 1 hasta k está dado por la siguiente expresión:

$$t = \sum_{k} \left(\frac{p!}{k! (p-k)!} \right) \le 2^{p} - 1$$
(3.1)

Sin embargo, se debe tener en cuenta que el número de modelos es proporcional al número de variables (*p*).

3.6.2. Métodos de regresión a pasos

La regresión a pasos (SWR) es un método muy conocido y ampliamente utilizado para la selección de variables. SWR consiste en dos estrategias: selección hacia adelante (FS) y eliminación hacia atrás (BE) (Hastie *et al.*, 2011). La selección hacia adelante comienza con un modelo de tamaño 0 y comienza a adicionar variables que cumplen con un criterio preestablecido hasta un modelo de tamaño deseado. La eliminación hacia atrás se realiza de forma inversa a FS, es decir, inicia con un modelo de tamaño igual al número *p* total de variables y va eliminando variables irrelevantes en cada paso. El criterio de inclusión o exclusión es la suma de los cuadrados de los residuos (RSS), de tal forma que a cada paso, la variable a ser incluida o eliminada es aquella que permite el mayor decrecimiento de RSS.

Posteriormente, el algoritmo SWR se mejoró al combinar FS y BE, es decir, se inicia con un FS y luego de que cada variable (diferente a la primera) ha sido adicionada al modelo, se evalúa con un BE si alguna de las variables se puede eliminar sin un incremento significativo del RSS (Efroymson, 1960).

3.6.3. Algoritmos Genéticos

Los algoritmos genéticos (GAs) (Leardi *et al.*, 1992) se aplican a la selección de aquellas variables mediante la búsqueda de las variables que generen un máximo o mínimo de una respuesta; por ejemplo, el coeficiente de determinación (R_{cv}^2) en regresión o la tasa de aciertos (NER_{cv}) en clasificación. Debido a que es un método que se basa en la tagría de la evolución de Danvin de parte de una replación de

teoría de la evolución de Darwin, se parte de una población de "*cromosomas*" generada de manera casual. Un cromosoma es un vector binario de p bits (número total de variables), que se asocia a un modelo con ciertas variables de la siguiente manera: bits con valor 1 indican que los descriptores correspondientes están presentes en el modelo y viceversa para los bits nulos.

Durante una corrida, el tamaño de la población se mantiene contante; de esta manera, los mejores cromosomas entran en la misma y los peores son eliminados. Existen dos operaciones principales mediante las cuales se generan nuevos cromosomas:

- Reproducción o crossover: se seleccionan dos padres a partir de la población y se generan cromosomas hijos. Esta selección puede ser casual o sesgada hacia los mejores cromosomas. Los cromosomas hijos comparten el patrimonio genético de los padres; es decir, los bits 0 o 1 en ambos padres se mantienen, mientras que los bits con valores diferentes serán fijados en 0 o 1 de acuerdo a una regla de probabilidad.
- 2. Mutación: en esta operación los cromosomas pueden invertirse de forma tal que se generan mutantes. El proceso de mutación se utiliza para limitar la posibilidad de que la población se quede atrapada en un mínimo local. La probabilidad de ocurrencia de mutación es menor a la probabilidad de reproducción, debido a que se debe evitar que la población se aleje de la probable región óptima.

Cuando los GAs se aplican a bases de datos que contienen grandes cantidades de variables o pocas observaciones, se corre el riesgo de sobreajuste en los modelos. Para evitar este problema, se ha propuesto una variante de los GAs (Leardi & Gonzalez, 1998; Leardi, 2009), en la cual en lugar de realizar una simple corrida y muchas interacciones, se realiza un número pequeño de corridas independientes a partir de varias poblaciones iniciales. Posteriormente, se registra la frecuencia de selección de las variables en dichas corridas. Finalmente, el modelo se construye adicionando la variable más frecuente (modelo de 1 variable) y posteriormente se adicionan las demás variables en función de su frecuencia de selección.

3.6.4. Método de Reemplazo

El método de reemplazo (RM) fue propuesto por Duchowicz et al. (Duchowicz *et al.*, 2005; Duchowicz *et al.*, 2006), como alternativa para buscar los mejores subconjuntos de descriptores en grandes bases de datos. RM requiere la generación de un número de regresiones inferior que la búsqueda exacta y produce resultados muy cercanos al mismo. Los pasos involucrados en la técnica RM son los siguientes:

- Elegir *d* descriptores (X₁, X₂,..., X_d) de forma aleatoria a partir de la base de datos con *D* descriptores y realizar una regresión lineal.
- 2. Seleccionar uno de los descriptores de este subconjunto (*Xi*) y reemplazarlo por cada uno de los *D* descriptores manteniendo el mejor resultado.
- Debido a que se puede reemplazar cualquiera de los d descriptores del modelo inicial, se tendrán d posibles rutas para alcanzar el resultado final. Por ejemplo, la elección anterior desarrollará la *i*-ésima ruta.
- Elegir el descriptor que contiene el mayor error relativo en su coeficiente (excepto el reemplazado en el paso 2) y reemplazarlo con los restantes manteniendo el mejor subconjunto.
- 5. Reemplazar todos los descriptores restantes de la misma manera, excepto aquellos reemplazados en los pasos 2 y 4.
- 6. Al finalizar, iniciar nuevamente con el descriptor que presente el mayor error relativo y repetir todo el proceso. Este procedimiento se repite tantas veces como sea necesario hasta que el subgrupo de descriptores se mantenga invariante. En este punto se tiene el mejor modelo para la ruta *i*.
- 7. Proceder exactamente de la misma forma para todas las restantes rutas.
- 8. Comparar los modelos resultantes y seleccionar el mejor como el modelo QSAR/QSPR para validaciones posteriores.

3.7 Técnicas de modelado de datos

3.7.1. Métodos de regresión

La regresión lineal múltiple (MLR) es un enfoque matemático que permite establecer relaciones lineales entre un grupo de variables independientes y una variable dependiente o respuesta cuantitativa (Rencher & Schaalje, 2008). Esta relación toma la siguiente forma:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e} \tag{3.2}$$

donde y es el vector respuesta, **X** es la matriz del modelo, β es el vector de los coeficientes de regresión verdaderos y e es el vector de errores. Un modelo matemático particular se expresa de la siguiente manera:

$$\bigvee_{y} = \mathbf{X}b \tag{3.3}$$

donde *b* es el vector de las estimaciones de los coeficientes verdaderos $\beta \in \hat{y}$ es el vector de las respuestas calculadas.

Mínimos cuadrados ordinarios

El método de los mínimos cuadrados ordinarios (OLS) (Rencher & Schaalje, 2008; Varmuza & Filzmoser, 2009), es el método más simple y el que se aplica con mayor frecuencia cuando se busca realizar una regresión. Sea **X** la matriz de datos de dimensión $n \times p$, β el vector de los coeficientes del modelo, de dimensión p (d+1), el modelo OLS se define de la siguiente manera:

$$y_{i} = b_{0} + \sum_{j=1}^{p} b_{j} x_{ij}$$
 (3.4)

El método OLS brinda una estimación de los coeficientes de un modelo lineal por minimización de la suma de cuadrados de los residuos (RSS) entre el vector de respuestas calculadas y el vector de respuestas experimentales. RSS se define como:

$$RSS = \sum_{i=1}^{n} \left(\mathbf{y}_{i} - \mathbf{y}_{i} \right)^{2}$$
(3.5)

donde y_i es la respuesta experimental e y_i^{\parallel} es la respuesta calculada para la *i*-ésima observación. La sumatoria se realiza sobre las *n* observaciones.

Por otro lado, los coeficientes del modelo OLS, b_j , se calculan de la siguiente manera:

$$\boldsymbol{b} = \left(\boldsymbol{X}^{T}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\boldsymbol{y}$$
(3.6)

Donde X es la matriz del modelo e y es el vector de respuestas de dicha matriz.

La estimación de los coeficientes es influenciada por la presencia de multicolinealidad entre las variables del modelo, debido a problemas para la inversión de $\mathbf{X}^T \mathbf{X}$. Por tal motivo, se debe mantener una correlación baja entre las variables del modelo. También se presentan inconvenientes en la estimación de los coeficientes cuando el número de parámetros es mayor al número de observaciones (p > n).

Una vez obtenidos los coeficientes de regresión, se pueden también obtener los coeficientes de regresión estandarizados de la siguiente forma:

$$\boldsymbol{b}_{j}^{'} = \boldsymbol{b}_{j} \frac{\boldsymbol{s}_{j}}{\boldsymbol{s}_{v}}$$
(3.7)

donde s_j es la desviación estándar de la *j*-ésima variable y s_y la desviación estándar de la respuesta. Los coeficientes estandarizados son independientes de la escala de medida de las variables, por lo que permite evaluar la contribución de cada variable en el cálculo de la respuesta.

Mínimos cuadrados parciales

El método de mínimos cuadrados parciales (PLS) (Wold et al., 2001) es un método de regresión lineal que tiene algunas similitudes con el PCA. Este método trabaja con proyecciones de los objetos en un nuevo espacio definido por combinaciones lineales de las variables originales. denominadas variables latentes (LVs). Por este motivo, PLS es un que método más apropiado OLS cuando la relación observaciones/variables cuando existe es menor а uno y multicolinealidad en la matriz de diseño.

PLS es un enfoque que busca la dirección de máxima varianza en la matriz de diseño (similar a PCA), al mismo tiempo que la máxima correlación con el vector respuesta (Hastie *et al.*, 2011). Las variables deben ser escaladas apropiadamente (por ejemplo, el autoescalado) y cuando la actividad/propiedad lo amerita, se transforma a una escala logarítmica. Cuando el número de variables latentes es igual al número de descriptores, PLS produce el mismo modelo que se obtendría mediante OLS.

La proyección de los objetos en el nuevo espacio se desarrolla mediante la transformación:

$$\mathbf{T} = \mathbf{X}\mathbf{V} \tag{3.8}$$

Donde **T** es la matriz de puntuaciones, es decir, las coordenadas de las observaciones en el nuevo espacio; **X** es la matriz del modelo y **V** es la matriz de cargas (loadings). Entonces, el modelo se calibra en el espacio de las LVs:

$$y = \mathbf{T} \mathbf{q}' + \mathbf{e} \tag{3.9}$$

Donde q es el vector de los coeficientes de regresión PLS. Al reemplazar T de la Ec. 3.8 en la Ec. 3.9, se obtiene:

$$y = \mathbf{X}\mathbf{V}q' + \mathbf{e} \tag{3.10}$$

La expresión anterior se tiene que resolver para q y se observa que de acuerdo a la Ec. 3.3 los coeficientes de las variables resulta ser $b = \mathbf{V}q'$.

PLS permite reducir la dimensionalidad de los datos mediante la selección de un número apropiado de LVs menor al número de variables. Normalmente, la selección del número óptimo de LVs se la realiza en validación cruzada.

Parámetros de evaluación de los modelos de regresión

Los parámetros de evaluación en regresión permiten evaluar qué tan bueno es un modelo, tanto en ajuste como en predicción (Rencher & Schaalje, 2008; Varmuza & Filzmoser, 2009). El punto de partida para los modelos de regresión es la suma total de los cuadrados (TSS), la cual se define como:

$$TSS = \sum_{i=1}^{n} \left(y_i - \overline{y} \right)^2$$
(3.11)

donde y es el valor medio de la respuesta.

Un modelo de regresión es mejor cuando más pequeña es la suma de los residuos (Ec. 3.5) o cuanto más grande es la suma de los cuadrados del modelo (MSS):

$$MSS = \sum_{i=1}^{n} \left(\begin{bmatrix} n \\ y_i & -\overline{y} \end{bmatrix} \right)^2$$
(3.12)

donde y_i es el valor predicho de la *i*-ésima muestra.

La suma total de los cuadrados es igual a la suma de MSS y RSS. Con estos tres parámetros se puede calcular el coeficiente de determinación, que indica la varianza explicada por el modelo de regresión:

$$R^{2} = \frac{MSS}{TSS} = 1 - \frac{RSS}{TSS}$$
(3.13)

El coeficiente de determinación, $R^2 \in [0,1]$, mide la capacidad de ajuste del modelo de regresión, es decir, la capacidad para describir la respuesta de los *n* objetos, sin considerar la capacidad predictiva. Para medir la predictividad de un modelo se usa la suma de los cuadrados de predicción (PRESS), que es análoga a RSS:

$$PRESS = \sum_{i=1}^{n} \left(y_{i} - y_{iii} \right)^{2}$$
(3.14)

donde $\bigvee_{\mathbf{y}_{i/i}}$ es el valor predicho para la *i*-ésima observación, en un modelo en el cual dicha observación no fue considerada para calibrar el modelo. Este parámetro define la varianza explicada por el modelo en predicción:

$$R_{pred}^2 \equiv Q^2 = 1 - \frac{PRESS}{TSS}$$
(3.15)

_ _ _ _ _ _

El parámetro de la Ec. 3.15 tiene un máximo para la complejidad óptima del modelo y disminuye cada vez que se adicionan variables no predictivas o se eliminan variables explicativas al modelo. Durante la validación del modelo de regresión, al excluir una observación a la vez (dejar–uno–fuera), el parámetro se define como R_{loo}^2 ; mientras que al excluir un cierto porcentaje de observaciones, el parámetro de toma el nombre R_{loo}^2 .

Otro parámetro importante en MLR es la desviación estándar, definida en el caso multivariable como:

$$S = \sqrt{\frac{\sum_{i=1}^{n} \left(\mathbf{y}_{i} - \mathbf{y}_{i} \right)^{2}}{n - p}}$$
(3.16)

donde *p* es el número de parámetros del modelo, es decir, p = d + 1; y la diferencia *n*–*p* corresponde a los grados de libertad del modelo de regresión.

Finalmente, durante el desarrollo de esta Tesis, se evaluaron otros criterios de validación propuestos por Golbraikh y Tropsha (Golbraikh & Tropsha, 2002), los cuales ayudan a evitar la selección de modelos sobreajustados y erróneamente predictivos.

donde y_{0i} son los valores de la respuesta en regresión a través del origen entre las respuestas experimentales (y_i) y las respuestas predichas por el modelo (\hat{y}_i) ; \hat{y}_{0i} son los valores de la respuesta en regresión a través del origen entre las respuestas predichas (\hat{y}_i) y las respuestas experimentales (y_i) ; \hat{y}_{prom} es el valor promedio de las respuestas predichas del grupo de predicción; R_0^2 es el coeficiente de correlación de regresión entre y_i e \hat{y}_i a través del origen; R_0^2 es el coeficiente de regresión entre \hat{y}_i e y_i a través del origen; R^2 es el coeficiente de determinación entre los valores observados (y_i) y predichos (\hat{y}_i) para el grupo de predicción con ordenada al origen b.

3.7.2. Métodos de clasificación

Análisis discriminante

El análisis discriminante (DA) (McLachlan, 2004) es uno de los métodos de clasificación más usados. DA es una técnica de clasificación paramétrica probabilística, la cual maximiza la varianza entre las clases y minimiza la varianza dentro de las clases, mediante una proyección de los datos en un espacio de pocas dimensiones. De esta manera, se obtiene un número de funciones discriminantes lineales y ortogonales, iguales al número de las clases menos uno.

Cuando se trabaja con DA, se tiene la posibilidad de usar el análisis discriminante lineal (LDA) y el análisis discriminante cuadrático (QDA). Ambos casos se basan en el teorema de Bayes, por lo que requieren cumplir el supuesto de multinormalidad. La elección entre LDA y QDA dependerá de la separación lineal o no lineal de las clases, y de la confiabilidad de las matrices de covarianza de las clases. Para el LDA se

calcula únicamente la matriz de covarianza global; mientras que para el QDA la matriz de covarianza se calcula separadamente para cada clase. El cálculo de la matriz de covarianza de cada clase en QDA se realiza únicamente si el número de objetos de cada clase es mayor que el número de variables. Por otro lado, LDA considera únicamente que el número de muestras totales sea mayor que el número de variables.

Análisis discriminante de mínimos cuadrados parciales

El análisis discriminante de mínimos cuadrados parciales (PLSDA) (Wold *et al.*, 2001; Barker & Rayens, 2003; Ballabio & Consonni, 2013) es un método de clasificación ampliamente usado, que combina las propiedades de los mínimos cuadrados parciales en regresión (método basado en el PLS2) con la capacidad discriminante lineal en clasificación. PLSDA busca relaciones entre la matriz de variables y el vector de clases mediante el cálculo de variables latentes, las cuales son combinaciones lineales ortogonales de las variables originales. Cuando se trabaja con PLSDA, los datos deben ser autoescalados.

kNN

El método de los *k*-vecinos más cercanos (*k*NN) (Cover & Hart, 1967) es un método de clasificación no lineal y no paramétrico, es decir, que no considera el conocimiento a priori de las distribuciones estadísticas que siguen las variables. *k*NN clasifica en función de analogías, siguiendo una estrategia conceptualmente simple: un objeto es clasificado según las clases a las que pertenecen la mayoría de los *k* objetos más cercanos en el espacio de los datos. Computacionalmente *k*NN calcula y analiza la matriz de distancias entre los objetos, para la cual normalmente se usa la distancia Euclidiana se selecciona un número entero de *k* vecinos cercanos al objeto a clasificar (los valores normales que toma *k* es de 1 a 10). Entonces, los objetos son ordenados según sus distancias y clasificado según la clase mayoritaria a la cual pertenecen la mayoría de los *k* vecinos. El algoritmo en que se basa el algoritmo *k*NN es el siguiente:

- 1. Escalado de los datos.
- 2. Selección de la distancia a usar.
- 3. Optimización del número de entornos k.
- 4. Cálculo de la matriz de distancias.
- 5. Cada objeto se clasifica según la clase más representativa de los *k* vecinos más cercanos.

El valor óptimo de k se puede obtener mediante validación cruzada, es decir, se evaluarán diversos valores de k y se elegirá el valor que genere el menor error en clasificación (*NER*). Este método no proporciona un modelo matemático (función analítica) para efectos de predicción. El modelo como tal está constituido por los objetos del grupo de

entrenamiento, el valor k y la matriz de distancias. De esta manera, para predecir la clase de un nuevo objeto, éste debe ser introducido en la matriz de datos y se corre nuevamente el algoritmo para evaluar la clase mayoritaria de los *k* vecinos del grupo de entrenamiento.

Al estar *k*NN basado en el análisis de analogías entre muestras, es eficaz y proporciona buenos resultados cuando las superficies de separación de las clases no es lineal o son particularmente complejas (una clase contenida en otra). Es por estas razones y por su característica no paramétrica que *k*NN ha sido sugerido como un método estándar de comparación cuando se desarrollan y proponen nuevos métodos de clasificación.

N3

El método de los *N*-vecinos más cercanos (N3) (Todeschini *et al.*, 2015) es una técnica de clasificación derivada del método *k*NN. A diferencia de *k*NN donde se busca el valor óptimo de *k*, N3 usa todos los n–1 vecinos (objetos) para clasificar el *i*-ésimo objeto. Los n–1 objetos son ordenados desde el más similar hasta el menos similar (ranking), para obtener el correspondiente vector de similitud *r*, el cual mide la contribución de los vecinos a la asignación de las clases, cuyo rol es modulado por un parámetro α . Para cada *i*-ésimo objeto a ser clasificado, la contribución de la *g*-ésima clase se calcula de la siguiente manera:

$$w_{ig} = \frac{1}{\hat{n}_g} \times \sum_{\substack{j=1\\j\neq i}}^{n-1} \frac{\mathbf{s}_{ij}}{r_{ij}^{\alpha}} \times \delta_i$$
(3.17)

donde s_{ij} es la similitud entre la *i*-ésima y la *j*-ésima observación; r_{ij} es el valor de ranking de la similitud del *j*-ésimo objeto con respecto al *i*-ésimo objeto; α es un parámetro de valor real a ser optimizado dentro del intervalo [0.1, 2.5]; δ_{ij} es la delta de Dirac que es igual a 1 cuando el *j*-ésimo objeto pertenece a la *g*-ésima clase y su contribución al peso de la clase es mayor al valor ε :

$$\delta_{j} = \begin{cases} 1 & si & c_{j} = g \land \frac{s_{ij}}{r_{ij}^{\alpha}} > a \\ 0 & caso \ contrario \end{cases}$$

donde c_j es la clase del *j*–ésimo objeto. Finalmente, \hat{n}_g es el número de vecinos que contribuyen al peso de la clase:

$$\hat{n}_g = \sum_j \delta_j$$

El exponente α de la Ec. 3.17 se optimiza de tal forma que genere la mayor NER en validación cruzada.

Parámetros de evaluación de los modelos de clasificación

Para el cálculo de los parámetros de evaluación de un modelo de clasificación se parte de la denominada "*matriz de confusión*" (Ballabio & Consonni, 2013). Esta matriz se construye a partir de las clases verdaderas y las clases predichas por el modelo. Es una matriz simétrica de dimensión G×G, donde G es el número de clases. Cada elemento de la matriz, denotado con n_{gk} , representa el número de muestras que pertenecen a la clase *g* y que son asignados a la clase *k*. La última columna representa el número de objetos que no son clasificados por el modelo.

			Clases a	signadas	
		1	2		G
	1	n ₁₁	n ₁₂		n _{1G}
Clases	2	n ₂₁	n ₂₂		n _{2G}
veruaderas					
	G	n _{G1}	n _{G2}		n _{GG}

Tabla 3.1. Matriz de confusión de un modelo de clasificación

Los elementos diagonales representan el número de elementos clasificados correctamente, mientras que los elementos fuera de la diagonal indican el número de errores de clasificación (elementos incorrectamente clasificados). Los parámetros que se derivan de la matriz de confusión son los siguientes (Varmuza & Filzmoser, 2009; Ballabio & Consonni, 2013):

Precisión: indica la capacidad del modelo de no incluir objetos de otras clases en la clase considerada:

$$\mathsf{Pr}_{g} = \frac{n_{gg}}{n_{g}} \tag{3.18}$$

donde n_{gg} es el número de elementos de la *g*-ésima clase correctamente clasificados y n'_{g} es número total de muestras asignadas a la *g*-ésima clase.

Sensibilidad: describe la capacidad del modelo de reconocer correctamente elementos que pertenecen a la *g*–ésima clase:

$$Sn_g = \frac{n_{gg}}{n_g}$$
(3.19)

donde n_g es el número total de muestras perteneciente a la *g*-ésima clase.

Especificidad: representa la capacidad de la *g*–ésima clase del modelo para rechazar muestras de todas las demás clases:

$$Sp_{g} = \frac{\sum_{k=1}^{G} \left(n_{k} - n_{gk} \right)}{n - n_{g}} \qquad para \ k \neq g \qquad (3.20)$$

donde *n* es el número total de muestras y n'_{k} es el número de muestras asignadas a la *k*-ésima clase, el cual se calcula de la siguiente manera:

$$\dot{n_k} = \sum_{g=1}^G n_{gk}$$

Cuando se tiene un problema que involucre únicamente dos clases, la sensibilidad de la clase 1 corresponde a la especificidad de la clase 2 y viceversa.

Exactitud: es la proporción de muestras correctamente clasificadas:

$$AC = \frac{\sum_{g=1}^{G} n_{gg}}{n}$$
(3.21)

Tasa de aciertos: se calcula como el promedio de las sensibilidades de las clases. Este parámetro estima mejor la calidad de los modelos clasificación con respecto a la Exactitud, particularmente cuando las clases son desbalanceadas.

$$NER = \frac{\sum_{g=1}^{G} Sn_g}{G}$$
(3.22)

3.7.3. Análisis de consenso

Debido a que es posible obtener modelos por diversas vías para una misma actividad/propiedad, se puede recurrir al análisis de consenso entre los mismos (van Rhee, 2003; Todeschini *et al.*, 2009); es decir, se basa en la combinación de las predicciones realizadas por dos o más modelos QSAR/QSPR. Esta metodología parte del fundamento de que cada modelo tiene implícitamente algunos defectos que determinan sus errores de predicción. Por tal motivo, el objetivo del análisis de consenso es mejorar las predicciones de tales modelos, donde la debilidad de un modelo es contrabalanceado por las fortalezas del otro (u otros) y vice versa. Esta estrategia se puede utilizar entre modelos de regresión o entre modelos de clasificación. Comúnmente se usan dos tipos de consenso: 'estricto' y 'no estricto'.

En *regresión*, el consenso estricto considera únicamente las predicciones de las moléculas que se encuentran dentro del dominio de aplicabilidad (AD) de todos los modelos, proveyendo de esta forma una predicción media de los modelos individuales. Contrariamente, el consenso no estricto considera únicamente las predicciones para las moléculas que caen dentro del AD de al menos un modelo; es decir, si un compuesto se encuentra dentro del AD de solamente un modelo, solo dicha predicción será considerada.

En *clasificación*, el consenso estricto considera únicamente las predicciones correctas de todos los modelos de clasificación; mientras que cuando las predicciones son dispares, el consenso no estricto usa únicamente el modelo para el cual la predicción es confiable. En algunos casos se puede directamente etiquetar tal compuesto como una molécula no asignada (clase 0). Evidentemente, el consenso no estricto permite obtener predicciones para un porcentaje más alto de moléculas.

3.8 Técnicas de validación

La validación es la fase del desarrollo del modelo y del control de su capacidad predictiva. Para evaluar y mejorar la predictividad, se somete al modelo a pequeñas perturbaciones. En otras palabras, es la búsqueda de la estructura del modelo que maximiza la capacidad predictiva. Al mismo tiempo debe tener estabilidad independientemente de los datos utilizados para su desarrollo. En efecto, al aumentar la complejidad del modelo, aumenta la calidad descriptiva del mismo; sin embargo, un incremento descontrolado de la complejidad desemboca en una ineficaz predicción. Por tal motivo, se buscan aquellas técnicas que permiten evaluar la presencia de sobreajuste, debida al cambio de correlación (*change correlation*) o al método utilizado (Hawkins, 2004).

3.8.1. Validación cruzada o interna

Dejar–uno–fuera

Dejar–uno–fuera (LOO) es una técnica de validación cruzada en la que se calculan n modelos, en cada uno de los cuales se excluye un elemento a la vez. Así, los modelos construidos con los n-1 elementos se usan para predecir la respuesta del objeto excluido (Arlot & Celisse, 2010). Este método de validación cruzada aporta una mínima perturbación al modelo, debido a que se eliminan de a uno, y en forma secuencial, cada objeto del grupo de entrenamiento. Adicionalmente, cuando el número de objetos presentes aumenta, el parámetro de calidad en validación cruzada tiende al valor del parámetro en regresión, indicando por tanto que la capacidad predictiva puede ser optimista

El diagnóstico de la calidad del modelo se realiza evaluando la diferencia entre la respuesta experimental y la predicha luego de la exclusión para todos los objetos del conjunto del grupo de entrenamiento. El método LOO es el único que permite una comparación inequívoca entre diversos modelos. Esto es particularmente útil cuando para una misma actividad/propiedad se tienen modelos que provienen de diversos tipos de descriptores.

Dejar-varios-fuera

La técnica de dejar-varios-fuera (LMO) es una generalización del método LOO, el cual introduce una perturbación mayor en el subgrupo de entrenamiento para tener una mejor estimación de la capacidad predictiva de un modelo. En LMO un porcentaje de objetos del grupo de entrenamiento se seleccionan de forma casual para conformar el subgrupo de validación. Cada subgrupo se excluye del grupo de entrenamiento y el modelo recalculado con los restantes se usa para predecir la respuesta de los objetos pertenecientes al subgrupo excluido (Burden *et al.*, 1997; Baumann & Stiefl, 2004). En LMO el grupo de entrenamiento se divide en G subgrupos de exclusión de forma que a cada subgrupo se asignan k objetos (es decir, n/G).

k–grupos de validación cruzada

Debido a que LMO es una técnica que se basa en una selección casual de las muestras para ser predichas y que dicha selección se repite tantas veces como sea posible, produce diferentes resultados cada vez que se aplica. Por esta razón, se ha propuesto la técnica LMO llamada k-grupos de validación cruzada (k-Fold Cross Validation), la cual permite realizar la partición del grupo de entrenamiento siguiendo una lógica (Hastie *et al.*, 2011). Esta metodología consiste en dividir el grupo de entrenamiento en k grupos de validación. Cada grupo k de validación se excluye una sola vez. La Tabla 3.2 muestra los valores de k generalmente usados y el porcentaje de muestras respectivo que se

incluyen en el subgrupo de validación. Cuando el número de grupos *k* es igual a *n*, se está trabajando en la modalidad LOO.

Tabla 3.2. Valores de k típicos y porcentaje de muestras que son colocadas en el subgrupo de validación en la técnica de k–grupos de validación cruzada

	V
k	% de muestras
2	50
3	33.3
4	25
5	20
10	10
n	1

Las muestras se dividen en los k grupos de validación según dos procedimientos: ventanas venecianas (venetian blinds) o bloques continuos (contiguous blocks) (Ballabio & Consonni, 2013), en el cual cada k grupo contiene n/k elementos.

En bloques continuos, cada subgrupo k de validación se selecciona a partir de los primeros n/k elementos del grupo de entrenamiento ordenados en bloques continuos. En ventanas venecianas, cada objeto del grupo de validación es seleccionado a partir del primer objeto en el grupo de entrenamiento y los siguientes cada k-ésimo objeto. Las Figura 3.2 y 3.3 esquematizan la forma de dividir un conjunto de entrenamiento de 12 elementos en tres grupos de validación (k = 3), para el método de bloques continuos y ventanas venecianas, respectivamente.

Figura 3.2. Ejemplo de una partición en bloques continuos usando 12 observaciones y 3 grupos de validación cruzada

Para garantizar un buen porcentaje de elementos en el subgrupo de entrenamiento, se recomienda usar un valor alto de k cuando se trabaja con bases de datos con pocos elementos y un valor bajo de k para grandes bases de datos. En el primer caso se evita introducir una perturbación grande durante la validación; mientras que en el segundo

caso se evita obtener una sobreestimación de la capacidad predictiva del modelo.

Cuando se trabaja en clasificación, la elección entre estos dos tipos de validación cruzada depende de la forma en que las clases están distribuidas en el vector respuesta. Bloques continuos es útil cuando las clases se encuentran distribuidas aleatoriamente. Por el contrario, cuando las clases siguen un orden lógico, es conveniente trabajar con ventanas venecianas.

Figura 3.3. Ejemplo de una partición en ventanas venecianas usando 12 observaciones y 3 grupos de validación cruzada

Monte Carlo

El método Monte Carlo es un método de validación LMO bastante versátil, en el cual se definen en varias oportunidades distintas subgrupos de forma aleatoria. Cada una de estas etapas se denomina cada interacción los elementos son divididos interacción. En aleatoriamente en un subgrupo de entrenamiento (por ejemplo el 80%) y un grupo de evaluación (20%). En cada interacción se calibra el modelo con las moléculas del subgrupo de entrenamiento, el cual es luego utilizado para predecir las respuestas de las moléculas de evaluación. La calidad de la validación Monte Carlo se efectúa por comparación de las predicciones acumuladas versus las clases del subgrupo de evaluación (Xu et al., 2004; Krakowska et al., 2016). Dado que la partición se realiza de forma independiente para cada interacción, los objetos aparecerán varias veces en el subgrupo de evaluación.

Aleatorización-Y

La aleatorización–Y (Lindgren *et al.*, 1996; Eriksson *et al.*, 1997) es una metodología que busca medir la presencia de correlación casual (*change correlation*) en el modelo, es decir, si la variable respuesta se encuentra correlacionada casualmente con las variables independientes. En esta metodología se modifica de forma casual los elementos del vector respuesta, de tal forma que no correspondan a las asignaciones originales. Si el modelo calculado no presenta correlación casual, existirá una diferencia significativa entre la calidad del modelo original y el modelo obtenido con la aleatorización–Y. El proceso de aleatorización se repite cientos de veces a fin de obtener una estimación promedio del modelo aleatorizado.

3.8.2. Validación externa

Para la validación externa del modelo, el conjunto de datos se divide en dos subgrupos:

- 1. Grupo de entrenamiento (training set): se utiliza para construir el modelo que será utilizado posteriormente para la predicción de los objetos que forman parte del grupo de validación.
- 2. Grupo de validación (validation o test set): se usa para predecir la respuesta de sus elementos con el modelo desarrollado con el grupo de entrenamiento, es decir, no se utiliza durante la calibración del modelo.

Normalmente, en el subgrupo de validación se coloca entre el 10% y 50% de los elementos. Este procedimiento se puede realizar una sola vez (*Single Evaluation Set*) o varias veces (*Repeated Evaluation Set*). La partición de varias veces permite obtener un valor más estable del poder predictivo.

Método de subconjuntos balanceados

El método de subconjuntos balanceados (BSM) (Rojas *et al.*, 2015a, 2015b) es un método desarrollado en la presente tesis. Este enfoque permite dividir una base de datos de tal forma que se alcancen relaciones estructura–propiedad similares en los subconjuntos de calibración, de validación y/o de predicción. De esta forma, las moléculas de calibración son representativas de las moléculas presentes en los grupos de validación y predicción (Martin *et al.*, 2012). BSM considera la propiedad experimental y únicamente los descriptores moleculares independientes de la conformación, para así evitar sesgos debidos a los valores de descriptores conformacionales. BSM crea k-conglomerados de compuestos en términos de mínima distancia Euclidiana entre ellos, de tal forma que compuestos similares se ubicarán en el mismo conglomerado. Los pasos involucrados en este método son:

 Crear una matriz (C₁) que incluya la propiedad experimental y los descriptores moleculares independientes de la conformación. Así, la dimensión de C₁ es N×d.

- Eliminar los descriptores linealmente dependientes. De esta forma, se crea una matriz C₂ de dimensión N×d'.
- Estandarizar la matriz C₂ para centrar y escalar sus elementos de matriz.
- 4. Crear N_{cal}^{0} conglomerados a través del método *k*-medias, para lo cual se usa la matriz \mathbf{C}_{2} , la distancia Euclidiana y varias corridas para optimizar el algoritmo y obtener la mejor solución. Este proceso calcula N_{cal}^{0} ubicaciones de los centroides, cada uno de dimensión 1×d'. N_{cal}^{0} se define como $N_{cal} N_{min max}$, donde N_{cal} es el número de moléculas en el subgrupo de calibración y $N_{min max}$ es el número de compuestos que poseen el valor mínimo y máximo de la propiedad experimental.
- 5. El grupo de calibración (N_{cal}) se construye incluyendo un compuesto de cada conglomerado, aquel más cercano al centroide en dicho conglomerado. Aquí también se incluyen las N_{minmax} moléculas.
- 6. Crear N_{val} conglomerados con las restantes $N N_{cal}$ moléculas mediante el algoritmo *k*-medias en las mismas condiciones descritas previamente. Aquí se calculan N_{val} ubicaciones de los centroides.
- 7. Construir el grupo de validación (N_{val}) mediante la inclusión de un compuesto por conglomerado, es decir, aquella molécula que se encuentra más cerca al centroide de cada conglomerado.
- 8. Finalmente, el grupo de predicción (N_{pred}) es constituido por las

restantes $N - N_{cal} - N_{val}$ moléculas.

BSM tiene la capacidad de realizar la partición de una base de datos en: 1) grupos de calibración y predicción o, 2) grupos de calibración, validación y predicción.

3.9 Dominio de Aplicabilidad

El dominio de aplicabilidad (AD) (Jaworska *et al.*, 2005) de un modelo QSAR se define como el espacio en el cual el grupo de calibración del modelo ha sido desarrollado y es aplicable con la finalidad de realizar la predicción de nuevos compuestos. Para definir este estacio se necesita conocer la información fisicoquímica, estructural o biológica de las moléculas. Debido a que el AD es definido por las moléculas de grupo

de entrenamiento (estructuralmente limitadas), las predicciones se limitarán a aquellas moléculas que son estructuralmente similares a los compuestos en el grupo de calibración que se usaron para construir el modelo (Dimitrov *et al.*, 2005).

Por otra parte, la definición del AD de un modelo QSAR es el tercer requisito solicitado en los principios OECD de modelado QSAR (OECD, 2007) presentados en el Capítulo 1. Por lo tanto, cada modelo QSAR debe indicar la confianza de sus predicciones. Normalmente el AD de un modelo QSAR se define *a posteriori* en base a los descriptores moleculares del grupo de calibración. Entre los diversos enfoques *a posteriori* se describirán los dos utilizados en el desarrollo de la presente tesis:

3.9.1. AD basado en el valor de influencia

Esta estrategia se basa en el cálculo del valor de influencia (h) o leverage (Rencher & Schaalje, 2008), el cual mide la distancia de cada objeto del grupo de predicción con respecto al centro del modelo. La matriz de influencia (matriz de leverage o matriz hat) se calcula a partir de la matriz del modelo X:

$$\mathbf{H} = \mathbf{X} \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}}$$
(3.23)

H es una matriz cuyos elementos diagonales (h_{ii}) son los valores de influencia de cada compuesto. El valor h_{ii} es la contribución del *i*-ésimo elemento en la estimación de su respuesta. Para el grupo de entrenamiento estos valores están acotados entre los valores de 0 y 1, mientras que los valores calculados para el grupo de predicción solo tienen cota inferior 0. Para el análisis del AD se define un valor de umbral superior (h^*) definido como tres veces el valor promedio de los valores de l grupo de calibración:

$$h^* = 3\frac{p}{n} \tag{3.24}$$

donde p es el número de parámetros del modelo y n es el número de compuestos en el grupo de calibración. El valor de influencia para una molécula del grupo de predicción se calcula de la siguiente manera:

$$\boldsymbol{h}_{ii} = \boldsymbol{x}_i \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{x}_i^T$$
(3.25)

Si el valor de influencia de una observación es grande, entonces la observación determina su respuesta sin considerar demasiado el resto de las observaciones. Por el contrario, valores de influencia pequeños y

parecidos indican que las observaciones contribuyen equitativamente en la construcción de las respuestas. De esta forma, moléculas que poseen grandes valores de leverage son las que se encuentran distantes del centro del modelo y, por lo tanto, se las considera predicciones poco confiables o extrapolaciones del modelo.

3.9.2. AD basado en la similitud *k*NN

En este enfoque se define el AD del modelo mediante la evaluación de la similitud entre los compuestos del grupo de calibración y de predicción (Sheridan et al., 2004; Sahigara et al., 2013). Se parte del cálculo de la distancia promedio de cada molécula del grupo de predicción con respecto a sus k vecinos más cercanos del grupo de calibración, y se compara dicha distancia promedio con un valor de umbral pre-definido. Si la distancia promedio de una molécula del grupo de predicción es menor al umbral, dicha molécula estará dentro del AD del modelo y su predicción será confiable debido a que existe suficiente similitud con los compuestos del grupo de entrenamiento. Caso contrario, si la distancia promedio de la molécula es mayor al umbral, caerá fuera del AD y su predicción será considerada una extrapolación del modelo. De esta forma, el dominio de aplicabilidad se define de forma implícita con la similitud. Este método basado en similitudes caracteriza mejor la distribución de las moléculas y es útil cuando se usa con métodos de modelado basado en similitudes, por ejemplo el método kNN.

3.10 Referencias

- Arlot, S., & Celisse, A. (2010). A Survey of Cross-Validation Procedures for Model Selection. *Statistics surveys, 4*, 40-79.
- Bagheri, S., Omidikia, N., & Kompany-Zareh, M. (2013). Unsupervised Selection of Informative Descriptors in QSAR Study of Anti-HIV Activities of HEPT Derivatives. *Chemometrics and Intelligent Laboratory Systems*, 128, 135-143.
- Ballabio, D., & Consonni, V. (2013). Classification Tools in Chemistry. Part 1: Linear Models. PLS-DA. *Analytical Methods, 5*(16), 3790-3798.
- Ballabio, D., Consonni, V., Mauri, A., Claeys-Bruno, M., Sergent, M., & Todeschini, R. (2014). A Novel Variable Reduction Method Adapted from Space-Filling Designs. *Chemometrics and Intelligent Laboratory Systems, 136*, 147-154.
- Barker, M., & Rayens, W. (2003). Partial Least Squares for Discrimination. *Journal of chemometrics*, *17*(3), 166-173.
- Baumann, K., & Stiefl, N. (2004). Validation Tools for Variable Subset Regression. *Journal of Computer-Aided Molecular Design*, *18*(7), 549-562.
- Bro, R., & Smilde, A. K. (2014). Principal Component Analysis. *Analytical Methods*, 6(9), 2812-2831.
- Burden, F. R., Brereton, R. G., & Walsh, P. T. (1997). Cross-Validatory Selection of Test and Validation Sets in Multivariate Calibration and Neural Networks as Applied to Spectroscopy. *Analyst*, *122*(10), 1015-1022.
- Consonni, V., Ballabio, D., Manganaro, A., Mauri, A., & Todeschini, R. (2009). Canonical Measure of Correlation (CMC) and Canonical Measure of Distance (CMD) between Sets of Data: Part 2. Variable Reduction. *Analytica Chimica Acta, 648*(1), 52-59.
- Cover, T., & Hart, P. (1967). Nearest Neighbor Pattern Classification. *IEEE transactions on information theory, 13*(1), 21-27.
- Dimitrov, S., Dimitrova, G., Pavlov, T., Dimitrova, N., Patlewicz, G., Niemela, J., & Mekenyan, O. (2005). A Stepwise Approach for Defining the Applicability Domain of SAR and QSAR Models. *Journal of chemical information and modeling, 45*(4), 839-849.
- Duchowicz, P. R., Castro, E. A., Fernández, F. M., & Gonzalez, M. P. (2005). A New Search Algorithm for QSPR/QSAR Theories: Normal Boiling Points of Some Organic Molecules. *Chemical Physics Letters*, 412(4), 376-380.
- Duchowicz, P. R., Castro, E. A., & Fernández, F. M. (2006). Alternative Algorithm for the Search of an Optimal Set of Descriptors in QSAR-QSPR Studies. *MATCH Communications in Mathematical and in Computer Chemistry*, *55*, 179-192.

- Efroymson, M. (1960). Multiple Regression Analysis. In A. Ralston & H. S. Wilf (Eds.), *Mathematical methods for digital computers*, (pp. 191-203): Wiley.
- Eriksson, L., Johansson, E., & Wold, S. (1997). Quantitative Structure-Activity Relationship Model Validation. In F. Chen & G. Schüürmann (Eds.), *Quantitative Structure-Activity Relationships in Environmental Sciences-VII*, (pp. 381-397): SETAC Press.
- Golbraikh, A., & Tropsha, A. (2002). Beware of q²! *Journal of Molecular Graphics and Modelling*, *20*(4), 269-276.
- Hastie, T., Tibshirani, R., & Friedman, J. (2011). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction* (Second ed.): Springer.
- Hawkins, D. M. (2004). The Problem of Overfitting. *Journal of chemical information and computer sciences, 44*(1), 1-12.
- Jaworska, J., Nikolova-Jeliazkova, N., & Aldenberg, T. (2005). QSAR Applicability Domain Estimation by Projection of the Training Set Descriptor Space: A Review. *ATLA*, *33*(5), 445–459.
- Jolliffe, I. T. (1972). Discarding Variables in a Principal Component Analysis. I: Artificial Data. *Applied statistics*, *21*(2), 160-173.
- Jolliffe, I. T. (1973). Discarding Variables in a Principal Component Analysis. II: Real Data. *Applied statistics*, 22(1), 21-31.
- Jolliffe, I. T. (2002). *Principal Component Analysis* (Second ed.): Springer.
- Kaufman, L., & Rousseeuw, P. J. (2005). *Finding Groups in Data: An Introduction to Cluster Analysis*. New York: Wiley.
- Krakowska, B., Custers, D., Deconinck, E., & Daszykowski, M. (2016). The Monte Carlo Validation Framework for the Discriminant Partial Least Squares Model Extended with Variable Selection Methods Applied to Authenticity Studies of Viagra[registered sign] Based on Chromatographic Impurity Profiles. *Analyst*, 141(3), 1060-1070.
- Kruskal, J. B. (1964). Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis. *Psychometrika*, 29(1), 1-27.
- Leardi, R., Boggia, R., & Terrile, M. (1992). Genetic Algorithms as a Strategy for Feature Selection. *Journal of chemometrics, 6*(5), 267-281.
- Leardi, R., & Gonzalez, A. L. (1998). Genetic Algorithms Applied to Feature Selection in PLS Regression: How and When to Use Them. *Chemometrics and Intelligent Laboratory Systems, 41*(2), 195-207.
- Leardi, R. (2009). Genetic Algorithms. In R. Tauler, B. Walczak & S. D. Brown (Eds.), *Comprehensive Chemometrics: Chemical and Biochemical Data Analysis*, (pp. 631-653): Elsevier.
- Lindgren, F., Hansen, B., Karcher, W., Sjöström, M., & Eriksson, L. (1996). Model Validation by Permutation Tests: Applications to Variable Selection. *Journal of chemometrics, 10*(5-6), 521-532.

- Martin, T. M., Harten, P., Young, D. M., Muratov, E. N., Golbraikh, A., Zhu, H., & Tropsha, A. (2012). Does Rational Selection of Training and Test Sets Improve the Outcome of QSAR Modeling? *Journal* of chemical information and modeling, 52, 2570-2578.
- Massart, D. L., & Kaufman, L. (1983). *The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis*: Wiley.
- Massart, D. L., Vandeginste, B. G., Buydens, L., Lewi, P., & Smeyers-Verbeke, J. (1997). *Handbook of Chemometrics and Qualimetrics: Part A*: Elsevier Science Inc.
- McLachlan, G. (2004). *Discriminant Analysis and Statistical Pattern Recognition*: John Wiley & Sons.
- OECD. (2007). Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. In): OECD Publishing.
- Questier, F., Put, R., Coomans, D., Walczak, B., & Vander Heyden, Y. (2005). The Use of CART and Multivariate Regression Trees for Supervised and Unsupervised Feature Selection. *Chemometrics* and Intelligent Laboratory Systems, 76(1), 45-54.
- Rencher, A. C., & Schaalje, G. B. (2008). *Linear Models in Statistics*: John Wiley & Sons.
- Rojas, C., Duchowicz, P. R., Tripaldi, P., & Pis Diez, R. (2015a). QSPR Analysis for the Retention Index of Flavors and Fragrances on a OV-101 Column. *Chemometrics and Intelligent Laboratory Systems, 140*, 126-132.
- Rojas, C., Duchowicz, P. R., Tripaldi, P., & Pis Diez, R. (2015b). Quantitative Structure–Property Relationship Analysis for the Retention Index of Fragrance-Like Compounds on a Polar Stationary Phase. *Journal of Chromatography A, 1422*, 277-288.
- Sahigara, F., Ballabio, D., Todeschini, R., & Consonni, V. (2013). Defining a Novel k-Nearest Neighbours Approach to Assess the Applicability Domain of a QSAR Model for Reliable Predictions. *Journal of cheminformatics, 5*(1), 27.
- Sheridan, R. P., Feuston, B. P., Maiorov, V. N., & Kearsley, S. K. (2004). Similarity to Molecules in the Training Set is a Good Discriminator for Prediction Accuracy in QSAR. *Journal of chemical information and computer sciences*, 44(6), 1912-1928.
- Todeschini, R., Consonni, V., & Gramatica, P. (2009). Chemometrics in QSAR. In R. Tauler, B. Walczak & S. D. Brown (Eds.), *Comprehensive Chemometrics: Chemical and Biochemical Data Analysis*, (pp. 129-170): Elsevier.
- Todeschini, R., Ballabio, D., Cassotti, M., & Consonni, V. (2015). N3 and BNN: Two New Similarity Based Classification Methods in Comparison with Other Classifiers. *Journal of chemical information and modeling, 55*(11), 2365-2374.
- van Rhee, A. M. (2003). Use of Recursion Forests in the Sequential Screening Process: Consensus Selection by Multiple Recursion

Trees. Journal of chemical information and computer sciences, 43(3), 941-948.

- Vandeginste, B. G., Massart, D. L., Buydens, L., De Jon, S., Lewi, P., & Smeyers-Verbeke, J. (1998). *Handbook of Chemometrics and Qualimetrics: Part B*: Elsevier Science Inc.
- Varmuza, K., & Filzmoser, P. (2009). Introduction to Multivariate Statistical Analysis in Chemometrics: CRC press.
- Whitley, D. C., Ford, M. G., & Livingstone, D. J. (2000). Unsupervised Forward Selection: A Method for Eliminating Redundant Variables. *Journal of chemical information and computer sciences, 40*(5), 1160-1168.
- Winsberg, S., & Carroll, J. D. (1989). A Quasi-Nonmetric Method for Multidimensional Scaling Via an Extended Euclidean Model. *Psychometrika*, 54(2), 217-229.
- Wold, S., Esbensen, K., & Geladi, P. (1987). Principal Component Analysis. *Chemometrics and Intelligent Laboratory Systems*, 2(1-3), 37-52.
- Wold, S. (1995). Chemometrics; What do We Mean with It, and What do We Want from It? *Chemometrics and Intelligent Laboratory Systems*, *30*(1), 109-115.
- Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-Regression: A Basic Tool of Chemometrics. *Chemometrics and Intelligent Laboratory Systems*, 58(2), 109-130.
- Wold, S. (2015). Chemometrics and Bruce: Some Fond Memories. In B. K. Lavine, S. D. Brown & K. S. Booksh (Eds.), 40 Years of Chemometrics – From Bruce Kowalski to the Future, vol. 1199 (pp. 1-13): American Chemical Society.
- Xu, Q.-S., Liang, Y.-Z., & Du, Y.-P. (2004). Monte Carlo Cross-Validation for Selecting a Model and Estimating the Prediction Error in Multivariate Calibration. *Journal of chemometrics*, *18*(2), 112-120.

Capítulo 4

APLICACIONES EN QUÍMICA ANALÍTICA

En este capítulo se presentarán las diversas aplicaciones desarrolladas en el campo de la Química Analítica, particularmente aquellas relacionadas con el estudio QSPR de los índices de retención medidos en cromatografía de gases (GC) y cromatografía de gases–espectrometría de masa (GC–MS) usando fases estacionarias de diversa polaridad.

Los aromas son sustancias orgánicas volátiles cuya característica principal es la de poseer olor fuerte placentero. Estos compuestos químicos son detectados por receptores (células olfativas) ubicados en la nariz. Por esta razón, son compuestos que tienen un rol importante en distintas industrias: perfumería, alimentos, medicina y tabaco (Surburg & Panten, 2016). Debido a que los aromas son compuestos químicos volátiles, su control de calidad basado en el análisis del perfil aromático se fundamenta en la cromatografía de gases o cromatografía de gases– espectrometría de masa. Este último permite alta calidad en la separación de picos y buena capacidad de identificación de los compuestos orgánicos volátiles (Cserháti, 2010).

El índice de retención cromatográfico (1) es un parámetro útil para la identificación de los compuestos orgánicos volátiles, por lo que permite investigar los mecanismos por los cuales se desarrolla la retención en la fase móvil, particularmente mediante las relaciones cuantitativas estructura-propiedad. En el año 1977 se publican los primeros trabajos de las aplicaciones QSPR en índices de retención por parte de Kaliskan y Foks (Kaliszan, 1977; Kaliszan & Foks, 1977), al igual que Michotte y Massart (Michotte & Massart, 1977). El creciente interés en este campo de investigación ha permitido evitar procedimientos experimentales costosos y prolongados para la predicción de los índices de retención de nuevas moléculas, así como diseñar nuevas fases móviles y comprender los mecanismos de retención en las mismas (Héberger, 2007; Kaliszan, 2007). En este capítulo, al igual que en el siguiente, los modelos QSAR/QSPR han sido desarrollados siguiendo los cinco principios sugeridos por la Organización para la Cooperación Económica y el Desarrollo (OECD).

4.1 Modelo QSPR para índices de retención medidos en la columna apolar OV–101

4.1.1. Introducción

Varios estudios QSPR han sido publicados con la finalidad de predecir el *I* de compuestos volátiles en la columna apolar OV–101. En 1989, Staton y Jurs (Stanton & Jurs, 1989) usaron el programa ADAPT para estudiar una serie de 107 compuestos sustituidos de la pirazina tomados de la literatura, obteniendo buenos resultados en calibración ($R_{rel}^2 = 0.99$,

 $S_{cal} = 21.4$) y validación ($R_{val}^2 = 0.99$ y $S_{val} = 32.4$). Un año más tarde, Anker et al. (Anker *et al.*, 1990) midieron los índices de retención de 115 compuestos aromáticos (38 alcoholes, 11 aldehídos, 19 cetonas y 47 ésteres), para posteriormente calibrar un modelo QSPR con un coeficiente de determinación $R_{cal}^2 = 0.99$. Ese mismo año, Gerasimenko y Nabivach (Gerasimenko & Nabivach, 1990) usaron los *I* de alquilbencenos y alquilnaftalenos, obteniendo buenos resultados, tanto en calibración ($R_{cal}^2 = 1.00$), como en validación ($R_{val}^2 = 0.99$). En el año 2008, Goodner (Goodner, 2008) desarrolló un modelo de regresión, utilizando el punto de ebullición y el logaritmo del coeficiente de partición octanol–agua de 91 moléculas. Adicionalmente, este autor usó una combinación de varios test para detectar valores atípicos, tales como el test de Grubb y el Q–test de Dixon. En un estudio reciente, Yan et al. (Yan *et al.*, 2012) desarrollaron un modelo QSPR para los índices de retención de 297 compuestos, usando 4 descriptores moleculares:

índices de conectividad molecular de orden cero ($^{\circ}\chi$) y primer orden

 $(^{1}\chi)$, donante de enlaces de hidrógeno (*ndonr*) y la masa molecular (*MW*).

El objetivo del presente estudio fue el desarrollo de una relación cuantitativa estructura-propiedad para los índices de retención de 1208 compuestos volátiles medidos en la columna apolar OV-101 en cromatografía de gases. La base de datos usada constituye la más grande considerada hasta el momento, permitiendo una mayor generalización del modelo desarrollado a diversos tipos de compuestos. Los resultados de este trabajo han sido previamente publicados (Rojas *et al.*, 2015a).

4.1.2. Materiales y métodos

En este estudio se utilizaron 1208 compuestos orgánicos volátiles (sabores y aromas) reportados por Jennings y Shibamoto (Jennings & Shibamoto, 1980), para los cuales han sido reportados el índice de retención en la fase estacionaria metil silicona OV–101. Esta base de

datos no ha sido previamente usada en estudios QSPR y constituye la más extensa usada con dicho propósito. La propiedad experimental reportada por estos autores es el índice de retención en una columna capilar apolar (0.28 mm×50 m), recubierta con metil silicona OV–101 y programada desde 80 hasta 200°C a 2°C×min⁻¹. El dominio experimental se encuentra en el rango de 350 a 2180 unidades. Para moléculas replicadas, se utilizó el índice de retención promedio. Los nombres químicos y los índices de retención experimentales se presentan en la Tabla 1A, que se encuentra en el CD que acompaña a esta tesis.

Los compuestos fueron representados en el programa HyperChem (Hypercube Inc.), donde fueron optimizados mediante los campos de fuerza de la mecánica molecular (MM+) y posteriormente refinadas sus geometrías mediante el método semiempírico PM3. En ambos casos, se usó el algoritmo de gradiente conjugado en la versión Polak-Ribiere y las geometrías se consideraron optimizadas cuando la desviación estándar del vector gradiente es menor a 0.01kcal×(Å×mol)⁻¹. Posteriormente se calcularon 4885 descriptores moleculares usando el programa DRAGON versión 6 (Talete srl. 2015). Con la finalidad de analizar si el uso de descriptores conformacionales tiene relevancia significativa para modelar esta propiedad, se han construido tres conjuntos de descriptores: el primer conjunto considera todos los bloques de descriptores obtenidos con DRAGON, el segundo conjunto está formado por descriptores independientes de la conformación y el último engloba únicamente a los descriptores dependientes de la conformación (3D). En todos los casos, se han excluido descriptores con valores constantes o casi constantes y aquellos descriptores con al menos un valor faltante.

Un aspecto importante en los estudios QSPR, es la selección de los descriptores moleculares que permiten obtener los mejores modelos. Con esta finalidad, se utilizó el método de reemplazo para explorar los tres conjuntos de descriptores. RM es un algoritmo inequívoco (segundo principio del modelado QSPR) que se encuentra disponible en el lenguaje de programación MatLab (The MathWorks Inc).

Para validación del modelo QSPR, el conjunto de datos se dividió en conjuntos de calibración, validación y predicción. El grupo de calibración se usó para la selección de descriptores mediante RM y la calibración de los modelos; mientras que el grupo de validación se usó para la validación cruzada de los modelos con la finalidad de evitar la presencia de sobreajuste. El grupo de predicción se utilizó para medir la capacidad predictiva del modelo QSPR seleccionado. También se han usado las técnicas de validación cruzada de dejar–uno–fuera (loo) y dejar–varios–fuera (lmo) mediante la exclusión aleatoria del 20% de las moléculas, con 50000 repeticiones. La ausencia de correlación casual se estableció mediante la aleatorización–Y con 10000 repeticiones. Finalmente, se

evaluaron los criterios de validación propuestos por Golbraikh y Tropsha (Golbraikh & Tropsha, 2002).

Posteriormente, y según el tercer principio del modelado QSPR, se analizó el dominio de aplicabilidad siguiendo el enfoque del valor de influencia crítico (h^*). Asimismo, se estableció la contribución de cada descriptor molecular para, de acuerdo al cuarto principio, brindar una interpretación del mecanismo de acción de los descriptores involucrados en el modelo.

4.1.3. Resultados y discusión

Como primer paso, se usó el BSM para dividir la base de datos de 1208 compuestos en los grupos de calibración (N_{cal} = 400), validación (N_{val} = 405) y predicción (N_{pred} = 403). Las asignaciones a estos grupos se encuentran en la Tabla 1A. Seguidamente, el RM permitió explorar los tres grupos de descriptores: a) 2895 descriptores independientes y dependientes de la conformación, b) 1815 descriptores independientes de la conformación y c) 1080 descriptores dependientes de la conformación. El uso de estos tres grupos de descriptores se realizó con la finalidad de identificar si los descriptores dependientes de la conformación relevante al modelado del *I*.

Las Tablas 4.1, 4.2 y 4.3 resumen los mejores modelos de 1 a 7 descriptores moleculares para los tres bloques de descriptores. El mejor modelo se muestra en negrita. Se observa la ausencia de sobreajuste, debido a que para cualquier modelo de dimensión d, los parámetros de calibración y validación no presentan variaciones significativas.

d	R^2_{ij}	S.,	R^2	S,	R_{iimax}^2	descriptores
	cai	cai	Vai	Vai	ij Illax	
1	0.87	124.4	0.89	107.1	0.00	X1sol
2	0.89	112.5	0.92	91.9	0.00	Chi0_EA, GATS1p
3	0.91	101.7	0.93	83.6	0.88	nHDon, RDF010e, Sp
4	0.92	97.8	0.94	79.7	0.88	nHDon, DP02, RDF010e, Sp
5	0.92	95.4	0.94	78.3	0.32	PDI, Hy, ATSC2s, EE_B(s), X1sol
6	0.93	91.5	0.95	76.2	0.76	H–050, R1s+, Mor05p, RDF010s,
						ATSC2s, X1sol
7	0.93	89.1	0.94	76.9	0.76	H–050, nCconj, R2s+, Mor05p,
						RDF010s, ATSC2s, X1sol

Tabla 4.1. Mejores modelos (QSPR obtenidos mediante RM usando los
descriptores independiente	es y dependientes de la conformación.

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

Tabla 4.2. Mejores modelos QSPR obtenidos mediante RM usando lo	S
descriptores independientes de la conformación.	

d	$R_{\scriptscriptstyle cal}^2$	$S_{_{cal}}$	$R_{\scriptscriptstyle val}^2$	$S_{\!\scriptscriptstyle V\!a\!l}$	$R^2_{ij \max}$	descriptores
1	0.87	124.4	0.89	107.1	0.00	X1sol
2	0.89	112.5	0.92	91.9	0.00	Chi0_EA, GATS1p

3	0.91	105.1	0.93	83.80	0.19	PDI, Hy, X1sol
4	0.91	100.9	0.93	83.0	0.17	PDI, H–050, SpMax1_Bh(s), X1sol
5	0.92	96.4	0.94	82.7	0.38	PDI, O–058, H–050, ATSC4s, X1sol
6	0.93	94.0	0.93	85.2	0.76	O–058, H–050, C–044, ATSC4e, H_Dt,
						X1sol
7	0.93	91.1	0.94	80.1	0.32	PDI, Hy, C–044, C–033, ATSC2s,
						EE_B(s), X1sol

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

La selección del modelo óptimo se realizó considerando los parámetros de calidad del grupo de validación, pues son los indicadores de que no se sobreajusta un modelo. Debido a que RM es un método de selección de descriptores que se basa en la optimización mediante la minimización de la desviación estándar de calibración, se selecciona el modelo que brinde la menor desviación estándar tanto en calibración y validación. Asimismo, se busca que el coeficiente de correlación máximo entre descriptores ($R_{ij\,max}^2$) sea el más bajo posible, al igual que la dimensión del modelo siga el principio de parsimonia de Ockham (navaja de Ockham) (Hoffmann *et al.*, 1996), el cual sugiere que en igualdad de calidad de diversos modelos, se seleccione el más sencillo. Este criterio de selección de modelos se aplicará en todos los estudios en el que use RM como método de selección de descriptores.

d	$R^{\scriptscriptstyle 2}_{\scriptscriptstyle cal}$	$S_{_{cal}}$	$R_{\scriptscriptstyle val}^{\scriptscriptstyle 2}$	$S_{_{\!\!\textit{Val}}}$	$R_{ij\mathrm{max}}^2$	descriptores
1	0.84	138.1	0.88	114.0	0.00	G2
2	0.86	130.0	0.90	101.5	0.06	Mor11p, G2
3	0.88	120.0	0.91	99.1	0.37	Mor03p, Mor18v, G2
4	0.89	112.3	0.91	96.2	0.57	DP08, TDB03p, SpMAD_RG, G2
5	0.91	103.1	0.94	88.6	0.81	R1e+, H2v, RDF025p, RDF010p, Chi RG
6	0.91	102.0	0.93	87.4	0.81	R1m+, H2v, RDF010s, RDF025p, RDF010p, Chi RG
7	0.92	100.3	0.92	89.8	0.81	Q2, R2s+, L2m, RDF010s, RDF025p, RDF010p. Chi RG

 Tabla 4.3. Mejores modelos QSPR obtenidos mediante RM usando los descriptores dependientes de la conformación.

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

Se observa que los descriptores conformacionales no aportan información relevante para modelar el índice de retención en la columna OV–101. En efecto, los parámetros de calidad entre los modelos obtenidos con todos los descriptores (Tabla 4.1) y únicamente los descriptores independientes de la conformación (Tabla 4.2) son muy similares. Adicionalmente, los modelos que consideran únicamente los descriptores conformacionales (Tabla 4.3) no muestran una mejora significativa en la predicción del *I*. Este es un resultado importante

debido a que un modelo que no incluye descriptores conformacionales involucra menos dificultades para su desarrollo. Por ejemplo, se evitan los costos computacionales elevados que se requieren para la optimización de las geometrías y también se evitan problemas asociados a ambigüedades que resultan de una incorrecta optimización, debido a que una molécula puede existir en diversos estados conformacionales, generando diversos valores para un mismo descriptor molecular 3D (Garcia *et al.*, 2016). Así, se ha elegido el modelo independiente de la conformación de 4 descriptores para un análisis más detallado:

$$I = -998.1 + 169.8 \times 1 \text{ sol} + 24.4 \text{ SpMax 1} Bh(s) + 124.9 H - 050 + 1254.9 PDI$$
(4.1)

$$\begin{split} N_{cal} &= 400 , \ R_{cal}^2 = 0.91 , \ S_{cal} = 100.9 \\ N_{val} &= 405 , \ R_{val}^2 = 0.94 , \ S_{val} = 83.0 \\ N_{pred} &= 403 , \ R_{pred}^2 = 0.93 , \ S_{pred} = 78.0 \\ R_{loo}^2 &= 0.92 , \ S_{loo} = 92.5 , \ R_{lmo}^2 = 0.96 , \ S_{lmo} = 94.0 \\ S_{rand} &= 326.2 , \ o(3S) = 10 , \ R_{lj\,max}^2 = 0.17 \end{split}$$

La validación cruzada de dejar–uno–fuera (loo) y dejar–varios–fuera (lmo), mediante la exclusión de una muestra a la vez y del 20% de moléculas, respectivamente, indica que el modelo es estable. Asimismo, la aleatorización–Y muestra que el $S_{cal} < S_{rand}$, indicando la ausencia de correlación casual en el modelo de la Ec. 4.1. Finalmente, los parámetros adicionales de validación que se presentan a continuación, indican que una relación cuantitativa estructura–propiedad predictiva se ha alcanzado:

$$\begin{aligned} R_{loo}^2 &> 0.5 \ (0.92) \ y \ R_{pred}^2 &> 0.6 \ (0.93) \\ 1 - R_0^2 \ / \ R_{pred}^2 &< 0.1 \ (0.000) \ o \ 1 - R_0^{'2} \ / \ R_{pred}^2 &< 0.1 \ (0.009) \\ 0.85 &< k (0.994) \le 1.15 \ y \ 0.85 < k' (1.002) \le 1.15 \\ R_m^2 &> 0.5 \ (0.91) \end{aligned}$$

Figura 4.1. Índices de retención experimentales y predichos para aromas medidos en la columna OV–101

La Figura 4.1 muestra la gráfica de los valores de índices de retención experimentales en función de los predichos por el modelo. Se observa la tendencia lineal alrededor de la recta de ajuste perfecto. Por otra parte, en la Figura 4.2 se muestra el gráfico de los valores de los residuos, el cual revela que los mismos tienden a seguir un patrón aleatorio alrededor de la línea cero, sugiriendo que los índices de retención se modelan mediante una regresión lineal múltiple.

Los diez valores atípicos identificados en el modelo QSPR son los compuestos: Almizcle xilol (523), Elemol (740), 2–Buteno–1,4–diol (854), 2–hidroxiisobutirato de metilo (861), n–Pentadecanol (961), 2–Decenal (985), Isoamil piruvato (1044), n–hexanoato de n–butilo (1057), n– octanoato de etilo (1058), 2–Mercaptobenzotiazol (1202). Posterior a un control en la fuente para descartar errores de transcripción en los índices de retención, así como la verificación de las estructuras químicas, se puede asumir que este comportamiento irregular se puede deber a la amplia heterogeneidad de compuestos considerados en la presente base de datos.

Figura 4.2. Gráfico de dispersión para el modelo QSPR de la Ec. 4.1

La máxima correlación entre los descriptores *X1sol* y *PDI* ($R_{ij\,\text{max}}^2 = 0.17$) refleja una baja correlación entre los descriptores del modelo QSPR y ausencia de colinealidad. Así, cada descriptor molecular explica diferentes aspectos de la estructura molecular y su relación con la propiedad en estudio (Duchowicz *et al.*, 2010). El grado de contribución relativo de cada descriptor (b_j^s), indica la importancia de cada descriptor en modelar el *I: X1sol* (0.87) > *PDI* (0.19) > *H*–050 (0.16) > *SpMax1_Bh(s)* (0.08). Todos los descriptores tienen un efecto sinérgico sobre el índice de retención, lo que indica que al incrementar el valor de dichos descriptores, incrementa el valor de dicha propiedad.

El índice de conectividad de solvatación de primer orden (*X1sol*) (Zefirov & Palyulin, 2001) ha sido propuesto para modelar la entropía de solvatación y para describir las interacciones de dispersión en solución. Este índice de conectividad se encuentra correlacionado con los puntos de ebullición de las sustancias. En efecto, el punto de ebullición es la propiedad que gobierna la retención en fases apolares en cromatografía de gases. Buydens y Massart (Buydens & Massart, 1981) también han demostrado que los índices topológicos (TIs) y parámetros estructurales son útiles para describir interacciones entre compuestos volátiles de una misma familia con la fase estacionaria.

El índice de empaquetamiento (*PDI*) (Ciubotariu *et al.*, 2004) es una propiedad molecular definida como el cociente entre el volumen de McGowan y la superficie molecular de van der Waals total, representando características estéricas de una molécula. Por otra parte, el número de hidrógenos enlazados a un heteroátomo (*H*–050) (Ghose *et al.*, 1998) mide la presencia de heteroátomos en un compuesto. Finalmente, el autovalor más alto de la matriz de Burden ponderada por el estado intrínseco (*SpMax1_Bh(s)*) (Gutrnan *et al.*, 2003; Consonni &
Todeschini, 2008) se calcula a partir de un grafo molecular completo ponderado con el estado intrínseco atómico.

madala			d	0	-	0	
modelo	compuestos	IN	u	$R_{\scriptscriptstyle cal}^{\scriptscriptstyle 2}$	$S_{_{cal}}$	$R_{_{pred}}^{_{2}}$	S_{pred}
(Stanton & Jurs, 1989)	Pirazinas sustituidas	107	6	0.99	21.4	0.99	32.4
(Anker <i>et al.</i> , 1990)	Alcoholes, aldehídos, cetonas y ésteres	115	7	1.00	11.1	^a	
(Gerasimenko	Alquilbencenos	39	7	1.00	3.4	1.00	
& Nabivach,	Alquilnaftalenos	15	5	1.00	1.7	1.00	
1990)	Alquil aril carbamatos (Grupo 1)	27	3	1.00	1.4		
	Alquil aril carbamatos (Grupo 2)	27	4	1.00	0.6		
	Alquil aril carbamatos (Grupo 3)	27	4	0.99	7.0		
(Goodner, 2008)	Fragancias	91	5	0.99			
(Yan <i>et al.</i> , 2012)	Sabores	297	4	0.96	59.6	0.96	58.0
Presente ^b	Sabores y fragancias	1208	4	0.91	100.9	0.93	78.0

Tabla 4.4. Comparación de varios modelos QSPR para los índices de retención medidos en la columna OV–101

^a no disponible; ^b (Rojas *et al.*, 2015a)

La Tabla 4.4 presenta una comparación de los modelos QSPR desarrollados para índices de retención medidos en la columna apolar OV–101. Se observa que cuando se construye un modelo considerando únicamente un grupo de compuestos que tienen estructura similar, se obtienen buenos resultados, sea en calibración o predicción. Adicionalmente, tres modelos QSPR no presentan validación externa (Anker *et al.*, 1990; Gerasimenko & Nabivach, 1990; Goodner, 2008). Por el contrario, al considerar grupos heterogéneos de moléculas se obtienen modelos con calidad inferior, aunque es siempre posible dividir la base de datos para realizar validación externa (Stanton & Jurs, 1989; Yan *et al.*, 2012). La base de datos de 1208 compuestos es la más grande utilizada hasta el momento. En efecto, es 4.1 veces mayor a la más grande previamente utilizada (Yan *et al.*, 2012).

Debido a la amplia diversidad de moléculas consideradas en el modelo QSPR de la Ec. 4.1, las predicciones se restringen a compuestos volátiles para los cuales el *I* esté dentro del rango de 350 a 2180 y cuyo valor de influencia sea menor al valor de influencia crítico ($h^* = 0.019$). El análisis del dominio de aplicabilidad (AD) indica que 5 compuestos del grupo de predicción caen fuera del AD del modelo. Estos compuestos son: *cis*–3–*hexenil antranilato* ($h_{ii} = 0.026$), *Isoamil antranilato* ($h_{ii} = 0.025$), *1,3–Butanodiol* ($h_{ii} = 0.024$), *Alil antranilato* ($h_{ii} = 0.023$), *o–Aminoacetofenona* ($h_{ii} = 0.023$). Luego de verificar que los valores de *I* y las estructuras químicas para estos compuestos son correctos en la fuente, se asume que este comportamiento se debe a la

heterogeneidad de las moléculas consideradas en esta base de datos. El principio de AD en QSPR obliga a definir las limitaciones del modelo con respecto a los descriptores moleculares y el espacio definido por la propiedad. Es decir, ningún modelo robusto, validado y predictivo es capaz de producir predicciones confiables para todo tipo de moléculas (Dimitrov *et al.*, 2005; Gramatica, 2007), pues constituyen modelos locales. Por otro lado, se había indicado previamente (Tabla 4.4) que varios modelos QSPR se han desarrollado considerando únicamente familias de compuestos estructuralmente homogéneos.

4.1.4. Conclusiones

El modelo QSPR desarrollado para los índices de retención medidos en la columna apolar OV–101 tiene buena capacidad para predecir la propiedad de compuestos no evaluados y no sintetizados hasta el momento. Así, este estudio complementa modelos previamente desarrollados; sin embargo, tiene mayor capacidad de extensión a compuestos diversamente estructurales, debido a que la base de datos utilizada incluye compuestos heterogéneos. Por otro lado, el uso de descriptores independientes de la conformación es suficiente para modelar y predecir el índice de retención, mostrando claramente que estos modelos constituyen una alternativa válida para la predicción de propiedades cromatográficas.

4.2 Modelo QSPR para índices de retención medidos en la columna polar Carbowax 20M

4.2.1. Introducción

Diversos estudios QSPR se han publicado para modelar y predecir el índice de retención en la fase estacionaria polar Carbowax 20M. Particularmente, grandes esfuerzos se han realizado para estudiar compuestos derivados del alquilbenceno (Woloszyn & Jurs, 1993; Dimov *et al.*, 1994; Sutter *et al.*, 1997; Yan *et al.*, 2000; Yan & Hu, 2001; Zhou & Nie, 2007; Porto *et al.*, 2008), derivados de la pirazina (Stanton & Jurs, 1989; Anker *et al.*, 1990; Edwards *et al.*, 1991; Touhami *et al.*, 2012), así como terpenos monocíclicos y acíclicos (Jalali-Heravi & Fatemi, 2001).

También se han desarrollado algunos trabajos concernientes a aromas y sabores. En 1990, Anker et al. (Anker *et al.*, 1990) midieron los índices de retención de 115 compuestos aromáticos y desarrollaron un modelo QSPR después de eliminar 4 valores atípicos ($R_{cal}^2 = 0.99$ y $S_{cal} = 17.1$). Más adelante, en el año 2012, Yan et al. (Yan *et al.*, 2012) desarrollaron un modelo QSPR para 330 compuestos saborizantes y seis descriptores moleculares seleccionado a partir de un conjunto de

115 descriptores mediante regresión a pasos ($R_{cal}^2 = 0.92$ y $S_{cal} = 104.2$). Posteriormente, el modelo fue usado para predecir el *I* del grupo de validación de 107 moléculas ($R_{val}^2 = 0.93$ y $S_{val} = 105.5$).

El objetivo de este trabajo fue el desarrollo de un modelo QSPR para los índices de retención 1184 compuestos volátiles medidos en la columna polar Carbowax 20M en GC. Adicionalmente se ha usado el modelo para la predicción del *I* de 22 compuestos volátiles para los cuales no fue reportada dicha propiedad. Al igual que para el estudio de la sección 4.1, esta base de datos constituye la más grande considerada hasta el momento. Los resultados de este trabajo han sido previamente publicados (Rojas *et al.*, 2015b).

4.2.2. Materiales y métodos

En este estudio se utilizó la base de datos de 1208 compuestos publicada por Jennings y Shibamoto (Jennings & Shibamoto, 1980). La propiedad experimental es el índice de retención medido en la columna capilar (0.2 mm×80 m) cubierta con polietilenglicol Carbowax 20M y programada desde 70 hasta 170°C at 2°C×min⁻¹. El dominio experimental se encuentra en el rango de 500 a 2640 unidades. Para esta columna, 22 compuestos no presentan el valor de *I*, por lo cual se han considerado como un grupo de predicción externo. Los nombres químicos y los índices de retención de los 1184 compuestos se presentan en la Tabla 2A, que se encuentra en el CD que acompaña a esta tesis. La metodología seguida para este estudio fue la misma usada para los índices de retención de la columna OV–101.

4.2.3. Resultados y discusión

El BSM permitió dividir la base de datos de 1184 compuestos en grupos de calibración (N_{cal} = 395), validación (N_{val} = 396) y predicción (N_{pred} = 393). Las asignaciones a estos grupos se encuentran en la Tabla 2A. Posteriormente, con el grupo de calibración y predicción, se usó el RM para explorar tres grupos de descriptores: a) 2895 descriptores independientes y dependientes de la conformación, b) 1815 descriptores independientes de la conformación y c) 1080 descriptores dependientes de la conformación. Al igual que para la columna OV–101, se buscó identificar si los descriptores dependientes de la conformación aportan información relevante al modelado del índice de retención.

Las Tablas 4.5, 4.6 y 4.7 muestran los mejores modelos de 1 a 9 descriptores moleculares para cada uno de los tres grupos. En cada caso, el mejor modelo se indica en negrita y se observa la ausencia de sobreajuste en los mismos, debido a que los parámetros de calibración y validación son muy similares.

d	R_{m}^2	S	R_{ual}^2	S	R_{iimax}^2	Descriptores
			Val		0.00	0000
1	0.72	232.3	0.69	222.0	0.00	SCBO
2	0.81	189.9	0.80	175.7	0.11	SCBO, Hy
3	0.85	170.0	0.85	155.4	0.11	SCBO, C–001, Hy
4	0.88	153.2	0.88	135.6	0.87	Sv, RDF010p, CATS2D_02_AA, Hy
5	0.89	146.6	0.90	127.8	0.88	Sp, SM6 B(s), MATS2e, RDF010e,
						nHDon
6	0.91	134.9	0.91	119.4	0.88	Sp, SM5 B(s), RDF010e, nHDon, C-
						005, CATS2D 04 DA
7	0.90	138.0	0.91	119.9	0.91	Sp. SM5 B(s), MATS2e, RDF010p.
						Mor18s. Hv. PDI
8	0.92	127 9	0.92	116 1	0.91	Sp FF B(s) MATS2e RDF010p C-
Ũ	0.02		0.02		0.01	005 CATS2D 04 DA HV PDI
a	0 91	134 0	0 92	112.2	0 35	SCBO SM1 Dz(m) ATSC2s F1s
3	0.31	104.0	0.32	112.2	0.55	$CDO, CMI_DZ(III), AIGOZS, EIS, COM$
						nR=Cp, nHDon, C=001, NassC,
						CATS2D_04_DA

Tabla 4.5. Mejores modelos QSPR obtenidos mediante RM usando los descriptores independientes y dependientes de la conformación.

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

		u	escript		ependie	
d	$R^{\scriptscriptstyle 2}_{\scriptscriptstyle cal}$	$S_{_{cal}}$	$R^{\scriptscriptstyle 2}_{\scriptscriptstyle \it val}$	$S_{_{val}}$	$R_{ij\mathrm{max}}^2$	Descriptores
1	0.72	232.3	0.69	222.0	0.00	SCBO
2	0.81	189.9	0.80	175.7	0.11	SCBO, Hy
3	0.85	170.0	0.85	155.4	0.11	SCBO, C–001, Hy
4	0.86	164.3	0.87	146.1	0.84	Sv, P_VSA_m_1, C–002, Hy
5	0.87	157.8	0.89	133.2	0.94	Se, P_VSA_m_1, NssCH2,
						CATS2D_04_DA, CATS2D_02_AA
6	0.89	143.7	0.89	131.2	0.86	H_Dz(v), SM3_B(p), SM6_B(s), C–001,
						SdCH2, Hy
7	0.90	137.6	0.91	119.8	0.85	Se, Chi_H2, SM1_Dz(e), WiA_Dz(p),
						nHDon, SaaO, CATS2D_04_DA
8	0.91	132.0	0.91	117.4	0.94	piID, XMOD, SpAD_B(m),
						SpDiam_B(s), C–001,
						CATS2D_04_DA, B02[O–O], Hy
9	0.91	134.2	0.92	115.0	0.71	SCBO, Xindex, J_Dz(p), P_VSA_m_2,
						SpMAD_EA(dm), C–001, SdCH2,
						CATS2D_04_DA, Hy

Tabla 4.6. Mejores modelos QSPR obtenidos mediante RM usando los descriptores independientes de la conformación.

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

Al igual que para la columna apolar OV–101, se observa que los descriptores conformacionales no aportan información significativa para modelar el índice de retención en la columna polar Carbowax 20M. En

efecto, cuando se usan únicamente los descriptores dependientes de la conformación (Tabla 4.7), el mejor modelo muestra menor calidad que los modelos considerando todos los descriptores (Tabla 4.5) y los modelos independientes de la conformación (Tabla 4.6).

			looonp		ponaioi	
d	$R^{\scriptscriptstyle 2}_{\scriptscriptstyle cal}$	$S_{\scriptscriptstyle cal}$	$R_{\scriptscriptstyle val}^2$	S_{val}	$R^2_{ij\mathrm{max}}$	descriptores
1	0.62	270.1	0.57	259.1	0.00	G2
2	0.73	227.3	0.70	216.0	0.03	G2, R2i
3	0.78	203.3	0.74	201.6	0.31	G2, R1e+, R2i
4	0.82	186.1	0.78	186.2	0.35	G2, Mor13p, H2i, R1e+
5	0.84	174.0	0.85	152.8	0.98	G2, SpPos_G/D, RDF010e, RDF010p,
						Mor03u
6	0.87	157.6	0.88	136.7	0.99	Ho_G, SpMAD_G/D, RDF010p,
						RDF010i, Mor05p, Mor15i
7	0.85	168.9	0.85	154.8	0.45	G2, SpMAD_RG, SpMAD_G/D,
						Mor29v, Mor14s, Mor28s, R1s+
8	0.89	147.1	0.89	130.4	0.99	Ho_G, SpMAD_G/D, RDF025v,
						RDF010p, RDF010i, Mor06u, Mor06i,
						Mor14i
9	0.90	141.4	0.90	127.7	1.00	Chi_RG, SpPos_G/D, RDF010u,
						RDF010p, Mor05p, Mor12s, Te, Tp,
						R1m+

Tabla 4.7. Mejores modelos QSPR obtenidos mediante RM usando los descriptores dependientes de la conformación.

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

La selección de un modelo independiente de la conformación ayuda a evitar ambigüedades debidas a la optimización molecular y los costos computaciones involucrados (Garcia *et al.*, 2016). De esta manera, el modelo QSPR constituye la ecuación de 7 descriptores independientes de la conformación:

$$I = -157.2 - 24.7 \text{ Se} + 835 \text{ Chi} - H2 + 1067.8 \text{ SM1} - Dz(e)$$

-315.5WiA _ Dz(p) + 317.1nHDon - 36.3 SaaO (4.2)
-176CATS2D _ 04 _ DA

$$\begin{split} N_{cal} &= 395, \ R_{cal}^2 = 0.90, \ S_{cal} = 137.6 \\ N_{val} &= 396, \ R_{val}^2 = 0.91, \ S_{val} = 119.8 \\ N_{pred} &= 393, \ R_{pred}^2 = 0.90, \ S_{pred} = 121.5 \\ R_{loo}^2 &= 0.90, \ S_{loo} = 130.1, \ R_{lmo}^2 = 0.94, \ S_{lmo} = 134.1 \\ S_{rand} &= 408.7, \ o(3S) = 14, \ R_{ij\,max}^2 = 0.84 \end{split}$$

En la validación cruzada de dejar–varios–fuera (Imo) se excluyeron el 20% de moléculas. La aleatorización–Y refleja que $S_{cal} < S_{rand}$, indicando la ausencia de correlación casual en el modelo de la Ec. 4.2. Finalmente, los parámetros adicionales de validación que se presentan a continuación indican que una relación cuantitativa estructura–propiedad predictiva se ha alcanzado:

$$\begin{aligned} R_{loo}^2 &> 0.5 \ (0.90) \ y \ R_{pred}^2 &> 0.6 \ (0.90) \\ 1 - R_0^2 \ / \ R_{pred}^2 &< 0.1 \ (0.002) \ o \ 1 - R_0^{'2} \ / \ R_{pred}^2 &< 0.1 \ (0.025) \\ 0.85 &< k(1.003) \le 1.15 \ y \ 0.85 &< k'(0.991) \le 1.15 \\ R_m^2 &> 0.5 \ (0.86) \end{aligned}$$

Figura 4.3. Índices de retención experimentales y predichos para aromas medidos en la columna Carbowax 20M

La Figura 4.3 muestra la gráfica de los valores de índices de retención experimentales en función de los predichos por el modelo y la Figura 4.4 indica el gráfico de los valores de los residuos. Ambos gráficos revelan que los índices de retención son bien modelados por una regresión lineal múltiple.

Los catorce valores atípicos identificados en el modelo QSPR son las moléculas: γ -Decalactona (236), δ -Decalactona (237), Éter dietílico de dietilenglicol (256), γ -Dodecalactona (301), Almizcle xilol (523), γ -Nonalactona (534). δ –Undecalactona (671), Elemol (740).Dimetilsulfóxido (748), 2-hidroxiisobutirato de metilo (861), Isovalerato de metilo (1006), 6-Metilcumarina (1017), Bencil n-propilcarbinol (1136) y Jasmal (1147). Se controlaron en la fuente los valores de índices de retención y las fórmulas químicas, las cuales son correctas, por lo que se asume que estas moléculas se comporten como valores atípicos debido a la gran diversidad de compuestos presentes en la base de datos.

Figura 4.4. Gráfico de dispersión para el modelo QSPR de la Ec. 4.2

La correlación máxima entre los descriptores *Se* y *Chi_H2* es $R_{ij\,max}^2 = 0.84$, indicando una correlación moderada entre los mismos. Los descriptores *Chi_H2*, *SM1_Dz(e)* y n*HDon* tienen un efecto sinérgico sobre el índice de retención; mientras que *Se*, *WiA_Dz(p)*, *SaaO* y *CATS2D_04_DA* tienen efecto antagónico sobre el *I*. El grado de contribución relativo de cada descriptor (b_j^s) , indica la importancia de cada descriptor en modelar el *I*: *Chi_H2* (2.01) > *WiA_Dz(p)* (0.99) > *Se* (0.54) > *SM1_Dz(e)* (0.39) > n*HDon* (0.32) > *CATS2D_04_DA* (0.14) > *SaaO* (0.10).

El índice tipo Randić de la matriz de distancias recíprocas al cuadrado (*Chi_H2*) (Consonni & Todeschini, 2012) se calcula a partir de la matriz inversa de distancias al cuadrado (H2) entre cualquier par de átomos (excepto H), considerando una generalización de la fórmula clásica del índice de conectividad de Randić basada en los grados de vértice. Este descriptor está estrechamente relacionado con el índice de Zagreb propuesto como un índice de Randić general. Se había indicado para la columna OV–101 que el índice de conectividad de Randić mide el grado de ramificación y compactación de las moléculas y se encuentra correlacionado con el tiempo de retención en GC y punto de ebullición. De esta manera, compuestos volátiles que tienen alto grado de ramificación tienen altos valores de la entropía de mezcla con la fase estacionaria. En consecuencia, debido a la estabilidad de la mezcla, se necesita incrementar la temperatura para lograr que el compuesto regrese a la fase móvil, lo cual lógicamente incrementa el *I*.

El índice tipo Wiener promedio de la matriz Barysz ponderado por la polarizabilidad ($WiA_Dz(p)$) y el momento espectral de orden 1 de la matriz de Barysz ponderado por la electronegatividad de Sanderson ($SM1_Dz(e)$) se calculan a partir de la matriz de Barysz ponderada por

las polarizabilidades atómicas y electronegatividades de Sanderson, respectivamente. La matriz de Barysz toma en cuenta contemporáneamente la presencia de heteroátomos y enlaces múltiples en la molécula (Ivanciuc, 2000).

Por otro lado, la suma de electronegatividades atómicas de Sanderson (escaladas sobre el átomo de C) (*Se*) (Kode srl., 2016) es una propiedad atómica calculada como la suma de las relaciones entre los valores de electronegatividad de cada átomo con respecto a la del carbono, indicando de esta manera cómo los electrones de enlace se distribuyen entre estos dos átomos cuando existe un enlace químico entre ellos.

nHDon es un grupo funcional que indica la presencia de átomos nitrógeno y oxígeno donantes de enlaces hidrógeno. Este descriptor indica la capacidad de la molécula de interaccionar con los constituyentes polares de la fase estacionaria y por consiguiente aumentar la retención de la molécula.

El descriptor CATS2D donante-aceptor a desplazamiento 4 (*CATS2D_04_DA*) indica la presencia de pares de átomos donanteaceptor de enlaces de hidrógeno separados por una distancia topológica de 4 unidades (Fechner *et al.*, 2003). Finalmente, La suma de los estados electrotopológicos aaO (*SaaO*) (Hall & Kier, 1995) cuantifica la presencia de átomos de oxígeno unido a dos enlaces aromáticos.

La Tabla 4.8 presenta una comparación de los modelos QSPR desarrollados para índices de retención medidos en la columna polar Carbowax 20M.

modelo	compuestos	Ν	d	$R^{\scriptscriptstyle 2}_{\scriptscriptstyle cal}$	$S_{_{cal}}$	R^2_{pred}	$S_{_{\textit{pred}}}$
(Stanton & Jurs, 1989)	Pirazinas sustituidas	107	6	0.99	33.7	0.99	51.6
(Anker <i>et al.</i> , 1990)	Compuestos aromáticos	111	7	0.99	17.1	a	
(Edwards <i>et</i> <i>al.</i> , 1991)	Pirazinas mono y di sustituidas	74	4	0.99	40.3		
(Woloszyn & Jurs, 1993)	Mezcla de hidrocarburos	81	5	0.97	23.3		
•••••	Alguilbencenos	40	3	0.99	13.0		
(Dimov <i>et al.</i> , 1994)	Alquilbencenos	16	1	0.98	9.6		
(Sutter <i>et al.</i> , 1997)	Alquilbencenos (MLR) Alquilbencenos (ANN)	150	6	0.98	18.0 11.7		21.8 18.9
(Yan <i>et al.</i> ,	Alquilbencenos (MLR)	165	7	0.88	44.8		
2000)	Alquilbencenos (NMLR)			0.97	23.1		
	Alquilbencenos (ANN1)			0.97	21.8		
	Alquilbencenos (ANN2)			0.98	19.5		
(Yan & Hu, 2001)	Alquilbencenos (MLR) Alquilbencenos	170	8	0.97 0.99	26.1 15.5	0.99 0.99	18.2 16.6

 Tabla 4.8. Comparación de varios modelos QSPR para los índices de retención medidos en la columna Carbowax–20M

	(NMLR)						
	Alquilbencenos (ANN)			0.99	12.6	0.99	13.2
(Jalali-Heravi	Terpenos acíclicos y	53	6	0.77		0.50	
& Fatemi,	monocíclicos (MLR)						
2001)	Terpenos acíclicos y			0.94		0.88	
	monocíclicos (ANN)						
(Zhou & Nie,	Alquilbencenos		3	0.99	17.6		
2007)							
(Porto <i>et al.</i> ,	Alquilbencenos	34	1	0.95	25.1		
2008)							
(Touhami <i>et</i>	Pirazinas	35	3	0.99		0.98	
<i>al.</i> , 2012)							
(Yan <i>et al.</i> ,	Compuestos de sabor	434	6	0.92	104.2	0.93	105.5
2012)	-						
Presenteb	Sabores y fragancias	1184	7	0.90	137.6	0.90	121.5
a							

^a no disponible; ^b (Rojas *et al.*, 2015b)

La base de datos considerada en este estudio constituye la más grande usada hasta el momento. En efecto, es 2.7 veces mayor a la más grande previamente utilizada (Yan *et al.*, 2012). Adicionalmente, seis modelos QSPR no han sido sometidos a validación externa (Anker *et al.*, 1990; Edwards *et al.*, 1991; Dimov *et al.*, 1994; Yan *et al.*, 2000; Zhou & Nie, 2007; Porto *et al.*, 2008) y uno no presenta los resultados para el grupo de predicción de 81 hidrocarburos (Woloszyn & Jurs, 1993).

Las predicciones del modelo QSPR de la Ec. 4.2, se restringen a compuestos volátiles para los cuales el / esté dentro del rango de 500 a 2640 y cuyo valor de influencia sea menor al valor de influencia crítico $(h^* = 0.030)$. El análisis del dominio de aplicabilidad (AD) indica que 13 compuestos del grupo de predicción caen fuera del AD del modelo: Isoamil antranilato (h_{ii} = 0.051), Antranilato de isobutilo (h_{ii} = 0.050), Antranilato de etilo (h_{ii} = 0.050), 3–Hidroxibutirato de metilo (h_{ii} = 0.048), Salicilato de cis-3-hexenilo ($h_{ii} = 0.046$), Salicilato de alilo ($h_{ii} = 0.045$), Metil n–metil antranilato (h_{ii} = 0.045), Metil N–propil antranilato (h_{ii} = 0.045), n–Butil N–metil antranilato (h_{ii} = 0.045), Salicilato de isopropilo $(h_{ii} = 0.045)$, Isopropil n-metil antranilato $(h_{ii} = 0.045)$, m-Aminoacetofenona (h_{ii} = 0.034) y 2–Isopropil–4–etil–5–metiloxazol (h_{ii} = 0.031). Se observa que la mayoría de compuestos fuera el AD del derivados del antranilato y salicilato. modelo corresponden a Posteriormente, se verificó que las respuestas experimentales y las estructuras químicas son las correctas en la fuente. Se indicó previamente (columna OV-101) que este tipo de comportamiento se puede deber a la heterogeneidad de la base de datos, así como a las limitaciones predictivas intrínsecas del modelo definidas por el AD (Dimitrov et al., 2005; Gramatica, 2007).

Por otro lado, varios modelos QSPR presentados en la Tabla 4.8 se han desarrollado únicamente usando familias homogéneas de compuestos, por ejemplo alquilbencenos o pirazinas, lo cual reduce la habilidad de dichos modelos a generalizar el AD para otros compuestos volátiles (Stanton & Jurs, 1989; Edwards *et al.*, 1991; Woloszyn & Jurs, 1993; Dimov *et al.*, 1994; Sutter *et al.*, 1997; Yan *et al.*, 2000; Jalali-Heravi & Fatemi, 2001; Yan & Hu, 2001; Zhou & Nie, 2007; Porto *et al.*, 2008; Touhami *et al.*, 2012).

Usando el modelo QSPR de la Ec. 4.2, se han predicho los índices de retención de los 22 compuestos volátiles. En la Tabla 4.9 se presentan los valores predichos y el valor de influencia para estos compuestos. Existen 6 moléculas que caen fuera el AD del modelo, es decir, sus predicciones son extrapolaciones. Estos compuestos son: *pinacol, salicilato de fenilo, cis*–3–*hexenil antranilato, salicilato de p*–*cresilo, cinamil cinamato, antranilato de feniletilo.*

nombre	h _{ii}	I _{pred}	l _{literatura}
Pinacol	0.039 ^a	1499.7	1338 ^⁵ (Shiratsuchi <i>et al.</i> , 1994;
			Linstrom & Mallard, 2001)
sec–Butilbenceno	0.009	1415.3	1227, 1248 (Linstrom & Mallard,
			2001)
Hidrato de trans–	0.010	1664.3	1458 ^c (Acree & Arn, 2004)
Sabineno			1548.9 (Babushok et al., 2011)
γ–Muurolene	0.013	1691.2	1675 (Bicchi <i>et al.</i> , 2003)
			1681 (Acree & Arn, 2004)
			1689.8 ^d (Babushok <i>et al.</i> , 2011)
Anisil isobutirato	0.006	2024.1	_*
Zingerona	0.019	2557.2	_*
Anisil n–valerato	0.008	2198.0	2400 (Linstrom & Mallard, 2001)
Benzoato de bencilo	0.020	2485.8	2071 [°] (Acree & Arn, 2004)
			2612.7 ^ª (Babushok <i>et al.</i> , 2011)
			2655 (Linstrom & Mallard, 2001)
Salicilato de fenilo	0.051 ^a	2578.2	_*
Benzoato de bornilo	0.007	2294.4	2114 ^c (Acree & Arn, 2004)
Benzoato de p–cresilo	0.016	2434.2	_*
cis–3–hexenil	0.055 ^a	2560.7	_*
antranilato			
Fenilacetato de p–	0.017	2514.7	_*
cresilo			
Benzoato de feniletilo	0.022	2551.4	2189 ^c (Acree & Arn, 2004)
			2654 (Linstrom & Mallard, 2001)
Salicilato de p–cresilo	0.049 ^a	2589.1	_*
2–Mercaptobenzotiazol	0.014	2031.7	_*
Benzoato de geranilo	0.011	2436.9	2617 ^e (Linstrom & Mallard, 2001)
Cinamil cinamato	0.039 ^ª	3001.9	*
Antranilato de feniletilo	0.065 ^a	2952.3	*
Cinamato de feniletilo	0.030	2822.3	3100 (Linstrom & Mallard, 2001)
n–heptanoato de anisilo	0.010	2364.2	2600 (Linstrom & Mallard, 2001)
n–hexanoato de anisilo	0.009	2280.2	*

Tabla 4.9. Valores de influencia e índice de retención predicho para 22
compuestos aromáticos en la columna Carbowax 20M

^a moléculas con influencia superior a $h^* = 0.030$. ^b medido en la columna polar DB–Wax. ^c Interpolado. ^d medido en la columna Polietilenglicol (PEG). ^e medido en la columna polar HP–Innowax FSC. * no reportado en la literatura.

Según los resultados presentados en la Tabla 4.9, el *Cinamato de feniletilo* presenta la mayor desviación (291 unidades) entre el *I* predicho

y reportado en la literatura. También otros compuestos muestran diferencias importantes entre estos dos valores: *n*–*heptanoato de anisilo* (245 unidades), *Anisil n–valerato* (211 unidades), *sec–Butilbenceno* (186 unidades), *Benzoato de geranilo* (185 unidades), *pinacol* (172 unidades), *Hidrato de trans–Sabineno* (127 unidades) y *Benzoato de feniletilo* (114 unidades). Sin embargo, el modelo es confiable para predecir el índice de retención del *γ–muurolene* (28 unidades) y *Benzoato de feniletilo* (95 unidades). Un aspecto interesante es que los compuestos *benzoato de bencilo* y *benzoato de feniletilo* presentan *I* predichos que están en mejor concordancia con respecto a los valores reportados en la base de datos Flavornet (Acree & Arn, 2004). Por otro lado, cinco moléculas (*benzoato de bencilo*, *benzoato de feniletilo*, *cinamato de feniletilo*, *cinamil cinamato, antranilato de feniletilo*) tienen valores de *I* predicho o reportado por encima del valor máximo del modelo (2640).

La relativa baja precisión en la predicción de los índices de retención presentados en la Tabla 4.9 se pueden atribuir a la baja reproducibilidad entre laboratorios, la cual se puede deber a diferentes factores que afectan el análisis GC (Soják *et al.*, 1981; Wittkowski & Matissek, 1993; Woloszyn & Jurs, 1993; Barwick, 1999; Babushok *et al.*, 2007):

- 1. Interacción polar entre el compuesto volátil analizado y las paredes de la fase estacionaria.
- 2. Identificación errónea de los compuestos.
- 3. Sensibilidad del equipo GC.
- 4. Variaciones de las condiciones de medición de los *I*, por ejemplo, tipo de gas usado, condiciones de temperatura y parámetros del detector.
- 5. Variaciones en las propiedades intrínsecas de la fase estacionaria: tipo de columna, espesor de película de la fase estacionaria, dimensión de la columna y antigüedad de la misma.
- Propiedades de la muestra (estabilidad térmica y la presencia de impurezas) y factores involucrados durante la preparación de la muestra.
- Factores que afectan la introducción de la muestra en el equipo GC: selección del sistema apropiado de inyección (poco o excesivo volumen y partición de la muestra).
- Fuentes de errores "espurios" (mal funcionamiento del equipo o errores del analista), errores y variabilidad asociados con la integración de los picos; así como errores normales de experimentación y errores de entrada de datos.

Finalmente, Gramatica (Gramatica, 2007) indicó que las predicciones erróneas posiblemente se pueden deber a datos experimentales incorrectos.

4.2.4. Conclusiones

En este estudio se ha desarrollado un modelo QSPR con buena capacidad predictiva para los índices de retención medidos en la columna polar Carbowax 20M. De esta forma, se han predicho los *I* para 22 compuestos volátiles para los cuales no se reportó la propiedad en la base de datos. Se compararon las predicciones con valores reportados en la literatura y se estableció que el modelo falla principalmente en la predicción del *I* de derivados del antranilato y salicilato. Por lo tanto, se discutieron las posibles causas de discrepancias entre los valores predichos y experimentales, las cuales se deberían a factores que afectan la reproducibilidad del análisis GC, datos erróneos reportados en la literatura y las limitaciones intrínsecas del modelo QSPR. Sin embargo, el modelo desarrollado en este estudio permite una relación cuantitativa estructura–propiedad más general y, al igual que para la columna apolar OV–101, los descriptores independientes de la conformación son suficientes para generar modelos predictivos.

4.3 Modelo QSPR para índices de retención de aromas medidos en la columna polar DB-225MS

4.3.1. Introducción

Hasta donde se conoce, luego de una búsqueda exhaustiva en la literatura, no existen modelos QSPR desarrollados para índices de retención de compuestos volátiles en la columna polar DB–225MS. Con este antecedente, el objetivo de este estudio ha sido desarrollar la primera relación cuantitativa estructura–propiedad para los índices de retención medidos en la columna polar DB–225MS en GC. Los resultados de este trabajo han sido recientemente aceptados para su publicación en una revista científica con referato (Rojas *et al.*, 2017).

4.3.2. Materiales y métodos

Los índices de retención experimentales de 312 compuestos aromáticos se tomaron de la base de datos desarrollada por Yan et al. (Yan *et al.*, 2015). Esta propiedad fue medida en un cromatógrafo de Gas Agilent 7890A acoplado con un espectrómetro de masas Agilent 5975C. Los nombres químicos, el número de registro CAS y los índices de retención experimental se importaron en el programa KNIME (Berthold *et al.*, 2008). La notación de cadena SMILES de cada estructura se obtuvo a partir del nombre y del CAS, mediante el nodo del solucionador de identificación química (CIR) (NCI/CADD Group, 2013). Para cada molécula, se verifico que la notación SMILES coincida con el obtenido a partir del nombre y del número CAS; de esta manera, aquellos compuestos que tienen notación SMILES diferente fueron

chequeados manualmente en las bibliotecas químicas PubChem (Kim *et al.*, 2015), ChemSpider (Pence & Williams, 2010) y NIST Chemistry WebBook (Linstrom & Mallard, 2001). Durante el curado de la base de datos, se identificaron 41 compuestos repetidos por nombre o CAS. Debido a que el objetivo es desarrollar un modelo QSPR independiente de la conformación, 2 compuestos que se identificaron como duplicados fueron removidos. Se usó el valor promedio *I* para los compuestos repetidos por nombre o CAS, así como los compuestos similares en notación de cadena SMILES. De esta manera, la base de datos curada está constituida de 269 moléculas (Tabla 3A que se encuentra en el CD que acompaña a esta tesis). El diagrama de flujo programado en KNIME para el filtrado y curado de la base de datos se presenta en la Figura 4.5.

Figura 4.5. Diagrama de flujo KNIME para el curado de las bases de datos de índices de retención medidos en las columnas DB–225MS, HP5–MS y HP–1

Posteriormente. se calcularon 3808 descriptores moleculares independientes de la conformación usando el nodo de DRAGON 7 (Kode srl., 2016) implementado en KNIME (Figura 4.5). Se excluyeron aquellos descriptores con valores contantes o casi constantes y aquellos con al menos un valor faltante. Así, 1819 descriptores fueron analizados mediante el método de reemplazo para la selección de descriptores y encontrar el modelo óptimo. Para la validación del modelo, la base de datos se dividió en conjuntos de calibración, validación y predicción mediante el BSM. El grupo de calibración se usó para la selección de descriptores mediante RM y el ajuste de los modelos; mientras que el grupo de validación se usó para evitar la presencia de sobreajuste durante la selección supervisada. También se han usado las técnicas de validación cruzada de dejar-uno-fuera (loo) y dejar-varios-fuera (lmo) mediante la exclusión aleatoria del 20% de las moléculas, con 50000 repeticiones. La ausencia de correlación casual se estableció mediante la aleatorización-Y con 10000 repeticiones. Adicionalmente, se analizaron los criterios de validación propuestos por Golbraikh y Tropsha. Finalmente, se definió el dominio de aplicabilidad siguiendo el enfogue del influencia crítico (h^*), así como la contribución de cada descriptor molecular y la interpretación mecanicista del modelo.

		de	escript	ores ind	ependie	ntes de la conformación.
d	$R^{\scriptscriptstyle 2}_{\scriptscriptstyle cal}$	$S_{_{cal}}$	$R^2_{\scriptscriptstyle val}$	S_{val}	$R^2_{ij \max}$	descriptores
1	0.72	253.6	0.74	216.5	0	SNar
2	0.79	218.2	0.82	183.1	0.01	J_Dt, SpAD_B(s)
3	0.78	224.7	0.83	180.6	0.64	Chi_B(i), MATS1p, P_VSA_m_1
4	0.82	205.2	0.84	173.1	0.12	SpAbs_B(e), MATS1v, C-001, C-008
5	0.86	181.7	0.84	172.6	0.56	SpMaxA_Dz(p), J_Dz(i), SpAbs_B(m),
						P_VSA_v_2, nCrt
6	0.88	168.0	0.84	174.7	0.69	SCBO, J_D, P_VSA_m_2, nCrt, C–006,
						CATS2D_08_DA
7	0.91	148 5	0.83	180.6	0 70	SCBO RED X5sol GATS6v

Tabla 4.10. Mejores modelos QSPR obtenidos mediante RM usando los descriptores independientes de la conformación.

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

P_VSA_m_2, nCrt, CATS2D_08_DA

4.3.3. Resultados y discusión

La base de datos de 269 compuestos fue dividida mediante el BSM en grupos de calibración y validación de 90 moléculas cada uno, y un grupo de predicción de 89 compuestos. Las asignaciones realizadas por BSM se detallan en la Tabla 3A. El método de reemplazo permitió desarrollar modelos a partir de 1819 descriptores independientes de la

conformación. La Tabla 4.10 resume los mejores modelos QSPR de 1 a 7 descriptores, en los cuales se observa la ausencia de sobreajuste.

La selección del modelo óptimo (en negrita) propone como el candidato más apropiado al modelo constituido por 4 descriptores:

$$I = 702.6 + 65.9 SpAbs B(e) + 1465.6 MATS1v - 105.9C - 001 + 235.7C - 008$$
(4.3)

$$\begin{split} N_{cal} &= 90 \;,\; R_{cal}^2 = 0.82 \;,\; S_{cal} = 205.2 \\ N_{val} &= 90 \;,\; R_{val}^2 = 0.84 \;,\; S_{val} = 173.1 \\ N_{pred} &= 89 \;,\; R_{pred}^2 = 0.76 \;,\; S_{pred} = 179.9 \\ R_{loo}^2 &= 0.82 \;,\; S_{loo} = 191.5 \;,\; R_{lmo}^2 = 0.88 \;,\; S_{lmo} = 212.4 \\ S_{rand} &= 418.8 \;,\; o(3S) = 3 \;,\; R_{ij\,max}^2 = 0.16 \end{split}$$

Los resultados del modelo y los criterios adicionales de validación que se detallan a continuación confirman que se ha obtenido un modelo QSPR predictivo para los índices de retención medidos en la columna DB–225MS:

$$\begin{aligned} R_{loo}^2 &> 0.5 \ (0.82) \ y \ R_{pred}^2 > 0.6 \ (0.76) \\ 1 - R_0^2 \ / \ R_{pred}^2 &< 0.1 \ (0.000) \ o \ 1 - R_0^{'2} \ / \ R_{pred}^2 &< 0.1 \ (0.10) \\ 0.85 &\leq k (0.99) \leq 1.15 \ y \ 0.85 \leq k' (0.99) \leq 1.15 \\ R_m^2 &> 0.5 \ (0.75) \end{aligned}$$

En la Figura 4.6 se observa la tendencia lineal alrededor de la recta de ajuste perfecto de los valores de índices de retención experimentales en función de los predichos por el modelo. Por otra parte, en la Figura 4.7 se muestra el gráfico de los valores de los residuos, el cual revela que dichos valores tienden a seguir un patrón aleatorio, con lo cual se acepta la suposición de que los índices de retención se modelan mediante una regresión lineal múltiple.

Figura 4.6. Índices de retención experimentales y predichos para aromas medidos en la columna DB–225MS

Existen tres moléculas identificadas como valores atípicos: *dihidroactinolida, 4–(4–Hidroxifenil)–2–butanona*, y *alcohol de bencilo*. Se comprobó que la fórmula química y el índice de retención sean correctos. Como se había indicado, este comportamiento se puede deber a la heterogeneidad de las estructuras químicas consideradas.

Figura 4.7. Gráfico de dispersión para el modelo QSPR de la Ec. 4.3

La máxima correlación ($R_{ij\,max}^2 = 0.16$) entre los descriptores *SpAbs_B(e)* y *MATS1v* indica una baja correlación entre los descriptores del modelo, por lo que cada descriptor refleja aspectos particulares en el modelado de la propiedad (Duchowicz *et al.*, 2010). Por otra parte, el grado de contribución relativo de cada descriptor indica que *SpAbs_B(e)* (0.78) > *C*-001 (0.28) > *MATS1v* (0.20) > *C*-008 (0.17). La energía del grafo de la matriz de Burden ponderada por la electronegatividad de Sanderson (*SpAbs_B(e)*) es un índice topológico que se calcula como la suma de los valores absolutos de todos los autovalores (invariante del grafo) de la matriz de Burden ponderada por la electronegatividad de Sanderson (Gutrnan *et al.*, 2003; Consonni & Todeschini, 2008). Este descriptor indica que la presencia de átomos electronegativos (O, N, S, P, Se o halógenos) o grupos de átomos potencialmente involucrados en enlaces de hidrógeno tienden a incrementar el índice de retención debido a la habilidad que tienen para atraer electrones hacia ellos. En consecuencia, la fragancia es capaz de crear interacciones polares con los componentes de la fase estacionaria. Este hecho se confirma por la presencia de CH enlazados a dos átomos de carbono y un átomo electronegativo en la molécula (C–008) (Ghose *et al.*, 1998).

La autocorrelación de Moran a desplazamiento 1 ponderada por el volumen de van der Waals (MATS1v) se calcula aplicando el coeficiente de Moran (Moran, 1950) a un grafo molecular completo y ponderado por el volumen de van der Waals. Este descriptor provee información concerniente a la distribución de esta propiedad a lo largo de la estructura topológica de la molécula. Índices de retención altos están coeficiente relacionados а valores positivos del de Moran (autocorrelaciones espaciales positivas), es decir, el compuesto posee átomos con volumen de van der Waals similar a desplazamiento 1. Finalmente, el coeficiente negativo del descriptor C-001 (Ghose et al., 1998) indica que los índices de retención están inversamente relacionados con la presencia de fragmentos CH₃ en la molécula. Este comportamiento de los índices de retención se ha observado en hidrocarburos ramificados (Carlson et al., 1998; Katritzky et al., 2000).

Finalmente, el dominio de aplicabilidad del modelo permitió establecer la limitación de los 4 descriptores moleculares en la generación de predicciones confiables; es decir, los *I* predichos están restringidos a moléculas que presentan valor de influencia inferior al valor crítico ($h^* =$ 0.083). En este estudio no existen moléculas del grupo de predicción fuera del dominio de aplicabilidad, por lo tanto, el modelo fue capaz de predecir lo índices de retención de todas las fragancias. Ver Tabla 3A.

4.3.4. Conclusiones

El modelo QSPR desarrollado en este estudio constituye el primero para el estudio de los índices de retención medidos en la columna polar DB–225MS. La aplicación del enfoque QSPR independiente de la conformación resultó ser apropiado y este hecho confirma lo previamente expuesto en el estudio de los *I* para la columna polar Carbowax 20M. El modelo basado en 4 descriptores refleja que la energía del grafo de la matriz de Burden ponderada por la electronegatividad de Sanderson, la autocorrelación de Moran a desplazamiento 1 ponderada por el volumen de van der Waals, y la presencia de fragmentos CH₃ y fragmentos CH enlazados a dos átomos electronegativos en la molécula son suficientes para predecir esta propiedad.

4.4 Modelo QSPR para índices de retención de aromas medidos en la columna ligeramente polar HP5–MS

4.4.1. Introducción

Diversos estudios QSPR han sido reportados en la literatura para modelar y predecir los índices de retención en la fase estacionaria ligeramente polar HP5–MS. En el año 2003 Eckel y Kind (Eckel & Kind, 2003) realizaron un modelo de regresión simple entre el punto de ebullición y el índice de retención de Lee de 56 compuestos ($R_{cal}^2 = 0.97$). El mismo año, Wang et al. (Wang *et al.*, 2003) desarrollaron un modelo QSPR para 18 hidrocarburos aromáticos policíclicos clorados (CI–PAHs) con buenos resultados ($R_{cal}^2 = 0.99$).

Posteriormente, en el año 2009 Qin et al. (Qin et al., 2009) desarrollaron 3 modelos QSPR para los tiempos de retención de 96 aceites esenciales. El primer modelo fue en base a regresión MLR con 6 descriptores ($R_{cal}^2=0.98$, $S_{cal}=1.64$, $R_{val}^2=0.94$ y $S_{val}=2.65$), el segundo modelo se obtuvo mediante regresión en componentes principales (PCR) con 4 componentes ($R_{cal}^2 = 0.97$, $S_{cal} = 1.92$, $R_{val}^2 = 0.95$ y $S_{val} = 2.44$), mientras que el tercer modelo se desarrolló usando PLS con 5 variables latentes ($R_{cal}^2 = 0.97$, $S_{cal} = 1.81$, $R_{val}^2 = 0.96$ y $S_{val} = 2.19$). El mismo año, Riahi et al. (Riahi et al., 2009) trabajaron con 100 índices de retención de aceites esenciales de Citrus sudachi. Usaron GAs para calibrar un modelo MLR ($R_{cal}^2 = 0.95$, $S_{cal} = 48.3$, $R_{val}^2 = 0.93$ y $S_{val} = 60.4$) y otro PLS ($R_{cal}^2 = 0.94$, $S_{cal} = 50.3$, $R_{val}^2 = 0.91$ y $S_{val} = 67.0$) con seis descriptores y 3 LVs. Adicionalmente desarrollaron dos modelos no lineales: un modelo polinomial PLS con 3 LVs ($R_{cal}^2 = 0.95$, $S_{cal} = 46.0$, $R_{val}^2 = 0.93$ y $S_{val} = 56.9$) y un modelo basado en máquinas de soporte vectorial (SVM) ($R_{cal}^2 = 0.99$, $S_{cal} = 24.7$, $R_{val}^2 = 0.96 \text{ y } S_{val} = 51.4$).

Por otro lado, en el año 2011 Mohammadhosseini et al. (Mohammadhosseini et al., 2011) establecieron un modelo QSPR con

tres descriptores para 29 compuestos de calibración ($R_{cal}^2 = 0.98$) y 14 moléculas en el grupo de validación ($R_{val}^2 = 0.95$). Al siguiente año, Noorizadeh y Noorizadeh (Noorizadeh & Noorizadeh, 2012) estudiaron los tiempos de retención de 69 opiáceos y sedantes mediante el uso de descriptores DRAGON seleccionados mediante GAs. Se desarrollaron dos modelos lineales: 1) MLR con seis descriptores ($R_{cal}^2 = 0.91$, $S_{cal} = 95.6$, $R_{val}^2 = 0.87$ y $S_{val} = 163.6$); y 2) PLS con ocho descriptores y 5 LVs ($R_{cal}^2 = 0.92$, $S_{cal} = 90.5$, $R_{val}^2 = 0.88$ y $S_{val} = 157.9$). También desarrollaron dos modelos no lineales: 1) kernel PLS ($R_{cal}^2 = 0.93$, $S_{cal}=81.9$, $R_{val}^2=0.90$ y $S_{val}=141.3$) y 2) red neuronal artificial de Levenberg-Marquardt (L-M ANN) ($R_{cal}^2 = 0.96$, $S_{cal} = 68.4$, $R_{val}^2 = 0.93$ y $S_{val} = 117.7$). Ese mismo año, Zhao et al. (Zhao et al., 2012) utilizaron una base de datos de 178 compuestos orgánicos volátiles para predecir los índices de retención a temperatura programada usando 9 blogues de índices topológicos en subespacios ortogonales con validación cruzada Monte–Carlo ($R_{cal}^2 = 0.99$, $S_{cal} = 36.0$, $S_{val} = 32.6$). Posteriormente, Qin et al. (Qin et al., 2013) desarrollaron un modelo QSPR para los índices de retención de los constituyentes de aceite esencial mediante el uso del algoritmo de Kennard-Stone para dividir el conjunto de datos. Se seleccionaron tres descriptores DRAGON mediante la selección de predictores ordenados ($R_{cal}^2 = 0.94$ y $R_{val}^2 = 0.90$).

En un estudio reciente, Goudarzi et al. (Goudarzi et al., 2014) predijeron los índices de retención de 83 hidrocarburos aromáticos policíclicos (PAHs) mediante el método de bosques al azar (RF) con 5 descriptores DRAGON ($R_{cal}^2 = 0.99$), los cuales se usaron también para desarrollar una red neuronal artificial de retropropagación (BPANN) $R_{cal}^2 = 0.99$ (). AI mismo tiempo, Mohammadhosseini (Mohammadhosseini, 2014) calibró un modelo MLR para los índices de retención de 80 derivados terpénicos basado en la selección de descriptores de optimización por enjambre de partículas (PSO), el cual se usó para predecir los *I* de 28 compuestos ($R_{cal}^2 = 0.94$ y $R_{val}^2 = 0.90$).

En el trabajo que se presenta a continuación, se ha desarrollado un modelo QSPR para los índices de retención de 266 compuestos volátiles medidos en la columna HP5–MS en cromatografía de gases. El modelo desarrollado ha sido aplicado para la predicción del índice de retención para los tres compuestos que no presentaban dicha propiedad. Los resultados de este trabajo han sido recientemente aceptados para su publicación en una revista científica con referato (Rojas *et al.*, 2017).

4.4.2. Materiales y métodos

Para los índices de retención medidos en la columna HP5–MS se siguió la misma metodología y diagrama de flujo usado para la base de datos DB–225MS (Figura 4.5). Los índices de los compuestos *Isobutanol, Acetato de etilo* y *Acetato de isopropilo* no fueron reportados, por lo que se usaron para predecir la propiedad experimental de los mismos. Por lo tanto, se utilizaron 266 compuestos para el desarrollo del modelo QSPR (Tabla 4A que se encuentra en el CD que acompaña a esta tesis).

		u	escript		rebellate	
d	$R^{\scriptscriptstyle 2}_{\scriptscriptstyle cal}$	$S_{_{cal}}$	$R^{\scriptscriptstyle 2}_{\scriptscriptstyle \it val}$	S_{val}	$R^2_{ij \max}$	descriptores
1	0.91	98.7	0.93	90.6	0	SNar
2	0.93	84.6	0.94	80.3	0.05	SpPos_A, MATS1p
3	0.94	79.4	0.95	74.8	0.03	SpPos_B(p), C-001, C-008
4	0.95	73.5	0.95	75.6	0.14	SpPos_A, SM6_B(s), MATS1p, nCrt
5	0.96	64.4	0.94	77.6	0.44	RFD, Ho_A, SM1_Dz(p), MATS1p,
						F04[C–O]
6	0.97	61.7	0.95	76.2	0.87	Sp, AVS_B(p), P_VSA_m_1,
						Eig15_AEA(bo), nCs, B04[O–O]

 Tabla 4.11. Mejores modelos QSPR obtenidos mediante RM usando los descriptores independientes de la conformación.

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

4.4.3. Resultados y discusión

Inicialmente se aplicó el BSM para dividir la base de datos de 266 compuestos en un grupo de calibración de 88 moléculas y grupos de validación y predicción con 89 moléculas cada uno. Estas asignaciones se encuentran disponibles en la Tabla 4A. Seguidamente, el método de reemplazo permitió obtener modelos MLR a partir de 1819 descriptores independientes de la conformación. La Tabla 4.11 resume los mejores modelos QSPR de 1 a 6 descriptores, en los cuales no se aprecia sobreajuste. El modelo óptimo resulta aquel que tiene 3 descriptores:

$$I = 286.6 + 74.3 \,\text{SpPos} \,B(p) - 56.6C - 001 \\ + 108.7C - 008$$
(4.4)

$$\begin{split} N_{cal} &= 88 \;,\; R_{cal}^2 = 0.94 \;,\; S_{cal} = 76.9 \\ N_{val} &= 89 \;,\; R_{val}^2 = 0.95 \;,\; S_{val} = 72.8 \\ N_{pred} &= 89 \;,\; R_{pred}^2 = 0.90 \;,\; S_{pred} = 76.2 \\ R_{loo}^2 &= 0.94 \;,\; S_{loo} = 75.1 \;,\; R_{lmo}^2 = 0.96 \;,\; S_{lmo} = 83.0 \\ S_{rand} &= 294.0 \;,\; o(3S) = 1 \;,\; R_{limax}^2 = 0.03 \end{split}$$

Los resultados de la Ec. 4.4 indican que se ha obtenido un modelo QSPR predictivo para los índices de retención medidos en la columna DB–225MS. Este hecho también se confirma con los criterios de validación que se indican a continuación:

$$\begin{aligned} R_{loo}^2 &> 0.5 \ (0.94) \ y \ R_{pred}^2 > 0.6 \ (0.90) \\ 1 - R_0^2 \ / \ R_{pred}^2 < 0.1 \ (0.00) \ o \ 1 - R_0^{\cdot 2} \ / \ R_{pred}^2 < 0.1 \ (0.01) \\ 0.85 &\leq k(1.00) \leq 1.15 \ y \ 0.85 \leq k'(0.99) \leq 1.15 \\ R_m^2 &> 0.5 \ (0.89) \end{aligned}$$

Figura 4.8. Índices de retención experimentales y predichos para aromas medidos en la columna HP5–MS

Los valores de índices de retención experimentales en función de los predichos por el modelo (Figura 4.8) y el gráfico de los valores de los residuos (Figura 4.9) indican que un modelo MLR es apropiado para los *I*. Por otra parte, la única molécula que presenta valor de *I* mayor a 3 veces la desviación estándar es el *dihidroactinolida*.

Figura 4.9. Gráfico de dispersión para el modelo QSPR de la Ec. 4.4

Los descriptores involucrados en la Ec. 4.4. corresponden a los bloques de descriptores basados en la matriz 2D (*SpPos_B(p)*) y fragmentos centrados en el átomo (*C–001* y *C–008*). La baja correlación ($R_{ij\,max}^2 = 0.03$) entre los descriptores *SpPos_B(p)* y *C–*001 indica ausencia de multicolinealidad (Duchowicz *et al.*, 2010) y por consiguiente que los tres descriptores capturan aspectos particulares en el modelado del *I*. El grado de contribución relativo de cada descriptor indica que *SpPos_B(p)* (0.98) > *C–001* (0.21) > *C–008* (0.11).

La suma espectral positiva de la matriz de Burden ponderada por la polarizabilidad (SpPos_B(p)) (Gutrnan et al., 2003; Consonni & Todeschini, 2008) es un índice topológico calculado como la suma de los autovalores positivos (invariante del grafo) de la matriz de Burden que ha sido ponderada con la polarizabilidad. Valores grandes de esta suma indican la presencia de átomos con alta polarizabilidad y, por consiguiente, mayor habilidad de interaccionar con la fase estacionaria mediante dipolos siendo retenida más tiempo. Como se presentó para la columna DB-225MS. los índices de retención se encuentran inversamente relacionados a la presencia de fragmentos CH_3 (C-001) y relacionados sinérgicamente a la existencia de fragmentos CH enlazados a dos átomos de carbono y un átomo electronegativo (C–008) (Ghose et al., 1998).

El análisis del dominio de aplicabilidad del modelo establece que las predicciones del *I* son confiables para los compuestos que presentan valor de influencia inferior al valor crítico ($h^* = 0.068$). En este estudio no existen moléculas del grupo de predicción fuera del dominio de aplicabilidad, por lo tanto, el modelo fue capaz de predecir lo índices de retención de todas las moléculas del grupo de predicción. Finalmente, el modelo QSPR de la Ec. 4.4 se usó para predecir el índice de retención de los tres compuestos para los cuales Yan et al. no presentaron los

valores experimentales: *Isobutanol* (I = 589.9 y $h_{ii} = 0.031$), Acetato de etilo (I = 681.0 y $h_{ii} = 0.024$) y Acetato de isopropilo (I = 831.5 y $h_{ii} = 0.076$). Se observa que la molécula Acetato de isopropilo presenta valor de influencia superior al valor crítico por lo que su predicción no sería confiable.

4.4.4. Conclusiones

Se ha desarrollado un modelo predictivo para los índices de retención medidos en la fase estacionaria ligeramente polar HP5–MS. El modelo independiente de la conformación refleja que la suma espectral positiva de la matriz de Burden ponderada por la polarizabilidad y los dos fragmentos CH₃ y CH (enlazados a dos átomos de carbono y uno electronegativo) presentados son los apropiados para generar un modelo QSPR con buena capacidad predictiva.

4.5 Modelo QSPR para índices de retención de aromas medidos en la columna apolar HP–1

4.5.1. Introducción

Algunos trabajos QSPR se han desarrollado para predecir los índices de retención medidos en la fase estacionaria apolar HP-1. En el año 2000, Héberger et al. (Héberger et al., 2000) usaron cetonas y aldehídos alifáticos para desarrollar un modelo PLS2 con 4 LVs y 16 índices de retención ($R_{cal}^2 = 0.99$ y $R_{val}^2 = 0.97$). Al siguiente año, Körtvélyesi et al. (Körtvélyesi et al., 2001) construyeron dos modelos QSPR usando la base de datos de Héberger (Héberger et al., 2000). El primer modelo está conformado por dos descriptores cuánticos ($R_{cal}^2 = 0.99$ y S_{cal} = 12.04) y el segundo por tres descriptores fisicoquímicos (R_{cal}^2 = 1.00 y $S_{cal} = 10.93$). En el año 2003, da Silva Junkes et al. (da Silva Junkes *et* al., 2003) aplicaron un nuevo índice topológico semiempírico (I_{ET}) a 632 índices de retención de compuestos orgánicos ($R_{cal}^2 = 0.99$ y $S_{cal} = 17.71$); posteriormente recalibraron el modelo excluyendo 84 valores atípicos $(R_{cal}^2 = 1.00 \text{ y } S_{cal} = 7.01)$. En el mismo año, Ren (Ren, 2003) propuso un modelo QSPR para 33 compuestos (14 aldehídos y 19 cetonas) usando un índice modificado y tres tipos de átomos ($R_{cal}^2 = 0.99$ y $S_{cal} = 7.73$). Un año más tarde, Junkes et al. (Junkes *et al.*, 2004) utilizó 31 compuestos de la base de datos de Héberger (Héberger et al., 2000) para relacionar el índice de retención con el I_{ET} ($R_{cal}^2 = 0.99$ y $S_{cal} = 5.47$). Zhou y Nie (Zhou & Nie, 2007) en el año 2007 usaron la base de datos de Héberger (Héberger *et al.*, 2000) para proponer un modelo basado en un nuevo índice topológico y un número de trayecto como descriptores ($R_{cal}^2 = 1.00 \text{ y } S_{cal} = 10.8$). Un año después, Konoz et al. (Konoz *et al.*, 2008), usando 140 compuestos de la misma base de datos, calibró un modelo MLR ($R_{cal}^2 = 0.94$, $S_{cal} = 47.4$, $R_{val}^2 = 0.94$ y $S_{val} = 50.5$) y un modelo ANN ($R_{cal}^2 = 1.00$, $S_{cal} = 8.0$, $R_{val}^2 = 1.00$ y $S_{val} = 10.5$). Finalmente, Souza et al. (Souza *et al.*, 2009) aplicaron el índice electrotopológico semiempírico I_{SET} para desarrollar modelos QSPR para 15 aldehídos ($R_{cal}^2 = 0.99$ y $S_{cal} = 10.31$) y 42 cetonas ($R_{cal}^2 = 0.99$ y $S_{cal} = 11.72$) de la misma base de datos de Héberger (Héberger *et al.*, 2000).

Por consiguiente, el objetivo de este trabajo fue el desarrollo de un modelo QSPR para los índices de retención de 262 compuestos volátiles medidos en la columna apolar HP–1 en cromatografía de gases. Seguidamente, la relación cuantitativa ha sido aplicada para la predicción del *I* de 7 moléculas para las cuales esta propiedad no fue reportada. Los resultados de este trabajo han sido recientemente aceptados para su publicación en una revista científica con referato (Rojas *et al.*, 2017).

4.5.2. Materiales y métodos

Para los índices de retención medidos en la fase estacionaria apolar HP–1 se siguió la misma metodología y diagrama de flujo previamente descrito para la base de datos DB–225MS y HP5–MS (Figura 4.5). En este caso, los *I* experimentales de los compuestos *Acrilato de etilo*, *Acetoína, Pentanal, Ácido propanoico, Isobutanol, Acetato de etilo* y *Acetato de isopropilo* no fueron reportados por Yan et al. Por lo tanto, la base de datos está conformada por 262 moléculas más los 7 compuestos que se usaron para predecir el índice de retención (Tabla 5A que se encuentra en el CD que acompaña a esta tesis).

		u	Cochpt		rependic	
d	$R^{\scriptscriptstyle 2}_{\scriptscriptstyle cal}$	$S_{_{cal}}$	$R_{\scriptscriptstyle val}^{\scriptscriptstyle 2}$	$S_{\!\scriptscriptstyle Val}$	$R^2_{ij\mathrm{max}}$	descriptores
1	0.94	84.1	0.92	78.1	0	SpPos_A
2	0.94	80.9	0.94	65.7	0.01	MATS1p, Chi0_EA(ri)
3	0.95	75.1	0.95	62.2	0.55	SpPos_A, MATS1p, F02[C–C]
4	0.96	68.8	0.95	62.4	0.11	Ho_A, MATS1p, nCt, Hy
5	0.97	58.6	0.95	60.4	0.21	J_D, GATS1s, P_VSA_v_2, nCt, AMR
6	0.97	57.4	0.95	63.6	0.68	ATS2s, P_VSA_m_1, nCs,
						CATS2D_04_AA, CATS2D_06_LL,
						AMR

 Tabla 4.12. Mejores modelos QSPR obtenidos mediante RM usando los descriptores independientes de la conformación.

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

4.5.3. Resultados y discusión

Los 262 compuestos medidos en la columna HP–1 se dividieron usando el BSM en un grupo de calibración de 88 fragancias y grupos de validación y predicción con 87 compuestos cada uno. Estas asignaciones están disponibles en la Tabla 5A. Seguidamente, se usaron los grupos de calibración y validación para la búsqueda de los mejores modelos de 1 a 6 descriptores que se detallan en la Tabla 4.12. Al igual que para las columnas DB–225MS y HP5–MS, no existe sobreajuste de los modelos. El modelo QSPR óptimo para estos datos es el que tiene 3 descriptores moleculares independientes de la conformación:

$$I = 296.1 + 153.7 \text{ SpPos} A + 543.4 MATS1p - 9.5F02[C - C]$$
(4.5)

$$\begin{split} N_{cal} &= 88 \;,\; R_{cal}^2 = 0.95 \;,\; S_{cal} = 75.1 \\ N_{val} &= 87 \;,\; R_{val}^2 = 0.95 \;,\; S_{val} = 62.2 \\ N_{pred} &= 87 \;,\; R_{pred}^2 = 0.92 \;,\; S_{pred} = 65.1 \\ R_{loo}^2 &= 0.95 \;,\; S_{loo} = 69.7 \;,\; R_{lmo}^2 = 0.97 \;,\; S_{lmo} = 74.4 \\ S_{rand} &= 282.4 \;,\; o(3S) = 2 \;,\; R_{ij\,max}^2 = 0.60 \end{split}$$

Los resultados del modelo desarrollado y los criterios adicionales de validación que se detallan a continuación, confirman que se ha obtenido un modelo QSPR predictivo:

$$\begin{aligned} R_{loo}^2 &> 0.5 \ (0.95) \ y \ R_{pred}^2 > 0.6 \ (0.92) \\ 1 - R_0^2 \ / \ R_{pred}^2 &< 0.1 \ (0.00) \ o \ 1 - R_0^{'2} \ / \ R_{pred}^2 &< 0.1 \ (0.00) \\ 0.85 &\leq k(1.00) &\leq 1.15 \ y \ 0.85 &\leq k'(0.99) &\leq 1.15 \\ R_m^2 &> 0.5 \ (0.89) \end{aligned}$$

En la Figura 4.10 se observa la tendencia lineal alrededor de la recta de ajuste perfecto entre los índices de retención experimentales y los predichos por el modelo, mientras que en la Figura 4.11 se confirma la distribución normal de los residuos. Las dos figuras afirman el supuesto de que los *I* se modelan apropiadamente por la Ec. 4.5.

Figura 4.10. Índices de retención experimentales y predichos para aromas medidos en la columna HP–1

En este modelo existen dos moléculas que presentan valores de residuo mayores a 3 desviaciones estándar: δ -*Tetradecalactona* y *Cinamil cinamato*.

Figura 4.11. Gráfico de dispersión para el modelo QSPR de la Ec. 4.5

Por otra parte, la máxima correlación entre los descriptores *SpPos_A* y F02[C-C] ($R_{ij\,max}^2 = 0.60$) indica una correlación intermedia entre los mismos; mientras que la contribución en la predicción del *I* en la fase apolar muestra que *SpPos_A* (1.06) > *MATS1p* (0.18) > *MATS1v* (0.20) > F02[C-C] (0.15).

La suma espectral positiva de la matriz de adyacencia (*SpPos_A*) (Consonni & Todeschini, 2008) es un índice topológico que se obtiene al sumar los autovalores positivos (invariante del grafo) de la matriz de

adyacencia, indicando de esta forma que el incremento en el *l* está relacionado con la complejidad de la molécula.

La autocorrelación de Moran a desplazamiento 1 ponderada por la polarizabilidad (*MATS1p*) es un descriptor que se obtiene por aplicación del coeficiente de Moran (Moran, 1950) a un grafo molecular libre de hidrógenos y ponderado por la polarizabilidad atómica. Este descriptor provee información relacionada a la distribución de la polarizabilidad a lo largo de la estructura topológica de un compuesto. En otras palabras, altos valores de *I* están relacionados a autocorrelaciones espaciales positivas (la molécula tiene átomos con polarizabilidad similar a una distancia topológica de 1).

La frecuencia de enlaces C–C a distancia topológica 2 (Carhart *et al.*, 1985) pertenece a los pares de átomos 2D e indica que el índice de retención se encuentra inversamente correlacionado con la presencia de átomos de carbono separados por 2 unidades topológicas; es decir, que la propiedad experimental tiende a disminuir a medida que aumenta el tamaño de la cadena alifática en el compuesto.

El estudio de dominio de aplicabilidad indica que la única molécula que presenta un valor de influencia superior al $h^* = 0.069$ es el β -*Elemene* ($h_{ii} = 0.072$). Por otra parte, el modelo de la Ec. 4.5 se usó para predecir el índice de retención de los 7 compuestos para los cuales no se reportó el valor experimental: *Acrilato de etilo* ($I = 700.9 \text{ y} h_{ii} = 0.048$), *Acetoína* ($I = 691.4 \text{ y} h_{ii} = 0.004$), *Pentanal* ($I = 725.2 \text{ y} h_{ii} = 0.007$), *Ácido propanoico* ($I = 619.7 \text{ y} h_{ii} = 0.006$), *Isobutanol* ($I = 611.5 \text{ y} h_{ii} = 0.004$), *Acetato de etilo* ($I = 524.8 \text{ y} h_{ii} = 0.097$) e *Acetato de isopropilo* ($I = 617.5 \text{ y} h_{ii} = 0.055$). La fragancia *Acetato de etilo* es el único compuesto que no pertenece al dominio del modelo, por lo que su predicción resulta de una extrapolación y por consiguiente, poco confiable.

4.5.4. Conclusiones

El modelo QSPR desarrollado para los índices de retención medidos en la columna apolar HP–1 indica que son tres descriptores los indicados para generar un modelo estable y predictivo: suma espectral positiva de la matriz de adyacencia, autocorrelación de Moran a desplazamiento 1 ponderada por la polarizabilidad y frecuencia de enlaces carbono – carbono a distancia topológica 2. Este modelo apoya la conclusión de utilidad del uso de modelos independientes de la conformación para los *I* medidos en fases estacionarias apolares expuestos en el estudio en el que se usaron datos de la columna OV– 101.

4.6 Referencias

- Acree, T., & Arn, H. (2004). Flavornet and Human Odor Space. *Available from: <u>http://www.flavornet</u>*, vol. 2015).
- Anker, L. S., Jurs, P. C., & Edwards, P. A. (1990). Quantitative structure-Retention Relationship Studies of Odor-Active Aliphatic Compounds with Oxygen-Containing Functional Groups. *Analytical Chemistry*, 62(24), 2676-2684.
- Babushok, V., Linstrom, P., Reed, J., Zenkevich, I., Brown, R., Mallard, W., & Stein, S. (2007). Development of a Database of Gas Chromatographic Retention Properties of Organic Compounds. *Journal of Chromatography A*, *1157*(1), 414-421.
- Babushok, V., Linstrom, P., & Zenkevich, I. (2011). Retention Indices for Frequently Reported Compounds of Plant Essential oils. *Journal* of Physical and Chemical Reference Data, 40(4), 043101.
- Barwick, V. J. (1999). Sources of Uncertainty in Gas Chromatography and High-performance Liquid Chromatography. *Journal of Chromatography A, 849*(1), 13-33.
- Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., & Wiswedel, B. (2008). KNIME: The Konstanz Information Miner. In C. Preisach, H. Burkhardt, L. Schmidt-Thieme & R. Decker (Eds.), *Data Analysis, Machine Learning and Applications*, (pp. 319-326): Springer.
- Bicchi, C., Rubiolo, P., Saranz Camargo, E. E., Vilegas, W., de Souza Gracioso, J., & Monteiro Souza Brito, A. R. (2003). Components of Turnera Diffusa Willd. var. Afrodisiaca (Ward) Urb. Essential Oil. *Flavour and fragrance journal*, *18*(1), 59-61.
- Buydens, L., & Massart, D. L. (1981). Prediction of Gas Chromatography Retention Indexes from Linear Free Energy and Topological Parameters. *Analytical Chemistry*, *53*(13), 1990-1993.
- Carhart, R. E., Smith, D. H., & Venkataraghavan, R. (1985). Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications. *Journal of chemical information and computer sciences*, *25*(2), 64-73.
- Carlson, D. A., Bernier, U. R., & Sutton, B. D. (1998). Elution Patterns from Capillary GC for Methyl-branched Alkanes. *Journal of Chemical Ecology*, 24(11), 1845-1865.
- Ciubotariu, D., Medeleanu, M., Vlaia, V., Olariu, T., Ciubotariu, C., Dragos, D., & Corina, S. (2004). Molecular van der Waals Space and Topological Indices from the Distance Matrix. *Molecules*, *9*(12), 1053-1078.
- Consonni, V., & Todeschini, R. (2008). New Spectral Indices for Molecule Description. *MATCH Communications in Mathematical and in Computer Chemistry, 60*, 3-14.
- Consonni, V., & Todeschini, R. (2012). Multivariate Analysis of Molecular Descriptors. In M. Dehmer, K. Varmuza & D. Bonchev (Eds.),

Statistical Modelling of Molecular Descriptors in QSAR/QSPR, (pp. 111-147): Wiley-Blackwell.

- Cserháti, T. (2010). Chromatography of Aroma Compounds and *Fragrances*: Springer.
- da Silva Junkes, B., Amboni, R. D. d. M. C., & Augusto, R. (2003). Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure–Retention Relationship Studies. *Internet Electronic Journal of Molecular Design, 2*, 33-49.
- Dimitrov, S., Dimitrova, G., Pavlov, T., Dimitrova, N., Patlewicz, G., Niemela, J., & Mekenyan, O. (2005). A Stepwise Approach for Defining the Applicability Domain of SAR and QSAR Models. *Journal of chemical information and modeling, 45*(4), 839-849.
- Dimov, N., Osman, A., Mekenyan, O., & Papazova, D. (1994). Selection of Molecular Descriptors Used in Quantitative Structure-Gas Chromatographic Retention Relationships: I. Application to Alkylbenzenes and Naphthalenes. *Analytica Chimica Acta*, 298(3), 303-317.
- Duchowicz, P. R., Fernández, F. M., & Castro, E. A. (2010). Orthogonalization Methods in QSPR-QSAR Studies. In E. A. Castro (Ed.), QSPR-QSAR Studies on Desired Properties for Drug Design, (pp. 189-203): Research Signpost.
- Eckel, W. P., & Kind, T. (2003). Use of Boiling Point–Lee Retention Index Correlation for Rapid Review of Gas Chromatography-Mass Spectrometry Data. *Analytica Chimica Acta, 494*(1), 235-243.
- Edwards, P. A., Anker, L. S., & Jurs, P. C. (1991). Quantitative Structure-Property Relationship Studies of the Odor Threshold of Odor Active Compounds. *Chemical senses*, *16*(5), 447-465.
- Fechner, U., Franke, L., Renner, S., Schneider, P., & Schneider, G. (2003). Comparison of Correlation Vector Methods for Ligand-Based Similarity Searching. *Journal of Computer-Aided Molecular Design*, *17*(10), 687-698.
- Garcia, J., Duchowicz, P. R., & Castro, E. A. (2016). Considering the Molecular Conformational Flexibility in QSAR Studies. In A. G. Mercader, P. R. Duchowicz & P. M. Sivakumar (Eds.), *Chemometrics Applications and Research: QSAR in Medicinal Chemistry*, (pp. 129-158): CRC Press.
- Gerasimenko, V. A., & Nabivach, V. M. (1990). Relationships between Gas Chromatographic Retention Indices and Molecular Structure of Aromatic Hydrocarbons. *Journal of Chromatography A, 498*(0), 357-366.
- Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1998). Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. *The Journal of Physical Chemistry A, 102*(21), 3762-3772.

- Golbraikh, A., & Tropsha, A. (2002). Beware of q²! *Journal of Molecular Graphics and Modelling*, 20(4), 269-276.
- Goodner, K. L. (2008). Practical Retention Index Models of OV-101, DB-1, DB-5, and DB-Wax for Flavor and Fragrance Compounds. *LWT-Food Science and Technology*, *41*(6), 951-958.
- Goudarzi, N., Shahsavani, D., Emadi-Gandaghi, F., & Chamjangali, M. A. (2014). Application of Random Forests Method to Predict the Retention Indices of Some Polycyclic Aromatic Hydrocarbons. *Journal of Chromatography A*, 1333, 25-31.
- Gramatica, P. (2007). Principles of QSAR Models Validation: Internal and External. *QSAR & Combinatorial Science*, *26*, 694-701.
- Gutrnan, I., Vidović, D., Cmiljanović, N., Milosavljević, S., & Radenković, S. (2003). Graph Energy-A Useful Molecular Structure-Descriptor. *Indian Journal of Chemistry, 42A*, 1309-1311.
- Hall, L. H., & Kier, L. B. (1995). Electrotopological State Indices for Atom Types: A Novel Combination of Electronic, Topological, and Valence State Information. *Journal of chemical information and computer sciences*, 35(6), 1039-1045.
- Héberger, K., Görgényi, M., & Sjöström, M. (2000). Partial Least Squares Modeling of Retention Data of Oxo Compounds in Gas Chromatography. *Chromatographia*, *51*(9-10), 595-600.
- Héberger, K. (2007). Quantitative Structure-(Chromatographic) Retention Relationships. *Journal of Chromatography A*, *1158*(1-2), 273-305.
- Hoffmann, R., Minkin, V. I., & Carpenter, B. K. (1996). Ockham's Razor and Chemistry. *Bulletin de la Société chimique de France, 133*(2), 117-130.
- Hypercube Inc. HyperChem. <u>http://www.hyper.com</u>.
- Ivanciuc, O. (2000). QSAR Comparative Study of Wiener Descriptors for Weighted Molecular Graphs. *Journal of chemical information and computer sciences*, 40(6), 1412-1422.
- Jalali-Heravi, M., & Fatemi, M. (2001). Artificial Neural Network Modeling of Kovats Retention Indices for Noncyclic and Monocyclic Terpenes. *Journal of Chromatography A, 915*(1), 177-183.
- Jennings, W., & Shibamoto, T. (1980). *Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography*. London: Academic Press, Inc.
- Junkes, B. d. S., Amboni, R. D. d., Yunes, R. A., & Heinzen, V. E. (2004). Application of the Semi-Empirical Topological Index in Quantitative Structure-Chromatographic Retention Relationship (QSRR) Studies of Aliphatic Ketones and Aldehydes on Stationary Phases of Different Polarity. *Journal of the Brazilian Chemical Society, 15*(2), 183-189.
- Kaliszan, R. (1977). Correlation between the Retention Indices and the Connectivity Indices of Alcohols and Methyl Esters with Complex Cyclic Structure. *Chromatographia*, *10*(9), 529-531.

- Kaliszan, R., & Foks, H. (1977). The Relationship between the R_M Values and the Connectivity Indices for Pyrazine Carbothioamide Derivatives. *Chromatographia*, *10*(7), 346-349.
- Kaliszan, R. (2007). QSRR: Quantitative Structure-(Chromatographic) Retention Relationships. *Chemical reviews, 107*, 3212-3246.
- Katritzky, A. R., Chen, K., Maran, U., & Carlson, D. A. (2000). QSPR Correlation and Predictions of GC Retention Indexes for Methyl-Branched Hydrocarbons Produced by Insects. *Analytical Chemistry*, 72(1), 101-109.
- Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2015). PubChem Substance and Compound databases. *Nucleic acids research*, *44*(D1), D1202-D1213.
- Kode srl. (2016). Dragon version 7. Software for Molecular Descriptor Calculation. <u>http://chm.kode-solutions.net/</u>.
- Konoz, E., Fatemi, M. H., & Faraji, R. (2008). Prediction of Kovats Retention Indices of Some Aliphatic Aldehydes and Ketones on Some Stationary Phases at Different Temperatures Using Artificial Neural Network. *Journal of Chromatographic Science*, *46*(5), 406-412.
- Körtvélyesi, T., Görgényi, M., & Héberger, K. (2001). Correlation Between Retention Indices and Quantum-Chemical Descriptors of Ketones and Aldehydes on Stationary Phases of Different Polarity. *Analytica Chimica Acta, 428*(1), 73-82.
- Linstrom, P. J., & Mallard, W. G. (2001). NIST Chemistry WebBook, NIST Standard Reference Database Number 69. In). Gaithersburg MD: National Institute of Standards and Technology.
- Michotte, Y., & Massart, D. (1977). Molecular Connectivity and Retention Indexes. *Journal of pharmaceutical sciences, 66*(11), 1630-1632.
- Mohammadhosseini, M., Zamani, H. A., Akhlaghi, H., & Nekoei, M. (2011). Hydrodistilled Volatile Oil Constituents of the Aerial Parts of Prangos Serpentinica (Rech. f., Aell. Esfand.) Hernnstadt and Heyn from Iran and Quantitative Structure-Retention Relationship Simulation. *Journal of Essential Oil Bearing Plants, 14*(5), 559-573.
- Mohammadhosseini, M. (2014). Prediction of the GC-MS Retention Indices for a Diverse Set of Terpenes as Constituent Components of Camu-camu (Myrciaria dubia (HBK) Mc Vaugh) Volatile Oil, Using Particle Swarm Optimization-Multiple Linear Regression (PSO-MLR). *Journal of Chemical Health Risks, 4*(1), 75-95.
- Moran, P. A. (1950). Notes on Continuous Stochastic Phenomena. *Biometrika*, *37*(1/2), 17-23.
- NCI/CADD Group. (2013). Chemical Identifier Resolver. In).
- Noorizadeh, H., & Noorizadeh, M. (2012). QSRR-based Estimation of the Retention Time of Opiate and Sedative Drugs by Comprehensive Two-Dimensional Gas Chromatography. *Medicinal Chemistry Research, 21*(8), 1997-2005.

- Pence, H. E., & Williams, A. (2010). ChemSpider: An Online Chemical Information Resource. *Journal of Chemical Education*, 87(11), 1123-1124.
- Porto, L. C., Souza, É. S., da Silva Junkes, B., Yunes, R. A., & Heinzen, V. E. F. (2008). Semi-Empirical Topological Index: Development of QSPR/QSRR and Optimization for Alkylbenzenes. *Talanta*, 76(2), 407-412.
- Qin, L.-T., Liu, S.-S., Liu, H.-L., & Tong, J. (2009). Comparative Multiple Quantitative Structure–Retention Relationships Modeling of Gas Chromatographic Retention Time of Essential Oils Using Multiple Linear Regression, Principal Component Regression, and Partial Least Squares Techniques. *Journal of Chromatography A*, 1216(27), 5302-5312.
- Qin, L.-T., Liu, S.-S., Chen, F., Xiao, Q.-F., & Wu, Q.-S. (2013). Chemometric Model for Predicting Retention Indices of Constituents of Essential Oils. *Chemosphere*, *90*(2), 300-305.
- Ren, B. (2003). Atom-Type-Based AI Topological Descriptors for Quantitative Structure–Retention Index Correlations of Aldehydes and Ketones. *Chemometrics and Intelligent Laboratory Systems*, 66(1), 29-39.
- Riahi, S., Pourbasheer, E., Ganjali, M. R., & Norouzi, P. (2009). Investigation of Different Linear and Nonlinear Chemometric Methods for Modeling of Retention Index of Essential Oil Components: Concerns to Support Vector Machine. *Journal of Hazardous Materials, 166*(2–3), 853-859.
- Rojas, C., Duchowicz, P. R., Tripaldi, P., & Pis Diez, R. (2015a). QSPR Analysis for the Retention Index of Flavors and Fragrances on a OV-101 Column. *Chemometrics and Intelligent Laboratory Systems, 140*, 126-132.
- Rojas, C., Duchowicz, P. R., Tripaldi, P., & Pis Diez, R. (2015b). Quantitative Structure–Property Relationship Analysis for the Retention Index of Fragrance-Like Compounds on a Polar Stationary Phase. *Journal of Chromatography A, 1422*, 277-288.
- Rojas, C., Duchowicz, P. R., Tripaldi, P., & Pis Diez, R. (2017). Quantitative Structure–Property Relationships for Predicting the Retention Indices of Fragrances on Stationary Phases of Different Polarity. *Journal of the Argentine Chemical Society, In Press.*
- Shiratsuchi, H., Shimoda, M., Imayoshi, K., Noda, K., & Osajima, Y. (1994). Off-Flavor Compounds in Spray-Dried Skim Milk Powder. *Journal of Agricultural and Food Chemistry*, *42*(6), 1323-1327.
- Soják, L., Berezkin, V. G., & Janák, J. (1981). Effect of Adsorption on the Reproducibility of Retention Indices of Hydrocarbons in Capillary Gas-Liquid Chromatography. *Journal of Chromatography A*, 209(1), 15-20.
- Souza, É. S., Kuhnen, C. A., Junkes, B. d. S., Yunes, R. A., & Heinzen, V. E. F. (2009). Modeling the Semi-Empirical Electrotopological

Index in QSPR Studies for Aldehydes and Ketones. *Journal of chemometrics*, 23(5), 229-235.

- Stanton, D. T., & Jurs, P. C. (1989). Computer-Assisted Prediction of Gas Chromatographic Retention Indexes of Pyrazines. *Analytical Chemistry*, *61*(13), 1328-1332.
- Surburg, H., & Panten, J. (2016). *Common Fragrance and Flavor Materials: Preparation, Properties and Uses*: John Wiley & Sons.
- Sutter, J. M., Peterson, T. A., & Jurs, P. C. (1997). Prediction of Gas Chromatographic Retention Indices of Alkylbenzenes. *Analytica Chimica Acta, 342*(2–3), 113-122.
- Talete srl. (2015). Dragon version 6. Software for Molecular Descriptor Calculation. <u>http://www.talete.mi.it/</u>.

The MathWorks Inc. MatLab. http://www.mathworks.com.

- Touhami, I., Mokrani, K., & Messadi, D. (2012). Modèles QSRR Hybrides Algorithme Génétique-Régression Linéaire Multiple des Indices de Rétention de Pyrazines en Chromatographie gazeuse. *Lebanese Science Journal, 13*(1), 75-88.
- Wang, D., Xu, X., Chu, S., & Zhang, D. (2003). Analysis and Structure Prediction of Chlorinated Polycyclic Aromatic Hydrocarbons Released from Combustion of Polyvinylchloride. *Chemosphere*, 53(5), 495-503.
- Wittkowski, R., & Matissek, R. (1993). *Capillary Gas Chromatography in Food Control and Research*: Technomic Publishing Co., Inc.
- Woloszyn, T. F., & Jurs, P. C. (1993). Prediction of Gas Chromatographic Retention Data for Hydrocarbons from Naphthas. *Analytical Chemistry*, 65(5), 582-587.
- Yan, A., Jiao, G., Hu, Z., & Fan, B. T. (2000). Use of Artificial Neural Networks to Predict the Gas Chromatographic Retention Index Data of Alkylbenzenes on Carbowax-20M. *Computers & chemistry*, 24(2), 171-179.
- Yan, A., & Hu, Z. (2001). Linear and Non-Linear Modeling for the Investigation of Gas Chromatography Retention Indices of Alkylbenzenes on Cit.A-4, SE-30 and Carbowax 20M. *Analytica Chimica Acta, 433*(1), 145-154.
- Yan, J., Cao, D.-S., Guo, F.-Q., Zhang, L.-X., He, M., Huang, J.-H., Xu, Q.-S., & Liang, Y.-Z. (2012). Comparison of Quantitative Structure-Retention Relationship Models on Four Stationary Phases with Different Polarity for a Diverse Set of Flavor Compounds. *Journal of Chromatography A*, 1223, 118-125.
- Yan, J., Liu, X.-B., Zhu, W.-W., Zhong, X., Sun, Q., & Liang, Y.-Z. (2015). Retention Indices for Identification of Aroma Compounds by GC: Development and Application of a Retention Index Database. *Chromatographia*, 78(1-2), 89-108.
- Zefirov, N. S., & Palyulin, V. A. (2001). QSAR for Boiling Points of "Small" Sulfides. Are the "High-Quality Structure-Property-Activity

Regressions" the Real High Quality QSAR Models? *Journal of chemical information and computer sciences, 41*(4), 1022-1027.

- Zhao, C., Liang, Y., Wang, X., Liu, L., Yuan, D., Wu, T., & Xu, Q. (2012). Modeling of Programmed-Temperature Retention Indices of a Diverse Set of Natural Compounds by Subspace Orthogonal Projection. *Current Analytical Chemistry, 8*(1), 168-179.
- Zhou, C., & Nie, C. (2007). Modeling Quantitative Structure Property Relationships with a Semi-Empirical Topological Descriptor and Path Numbers. *Chromatographia*, *66*(7-8), 545-554.
APLICACIONES EN QUÍMICA DE LOS ALIMENTOS

presentarán diversas En este Capítulo se las aplicaciones desarrolladas en el área de la Química de los Alimentos. Se ha utilizado la teoría QSPR para desarrollar un modelo predictivo para el control de calidad de arroz basado en índices de retención en el espacio de cabeza sólida/cromatografía en microextracción fase en de gases/espectrometría de masas (SPME/GC/MS). Por otra parte, se ha estudiado exhaustivamente el dulzor de moléculas orgánicas, tanto para la predicción del dulzor relativo como para la discriminación entre el gusto dulce y no dulce (amargo e insípido). Los valores experimentales del dulzor se los puede considerar ruidosos, debido al hecho de que su medición está sometida a la evaluación de panelistas (entrenados o no entrenados), los cuales catalogan el tipo de gusto y, eventualmente, su intensidad. La percepción del gusto es un aspecto importante que ayuda a mejorar la calidad sensorial de alimentos y fármacos.

5.1 Modelo QSPR basado en índices de retención para el control de calidad de arroz

5.1.1. Introducción

El arroz (*Oriza sativa L.*) es uno de los cereales mayormente producidos en el mundo y constituye un alimento básico en varios países (Fukuda *et al.*, 2014). Por este motivo, es necesario que se mejore el control de calidad de este cereal de tal forma que se aseguren características organolépticas óptimas para su aceptación por parte de los consumidores (Grimm *et al.*, 2002). El perfil aromático del arroz es producido por la presencia de diversos compuestos aromáticos, incluso en concentraciones bajas. El compuesto aromático principal del arroz es la 2–acetil–1–pirrolina (2–AP), la cual se genera durante el crecimiento de la planta. Sin embargo, durante la post–cosecha y almacenamiento, su concentración decrece (Grimm *et al.*, 2011).

El perfil aromático del arroz y el estudio de su calidad se han enfocado en la identificación de estos compuestos aromáticos. Con este propósito, la microextracción en fase sólida/cromatografía de gases/espectrometría de masas (SPME–GC–MS) ha demostrado ser un método eficiente de análisis (Grimm *et al.*, 2002; Champagne, 2008). Compuestos volátiles con alto peso molecular son retenidos mejor en fibras con polidimetilsiloxano (PDMS), mientras que fases con Carboxen (CAR) o divinilbenceno (DVB) son más apropiadas para moléculas pequeñas. De esta forma, la fibra que combina DVB–CAR–PDMS ha sido probada como la más adecuada para analizar componentes complejos de los aromas y con diferente polaridad, así como para trabajar con altas temperaturas durante el análisis SPME–GC–MS (Grimm *et al.*, 2001; Bryant & McClung, 2011).

En el año 2014, Fatemi y Malekzadeh (Fatemi & Malekzadeh, 2014) desarrollaron un modelo QSPR para predecir el índice de retención de 96 compuestos volátiles identificados en tres variedades de arroz durante 4 etapas de cocción. La propiedad experimental fue medida en GC-MS mediante espacio de cabeza modificado en microextracción en fase sólida y usando la columna DB Wax. Ellos usaron la notación de cadena SMILES y una representación grafo-molecular para calcular descriptores moleculares en el programa CORAL. Se dividió la base de datos en grupos de calibración (n = 70, $R_{cal}^2 = 0.97$ y $S_{cal} = 79.5$), validación (n = 13, $R_{val}^2 = 0.97$ y $S_{val} = 125.6$) y predicción (n = 13, $R_{pred}^2 = 0.95$ y $S_{pred} = 191.6$). También se analizó la validación cruzada dejar–uno–fuera ($R_{loo}^2 = 0.93$) y la de aleatorización-Y $(0.0003 \le R^2 \le 0.271)$, así como otros criterios.

Por consiguiente, el objetivo de este trabajo fue el desarrollar una relación cuantitativa estructura-propiedad para los índices de retención de 137 compuestos orgánicos volátiles detectados en el espacio de cabeza de arroz en SPME-GC-MS. Posteriormente, el modelo ha sido aplicado para la predicción del I de 46 contaminantes que son frecuentemente reportados en muestras de arroz. De esta manera, se presenta la utilidad del modelo QSPR como herramienta para el control de calidad de arroz. Los resultados de este trabajo se encuentran actualmente en revisión en una revista científica con referato.

5.1.2. Materiales y métodos

Los índices de retención de 138 compuestos volátiles fueron tomados de Grimm et al. (Grimm *et al.*, 2002). La propiedad experimental corresponde al índice de retención medido en el espacio de cabeza en microextracción en SPME/GC/MS usando la fibra DVB–CAR–PDMS para trabajar a altas temperaturas.

Los nombres químicos, el número de registro CAS y los índices de retención experimental se exportaron al programa KNIME (Berthold *et al.*, 2008), para obtener notación de cadena SMILES de cada estructura mediante el nodo del solucionador de identificación química (CIR)

(NCI/CADD Group, 2013). Para cada molécula, se verificó que la notación SMILES coincida con el obtenido a partir del nombre o del CAS. De esta manera, aquellos compuestos que tienen notación SMILES diferente, fueron chequeados manualmente en las bibliotecas químicas PubChem (Kim *et al.*, 2015), ChemSpider (Pence & Williams, 2010) y NIST Chemistry WebBook (Linstrom & Mallard, 2001). Durante el curado de la base de datos, se identificó que el compuesto *2,2,4–trimetilheptano* (número CAS 14720–74–2) estaba duplicado como el compuesto *trimetilheptano*. Por lo tanto, este último se eliminó y se usó el *I* promedio para el *2,2,4–trimetilheptano*. De esta manera, la base de datos curada está constituida por 137 compuestos volátiles (Tabla 6A que se encuentra en el CD que acompaña a esta tesis.). El diagrama de flujo implementado en KNIME para el curado de la base de dato se muestra en la Figura 5.1.

Figura 5.1. Diagrama de flujo KNIME para el curado de la base de datos de índices de retención de aromas de arroz

Posteriormente, las geometrías de los compuestos fueron optimizadas utilizando el método MM+ de la mecánica molecular, y posteriormente refinadas mediante el método semiempírico PM7, implementado en el programa MOPAC (Stewart, 2016). Las geometrías moleculares se optimizaron hasta que el elemento máximo del vector gradiente de la energía total con respecto a las coordenadas atómicas sea menor que 1 kcal×(Å mol)⁻¹. A continuación, se calcularon 5239 descriptores moleculares usando el programa DRAGON versión 7 (Kode srl., 2016), con los cuales se construyeron tres conjuntos de descriptores: 1) todos los bloques de descriptores, 2) descriptores independientes de la conformación y 3) descriptores dependientes de la conformación (3D). En todos los casos, se han excluido descriptores no informativos; es decir, aquellos con valores contantes o casi constantes y descriptores con al menos un valor faltante.

Seguidamente, el método de reemplazo permitió explorar los tres conjuntos de descriptores para encontrar el modelo óptimo en cada caso. Para efectos de validación, la base de datos se dividió en conjuntos de calibración, validación y predicción mediante el BSM. El grupo de calibración se utilizó para la selección de descriptores mediante RM y el ajuste de los modelos, mientras que el grupo de validación se usó para evitar la presencia de sobreajuste durante el proceso de selección. El grupo de predicción se utilizó para medir la capacidad predictiva del modelo QSPR seleccionado. También se han usado las técnicas de validación cruzada de dejar-uno-fuera (loo) y dejar-varios-fuera (lmo) mediante la exclusión aleatoria del 20% de las moléculas y 50000 repeticiones. La ausencia de correlación casual se estableció mediante la aleatorización-Y con 10000 repeticiones. Adicionalmente, se analizaron los criterios de validación propuestos por Golbraikh y Tropsha (Golbraikh & Tropsha, 2002). Finalmente, se definió el dominio de aplicabilidad siguiendo el enfogue del influencia crítico (h^*), así como la contribución de cada descriptor molecular y la interpretación del mecanismo de acción de los descriptores presentes en el modelo.

5.1.3. Resultados y discusión

Al igual que en los modelos presentados para las columnas OV–101 y Carbowax 20M en el capítulo 4, se buscó identificar si los descriptores conformacionales tienen importancia para la predicción del *I*. De esta manera, se evaluaron 3 conjuntos de descriptores: 1) 2898 descriptores de todos los tipos, 2) 1753 descriptores independientes de la conformación y 3) 1145 descriptores dependientes de la conformación.

El BSM particionó la base de datos de 137 compuestos volátiles en grupos de calibración y validación con 46 moléculas cada uno y un grupo de predicción con 45 compuestos. Estas asignaciones se encuentran disponibles en la Tabla 6A. En los tres conjuntos de

descriptores el RM se usó para seleccionar modelos de 1 a 6 descriptores.

 Tabla 5.1. Mejores modelos QSPR obtenidos mediante RM usando todos los bloques de descriptores moleculares

d	$R^2_{\scriptscriptstyle cal}$	$S_{_{cal}}$	$R_{\scriptscriptstyle val}^2$	$S_{\!\scriptscriptstyle val}$	$R^2_{ij \max}$	descriptores
1	0.95	96.1	0.94	98.6	0.00	G2
2	0.97	83.3	0.95	90.2	0.04	XMOD, AVS_B(e)
3	0.98	67.3	0.96	79.9	0.32	X0Av, XMOD, MATS1p
4	0.98	58.8	0.96	82.1	0.66	X1sol, Vindex, Mor12s, Hy
5	0.99	48.2	0.95	88.7	0.77	Psi_i_t, X1sol, VE2_Dz(e), MATS1v,
6	0.99	39.9	0 94	94 7	0.62	X1sol Vindex P VSA i 2 Mor13s
U	0.00	00.0	0.04	04.7	0.02	RTs+. CATS2D 02 NL

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

Tabla 5.2. Mejores modelos QSPR obtenidos mediante RM usando los descriptores independientes de la conformación.

d	R_{cal}^2	$S_{_{cal}}$	R_{val}^2	$S_{\!\scriptscriptstyle val}$	$R_{ij \max}^2$	descriptores
1	0.95	97.9	0.94	99.8	0.00	SpPos_B(m)
2	0.97	83.3	0.95	90.2	0.04	XMOD, AVS_B(e)
3	0.98	67.3	0.96	79.9	0.32	X0Av, XMOD, MATS1p
4	0.98	60.7	0.96	78.2	0.18	X1sol, SM3_B(s), VE2sign_B(s), MATS1v
5	0.99	55.4	0.96	81.5	0.80	Psi_i_t, X1sol, Xindex, VE2_Dz(Z), MATS1p
6	0.99	49.9	0.96	78.7	0.54	nR06, X1sol, Xindex, BIC0, ATSC1s, nFuranes

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

Los resultados obtenidos en los tres casos se encuentran en las Tablas 5.1, 5.2 y 5.3. La selección del modelo óptimo (se muestra en negrita) se realizó considerando los parámetros de calidad del grupo de calibración y validación (menor S y mayor R^2), para evitar la presencia de sobreajuste en el modelo. Asimismo, se busca que el coeficiente de correlación máximo entre descriptores (R_{ijmax}^2) sea el más bajo posible, al

igual que la dimensión del modelo sea apropiada, de acuerdo al principio de parsimonia de Ockham (Hoffmann *et al.*, 1996).

Tabla 5.3. Mejores modelos QSPR obtenidos mediante RM usando los descriptores dependientes de la conformación.

d	$R^{\scriptscriptstyle 2}_{\scriptscriptstyle cal}$	$S_{_{cal}}$	$R_{\scriptscriptstyle val}^2$	$S_{_{\it Val}}$	$R^2_{ij \max}$	descriptores				
1	0.95	96.1	0.94	98.6	0.00	G2				
2	0.96	88.6	0.96	89.8	0.49	G2, RDF060p				
3	0.97	77.8	0.96	85.5	0.61	G2, Mor26e, Mor22i				
4	0.98	63.1	0.93	106.8	0.65	G2, Mor32s, R4u+, G(OO)				

5	0.98	61.0	0.94	98.0	0.97	G1, G2, SM2_G/D, Mor13s, RTs+
6	0.99	54.6	0.94	96.7	0.61	G2, TDB05u, Mor32e, Mor27p, Mor13i,
						E3e

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

En los tres casos, se observa la ausencia de sobreajuste para el modelo seleccionado. En efecto, cuando se consideran todos los bloques de descriptores (Tabla 5.1) y los descriptores independientes de la conformación (Tabla 5.2), el modelo óptimo coincide. Esto indica claramente que los descriptores conformacionales no aportan información significativa para predecir el índice de retención de compuestos volátiles del arroz. Asimismo, el mejor modelo dependiente de la conformación no refleja mejoras en la predicción de dicha propiedad. Por lo tanto, el modelo QSPR independiente de la conformación es el más apropiado, debido a que evita ambigüedades debidas a la optimización de la geometría molecular y los costos computaciones involucrados (Garcia *et al.*, 2016):

$$I = 729.9 - 826.1 X 0 A v + 29.6 X M O D + 492.2 M A T S 1 p$$
(5.1)

$$\begin{split} N_{cal} &= 46 \;,\; R_{cal}^2 = 0.98 \;,\; S_{cal} = 67.3 \\ N_{val} &= 46 \;,\; R_{val}^2 = 0.97 \;,\; S_{val} = 79.9 \\ N_{pred} &= 45 \;,\; R_{pred}^2 = 0.97 \;,\; S_{pred} = 80.0 \\ R_{loo}^2 &= 0.97 \;,\; S_{loo} = 74 \;,\; R_{lmo}^2 = 0.98 \;,\; S_{lmo} = 86 \\ S_{rand} &= 353.8 \;,\; o(3S) = 1 \;,\; R_{limax}^2 = 0.32 \end{split}$$

La validación cruzada de dejar-uno-fuera (loo) y dejar-varios-fuera (lmo), mediante la exclusión de una muestra a la vez y del 20% de moléculas, respectivamente, indica que el modelo es estable. Asimismo, la aleatorización-Y refleja que el $S_{cal} < S_{rand}$, indicando la ausencia de correlación casual en el modelo de la Ec. 5.1. Finalmente, los parámetros adicionales de validación que se presentan a continuación, indican que una relación cuantitativa estructura-propiedad predictiva se ha alcanzado:

$$\begin{aligned} R_{loo}^2 &> 0.5 \ (0.97) \ y \ R_{pred}^2 > 0.6 \ (0.97) \\ 1 - R_0^2 \ / \ R_{pred}^2 < 0.1 \ (0.000) \ o \ 1 - R_0^{'2} \ / \ R_{pred}^2 < 0.1 \ (0.000) \\ 0.85 &\leq k(1.03) \leq 1.15 \ y \ 0.85 \leq k'(0.97) \leq 1.15 \\ R_m^2 &> 0.5 \ (0.95) \end{aligned}$$

Figura 5.2. Índices de retención experimentales y predichos para aromas medidos en el espacio de cabeza de arroz

La Figura 5.2 muestra la gráfica de los valores de índices de retención experimentales en función de los predichos por el modelo. Se observa la tendencia lineal alrededor de la recta de ajuste perfecto. Por otra parte, en la Figura 5.3 se muestra el gráfico de los valores de los residuos, el cual revela que dichos valores tienden a seguir un patrón aleatorio alrededor de la línea cero, sugiriendo que los índices de retención se modelan mediante un MLR.

El único compuesto que tiene valor de residuo mayor a 3 veces la desviación estándar es el 2-hexilo-1-octanol. Se verificó que tanto su fórmula química como su índice de retención experimental sean correctos. Se asume su comportamiento atípico a la diversidad de compuestos químicos considerados en esta base de datos, así como a otros aspectos inherentes a la medición de la propiedad experimental (Rojas *et al.*, 2015).

Figura 5.3. Gráfico de dispersión del modelo QSPR de la Ec. 5.1

Los descriptores *X0Av* y *MATS1p* presentan la máxima correlación ($R_{iimax}^2 = 0.32$), indicando que no existe multicolinealidad en el modelo y

por lo tanto, que cada descriptor explica aspectos particulares en el mecanismo de retención de los compuestos volátiles en la fibra DVB– CAR–PDMS (Duchowicz *et al.*, 2010). Así, la contribución de cada descriptor medida por los coeficientes de regresión estandarizados es: *XMOD* (0.95) > *X0Av* (0.19) > *MATS1p* (0.13).

El índice modificado de Randić (*XMOD*) es un índice de conectividad que se calcula mediante una fórmula tipo Randić sobre un grafo molecular libre de hidrógenos, el cual considera los electrones de valencia y la conectividad (Lohninger, 1993). El índice de conectividad de Randić mide el grado de ramificación y compactación de moléculas y se encuentra bien correlacionado con los tiempos de retención cromatográficos (Randić, 1975). De esta forma, moléculas con alto grado de ramificación (compuestos compactos) muestran valores altos de *XMOD* (efecto sinérgico). Esta relación ha sido descrita previamente por Yan et al. (Yan *et al.*, 2013).

Por otro lado, el índice de conectividad de valencia promedio de orden 0 (*X0Av*) describe la presencia de heteroátomos en los compuestos; así como la presencia de enlaces dobles o triples. El efecto antagónico de este descriptor sobre la predicción del *I* ha sido descrito por Riahi et al. (Riahi *et al.*, 2008). Finalmente, la autocorrelación de Moran a desplazamiento 1 ponderado por la polarizabilidad (*MATS1p*) es una autocorrelación 2D, la cual se calcula aplicando el coeficiente de Moran (Moran, 1950) a un grafo molecular ponderado por las polarizabilidades atómicas (*p*). Este descriptor proporciona información acerca de la distribución de la polarizabilidad a lo largo de un compuesto aromático. En otras palabras, moléculas con altos índices de retención poseen valores positivos del coeficiente de Moran (autocorrelaciones espaciales positivas), lo cual indica que contienen átomos con polarizabilidad similar a desplazamiento topológico 1.

Las predicciones de la Ec. 5.1 están limitados a aquellos compuestos volátiles para los cuales el índice de retención esté dentro del rango de 250 a 2086 unidades y cuyo valor de influencia sea menor al valor crítico ($h^* = 0.130$). El análisis del dominio de aplicabilidad (AD) indica que ninguna molécula del grupo de predicción posee valores superiores a dicho umbral, por lo que todas las predicciones son confiables.

	quimico, i predicito, v		lucificiu	
Fuente	nombre	I _{pred}	h _{ii}	Ref.
Desconocida	Tetracloroetileno	678.1	0.297 ^a	(Grimm <i>et al.</i> , 2002)
	Metoxi–fenil–oxima	1360.4	0.055	
	1,4–diclorobenceno	1077.1	0.016	

 Tabla 5.4. Contaminantes frecuentemente detectados en arroz: nombre químico, / predicho, valores de influencia y referencia

Plastificantes	Ftalato de dietilo	1690.4	0.052	
	Ftalato de dibutilo	2044.1	0.080	
	DEHP	2715.4	0.195 ^a	
Antioxidante	BHA	2443.0	0.129	
PAHs	Acenaftileno	1422.7	0.077	(Liu & Korenaga, 2001;
	Fluoreno	1502.0	0.071	Tao <i>et al.</i> , 2006;
	Fenantreno	1594.7	0.075	Escarrone et al., 2014)
	Antraceno	1591.7	0.075	, , ,
	Fluoranteno	1782.8	0.089	
	Pireno	1779.8	0.089	
	Renzlalantraceno	1949.0	0.000	
	Criseno	1952.0	0.000	
	Perileno	2137 4	0.000	(Liu & Korenaga, 2001;
	T emeno	2107.4	0.117	T_{20} et al. 2006)
				1 a0 et al., 2000)
	Benzo[b]fluoranteno	2137.4	0.117	(Tao <i>et al.</i> , 2006;
	Benzo[k]fluoranteno	2134.4	0.117	Escarrone et al., 2014)
	Benzo[a]pireno	2134.4	0.117	· · · · · · · · · · · · · · · · · · ·
	Indeno[1.2.3_cd]pireno	2316.6	0.140 ^a	
	Dibenz[a.h]antraceno	2304.9	0.134 ^a	
	Benzola h ilperileno	2316.6	0.140 ^a	
	Naftalina	1230.6	0.067	
Fundicidas	Validamicina A	3549.9	0.007 0.439 ^a	(Berg 2001)
T ungloldub	Propicopazol	2386.0	0.400 0.137 ^a	(Berg, 2001)
	Hevaconazole	2100.0	0.137	
	Isoprotiolano	2063.1	0.000	
	Isopiolioiano	2003.1	0.070	
	Ciproconozol	2232.1	0.109	
Llarbiaidaa		2150.9	0.000	
Herbicidas	2,4–D Dugilla alam	1630.2	0.044	
	Pretilacior	21/1.3	0.100	
	Fenclorim	1667.4	0.036	
	Fenoxaprop–p–etil	2602.0	0.190°	
	MCPA	1528.8	0.037	
	Pirazosulfuron–etil	2989.2	0.385ª	
	Butacloro	2171.3	0.100	
	Propanilo	1555.4	0.027	
Insecticidas	Fenobucarb	1562.4	0.029	
	Hidrocloruro de Cartap	1753.8	0.058	
	λ–cialotrina	3129.0	0.291 ^a	
	Deltametrina	3168.3	0.303 ^a	
	Buprofezina	2135.8	0.084	
	Isoprocarb	1467 6	0.025	
	Alfametrina	2905.8	0.229 ^a	
	Fipronil	3014.9	0.262 ^a	
	Etofennrox	2753.7	0.198 ^a	
		2.00.1	0.100	

^a molécules con valor de influencia superior a h* = 0.130

Durante el análisis de los compuestos volátiles de arroz, algunos contaminantes han sido detectados. Por ejemplo, plastificantes (ésteres del ácido ftálico) y antioxidantes (BHA), los cuales pudieron migrar de los materiales de empaque usados para el transporte del arroz (Grimm *et al.*, 2002). Otros contaminantes frecuentemente detectados durante el

análisis del perfil aromático del arroz son los hidrocarburos aromáticos policíclicos (PAHs) (Liu & Korenaga, 2001; Tao *et al.*, 2006; Escarrone *et al.*, 2014), que son compuestos químicos originados a partir de la combustión incompleta de combustibles fósiles. Los PAHs son contaminantes ambientales que se encuentran ampliamente distribuidos en el aire, suelo y agua, por lo que la exposición humana a dichos compuestos es inevitable, particularmente en la dieta alimentaria a base de cereales y vegetales (Phillips, 1999). Adicionalmente, se han considerado también pesticidas derivados del piretroide y carbamato (Berg, 2001) usados en el cultivo de arroz. De esta forma, se usó el modelo QSPR de la Ec. 5.1 para predecir el índice de retención de 46 contaminantes del arroz (Tabla 5.4).

Existen 14 compuestos con valor de influencia superior al umbral de corte de 0.130 y por tanto corresponden a compuestos que caen fuera del AD (extrapolaciones del modelo QSPR). Contrariamente, 32 contaminantes pertenecen al AD, por lo que sus índices de retención predichos son confiables. De esta manera, el modelo QSPR de la Ec. 5.1 se lo puede utilizar para identificar contaminantes presentes en el arroz mediante uso de la técnica GC acoplado con la fibra DVB–CAR–PDMS. Por ejemplo, si se identifica un I = 2137.4, se puede sospechar la presencia de perileno o Benzo[b]fluoranteno. Finalmente, este modelo puede ser de utilidad para investigadores que trabajan en cromatografía gaseosa como herramienta para la identificación rápida de compuestos volátiles con estructura molecular conocida y cuyo valor I no se conozca.

5.1.4. Conclusiones

Los índices de retención de compuestos volátiles medidos en el espacio de cabeza de arroz fueron descritos y predichos por un modelo QSPR de tres descriptores DRAGON independientes de la conformación. Este estudio confirma los resultados obtenidos para los índices de retención medidos en las columnas OV–101 y Carbowax 20M, es decir, modelos independientes de la conformación son apropiados para modelar y predecir esta propiedad. El modelo desarrollado en este estudio constituye una herramienta útil para las personas que trabajan en el control de calidad de arroz mediante la identificación de contaminantes en GC. En efecto, la versatilidad del modelo se ha usado para predecir los *I* de 46 contaminantes comunes del arroz.

5.2 Modelo QSPR para el dulzor relativo

5.2.1. Introducción

El dulzor es uno de los gustos más importantes para los seres humanos y ha sido usado ampliamente en la industria de alimentos por producir una sensación agradable. Entre los diversos compuestos dulcificantes, la sacarosa es el edulcorante usado con mayor frecuencia y es la sustancia estándar utilizada para la medición del dulzor relativo (RS) de otros edulcorantes (Singh *et al.*, 2014). El dulzor relativo se define como la relación de la concentración de sacarosa (estándar) con respecto a la concentración de otro edulcorante (Bassoli *et al.*, 2001). En otras palabras, una solución estándar de sacarosa tiene una percepción de dulzor de 1 (o 100) y el dulzor de un edulcorante determinado se compara con relación a la sacarosa.

El desarrollo y búsqueda de nuevos edulcorantes es complejo. Por un lado, existen múltiples factores que afectan el dulzor; por ejemplo, solubilidad, estabilidad en un amplio rango de pH y temperatura, dulzor puro sin retrogusto desagradable, beneficio dulzor/costo en comparación con la sacarosa y, el más importante, seguridad para la salud (Belitz *et al.*, 2009). Por otra parte, la medición del RS involucra altos costos, debido al hecho que se usan panelistas entrenados para la comparación del RS del edulcorante en estudio con respecto al estándar. Debido a todos estos factores, existen ventajas en el desarrollo de relaciones cuantitativas estructura–propiedad/actividad para el desarrollo y síntesis de nuevos y potentes edulcorantes (Yang *et al.*, 2011; Zhong *et al.*, 2013).

El primer estudio QSAR para modelar el dulzor relativo fue realizado por Deutsch y Hansch (Deutsch & Hansch, 1966), en el cual usaron derivados del 2–amino–4–nitrobenceno y concluyeron que esta propiedad está muy relacionada con la hidrofobicidad y la constante de Hammett. A partir de este estudio, ha existido un creciente interés en el desarrollo de modelos QSAR/QSPR para modelar y predecir el RS de diversos edulcorantes (Rojas *et al.*, 2016a). Así, en el año 2002, Katritzky et al. (Katritzky *et al.*, 2002) estudiaron 238 compuestos constituidos por aldoximas, sulfamatos y acesulfamatos, ácidos cicloalcanoicos (α –arilsulfonil) y edulcorantes naturales (azúcares, péptidos, guanidinas) para desarrollar un modelo MLR basado en cinco descriptores moleculares. Posteriormente, excluyeron los 87 péptidos para desarrollar otro modelo QSPR también formado por 5 descriptores moleculares.

Más adelante, Kelly et al. (Kelly *et al.*, 2005) sintetizaron 19 derivados monosustituidos del fenilsulfamato (ciclamatos), los cuales fueron estudiados junto con otros 63 edulcorantes. El dulzor se categorizó en tres clases (dulce, no dulce y dulce/no dulce). Nueve descriptores del grupo de calibración (75 moléculas) se usaron para desarrollar modelos basados en DA, LDA y QDA. Para mejorar los resultados incorporaron el valor de dulzor de los panelistas y usaron el método de regresión CART (árboles de clasificación y regresión) con los seis descriptores más relevantes. El mismo año, Tarko et al. (Tarko *et al.*, 2005) trabajaron con una base de datos de 123 compuestos para desarrollar un modelo MLR basado en dos descriptores: masa molecular y el producto del porcentaje de oxígeno y de la máxima carga de los átomos de oxígeno.

Un año después, el mismo grupo (Tarko *et al.*, 2006) presentaron un nuevo estudio QSPR para modelar el dulzor de 136 derivados del ácido 3–aminosuccinámico basado en diversos fragmentos moleculares. En una primera etapa consideraron todas las moléculas y posteriormente desarrollaron un nuevo modelo QSPR al excluir 15 valores atípicos.

En el año 2007, Vepuri et al. (Vepuri et al., 2007) usaron 53 moléculas de análogos del aspartamo para desarrollar un modelo 3D-QSAR basado en un algoritmo funcional genético (GFA) y 4 descriptores moleculares. Posteriormente desarrollaron modelos basados en CoMFA y CoMSIA. Como conclusión importante, los autores indicaron que las contribuciones de CoMFA y CoMSIA son las mismas. Posteriormente, Yang et al. (Yang et al., 2011) utilizaron 103 edulcorantes para desarrollar 3 modelos QSPR: el primero basado en mínimos cuadrados ordinarios, el segundo usando una red neuronal artificial (ANN) y el tercero mediante aplicación de máquinas de soporte vectorial (SVM). Finalmente, Zhong et al. (Zhong et al., 2013) ampliaron la base de datos de su estudio previo (Yang et al., 2011) para formar una base de datos de 320 edulcorantes con la cual calcularon 1235 descriptores moleculares y 6776 combinaciones a partir de autocorrelaciones 2D. Como resultado de este estudio, 12 descriptores fueron seleccionados para desarrollar modelos basados en MLR y SVM.

El objetivo del presente estudio es el uso de una base de datos de 233 edulcorantes naturales y sintéticos para el desarrollo de una relación cuantitativa estructura–dulzor relativo. El modelo ha sido apropiadamente validado, lo cual permite su uso para la predicción del RS de nuevos potenciales edulcorantes. Este modelo QSPR ha sido previamente publicado (Rojas *et al.*, 2016b).

5.2.2. Materiales y métodos

Los datos experimentales del RS se tomaron de varios trabajos publicados. Para garantizar el desarrollo de un modelo QSPR confiable e independiente de la conformación, se ha realizado un curado de base de datos siguiendo los siguientes criterios programados en el programa KNIME (Berthold *et al.*, 2008):

- Se han removido estructuras iónicas (sales). Esto debido al hecho de que el cálculo de descriptores moleculares no es posible para este tipo de compuestos.
- 2. También se removieron edulcorantes cuyo RS fue medido usando una solución de glucosa como estándar.
- Cuando se encontraron estereoisómeros con una misma notación SMILES, solo uno de ellos fue retenido y se usó el valor RS promedio. Por ejemplo, D–ramnosa y L–ramnosa.

Figura 5.4. Diagrama de flujo KNIME para el curado de la base de datos de dulzor relativo

La Figura 5.4 muestra el diagrama de flujo KNIME utilizado para el curado. Por consiguiente, la base de datos curada está compuesta de 233 edulcorantes cuyo rango de variación del RS está entre 0.10 y 200000. Debido a este rango amplio, el RS fue transformado a una escala logarítmica, log(RS), con lo que el rango de variación está comprendido entre –1.00 y 5.30. Detalles de esta base de datos se encuentran en la Tabla 7A, que se encuentra en el CD que acompaña a esta tesis. Finalmente, se usó la notación de cadena SMILES como representación molecular de cada compuesto.

A continuación, se calcularon 3736 descriptores moleculares independientes de la conformación usando el programa DRAGON versión 6 (Talete srl, 2015). Se excluyeron descriptores con valores constantes (1525), casi constantes (160) y al menos con un valor faltante (16). Así, 2062 descriptores fueron explorados con el RM para encontrar el modelo óptimo. Para efectos de validación, el BSM se usó para dividir la base de datos en conjuntos de calibración, validación y predicción. El grupo de calibración se usó para la selección de descriptores mediante RM y el ajuste de los modelos; mientras que el grupo de predicción se utilizó para medir la capacidad predictiva del modelo QSPR óptimo. También se han usado las técnicas de validación cruzada de dejar-uno-fuera (loo) y dejar-varios-fuera (lmo) mediante la exclusión aleatoria del 20% de las moléculas y 50000 repeticiones. Se utilizó la aleatorización-Y con 10000 repeticiones para asegurar la ausencia de correlación casual. Asimismo, se analizaron los criterios de validación propuestos por Golbraikh y Tropsha. Finalmente, se definió el dominio de aplicabilidad siguiendo el enfogue del influencia crítico (h^*) . así como la contribución de cada descriptor molecular y la interpretación del mecanismo de acción de los mismos.

d	R_{cal}^2	S_{cal}	R_{pred}^2	Spred	$R_{ij\mathrm{max}}^2$	descriptores
1	0.46	0.908	0.45	0.976	0.00	MATS1s
2	0.59	0.793	0.50	0.921	0.10	SM5 B(m), MATS1s
3	0.68	0.705	0.63	0.796	0.22	MATS1e, P_VSA_v_3, B07[C–N]
4	0.73	0.652	0.62	0.816	0.99	Wi_B(m),VE3_B(m),
						CATS2D_03_DD, B07[C-N]
5	0.76	0.609	0.54	0.917	0.28	GATS1e, P_VSA_v_3 SssO
						CATS2D_07_AA F04[C_N]
6	0.80	0.565	0.70	0.737	0.79	AAC, ATSC6p, CATS2D_02_PN,
						CATS2D_05_LL, B07[C–N], ALOGP
7	0.82	0.540	0.70	0.746	0.79	H%, ATSC6p, nCp, CATS2D_07_AA,
						CATS2D_05_LL, B07[C–N], ALOGP
8	0.82	0.533	0.70	0.751	0.95	Mv, X3sol, ATSC6p, nCp,
						CATS2D_02_PN, CATS2D_05_LL,
						B07[C–N], ALOGP
9	0.84	0.511	0.67	0.790	0.79	Mv, ATSC6p, nCp, C–019,
						CATS2D_07_AA, CATS2D_05_LL,
						B07[C–N], F05[N–O], ALOGP

Tabla 5.5. Mejores modelos QSPR obtenidos mediante RM usando los descriptores independientes de la conformación.

d: número de descriptores; R²: coeficiente de determinación; R²_{ij max}: coeficiente de determinación máxima entre descriptores; S: desviación estándar.

5.2.3. Resultados y discusión

El BSM dividió la base de datos de 233 edulcorantes en grupos de calibración (N_{cal} = 163) y predicción (N_{pred} = 70), de tal forma que se asegure un diseño con un balance de los compuestos en los dos grupos. Estas asignaciones se encuentran disponibles en la Tabla 7A. Posteriormente, el método de selección de variables RM se utilizó para desarrollar modelos MLR de 1 a 9 descriptores. La Tabla 5.5 resume los mejores modelos QSPR de 1 a 9 descriptores, en los cuales se observa la ausencia de sobreajuste. El modelo óptimo resulta aquel constituido por seis descriptores moleculares:

$$log(RS) = -2.216 + 2.002 AAC + 0.129 ATSC6p$$

-0.912CATS2D_02_PN - 0.119CATS2D_05_LL (5.2)
+1.136 B07[C - N] + 0.405 ALOGP

$$\begin{split} N_{cal} &= 163 \;,\; R_{cal}^2 = 0.80 \;,\; S_{cal} = 0.565 \\ N_{val} &= 70 \;,\; R_{val}^2 = 0.70 \;,\; S_{val} = 0.737 \\ R_{loo}^2 &= 0.78 \;,\; S_{loo} = 0.586 \;,\; R_{lmo}^2 = 0.75 \;,\; S_{lmo} = 0.629 \\ S_{rand} &= 1.126 \;,\; o(3S) = 2 \;,\; R_{ij\,max}^2 = 0.78 \end{split}$$

La validación cruzada de dejar-uno-fuera (loo) y dejar-varios-fuera (lmo), indican que el modelo de la Ec. 5.2 es estable. Asimismo, la aleatorización-Y indica que ausencia de correlación casual en el modelo QSPR ($S_{cal} < S_{rand}$). Finalmente, los parámetros adicionales de validación que se presentan a continuación indican que la Ec. 5.2 constituye una relación cuantitativa estructura-propiedad predictiva:

$$\begin{aligned} R_{loo}^2 &> 0.5 \quad (0.78) \text{ y } R_{val}^2 > 0.6 \quad (0.70) \\ 1 - R_0^2 / R_{pred}^2 < 0.1 \quad (0.0001) \\ 0.85 &\leq k(1.028) \leq 1.15 \text{ y } 0.85 \leq k'(0.874) \leq 1.15 \\ R_m^2 &> 0.5 \quad (0.69) \end{aligned}$$

Figura 5.5. Logaritmo del dulzor relativo experimental y predicho de diversos edulcorantes

La gráfica de los valores de log(RS) experimentales en función de los predichos por el modelo (Figura 5.5) y la gráfica de la distribución de los valores de los residuos (Figura 5.6) indican que el ajuste MLR es apropiado para predecir los valores del dulzor relativo. Existen dos compuestos con residuo mayor a 3S, particularmente los que tienen valores altos de RS: *compuesto LXXX* (-1.958) y N-(L-aspartil)-1,1-diaminoalcano 5 (2.350). Al verificar la formula química y el dulzor en la fuente, se observó que estos compuestos son correctos. Se puede atribuir este comportamiento a la dificultad para modelar esta propiedad sensorial, debido a los errores humanos durante la determinación del dulzor relativo. De hecho, para su determinación se suelen usar panelistas entrenados o panelistas no entrenados, así como el uso de pocas personas dentro de un grupo de cata. Por otro lado, los humanos tienen limitaciones para discernir diferencias de dulzor debido a la pre-

saturación de las papilas gustativas presentes en la lengua (Birch & Mylvaganam, 1976). Además, existe una amplia gama de moléculas consideradas para el desarrollo del modelo QSPR que han sido sintetizadas y cuyos RS han sido medidos diversos grupos experimentales.

Figura 5.6. Gráfico de dispersión del modelo QSPR de la Ec. 5.2

La Ec. 5.2 muestra que cuatro descriptores tienen coeficientes con valor positivo, por lo que su efecto en la predicción del dulzor relativo es sinérgico. Estos descriptores son: *AAC*, *ATSC6p*, *B07[C–N]* y *ALOGP*. Por otro lado, los descriptores *CATS 2D* tienen efecto antagónico sobre la predicción del dulzor. Los descriptores *ATSC6p* y *CATS2D_05_LL* muestran una correlación moderada ($R_{ij\,max}^2 = 0.78$). El grado de contribución de los descriptores se obtiene mediante los coeficientes de regresión estandarizados: *ATSC6p* (1.264) > *CATS2D_05_LL* (0.881) > *ALOGP* (0.858) > *B07[C–N]* (0.339) > *AAC* (0.326) > *CATS2D_02_PN* (0.201).

El cálculo de las autocorrelaciones 2D se realiza mediante el uso de diferentes propiedades moleculares, de tal forma de describir los átomos (excepto H) presentes en la molécula a un determinado desplazamiento. Una de estas propiedades es la polarizabilidad atómica escalada con respecto al átomo de carbono (carbon–scaled), la cual se usa para ponderar el grafo molecular y calcular la autocorrelación centrada de Broto–Moreau a desplazamiento 6 (*ATSC6p*). El centrado se obtiene restando el valor promedio de la propiedad en la molécula. *ATSC6p* describe la forma en que esta propiedad se distribuye a lo largo de la estructura topológica (Todeschini & Consonni, 2009).

El descriptor pares de átomos, es un tipo simple de subestructura molecular definida en términos de datos binarios, ausencia/presencia, de un determinado par de átomos a una determinada distancia topológica (Carhart *et al.*, 1985). Así, el RS se encuentra directamente relacionado a la presencia de pares de átomos de carbono y nitrógeno a distancia topológica 7 (CO7[C-N]). Por otra parte, *AAC* es el valor promedio del contenido de información total, cuyo cálculo involucra el número total de átomos, el número de átomos de un cierto tipo y la probabilidad de seleccionar de forma casual dicho tipo de átomo (Todeschini & Consonni, 2009).

Los descriptores CATS 2D son similares a los pares de átomos 2D, donde la mayor diferencia radica en la asignación de los átomos a puntos farmacóforos definidos (Fechner *et al.*, 2003). El punto lipofílico (L), el cargado positivamente o ionizable (P) y el cargado negativamente o ionizable (N) se usan para generar los pares de puntos farmacóforos (PPP) LL y PN. De esta forma, el dulzor relativo se encuentra inversamente relacionado a la presencia de pares LL y PN a distancia topológica 2 y 4, respectivamente.

El coeficiente de partición octanol-aqua (logP) es una propiedad común en la química computacional y el modelado QSAR/QSPR. Un modelo conocido para el logP fue propuesto por Ghose-Crippen (AlogP) (Ghose et al., 1988; Ghose et al., 1998). Este descriptor calcula el logP a partir de una ecuación de regresión basada en la contribución hidrofóbica de los diversos tipos de átomos. AlogP es intrínsecamente atomístico y fácil de calcular. Este concepto atomístico de hidrofobicidad (también conocido como lipofilicidad) es muy útil en el diseño de nuevas moléculas. En efecto, la presencia de hidrofobicidad en un edulcorante permite una partición favorable de la sustancia entre el agua (saliva) y la membrana lipídica del receptor. Así, la hidrofilicidad de un compuesto dulce permite su difusión a través de la saliva para interaccionar rápidamente con el receptor. Por lo tanto, el factor hidrofóbico gobierna la intensidad del dulzor de moléculas que tienen un apropiado glucóforo (Birch, 1987). En el modelo QSPR de la Ec. 5.2, AlogP indica que la hidrofobicidad de una molécula está directamente relacionado al dulzor relativo. Esta relación ha sido previamente presentada por Barker et al. y Vepuri et al., 2007 (Barker et al., 2002; Vepuri et al., 2007). Adicionalmente, el uso del descriptor logP para describir el dulzor relativo también ha sido ampliamente discutido en la literatura (Greenberg, 1980; Iwamura, 1980, 1981; Belitz et al., 1990; Drew et al., 1998; Jäger et al., 2000; Spillane et al., 2009; Briciu et al., 2010).

El modelo desarrollado en este estudio está limitado a predecir el dulzor de moléculas cuyo log(RS) se encuentre en el rango -1.00 y 5.30 y el valor de influencia sea menor al valor crítico ($h^* = 0.129$). El análisis del AD del modelo muestra que los compuestos *Periandrina III* ($h_{ii} = 0.153$) y el éster fencílico del ácido aspártico ($h_{ii} = 0.133$) son los únicos compuestos del grupo de predicción fuera del AD teórico del modelo.

Tabla 5.6. Comparación entre varios modelos QSAR/QSPR recientes para la predicción del dulzor relativo

Referencia	Modelo	Ν	d	$R^{\scriptscriptstyle 2}_{\scriptscriptstyle cal}$	$S_{_{cal}}$	R^2_{pred}	S_{pred}
(Katritzky <i>et al.</i> , 2002)	MLR	151	5	0.84	0.108	a	
		238	5	0.69	0.098		
(Kelly <i>et al.</i> , 2005)	CART	83	6	0.63			
(Tarko <i>et al.</i> , 2005)	MLR	123	4		0.485		0.507
(Tarko <i>et al.</i> , 2006)	MLR	136	4	0.66	0.652		
		121	5	0.85	0.399		
(Vepuri <i>et al.</i> , 2007)	MLR (3D– GFA)	53	4	0.75	5.148	0.38	—
	MLR (3D– CoMFA)		3	0.77		0.54	
	MLR (3D– CoMSIA)		6	0.93		0.60	
(Yang <i>et al.</i> , 2011)	MLR	103	3	0.89	1.023	0.86	1.205
	ANN			0.90	1.049	0.87	1.162
	SVM			0.91	1.037	0.89	1.192
(Zhong <i>et al.</i> , 2013)	MLR	320	12	0.81	0.958	0.77	1.029
/	SVM			0.83	0.979	0.78	0.994
Presente ^b	MLR	233	6	0.80	0.565	0.70	0.737

^a no disponible; ^b (Rojas *et al.*, 2016b)

Por otra parte, la Tabla 5.6 resume los diversos modelos publicados para la predicción del dulzor relativo. El modelo de la Ec. 5.2 posee una cantidad de descriptores apropiada y su calidad en calibración y predicción es comparable a los modelos basados en regresión lineal múltiple y los métodos no lineales basados en la red neuronal artificial (ANN) y máguinas de soporte vectorial (SVM) (Yang et al., 2011; Zhong et al., 2013). Adicionalmente, la calidad predictiva demuestra ser superior con respecto a los modelos QSAR conformacionales que usan el algoritmo funcional genético (GFA), análisis CoMFA y CoMSIA (Vepuri et al., 2007), los cuales muestran desviación estándar más alta con respecto a todos los demás modelos (S = 5.148). Por otra parte, varios modelos QSPR no han sido sometidos a una validación externa (Katritzky et al., 2002; Kelly et al., 2005; Tarko et al., 2006), lo cual limita su uso en la predicción del RS de nuevos compuestos y una comparación de la capacidad predictiva con respecto al modelo propuesto en este estudio.

5.2.4. Conclusiones

En este estudio el RM permitió desarrollar un modelo predictivo para el dulzor relativo de 233 edulcorantes de amplia diversidad química. El modelo constituido por seis descriptores independientes de la conformación muestra buena calidad tanto en ajuste como en predicción. Es interesante señalar que es el primer modelo QSPR para la predicción del RS en el que se utilizan descriptores DRAGON y el RM como herramienta para selección de descriptores. Dada la heterogeneidad de los compuestos considerados en este estudio, el presente modelo podría ser utilizado para la predicción del RS de nuevos compuestos como

potenciales edulcorantes. Una vez más, el enfoque QSAR/QSPR independiente de la conformación permite obtener modelos con buenos resultados.

5.3 Modelo QSAR para discriminar los gustos dulce y amargo

5.3.1. Introducción

La química del gusto se ha convertido en un campo de investigación importante en varias disciplinas, particularmente la química de los alimentos. En efecto, existe un creciente interés en investigar la percepción del gusto, el cual se considera como el resultado de sustancias químicas solubles con diferentes propiedades osmóticas, endotérmicas y exotérmicas, que interactúan de diferentes maneras con las membranas biológicas de las papilas gustativas. Sin embargo, el mecanismo de cómo suceden estas reacciones no es bien conocido. Los gustos pueden separarse en cinco grupos básicos: dulce, amargo, salado, ácido y umami (Damodaran et al., 2008). La percepción de estos gustos puede variar de persona a persona y puede estar relacionada a diferencias sutiles en la anatomía, psicología o la funcionalidad del receptor, concentración del compuesto generador del gusto o de interacciones con otras sustancias (Shallenberger, 1993). En el año 2002, Li et al. (Li et al., 2002) describieron por primera vez el quimiorreceptor del gusto dulce, el cual es un receptor acoplado a proteínas G (GPCR) constituido por las subunidades T1R2 y T1R3. Este quimiorreceptor es capaz de reconocer estímulos dulces provenientes de diversos edulcorantes.

Entre los diversos gustos, el dulzor es considerado el más importante debido a que evoca una sensación placentera en una gran variedad de alimentos. Así, la sacarosa es el edulcorante utilizado como estándar internacional para medir el dulzor de otros compuestos, debido a que genera un gusto dulce "limpio" y sin retrogustos, incluso a altas concentraciones. Por otro lado, el amargor se percibe comúnmente como un gusto poco agradable, aunque en algunos productos alimenticios, tales como té, chocolate, café, cerveza, aceitunas y otros, es considerado placentero. El amargor es una característica propia de los alcaloides, entre los cuales la quinina es el compuesto mayormente usado como aditivo alimentario (Damodaran *et al.*, 2008).

Varios estudios QSAR han sido desarrollados para discriminar los gustos dulce y amargo. En el año 1980, Iwamura (Iwamura, 1980) propuso una relación cuantitativa para 49 perillartinas y derivados de la anilina mediante el uso de cinco descriptores STERIMOL que caracterizan el tamaño y forma molecular. Ese mismo año, Kier (Kier, 1980) usó 20 derivados dulces y amargos de aldoximas para desarrollar una función discriminante lineal basada en dos índices de conectividad

molecular. Entre 1982 y 1986, Takahashi et al. (Takahashi *et al.*, 1982; Takahashi *et al.*, 1984; Miyashita *et al.*, 1986b) trabajaron con compuestos dulces y amargos derivados de la perillartina y del dipéptido L–aspartil para desarrollar modelos QSAR basados en máquina de aprendizaje lineal (LLA), *k*NN, LDA y modelado suave independiente por analogía de clases (SIMCA). Adicionalmente, Spillane et al. (Spillane *et al.*, 1983; Drew *et al.*, 1998; Spillane *et al.*, 2002) trabajaron en la discriminación de derivados del sulfamato mediante el uso de modelos discriminantes: gráfico, DA, LDA y QDA.

Con estos antecedentes, el objetivo del trabajo fue desarrollar un modelo QSAR para la discriminación de los compuestos dulces y amargos. Para este propósito, se ha puesto atención en el curado de la base de datos para posteriormente desarrollar un modelo de clasificación *k*NN. Los resultados de este trabajo han sido previamente publicados (Rojas *et al.*, 2016c).

5.3.2. Materiales y métodos

La base de datos inicial de compuestos dulces y amargos está constituida por 589 moléculas, para las cuales se encuentra disponible una respuesta cualitativa (dulce o amargo). Durante el curado de la base de datos se ha utilizado la notación de cadena SMILES y los siguientes criterios programados en KNIME (Figura 5.7):

- 1. Se han eliminado estructuras iónicas (sales).
- 2. Para estereoisómeros que muestran la misma clase, solo uno de ellos ha sido retenido.
- 3. Estereoisómeros que pertenecen a clases diferentes han sido excluidos.

De esta manera, la base de datos curada está constituida por 508 moléculas (427 dulces y 81 amargos), los cuales se encuentran detallados en la Tabla 8A, que se encuentra en el CD que acompaña a esta tesis. Posteriormente, se han calculado 3736 descriptores independientes de la conformación utilizando el nodo del programa DRAGON (Talete srl, 2015) implementado en KNIME.

Figura 5.7. Diagrama de flujo KNIME para el curado de la base de datos de compuestos dulces, amargos e insípidos

Debido a que los compuestos químicos presentan respuesta discreta (clases), se ha usado el método de clasificación no paramétrico *k*NN (Cover & Hart, 1967) para establecer la relación matemática entre la estructura química codificada en los descriptores y las clases modeladas. Este método es particularmente útil cuando la separación entre clases es no lineal. La regla de clasificación *k*NN es conceptualmente simple: un compuesto es clasificado en función de la mayoría de sus *k* vecinos más cercanos (distancia Euclidiana) en el espacio definido por los descriptores moleculares.

Para el desarrollo del modelo, inicialmente se ha aplicado una reducción no supervisada de descriptores basada en el método V–WSP (Ballabio *et al.*, 2014) con la finalidad de eliminar variables redundantes, con multicolinealidad y ruido. Para efectos de validación del modelo la base de datos se dividió en conjuntos de calibración (70%) y predicción (30%). Esta partición se realizó de forma casual y proporcional a la numerosidad de las clases, de tal forma de obtener similar representatividad en los dos grupos. Las moléculas del grupo de calibración se usaron para la selección de descriptores mediante algoritmos genéticos (GAs) (Leardi, 2009) acoplado con el método *k*NN. Durante la selección GAs se usó la validación cruzada basado en ventanas venecianas con 5 grupos y el valor óptimo de *k* se ha seleccionado en función de la mayor tasa de aciertos en esta etapa (NER_{cv}). Adicionalmente, el modelo óptimo ha sido también evaluado mediante la especificidad (Sp) y sensibilidad (Sn) de la clase dulce.

Otro aspecto importante en los estudios QSAR es la interpretación del mecanismo de acción de los descriptores del modelo. Debido a que el método *k*NN no brinda coeficientes para cuantificar la contribución de cada descriptor, el mecanismo de acción ha sido evaluado mediante el análisis de componentes principales (PCA) (Jolliffe, 2002) del grupo de calibración. Se han usado los gráficos de puntuaciones y cargas para evaluar la relación entre los descriptores y las clases modeladas. Finalmente, el AD del modelo QSAR ha sido establecido mediante similitud *k*NN (Sahigara *et al.*, 2013).

5.3.3. Resultados y discusión

A partir de los 3763 descriptores calculados, se retuvieron 2164 luego de la exclusión de valores constantes, casi constantes y al menos un valor faltante. Seguidamente, el método de reducción V–WSP permitió obtener una base de datos de 855 descriptores mediante la eliminación de aquellos correlacionados a un umbral de 0.95. La base de datos fue dividida en un grupo de calibración con 356 moléculas y un grupo de predicción con los restantes 152 compuestos.

La selección de descriptores mediante los GAs acoplados con el método *k*NN se desarrolló en dos etapas: se aplicó GAs separadamente sobre cada bloque de descriptores; entonces, los descriptores

seleccionados en cada bloque se fusionaron para aplicar nuevamente GAs y encontrar el modelo QSAR óptimo. La selección del modelo final se ha alcanzado considerando un balance entre el NER, Sn y Sp de la clase dulce. De esta manera se obtuvo un modelo conformado por 4 descriptores moleculares. En la Tabla 5.7 se muestran los parámetros de calidad del modelo.

gustos duice y amargo							
	NER	Sn	Sp				
Calibración	0.864	0.957	0.772				
Validación cruzada (5 grupos)	0.861	0.950	0.772				
Predicción	0.789	0.953	0.625				

 Tabla 5.7. Parámetros de calidad del modelo QSAR para discriminar los guistos dulce y amargo

El modelo muestra calidad comparable en calibración, validación y predicción, lo que indica que el modelo no sufre sobreajuste. Posteriormente, para evaluar el mecanismo de acción de los descriptores en la discriminación de las dos clases se utilizó el análisis de componentes principales. La combinación de las dos primeras componentes, PC1 y PC2, explica el 69% de la información total. La Figura 5.8a muestra el gráfico de puntuaciones (proyección de los compuestos), mientras que en la Figura 5.8b se ve el gráfico de cargas (proyección de los descriptores).

La mayoría de los compuestos amargos tienen puntuaciones positivas en la PC1 y simultáneamente negativa en la PC2 (cuarto cuadrante); es decir, estos compuestos son fuertemente caracterizados por la presencia de pares de átomos de carbono y nitrógeno separados por 1 distancia topológica (F01[C-N]) (Carhart et al., 1985), así como por la presencia de átomos de carbono enlazados a un átomo electronegativo v cualquier otro grupo a través de dos enlaces aromáticos (C-026) (Ghose et al., 1998). Por otra parte, el alcaloide teobromina se encuentra aislado en el primer cuadrante, es decir, la región de puntuaciones positivas de las dos componentes (dato atípico), indicando que este compuesto es descrito por valores altos de F01[C-N] y SM4 B(s). Para el cálculo del descriptor SM4 B(s) se aplica el momento espectral de orden 4 a la matriz de Burden ponderada por el estado intrínseco (s) (Kode srl., 2016). Este descriptor tiene buena relación con el número de átomos (excepto H) de una molécula. De esta forma, valores altos de SM4 B(s) se encuentran relacionados con moléculas dulces grandes (por ejemplo, mogrosido V, rebaudioside D, mogrosido IV), mientras que valores bajos de dicho descriptor representan mejor a moléculas amargas pequeñas (por ejemplo, pirrolidina, piperazina, pirrol).

Figura 5.8. Análisis de componentes principales para el modelo *k*NN para discriminar moléculas dulces y amargas: a) gráfico de puntuaciones y b) gráfico de cargas.

Un gran número de moléculas dulces poseen puntuaciones negativas en la PC1 (cuadrantes dos y tres), indicando que las mismas son descritas por los descriptores CATS2D_04_AL, C-026 y SM4_B(s). Así, el dulzor está descrito por la presencia de fragmentos lineales de átomos aceptores de enlaces de hidrógeno y lipofílicos, es decir, está estrechamente relacionado a la presencia de átomos de N, O y S con al menos un par de electrones libres y átomos lipofílicos separados por 4 unidades topológicas (Fechner *et al.*, 2003). Adicionalmente, los descriptores C-026 y SM4_B(s) tienen un comportamiento particular, debido a que se ubican en la zona negativa y positiva de la PC2, respectivamente. De esta manera, estos dos descriptores ofrecen información opuesta entre ellos; es decir, moléculas dulces con valores altos de SM4_B(s) tienen baja presencia de átomos de carbono enlazados a un átomo electronegativo (C–026). Otro edulcorante atípico es la selligueain A, una proantocianidina trimérica, la cual muestra valores altos de los descriptores C–026 y CATS2D_04_AL. En efecto, este edulcorante se caracteriza por tener 6 anillos aromáticos en los cuales 12 átomos de carbono están enlazados a átomos de oxígeno.

Modolo	No.	Mátodo	А	moléo	culas	NE	ER
Modelo	Clases		u	cal	pred	cal	pred
(Iwamura, 1980)	2	Regresión	3	49	a		
(Kier, 1980)	2	ĹDA	2	20	9	0.850	0.775
(Takahashi et al.,	2	LLA	3	22		1	
1982)	2	<i>k</i> NN	6	22		0.909	
(Spillane <i>et al.</i> , 1983)	2	LDA	3	33		0.807	
(Takahashi et al.,	2		3	22	0	1	0.775
1984)	2	LDA	2	22	9	0.955	0.775
(Miyashita <i>et al.</i> ,	З	SIMCA	5	Q1		0.840	
1986b)	5	OINICA	5	51		0.040	
(Drew <i>et al.</i> , 1998)	3	DA	11 ^d	50		1	
		Gráfico	2			0.862	
(Spillane <i>et al.</i> , 2002)	2	LDA	4	23		0.850	
		QDA	4			0.900	
Presente ^e	2	<i>k</i> NN	4	356	152	0.927	0.901

 Tabla 5.8. Modelos QSAR para discriminar los gustos dulce y amargo.

^a no disponible; ^b calculado como exactitud (AC); ^c número de componentes para SIMCA; ^d número de componentes para DA; ^e (Rojas *et al.*, 2016c)

En la Tabla 5.8 se presentan en orden cronológico los modelos QSAR propuestos en la literatura para discriminar los gustos dulce y amargo. Se observa que el único modelo *k*NN fue publicado en el año 1982 por Takahashi et al. (Takahashi et al., 1982). La calidad en ajuste del modelo de Takahashi et al. es comparable al obtenido en este estudio; sin embargo, la base de datos usada para su calibración está constituida únicamente por 22 compuestos, lo que lógicamente limita la realización de validación externa. En efecto, la mayoría de modelos no presentan validación externa (Iwamura, 1980; Takahashi *et al.*, 1982; Spillane *et al.*, 1983; Miyashita *et al.*, 1986b; Drew *et al.*, 1998; Spillane *et al.*, 2002), por lo que comparar el rendimiento predictivo con respecto al modelo desarrollado no es factible.

Finalmente, el dominio de aplicabilidad del modelo QSAR consiste en la comparación de la distancia promedio entre cada molécula del grupo de predicción y sus k vecinos más cercanos a un umbral de corte definido. En la Figura 5.9 se encuentra la distribución de las distancias promedio para las moléculas del grupo de predicción.

Dada la distribución de la Figura 5.9, se ha elegido 0.5 como valor umbral para decidir si una molécula predicha pertenece o no al AD del modelo. En este modelo la mayoría de las moléculas de predicción están por debajo de dicho umbral (9 moléculas están fuera del mismo).

5.3.4. Conclusiones

La calidad del modelo QSAR es adecuada, considerando la simplicidad del método de clasificación utilizado; así como el número reducido de descriptores seleccionados. Es importante indicar que los valores experimentales relacionados al dulzor son ruidosos debido a que la actividad molecular se mide mediante el uso de paneles de cata. Otro factor que afecta es el hecho de que no todos los edulcorantes presentan un sabor dulce puro. Adicionalmente, el hecho de que los edulcorantes poseen más de un donante de enlace hidrógeno y un aceptor de enlace hidrógeno (AH–B) dificulta el comprender cuál realmente interacciona con el receptor. Es importante indicar que los descriptores DRAGON independientes de la conformación, al igual que las metodologías quimiométricas utilizadas aquí se han aplicado por primera vez para discriminar los gustos dulce y amargo.

5.4 Modelo QSAR para discriminar los gustos dulce e insípido

5.4.1. Introducción

Se había indicado en la sección anterior que el dulzor es una característica que genera una sensación placentera en varios alimentos

y que la sacarosa es el edulcorante utilizado como estándar para comparar el dulzor de otras moléculas Por otro lado, la insipidez se la puede definir como la falta o pérdida de gusto (dulce, amargo, ácido o umami) (Damodaran *et al.*, 2008).

Hasta donde se conoce, luego de una búsqueda exhaustiva en la literatu–ra, no existen modelos QSAR desarrollados para discriminar moléculas dulces e insípidas. Por consiguiente, en este trabajo se ha desarrollado un modelo QSAR basado en el método de clasificación *k*NN para la discriminación de los compuestos dulces e insípidos. Los resultados de este trabajo han sido previamente publicados (Rojas *et al.*, 2016c).

5.4.2. Materiales y métodos

La base de datos inicial de compuestos estaba constituida por 620 compuestos, para los cuales se encuentra disponible la respuesta cualitativa dulce o insípido. Para el curado de la base de datos se aplicaron los mismos criterios que para la base de datos dulce–amargo. Se usó el mismo diagrama KNIME detallado en la Figura 5.7. De esta manera, se obtuvo una base de datos con 566 moléculas (433 dulces y 133 insípidas), la cual se presenta en la Tabla 9A, que se encuentra en el CD que acompaña a esta tesis. Para el desarrollo del modelo QSAR se utilizaron los mismos métodos descritos en la sección 5.3.2 para el modelo QSAR dulce–amargo, es decir, cálculo de los descriptores moleculares, desarrollo y validación del modelo, interpretación del mecanismo de acción de los descriptores y la definición del dominio de aplicabilidad.

5.4.3. Resultados y discusión

Se obtuvieron 855 descriptores independientes de la conformación luego de la eliminación de descriptores no informativos y los correlacionados mediante el método de reducción V–WSP. La base de datos fue dividida en un grupo de calibración con 396 compuestos y un grupo de predicción de 170 moléculas.

La selección de descriptores mediante los GAs acoplados con el método *k*NN sobre cada bloque de descriptores moleculares permitió obtener 141 descriptores que fueron considerados en conjunto para la segunda aplicación de los GAs para la construcción del modelo final. De esta manera se obtuvo un modelo QSAR con 9 descriptores que permiten obtener los resultados que se detallan en la Tabla 5.9.

moleculas duices e insipidas								
NER Sn Sp								
Calibración	0.838	0.891	0.785					
Validación cruzada (5 grupos) 0,847 0.898 0.79								

 Tabla 5.9. Parámetros de calidad del modelo QSAR para discriminar

 moléculas dulces e insínidas

	0 750	0 754	0 750
Prediccion	0.752	0.754	0.750

El modelo QSAR presenta resultados comparables en calibración y validación (interna y externa), con lo que se verifica la ausencia de sobreajuste en el modelo. Por otra parte, la calidad del modelo para la predicción correcta del dulzor también se verifica mediante la sensibilidad y especificidad.

En el PCA, la combinación de las dos primeras componentes permitió evaluar el mecanismo de acción de los 9 descriptores para discriminar las moléculas dulces e insípidas. La combinación de la PC1 y PC2 explica el 59% de la varianza y brinda una separación aceptable entre las dos clases, a pesar de algunas superposiciones. La Figura 5.10a muestra el gráfico de puntuaciones en estas dos componentes, mientras que en la Figura 5.10b se aprecia el gráfico de cargas.

Figura 5.10. Análisis de componentes principales para el modelo kNN para

discriminar moléculas dulces e insípidas: a) gráfico de puntuaciones y b) gráfico de cargas.

La mayoría de moléculas dulces tienen puntuaciones positivas en la PC1 (primero y cuarto cuadrante), mientras que las insípidas tienen puntaciones negativas. Los descriptores que se ubican en la región positiva de la PC1 indican que el dulzor está potencialmente relacionado al número de radicales amino (NH₂) presentes en un esqueleto alifático (nRNH₂) (Kode srl., 2016), y al número de pares de átomos de nitrógeno y oxígeno separados por una distancia topológica de 3 unidades (F03[N–O]) (Carhart *et al.*, 1985). Asimismo, el índice del contenido de información de enlace (simetría de entorno de tercer orden) (BIC3) (Magnuson *et al.*, 1983) brinda información relacionada a la complejidad molecular de un compuesto; es decir, este descriptor toma valores altos al incrementar el número de equivalencias de clases de la sustancia (número de átomos similares de orden 3).

Por otra parte. los descriptores AVS B(e), SpMax B(i), CATS2D 05 AL, que se ubican en la zona negativa de la PC1 caracterizan a los compuestos insípidos, así como a algunas moléculas dulces. Las electronegatividades de Sanderson (e) y la energía de ionización (i) se usan para ponderar el grafo molecular y obtener las correspondientes matrices de Burden B(e) y B(i). A partir de estas matrices se calculan los descriptores AVS B(e) como la suma del promedio de las filas y SpMax B(i) como el autovalor principal. Estos dos descriptores se encuentran correlacionados entre sí. Por otra parte, el descriptor CATS2D 05 AL cuenta los pares de átomos aceptores de enlaces de hidrógeno (A) y átomos lipofílicos (L) separados por 5 enlaces. De hecho, Spillane et al. (Spillane et al., 1996) indicaron que la hidrofobicidad es un parámetro importante para la determinación del dulzor; mientras que Birch et al. (Birch et al., 1994) refirieron que el dulzor puede ser atribuido a un equilibrio hidrófilo-lipófilo. El grupo hidrófilo actúa como un ancla que permite a la zona hidrofóbica del edulcorante ajustarse dentro el sitio de enlace hidrofóbico en el receptor (Yuasa et al., 1994). Adicionalmente, en la sección 5.2 se presentó la importancia de algunos descriptores CATS2D para la predicción del dulzor relativo.

Por otra parte, la segunda componente brinda información relacionada a otros dos descriptores de autocorrelación: Autocorrelaciones de Geary (Geary, 1954) a desplazamiento 6 (GATS6v) y desplazamiento 7 (GATS7v) ponderados por el volumen de van der Waals. Autocorrelaciones positivas producen valores entre 0 y 1; mientras que autocorrelaciones negativas generan valores mayores a 1. Debido a que estos dos índices de autocorrelación se encuentran ubicados en la región negativa de la PC2, indican que la mayoría de los compuestos insípidos tienen átomos con volumen alto, los cuales se encuentran separados por una distancia topológica de 6 y 7 unidades, siendo el caso de cuatro derivados de la sacarina (que corresponden a los compuestos numerados como 36, 304 y 312 en la Tabla 9A). Adicionalmente, un número razonable de moléculas dulces que se ubican en la región positiva de la PC2, estarían representados por valores pequeños de estos dos descriptores de autocorrelación. Finalmente, en la región positiva de la PC2, el descriptor presencia/ausencia de pares de átomos oxígeno–oxígeno a distancia topológica 3 (B03[O–O]) (Carhart *et al.*, 1985) describe el dulzor de aquellos compuestos caracterizados por puntuaciones positivas en la segunda componente, y contemporáneamente la ausencia de dicho par de átomos en los compuestos insípidos.

Figura 5.11. Histograma de la distancias promedio de las moléculas del grupo de predicción con respecto a sus vecinos para el modelo QSAR dulce– insípido

Al igual que para el modelo QSAR dulce–amargo, el dominio de aplicabilidad se efectuó mediante la comparación de la distancia promedio para cada molécula del grupo de predicción y sus *k* vecinos más cercanos a un umbral de corte de 2 (Figura 5.11). Existen 24 moléculas (19 dulces y 4 insípidas) que están fuera del AD.

5.4.4. Conclusiones

La capacidad predictiva del modelo QSAR desarrollado es apropiada para discriminar moléculas dulces e insípidas. Los descriptores DRAGON independientes de la conformación, al igual que las metodologías quimiométricas utilizadas aquí se han aplicado por primera vez para discriminar moléculas dulces e insípidas. De hecho, este modelo es el primero desarrollado con la finalidad de distinguir este tipo de compuestos. Adicionalmente el modelo QSAR dulce–insípido permite entender qué cambios estructurales deben darse para que una molécula pase de ser dulce a insípida. Por ejemplo, el edulcorante sacarina pierde el dulzor (se convierte en insípido) cuando se reemplaza el grupo imino por los radicales metilo, etilo o bromoetilo.

5.5 Modelo QSAR basado en un sistema experto para predecir el dulzor

5.5.1. Introducción

Las industrias de alimentos y farmacéutica muestran un creciente interés en el desarrollo o descubrimiento de nuevos edulcorantes que puedan tener propiedades beneficiosas. Así, los químicos de alimentos y químicos farmacéuticos tienen el reto de diseñar compuestos que presenten un sabor dulce puro, similar al de la sacarosa. Por ejemplo, el desarrollo de edulcorantes bajos en calorías sin retrogusto ha sido útil para productos alimenticios y medicinas para personas con diabetes (Damodaran *et al.*, 2008; Morini *et al.*, 2011). La medición experimental del gusto se realiza mediante panelistas entrenados y soluciones estándar dulces, amargas, ácidas y saladas. De esta manera, se asigna un gusto y su intensidad (cuando es posible) a cada compuesto (Spillane *et al.*, 1993).

Varias teorías han sido propuestas para describir la relación entre la estructura química y el dulzor. Oertly y Myers (Oertly & Myers, 1919) explicaron la producción del dulzor por medio de la relación entre los grupos funcionales *"glucóforos"* y *"auxoglucos"*. Posteriormente, Shallenberger y Acree (Shallenberger & Acree, 1967) propusieron la teoría AH–B, en la que indican que para que un compuesto sea dulce debe tener un donante de enlace hidrógeno (AH) y un aceptor de enlace hidrógeno (B) separados por una distancia de aproximadamente 3 Å. Por otra parte, Lemont Kier (Kier, 1972) propuso la teoría B–X, en la que establece que un compuesto debe tener un tercer sitio de enlace. Finalmente, Nofre y Tinti (Nofre & Tinti, 1996) propusieron la teoría de enlace multipunto (MPA), en la que sugirieron un total de 8 sitios de interacción para el receptor del dulzor, aunque no todos los edulcorantes interaccionan con todos los sitios.

Algunos edulcorantes aceptados para consumo humano han sido descubiertos por casualidad (Birch, 1999), por ejemplo, sacarina, ciclamato y aspartamo. Por otra parte, durante la síntesis de nuevos edulcorantes, algunas variaciones en la estructura química base pueden cambiar el dulzor a no dulzor (amargo, insípido, ácido y salado) (Damodaran *et al.*, 2008). Para enfrentar estos inconvenientes, los químicos han desarrollado modelos matemáticos basados en la teoría QSAR/QSPR con la finalidad de predecir el dulzor de los compuestos y optimizar la síntesis los mismos. Además de los modelos QSAR previamente descritos para los gustos dulce–amargo, se han propuesto otros modelos que buscan discriminar entre compuestos dulces y no

dulces de carbosulfamatos (Miyashita *et al.*, 1986a; Okuyama *et al.*, 1988) y otros derivados del sulfamato (Spillane & McGlinchey, 1981; Spillane & Sheahan, 1989; Spillane & Sheahan, 1991; Spillane *et al.*, 1993; Spillane *et al.*, 2000; Spillane *et al.*, 2003; Spillane *et al.*, 2009).

Por lo tanto, el objetivo de este estudio fue el desarrollar un modelo QSAR basado en un sistema experto para la predicción del dulzor. Se ha usado una base de datos extensa de 649 moléculas (435 dulces, 133 insípidas y 81 amargas) mediante la fusión de las bases de datos utilizadas en los estudios presentados en las secciones 5.3 y 5.4. El sistema experto combina un análisis de similitud estructural y dos modelos QSAR de clasificación. El análisis de similitud estructural se ha desarrollado mediante el uso de las huellas digitales moleculares de conectividad ampliada (ECFPs) y el escalado multidimensional (MDS), mientras que los modelos de clasificación están basados en descriptores moleculares independientes de la conformación y los métodos de clasificación de los *N*-vecinos más cercanos (N3) y el análisis discriminante de mínimos cuadrados parciales (PLSDA). Los resultados de este trabajo han sido recientemente publicados (Rojas *et al.*, 2017).

5.5.2. Materiales y métodos

En este estudio se han usado las bases de datos dulce–amargo y dulce–insípido conjuntamente. La base de datos inicial estaba compuesta por 727 moléculas, las cuales están descritas por una clase experimental (dulce, amargo, insípido). Debido a que el mayor interés científico es la identificación del dulzor, las clases amargo e insípido se fusionaron en una sola clase etiquetada como "no dulce". La base de datos fue curada usando un diagrama de flujo programado en KNIME (Figura 5.12) utilizando los siguientes criterios:

- 1. Exclusión de proteínas dulces, por ejemplo, pentadina, taumanina, monellina.
- 2. Se retuvieron las estructuras iónicas; por ejemplo, glicirrizinato tripotásico, sales de aspartamo–acesulfamo
- 3. Para cada estructura se obtuvo la notación lineal SMILES canónico a partir de la estructura diseñada.
- 4. Las clases amargo e insípido se fusionaron en una sola clase denominada no dulce.
- Se verificaron los compuestos en función del SMILES canónico, es decir: estereoisómeros pertenecientes a dos clases diversas fueron excluidos (por ejemplo, D–Arginina y L–Arginina) y entre moléculas dulces con el mismo código SMILES, solo una de ellas fue retenida.

De esta manera, la base de datos curada está constituida de 649 moléculas dividida en dos grupos de 435 compuestos dulces y 214 compuestos no dulces (81 amargos y 133 insípidos). La clase no dulce constituye el 33% del total de las moléculas consideradas. Esta base de datos está disponible en la Tabla 10A, que se encuentra en el CD que acompaña a esta tesis.

Figura 5.12. Diagrama de flujo KNIME para el curado de la base de datos de gustos dulce y no dulce

Los descriptores moleculares independientes de la conformación y las huellas digitales moleculares de conectividad ampliada (ECFPs) se han calculado usando el nodo del programa DRAGON versión 7 (Kode srl., 2016) implementado en KNIME (Figura 5.12), los cuales se han usado como representación de la estructura molecular. Se ha utilizado el enfoque DRAGON para el cálculo de los descriptores en las estructuras iónicas, el cual consiste en la aplicación de la definición y algoritmo original del descriptor considerado. Adicionalmente, para cada molécula se ha calculado un vector binario (ECFPs) con 2048 bits obtenido mediante 2 bits por estructura y un radio máximo de 2.

Las ECFPs se han usado inicialmente para realizar una exploración de las similitudes entre moléculas mediante el escalado multidimensional (MDS). De esta manera es posible identificar grupos consistentes de estructuras. Posteriormente, y usando el grupo donde están mezcladas las moléculas dulces y no dulces, se han aplicado los métodos de clasificación: *N*-vecinos más cercanos (N3) (Todeschini *et al.*, 2015) y análisis discriminante de mínimos cuadrados parciales (PLSDA) (Wold *et al.*, 2001), los cuales son métodos de discriminación no lineal basado en similitudes locales y lineales, respectivamente. Los modelos de clasificación se han aplicado luego de realizar una reducción no supervisada de descriptores basada en el método V–WSP (Ballabio *et al.*, 2014).

Para validación de los modelos de clasificación, la base de datos se dividió de forma casual y proporcional a la numerosidad de las clases en conjuntos de calibración (70%) y predicción (30%). Así, el grupo de entrenamiento incluye 488 moléculas (327 dulces y 161 no dulces) y el grupo de predicción las restantes 161 moléculas (108 dulces y 53 no dulces). Las moléculas del grupo de calibración y que pertenecen al grupo donde se superponen las moléculas dulces y no dulces se usaron para la selección de descriptores mediante algoritmos genéticos (GAs) (Leardi, 2009) acoplados con los métodos N3 y PLSDA. Durante la selección GAs se usó la validación cruzada basado en ventanas venecianas con 5 grupos.

Para el método N3 se usó el escalado de rango de los descriptores y la distancia Euclidiana promedio como medida de distancia, mientras que para el método PLSDA los descriptores fueron autoescalados. El valor del parámetro alfa en N3 y el número óptimo de variables latentes (LVs) en PLSDA se han seleccionado en función de la mayor tasa de aciertos en validación (NER_{cv}). También se evaluó la especificidad (Sp) y sensibilidad (Sn) de la clase dulce.

La interpretación del mecanismo de acción de los descriptores en el modelo N3 se realizó mediante el PCA (Jolliffe, 2002), debido a que este método, al igual que *k*NN, no brinda coeficientes para cuantificar la contribución de los descriptores. Para el método PLSDA se analizaron los coeficientes de las LVs óptimas. Finalmente, se construyó un sistema experto mediante el ensamblado del análisis de similitud MDS y el
consenso entre los métodos PLSDA y N3. El sistema experto QSAR ha sido validado mediante validación cruzada Monte Carlo, y mediante validación externa para las moléculas de grupo de predicción.

5.5.3. Resultados y discusión

Las 488 moléculas del grupo de calibración se usaron para realizar una exploración de similitud molecular basada en las huellas digitales moleculares de conectividad ampliada. Debido a que las ECFPs son vectores binarios, las similitudes se han cuantificado mediante el coeficiente de similitud de Jaccard–Tanimoto (Jaccard, 1912; Rogers & Tanimoto, 1960) para producir un escalado multidimensional de la base de datos. La Figura 5.13 muestra las puntuaciones del MDS de las dos primeras coordenadas (varianza explicada igual al 69.85%).

Figura 5.13. Proyección de las dos primeras coordenadas del MDS para las moléculas del grupo de calibración

En el MDS se han identificado tres grupos consistentes (D1, D2 y G3) con similitudes estructurales específicas. El grupo D1 está compuesto por 143 moléculas dulces que tienen como característica principal la presencia del ácido amino aspártico dentro de la estructura química. Sin embargo, otros compuestos dulces con la misma estructura se ubican en el grupo G3, por ejemplo aspartamo, súper aspartamo, sal de aspartamo–acesulfamo. Por otra parte, existen 107 compuestos en el grupo D2, los cuales incluyen 100 moléculas dulces y únicamente 7 estructuras no dulces. Finalmente, las restantes 399 sustancias, particularmente, la mayoría de compuestos no dulces se localizan en el grupo G3.

Debido a que el MDS provee un agrupamiento satisfactorio de los compuestos analizados en función del gusto, se ha considerado el desarrollo de un modelo QSAR basado en un sistema experto para optimizar la discriminación de los compuestos dulces. Este sistema está estructurado de la siguiente manera:

- Identificar el grupo asociado a la molécula a ser clasificada en función del análisis de similitud basado en las ECFPs. Por ejemplo, si la molécula es asignada a los grupos D1 o D2, es muy probable que pertenezca a la clase dulce.
- Aplicación de modelos QSAR basados en descriptores moleculares y calibrados usando las moléculas del grupo G3 para discriminar los dos gustos dentro de este espacio químico.

Para el desarrollo de los modelos QSAR basado en descriptores, se han usado las 297 moléculas del grupo de entrenamiento que pertenecen al grupo G3 para calibrar dos modelos basados en los métodos N3 y PLSDA. Cada molécula estaba inicialmente representada por 3763 descriptores moleculares independientes de la conformación. Posteriormente se aplicó la reducción de descriptores basado en el método V–WSP a un umbral de correlación del 0.95. De esta manera 875 descriptores fueron analizados mediante algoritmos genéticos. Este proceso se desarrolló en dos etapas: 1) los GAs acoplados con los métodos de clasificación N3 y PLSDA se aplicaron separadamente sobre cada uno de los 18 bloques de descriptores y 2) los descriptores seleccionados en cada bloque se fusionaron para aplicar nuevamente los GAs. De esta manera, se obtuvieron dos modelos, con un valor óptimo alfa de 1.5 para el modelo N3 y una variable latente para el modelo PLSDA.

		LOBRY			LODY	
Madala		Calibración		Validació	n cruzada (5 grupos)
Modelo	NER	Sn	Sp	NER	Sn	Sp
N3	0.748	0.764	0.732	0.738	0.750	0.726
PLSDA	0.722	0.636	0.809	0.711	0.607	0.815
Consenso	0.852	0.792	0.913	0.831	0.772	0.890

Tabla 5.10. Parámetros de calida	d de los modelos QSAR basados en los
métodos N3, PLSDA y c	consenso entre N3 y PLSDA

La calidad de los modelos presentados en la Tabla 5.10 sugiere una capacidad apropiada de los modelos desarrollados (N3 y PLSDA). Los resultados son comparables en calibración y en validación cruzada para ambos métodos de clasificación, indicando que presentan buena calidad para la discriminación entre compuestos dulces y no dulces.

Una interpretación directa del mecanismo de acción de los descriptores del modelo N3 no es factible, debido a que este método está basado en similitudes locales. Por tal motivo se ha usado el análisis de componentes principales, donde la varianza explicada por las dos primeras componentes es del 59.64%. La Figura 5.14a muestra el gráfico de puntuaciones, mientras que en la Figura 5.14b se ve el gráfico de cargas.

Una clara identificación de las dos clases no es factible debido a la superposición de las moléculas en el grupo G3. Un grupo pequeño y compacto de compuestos dulces se ubican en la zona de puntuaciones positivas de la PC2 (primero y segundo cuadrante). El análisis del correspondiente gráfico de cargas indica que el dulzor de las mismas está influenciada por valores altos del número de pares de átomos de nitrógeno y oxígeno separados por una distancia topológica de 3 enlaces (F03[N–O]) (Carhart *et al.*, 1985). En efecto, se había demostrado la utilidad de este descriptor para la discriminación entre moléculas dulces e insípidas en la sección 5.4 (Rojas *et al.*, 2016c). Por otra parte, el número de átomos de carbonos conjugados no aromáticos (sp2) (nCconj) (Kode srl., 2016) tiene alto valor de carga en la PC2, describiendo de esta manera los compuestos no dulces que se ubican en esta región, así como algunos compuestos dulces.

Figura 5.14. Análisis de componentes principales para el modelo N3: a) gráfico de puntuaciones y b) gráfico de cargas.

Adicionalmente, los descriptores CATS2D_04_AL, CATS2D_05_AL, UIndex y C-026 también describen algunas moléculas dulces con puntuaciones negativas en la PC1. Los descriptores CATS2D_04_AL y CATS2D_05_AL (Fechner *et al.*, 2003) cuentan los pares de aceptores de enlaces de hidrógeno (A) y átomos lipofílicos (L) separados por 4 y 5 enlaces, respectivamente, e indican que el dulzor de dichas moléculas está asociado a la presencia de hidrofobicidad o a un equilibrio hidrófilolipófilo (tal como se describió en la sección 5.4). El índice U de Balaban, el cual está relacionado al grado de ramificación molecular (Balaban & Balaban, 1991) y la presencia de átomos de carbono unidos a cualquier átomo electronegativo (O, N, S, P, Se, halógenos) y a otros dos grupos mediante enlaces aromáticos (C-026) (Ghose *et al.*, 1998), también son importantes para la predicción del dulzor en el modelo no lineal local N3.

Para el método de clasificación PLSDA, la Figura 5.15 muestra las puntuaciones en la variable latente 1 y los coeficientes de los descriptores para la clase dulce. Los coeficientes del modelo sugieren que el dulzor se encuentra descrito por los descriptores CATS2D 04 AP. CATS2D 02 DN (Fechner et al., 2003) y F03[C-S] (Carhart et al., 1985). El descriptor CATS2D 04 AP codifica la presencia de pares de átomos aceptores de enlaces de hidrógeno (A) y átomos con carga positiva (P) separados por 4 enlaces; mientras que el descriptor CATS2D 02 DN indica la presencia de pares de átomos donantes de enlaces de hidrógeno (D) y átomos con carga negativa (N) a distancia topológica 2. En efecto, la presencia de pares de potenciales farmacóforos positivosnegativos a distancia topológica 2 se presentó en la sección 5.2 para la predicción del RS (Rojas et al., 2016b). Por otra parte, el descriptor F03[C–S] indica que el dulzor está también asociado a la frecuencia de pares de átomos carbono y azufre en la estructura molecular separados por 3 enlaces.

Figura 5.15. Coeficientes de los descriptores para el grupo de calibración en el modelo PLSDA para la clase dulce.

Los coeficientes para la clase no dulce tienen el mismo valor pero signo contrario con respecto a la clase dulce. De esta manera, los descriptores relacionados con las moléculas no dulces son: la autocorrelación de Moran a desplazamiento 1 ponderada por el estado intrínseco (MATS1s), la relación aromática (ARR) y el índice anillo distancia/detour de orden 7 (D/Dtr07). MATS1s se calcula mediante el coeficiente de Moran (Moran, 1950) a un grafo molecular ponderado por el estado intrínseco como propiedad molecular. Valores positivos de este descriptor indican autocorrelaciones espaciales positivas. Por otra parte, D/Dtr07 (Randić, 1997) es un descriptor topológico que indica la razón entre las longitudes de enlace de la ruta más corta y las longitudes de enlace de la ruta más larga entre cualquier par de vértices que pertenecen a anillos de 7 átomos. Este descriptor en combinación con la proporción del número de enlaces aromáticos con respecto al número total de enlaces, excepto con el H (AAR) (Kode srl., 2016), indica que la clase no dulce está relacionada a la presencia de anillos aromáticos en la estructura.

Debido a que los métodos N3 y PLSDA se basan en diferentes tipos de descriptores y metodologías, se realizó un análisis de consenso (van Rhee, 2003) para combinar la información y capacidad predictiva de los dos modelos. Por lo tanto, cada molécula será predicha si los dos modelos la clasifican en la misma clase. Caso contrario, no será clasificada (método estricto). Los resultados del consenso en calibración (33% de moléculas no clasificadas) y en validación cruzada de ventanas venecianas con 5 grupos (32% de compuestos no clasificados) se muestran en la Tabla 5.10. La calidad del consenso confirma la definición de mejorar la capacidad predictiva. Sin embargo, el número de moléculas no clasificadas es considerable (33% en calibración y 32% en validación cruzada) con respecto a las moléculas del grupo G3.

Una vez que los modelos de clasificación se han calibrado usando las moléculas del grupo G3, se ha desarrollado el modelo QSAR basado en un sistema para la predicción del dulzor de toda la base de datos. En la Figura 5.16 se indica la estructura del sistema experto para la predicción del dulzor. Así, la predicción del dulzor para cualquier molécula de interés se obtiene de acuerdo al siguiente procedimiento:

- Calcular el vector de ECFPs para la molécula de interés y posteriormente la distancia promedio de Jaccard–Tanimoto con respecto a las moléculas de los grupos D1 (d_{D1}) y D2 (d_{D2}), respectivamente.
- Si las distancias d_{D1} y d_{D2} son menores que umbrales de corte definidos (0.6 y 0.8, respectivamente), entonces la molécula de interés será directamente clasificada como dulce, debido a su alta similitud estructural con las moléculas de los grupos D1 y D2.
- Caso contrario, si las distancias d_{D1} y d_{D2} son mayores que los umbrales de corte establecidos, entonces el dulzor de la molécula de interés será predicha mediante el modelo de consenso basado en los métodos N3 y PLSDA.

Los umbrales de corte definidos en el paso 2 se han elegido en función de la distribución de las similitudes promedio de cada molécula del grupo de calibración con respecto a las moléculas de los tres grupos. Estas distribuciones permitieron definir un valor umbral de 0.6 (Figura 5.17a) para el grupo D1 y un valor umbral de 0.8 (Figura 5.17b) para el grupo D2.

Figura 5.17. Histograma de las similitudes promedio de Jaccard–Tanimoto de las moléculas de grupo de calibración con respecto a las moléculas del grupo D1 (a) y grupo D2 (b).

El modelo QSAR basado en el sistema experto ha sido validado mediante la validación cruzada Monte Carlo (con 1000 interacciones) y validación externa mediante la predicción del dulzor de las 161 moléculas del grupo de predicción. Los resultados confirman la estabilidad del sistema experto en calibración (ausencia de sobreajuste) y la capacidad predictiva del mismo. El porcentaje de moléculas no clasificadas es de aproximadamente el 20%. Los resultados del modelo QSAR basado en el sistema experto se presentan en la Tabla 5.11.

	neulccion dei		CONSENSO	esincio
	NER	Sn	Sp	% no
				asignados
Calibración	0.892	0.929	0.855	19.7
Validación Monte Carlo	0.887	0.927	0.848	20.5
Validación externa	0.848	0.880	0.816	19.3

 Tabla 5.11. Parámetros de calidad del modelo QSAR basado en un sistema experto para la predicción del dulzor con consenso "estricto"

Por otra parte, cada predicción del sistema experto debe estar relacionada con la definición apropiada del dominio de aplicabilidad. De esta manera, el AD del sistema experto está integrado por los siguientes pasos:

- Calcular el vector de ECFPs para cada molécula a ser predicha y seguidamente la distancia promedio de Jaccard–Tanimoto con respecto a las moléculas de los grupos D1 (d_{D1}) y D2 (d_{D2}), respectivamente.
- Si las distancias d_{D1} y d_{D2} son menores que los umbrales de corte definidos en la Figura 5.17a y Figura 5.17b, entonces la molécula está dentro del AD del sistema experto. Esto se fundamente en la alta similitud estructural con las moléculas de los grupos D1 y D2.
- Caso contrario, si las distancias d_{D1} y d_{D2} son mayores que los umbrales de corte definidos, la definición del AD de la molécula será realizada por comparación del valor de influencia con respecto al valor crítico para el modelo PLSDA, mientras que para el método N3 se analiza la distribución de las similitudes promedio (similar al AD para los modelos basados en similitud *k*NN).

De esta manera, cualquier molécula de interés debe satisfacer una de estas tres condiciones para estar dentro del AD del sistema experto. Caso contrario su predicción será considerada extrapolación.

En la Tabla 5.12 se presentan los diversos modelos QSAR desarrollados para discriminar moléculas dulces y no dulces. En la mayoría de los casos estos modelos se han establecido mediante el uso de bases de datos con familias de compuestos homogéneas (lwamura, 1980; Kier, 1980; Spillane & McGlinchey, 1981; Takahashi *et al.*, 1982; Spillane *et al.*, 1983; Takahashi *et al.*, 1984; Miyashita *et al.*, 1986a;

Miyashita *et al.*, 1986b; Okuyama *et al.*, 1988; Spillane & Sheahan, 1989; Spillane & Sheahan, 1991; Spillane *et al.*, 1993; Drew *et al.*, 1998; Spillane *et al.*, 2000; Spillane *et al.*, 2002; Spillane *et al.*, 2003; Spillane *et al.*, 2009). Este hecho limita la generalización de tales modelos a diferentes tipos de compuestos, es decir, el dominio de aplicabilidad de los mismos es restringido. Por otra parte, algunos modelos no han sido sometidos a validación externa (Iwamura, 1980; Takahashi *et al.*, 1982; Spillane *et al.*, 1983; Miyashita *et al.*, 1986a; Miyashita *et al.*, 1986b; Spillane & Sheahan, 1989; Spillane & Sheahan, 1991). Además, el modelo QSAR basado en un sistema experto considera moléculas dulces y no dulces que cubren un espacio químico amplio, por ejemplo, derivados de la sacarosa, sacarina, abrusido, acesulfamo, isovanillina, mogrosido, periandrina, sacarina, rebaudiosido, ciclamato, suosan, aspartamo, así como otros compuestos heterogéneos.

Modelos	Guetos	Classes	Método	А	molé	culas	NER	
MODEIOS	Gusios	Clases Metodo		u	cal	pred	cal	pred
(Iwamura, 1980)	Dulce– amargo	2	Regresión	3	49	a		
(Kier, 1980)	Dulce– amargo	2	LDA	2	20	9	0.850	0.775
(Spillane & McGlinchey, 1981)	Dulce-no dulce	2	Gráfico	2	35	12	0.914 ^b	0.917 ^b
(Takahashi <i>et</i> <i>al.</i> , 1982)	Dulce– amargo	2	LLA <i>k</i> NN	3 6	22	_	1 0.909	
(Spillane <i>et al.</i> , 1983)	Dulce– amargo	2	LDA	3	33		0.807	
(Takahashi <i>et</i> <i>al.</i> , 1984)	Dulce– amargo	2	LDA	3 2	22	9	1 0.955	0.775 0.775
(Miyashita <i>et</i> <i>al.</i> , 1986b)	Dulce– amargo	3	SIMCA	5	91		0.840	
(Miyashita <i>et</i> al., 1986a)	Dulce-no dulce	2	SIMCA	4	50		0.798	
(Okuyama <i>et al.</i> , 1988)	Dulce–no dulce	2	SIMCA	1 ^c	25 20	_	0.868 0.808	
(Spillane & Sheahan, 1989)	Dulce–no dulce	2	LDA	3	23		0.642	
(Spillane &	Dulce no	3	Gráfico	2	57		0.860	
Sheahan,	dulce	2	LDA	3	33		0.848 ^b	
1991) (Spillane <i>et</i> <i>al.</i> , 1993)	Dulce–no dulce	2	Gráfico	2	23 40		0.870°	
(Drew <i>et al.</i> , 1998)	Dulce– amargo	3	DA	11 ^d	50		1	
(Spillane <i>et al.</i> , 2000)	Dulce–no dulce	2	LDA QDA	4	101		0.665 0.801	
(Spillane <i>et al.</i> , 2002)	Dulce– amargo	2	Gráfico LDA	3 2 4	23		0.850 0.862 0.850	

 Tabla 5.12. Modelos QSAR para discriminar moléculas dulces y no dulces

				QDA				0.900	
(Spillopo	~+			LDA	4			0.693	
	eı	Duice-no	2	QDA	4	132		0.683	
al., 2003)		duice		CART	3			0.815	
			2	LDA	2	50		0.655 ^b	
(Spillane	et	Dulce–no	2	QDA	3	58		0.759 ^b	
al., 2009)		dulce	2	CART	6	40	10	0.950	0.700
			3	CART	6	48	10	0.908	0.611
(Rojas et a	al.,	Dulce– insípido	2	<i>k</i> NN	9	396	170	0.866	0.753
2016c)		Dulce– amargo	-		4	356	152	0.927	0.901
Presente ^e		Dulce-no dulce	2	Experto	12	488	161	0.892	0.848

^a no disponible; ^b calculado como exactitud (Accuracy); ^c número de componentes para SIMCA; ^d número de componentes para DA; ^e (Rojas *et al.*, 2017)

El sistema experto se puede considerar como un modelo más general para la predicción del dulzor de compuestos que presentan diversa estructura molecular. Asimismo, este estudio provee por primera vez un modelo QSAR basado en un sistema experto que: 1) considera contemporáneamente el uso de huellas digitales moleculares de conectividad ampliada y descriptores moleculares y 2) integra los resultados de un análisis de similitud molecular y un modelo de clasificación de consenso para la predicción del dulzor.

Varios factores pueden afectar el desarrollo de modelos QSAR para la predicción del dulzor, tales como la presencia de otros gustos a parte del dulzor (es decir, moléculas que presentan multisabores). Por ejemplo, el acesulfamo de potasio, la sacarina sódica, hernaldulcina, esteviosidos y los derivados de la isocoumarina poseen gusto dulce y amargo. El gusto de estas moléculas depende de su concentración en solución (Birch *et al.*, 1994). Por otra parte, la percepción del gusto para los compuestos que presentan más de dos gustos resulta más difícil de explicar (Shamil *et al.*, 1987). Por estos motivos, las personas tienen limitaciones para discriminar las diferencias cuando se trata de evaluar sustancias multisabor. Estas limitaciones se pueden deber a la saturación del receptor presente en las papilas gustativas de la lengua o a la polarización de los receptores del gusto (Birch *et al.*, 1994).

parte, los edulcorantes pueden existir Por otra en varias conformaciones de equilibrio que minimizan su energía (Morini et al., 2011). Además, se había explicado previamente que estos compuestos también poseen más de un sitio AH–B (Spillane & Sheahan, 1989; Damodaran et al., 2008); por lo que resulta complejo definir la conformación activa y cómo los sitios AH-B interactúan con el receptor del gusto dulce. Adicionalmente, la real interacción entre el receptor y el edulcorante no es conocida en su totalidad. Por ejemplo, algunas moléculas interaccionan con el receptor del dulzor pero no son reconocidas como dulces (falsas positivas); mientras que otras moléculas que no interactúan con dicho receptor son percibidas como dulces (falsas negativas) (Bassoli *et al.*, 2008).

5.5.4. Conclusiones

En este estudio se ha desarrollado un modelo predictivo QSAR basado en un sistema experto para predecir el dulzor de moléculas orgánicas. El análisis de similitud estructural permitió la identificación de dos grupos consistentes de compuestos dulces, mientras que el tercer grupo, que contiene las moléculas dulces y no dulces, se usó para calibrar los modelos de clasificación N3 y PLSDA mediante el uso de descriptores DRAGON independientes de la conformación. Este estudio brinda el primer estudio QSAR que considera un análisis de similitud estructural basado en las ECFPs e integra los resultados del análisis de consenso entre los dos métodos de clasificación. La facilidad de implementación y la calidad predictiva del modelo permite que el sistema experto constituya una herramienta útil para las personas que trabajan en la búsqueda de nuevos edulcorantes como potenciales aditivos para ser usados en la industria de alimentos y farmacéutica.

5.6 Referencias

- Balaban, A. T., & Balaban, T.-S. (1991). New Vertex Invariants and Topological Indices of Chemical Graphs Based on Information on Distances. *Journal of Mathematical Chemistry, 8*(1), 383-397.
- Ballabio, D., Consonni, V., Mauri, A., Claeys-Bruno, M., Sergent, M., & Todeschini, R. (2014). A Novel Variable Reduction Method Adapted from Space-Filling Designs. *Chemometrics and Intelligent Laboratory Systems, 136*, 147-154.
- Barker, J. S., Hattotuwagama, C. K., & Drew, M. G. B. (2002). Computational Studies of Sweet-Tasting Molecules. *Pure and applied chemistry*, *74*(7), 1207-1217.
- Bassoli, A., Drew, M. G. B., Hattotuwagama, C. K., Merlini, L., Morini, G.,
 & Wilden, G. R. H. (2001). Quantitative Structure-Activity Relationships of Sweet Isovanillyl Derivatives. *Quantitative Structure-Activity Relationships, 20*(1), 3-16.
- Bassoli, A., Laureati, M., Borgonovo, G., Morini, G., Servant, G., & Pagliarini, E. (2008). Isovanillic Sweeteners: Sensory Evaluation and In Vitro Assays with Human Sweet Taste Receptor. *Chemosensory Perception, 1*(3), 174-183.
- Belitz, H.-D., Rohse, H., Stempfl, W., & Gries, H. (1990). Trihalogenated Benzamides: Structure Taste Relationships. *Zeitschrift für Lebensmittel-Untersuchung und Forschung, 190*(4), 319-324.
- Belitz, H.-D., Grosch, W., & Schieberle, P. (2009). *Food Chemistry* (4th ed.). Heidelberg: Springer-Verlag.
- Berg, H. (2001). Pesticide Use in Rice and Rice–Fish Farms in the Mekong Delta, Vietnam. *Crop Protection, 20*(10), 897-905.
- Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., & Wiswedel, B. (2008). KNIME: The Konstanz Information Miner. In C. Preisach, H. Burkhardt, L. Schmidt-Thieme & R. Decker (Eds.), *Data Analysis, Machine Learning and Applications*, (pp. 319-326): Springer.
- Birch, G. G., & Mylvaganam, A. (1976). Evidence for the Proximity of Sweet and Bitter Receptor Sites. *Nature, 260*, 632-634.
- Birch, G. G. (1987). Sweetness and Sweeteners. *Endeavour, 11*(1), 21-24.
- Birch, G. G., Karim, R., & Lopez, A. (1994). Novel Aspects of Structure-Activity Relationships in Sweet Taste Chemoreception. *Food quality and preference, 5*(1), 87-93.
- Birch, G. G. (1999). Modulation of Sweet Taste. *BioFactors, 9*(1), 73-80.
- Briciu, R. D., Kot-Wasik, A., Wasik, A., Namieśnik, J., & Sârbu, C. (2010). The Lipophilicity of Artificial and Natural Sweeteners Estimated by Reversed-Phase Thin-Layer Chromatography and Computed by Various Methods. *Journal of Chromatography A, 1217*(23), 3702-3706.

- Bryant, R., & McClung, A. (2011). Volatile Profiles of Aromatic and Non-Aromatic Rice Cultivars Using SPME/GC-MS. *Food chemistry*, *124*(2), 501-513.
- Carhart, R. E., Smith, D. H., & Venkataraghavan, R. (1985). Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications. *Journal of chemical information and computer sciences*, *25*(2), 64-73.
- Cover, T., & Hart, P. (1967). Nearest Neighbor Pattern Classification. *IEEE transactions on information theory, 13*(1), 21-27.
- Champagne, E. T. (2008). Rice Aroma and Flavor: A Literature Review. *Cereal Chemistry*, *85*(4), 445-454.
- Damodaran, S., Parkin, K. L., & Fennema, O. R. (2008). *Fennema's Food Chemistry* (Fourth ed.): CRC press.
- Deutsch, E. W., & Hansch, C. (1966). Dependence of Relative Sweetness on Hydrophobic Bonding. *Nature, 211*, 75.
- Drew, M. G. B., Wilden, G. R. H., Spillane, W. J., Walsh, R. M., Ryder, C.
 A., & Simmie, J. M. (1998). Quantitative Structure-Activity Relationship Studies of Sulfamates RNHSO₃Na: Distinction between Sweet, Sweet-Bitter, and Bitter Molecules. *Journal of Agricultural and Food Chemistry*, *46*(8), 3016-3026.
- Duchowicz, P. R., Fernández, F. M., & Castro, E. A. (2010). Orthogonalization Methods in QSPR-QSAR Studies. In E. A. Castro (Ed.), QSPR-QSAR Studies on Desired Properties for Drug Design, (pp. 189-203): Research Signpost.
- Escarrone, A., Caldas, S., Furlong, E., Meneghetti, V., Fagundes, C., Arias, J., & Primel, E. (2014). Polycyclic Aromatic Hydrocarbons in Rice Grain Dried by Different Processes: Evaluation of a Quick, Easy, Cheap, Effective, Rugged and Safe Extraction Method. Food chemistry, 146, 597-602.
- Fatemi, M. H., & Malekzadeh, H. (2014). CORAL: Predictions of Retention Indices of Volatiles in Cooking Rice Using Representation of the Molecular Structure Obtained by Combination of SMILES and Graph Approaches. *Journal of the Iranian Chemical Society, 12*(3), 405-412.
- Fechner, U., Franke, L., Renner, S., Schneider, P., & Schneider, G. (2003). Comparison of Correlation Vector Methods for Ligand-Based Similarity Searching. *Journal of Computer-Aided Molecular Design*, *17*(10), 687-698.
- Fukuda, T., Takeda, T., & Yoshida, S. (2014). Comparison of Volatiles in Cooked Rice with Various Amylose Contents. *Food Science and Technology Research, 20*(6), 1251-1259.
- Garcia, J., Duchowicz, P. R., & Castro, E. A. (2016). Considering the Molecular Conformational Flexibility in QSAR Studies. In A. G. Mercader, P. R. Duchowicz & P. M. Sivakumar (Eds.), *Chemometrics Applications and Research: QSAR in Medicinal Chemistry*, (pp. 129-158): CRC Press.

- Geary, R. C. (1954). The Contiguity Ratio and Statistical Mapping. *The incorporated statistician*, *5*(3), 115-146.
- Ghose, A. K., Pritchett, A., & Crippen, G. M. (1988). Atomic Physicochemical Parameters for Three Dimensional Structure Directed Quantitative Structure-Activity Relationships III: Modeling Hydrophobic Interactions. *Journal of Computational Chemistry*, 9(1), 80-90.
- Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1998). Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. *The Journal of Physical Chemistry A, 102*(21), 3762-3772.
- Golbraikh, A., & Tropsha, A. (2002). Beware of q²! *Journal of Molecular Graphics and Modelling, 20*(4), 269-276.
- Greenberg, M. J. (1980). The Importance of Hydrophobic Properties of Organic Compounds on Their Taste Intensities: A Quantitative Structure-Taste-Intensity Study. *Journal of Agricultural and Food Chemistry*, 28(3), 562-566.
- Grimm, C. C., Bergman, C., Delgado, J. T., & Bryant, R. (2001). Screening for 2-Acetyl-1-Pyrroline in the Headspace of Rice Using SPME/GC-MS. *Journal of Agricultural and Food Chemistry*, 49(1), 245-249.
- Grimm, C. C., Champagne, E. T., & Ohtsubo, K. i. (2002). Analysis of Volatile Compounds in the Headspace of Rice Using SPME/GC/MS. In R. Marsili (Ed.), *Flavor, Fragrance, and Odor Analysis*, (pp. 229-248): Marcel Dekker, Inc.
- Grimm, C. C., Champagne, E. T., Lloyd, S. W., Easson, M., Condon, B., & McClung, A. (2011). Analysis of 2-Acetyl-1-Pyrroline in Rice by HSSE/GC/MS. *Cereal Chemistry*, *88*(3), 271-277.
- Hoffmann, R., Minkin, V. I., & Carpenter, B. K. (1996). Ockham's Razor and Chemistry. *Bulletin de la Société chimique de France, 133*(2), 117-130.
- Iwamura, H. (1980). Structure-Taste Relationship of Perillartine and Nitro- and Cyanoaniline Derivatives. *Journal of Medicinal Chemistry*, 23(3), 308-312.
- Iwamura, H. (1981). Structure-Sweetness Relationship of L-Aspartyl Dipeptide Analogs. A Receptor Site Topology. *Journal of Medicinal Chemistry*, 24(5), 572-583.
- Jaccard, P. (1912). The Distribution of the Flora in the Alpine Zone. *New phytologist, 11*(2), 37-50.
- Jäger, R., Schmidt, F., Schilling, B., & Brickmann, J. (2000). Localization and Quantification of Hydrophobicity: The Molecular Free Energy Density (MolFESD) Concept and Its Application to Sweetness Recognition. *Journal of Computer-Aided Molecular Design*, *14*(7), 631-646.

Jolliffe, I. T. (2002). *Principal Component Analysis* (Second ed.): Springer.

- Katritzky, A. R., Petrukhin, R., Perumal, S., Karelson, M., Prakash, I., & Desai, N. (2002). A QSPR Study of Sweetness Potency Using the CODESSA Program. *Croatica chemica acta, 75*(2), 475-502.
- Kelly, D. P., Spillane, W. J., & Newell, J. (2005). Development of Structure-Taste Relationships for Monosubstituted Phenylsulfamate Sweeteners Using Classification and Regression Tree (CART) Analysis. *Journal of Agricultural and Food Chemistry*, 53(17), 6750-6758.
- Kier, L. B. (1972). A Molecular Theory of Sweet Taste. *Journal of pharmaceutical sciences*, *61*(9), 1394-1397.
- Kier, L. B. (1980). Molecular Structure Influencing either a Sweet or Bitter Taste Among Aldoximes. *Journal of pharmaceutical sciences*, 69(4), 416-419.
- Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2015). PubChem Substance and Compound databases. *Nucleic acids research*, 44(D1), D1202-D1213.
- Kode srl. (2016). Dragon version 7. Software for Molecular Descriptor Calculation. <u>http://chm.kode-solutions.net/</u>.
- Leardi, R. (2009). Genetic Algorithms. In R. Tauler, B. Walczak & S. D. Brown (Eds.), *Comprehensive Chemometrics: Chemical and Biochemical Data Analysis*, (pp. 631-653): Elsevier.
- Li, X., Staszewski, L., Xu, H., Durick, K., Zoller, M., & Adler, E. (2002). Human Receptors for Sweet and Umami Taste. *Proceedings of the National Academy of Sciences of the United States of America*, *99*(7), 4692-4696.
- Linstrom, P. J., & Mallard, W. G. (2001). NIST Chemistry WebBook, NIST Standard Reference Database Number 69. In). Gaithersburg MD: National Institute of Standards and Technology.
- Liu, X., & Korenaga, T. (2001). Dynamics Analysis for the Distribution of Polycyclic Aromatic Hydrocarbons in Rice. *Journal of health science*, *47*(5), 446-451.
- Lohninger, H. (1993). Evaluation of Neural Networks Based on Radial Basis Functions and Their Application to the Prediction of Boiling Points from Structural Parameters. *Journal of chemical information and computer sciences, 33*(5), 736-744.
- Magnuson, V., Harriss, D., & Basak, S. (1983). Topological Indices Based on Neighborhood Symmetry: Chemical and Biological Applications. In R. King (Ed.), *Chemical Applications of Topology* and Graph Theory, (pp. 178-191): Elsevier.
- Miyashita, Y., Takahashi, Y., Takayama, C., Ohkubo, T., Funatsu, K., & Sasaki, S.-I. (1986a). Computer-Assisted Structure/Taste Studies on Sulfamates by Pattern Recognition Methods. *Analytica Chimica Acta, 184*, 143-149.

- Miyashita, Y., Takahashi, Y., Takayama, C., Sumi, K., Nakatsuka, K., Ohkubo, T., Abe, H., & Sasaki, S. (1986b). Structure-Taste Correlation of L-Aspartyl Dipeptides Using the SIMCA Method. *Journal of Medicinal Chemistry*, *29*(6), 906-912.
- Moran, P. A. (1950). Notes on Continuous Stochastic Phenomena. *Biometrika*, *37*(1/2), 17-23.
- Morini, G., Bassoli, A., & Borgonovo, G. (2011). Molecular Modelling and Models in the Study of Sweet and Umami Taste Receptors. A Review. *Flavour and fragrance journal*, *26*(4), 254-259.
- NCI/CADD Group. (2013). Chemical Identifier Resolver. In).
- Nofre, C., & Tinti, J.-M. (1996). Sweetness Reception in Man: The Multipoint Attachment Theory. *Food chemistry*, *56*(3), 263-274.
- Oertly, E., & Myers, R. G. (1919). A New Theory Relating Constitution to Taste. Simple Relations Between the Constitution of Aliphatic Compounds and Their Sweet Taste. *Journal of the American Chemical Society, 41*(6), 855-867.
- Okuyama, T., Miyashita, Y., Kanaya, S., Katsumi, H., Sasaki, S.-i., & Randić, M. (1988). Computer Assisted Structure-Taste Studies on Sulfamates by Pattern Recognition Method Using Graph Theoretical Invariants. *Journal of Computational Chemistry*, *9*(6), 636-646.
- Pence, H. E., & Williams, A. (2010). ChemSpider: An Online Chemical Information Resource. *Journal of Chemical Education*, 87(11), 1123-1124.
- Phillips, D. H. (1999). Polycyclic Aromatic Hydrocarbons in the Diet. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 443*(1), 139-147.
- Randić, M. (1975). Characterization of Molecular Branching. *Journal of the American Chemical Society*, *97*(23), 6609-6615.
- Randić, M. (1997). On Characterization of Cyclic Structures. *Journal of chemical information and modeling*, *37*(6), 1063-1071.
- Riahi, S., Ganjali, M. R., Pourbasheer, E., & Norouzi, P. (2008). QSRR Study of GC Retention Indices of Essential-Oil Compounds by Multiple Linear Regression with a Genetic Algorithm. *Chromatographia*, 67(11-12), 917-922.
- Rogers, D. J., & Tanimoto, T. T. (1960). A Computer Program for Classifying Plants. *Science*, *132*(3434), 1115-1118.
- Rojas, C., Duchowicz, P. R., Tripaldi, P., & Pis Diez, R. (2015). Quantitative Structure–Property Relationship Analysis for the Retention Index of Fragrance-Like Compounds on a Polar Stationary Phase. *Journal of Chromatography A, 1422*, 277-288.
- Rojas, C., Duchowicz, P. R., Pis Diez, R., & Tripaldi, P. (2016a).
 Applications of Quantitative Structure-Relative Sweetness Relationships in Food Chemistry. In A. G. Mercader, P. R. Duchowicz & P. M. Sivakumar (Eds.), *Chemometrics Applications*

and Research: QSAR *in Medicinal Chemistry*, (pp. 317-339): Apple Academic Press.

- Rojas, C., Tripaldi, P., & Duchowicz, P. R. (2016b). A New QSPR Study on Relative Sweetness. *International Journal of Quantitative Structure-Property Relationships,* 1(1), 78-92.
- Rojas, C., Ballabio, D., Consonni, V., Tripaldi, P., Mauri, A., & Todeschini, R. (2016c). Quantitative Structure–Activity Relationships to Predict Sweet and Non-Sweet Tastes. *Theoretical Chemistry Accounts*, 135:66, 1-13.
- Rojas, C., Todeschini, R., Ballabio, D., Mauri, A., Consonni, V., Tripaldi, P., & Grisoni, F. (2017). A QSTR-Based Expert System to Predict Sweetness of Molecules. *Frontiers in Chemistry*, *5*(53), 1-12.
- Sahigara, F., Ballabio, D., Todeschini, R., & Consonni, V. (2013). Defining a Novel k-Nearest Neighbours Approach to Assess the Applicability Domain of a QSAR Model for Reliable Predictions. *Journal of cheminformatics, 5*(1), 27.
- Shallenberger, R. S., & Acree, T. E. (1967). Molecular Theory of Sweet Taste. *Nature, 216*, 480-482.
- Shallenberger, R. S. (1993). *Taste Chemistry*: Springer Science & Business Media.
- Shamil, S., Birch, G., Mathlouthi, M., & Clifford, M. (1987). Apparent Molar Volumes and Tastes of Molecules with More than One Sapophore. *Chemical senses*, *12*(2), 397-409.
- Singh, R. K., Khan, M. A., & Singh, P. P. (2014). Rating of Sweetness by Molar Refractivity and Ionization Potential: QSAR Study of Sucrose and Guanidine Derivatives. South African Journal of Chemistry, 67, 12-20.
- Spillane, W. J., & McGlinchey, G. (1981). Structure-Activity Studies on Sulfamate Sweeteners II: Semiquantitative Structure-Taste Relationship for Sulfamate (RNHSO₃⁻) Sweeteners-The Role of R. *Journal of pharmaceutical sciences, 70*(8), 933-935.
- Spillane, W. J., McGlinchey, G., Muircheartaigh, I. Ó., & Benson, G. A. (1983). Structure-Activity Studies on Sulfamate Sweetners III: Structure-Taste Relationships for Heterosulfamates. *Journal of pharmaceutical sciences*, 72(8), 852-856.
- Spillane, W. J., & Sheahan, M. B. (1989). Semi-Quantitative and Quantitative Structure-Taste Relationships for Carboand Hetero-Sulphamate (RNHSO₃⁻) Sweeteners. *Journal of the Chemical Society, Perkin Transactions* 2(7), 741-746.
- Spillane, W. J., & Sheahan, M. (1991). Structure-Taste Relationships for Sulfamate Sweeteners (RNHSO₃⁻). *Phosphorus, Sulfur, and Silicon and the Related Elements, 59*(1-4), 255-258.
- Spillane, W. J., Sheahan, M. B., & Ryder, C. A. (1993). Synthesis and Taste Properties of Sodium Disubstituted Phenylsulfamates. Structure-Taste Relationships for Sweet and Bitter/Sweet Sulfamates. *Food chemistry*, 47(4), 363-369.

- Spillane, W. J., Ryder, C. A., Walsh, M. R., Curran, P. J., Concagh, D. G., & Wall, S. N. (1996). Sulfamate Sweeteners. *Food chemistry*, *56*(3), 255-261.
- Spillane, W. J., Ryder, C. A., Curran, P. J., Wall, S. N., Kelly, L. M., Feeney, B. G., & Newell, J. (2000). Development of Structure-Taste Relationships for Sweet and Non-Sweet Heterosulfamates. *Journal of the Chemical Society, Perkin Transactions* 2(7), 1369-1374.
- Spillane, W. J., Feeney, B. G., & Coyle, C. M. (2002). Further Studies on the Synthesis and Tastes of Monosubstituted Benzenesulfamates.
 A Semi-Quantitative Structure–Taste Telationship for the Meta-Compounds. *Food chemistry*, 79(1), 15-22.
- Spillane, W. J., Kelly, L. M., Feeney, B. G., Drew, M. G., & Hattotuwagama, C. K. (2003). Synthesis of Heterosulfamates. Search for Structure-Taste Relationships. *Arkivoc*, *7*, 297-309.
- Spillane, W. J., Coyle, C. M., Feeney, B. G., & Thompson, E. F. (2009). Development of Structure-Taste Relationships for Thiazolyl-, Benzothiazolyl-, and Thiadiazolylsulfamates. *Journal of Agricultural and Food Chemistry*, *57*(12), 5486-5493.
- Stewart, J. J. P. (2016). MOPAC2016, <u>http://OpenMOPAC.net</u>. USA: Stewart Computational Chemistry.
- Takahashi, Y., Miyashita, Y., Tanaka, Y., Abe, H., & Sasaki, S. (1982). A Consideration for Structure-Taste Correlations of Perillartines Using Pattern-Recognition Techniques. *Journal of Medicinal Chemistry, 25*(10), 1245-1248.
- Takahashi, Y., Abe, H., Miyashita, Y., Tanaka, Y., Hayasaka, H., & Sasaki, S. I. (1984). Discriminative Structural Analysis Using Pattern Recognition Techniques in the Structure-Taste Problem of Perillartines. *Journal of pharmaceutical sciences*, 73(6), 737-741.
- Talete srl. (2015). Dragon version 6. Software for Molecular Descriptor Calculation. <u>http://www.talete.mi.it/</u>.
- Tao, S., Jiao, X., Chen, S., Liu, W., Coveney, R., Zhu, L., & Luo, Y. (2006). Accumulation and Distribution of Polycyclic Aromatic Hydrocarbons in Rice (Oryza sativa). *Environmental Pollution*, 140(3), 406-415.
- Tarko, L., Lupescu, I., & Groposila-Constantinescu, D. (2005). Sweetness Power QSARs by PRECLAV Software. *Arkivoc, 10*, 254-271.
- Tarko, L., Lupescu, I., & Constantinescu-Groposila, D. (2006). QSAR Studies on Amino-Succinamic Acid Derivatives Sweeteners. *Arkivoc, 13*, 22-40.
- Todeschini, R., & Consonni, V. (2009). *Molecular Descriptors for Chemoinformatics*: Wiley-VCH.
- Todeschini, R., Ballabio, D., Cassotti, M., & Consonni, V. (2015). N3 and BNN: Two New Similarity Based Classification Methods in

Comparison with Other Classifiers. *Journal of chemical information and modeling*, *55*(11), 2365-2374.

- van Rhee, A. M. (2003). Use of Recursion Forests in the Sequential Screening Process: Consensus Selection by Multiple Recursion Trees. *Journal of chemical information and computer sciences*, *43*(3), 941-948.
- Vepuri, S. B., Tawari, N. R., & Degani, M. S. (2007). Quantitative Structure-Activity Relationship Study of Some Aspartic Acid Analogues to Correlate and Predict Their Sweetness Potency. *QSAR & Combinatorial Science*, *26*(2), 204-214.
- Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-Regression: A Basic Tool of Chemometrics. *Chemometrics and Intelligent Laboratory Systems*, 58(2), 109-130.
- Yan, J., Huang, J.-H., He, M., Lu, H.-B., Yang, R., Kong, B., Xu, Q.-S., & Liang, Y.-Z. (2013). Prediction of Retention Indices for Frequently Reported Compounds of Plant Essential Oils Using Multiple Linear Regression, Partial Least Squares, and Support Vector Machine. *Journal of Separation Science*, 36(15), 2464-2471.
- Yang, X., Chong, Y., Yan, A., & Chen, J. (2011). In-Silico Prediction of Sweetness of Sugars and Sweeteners. *Food chemistry*, *128*(3), 653-658.
- Yuasa, Y., Nagakura, A., & Tsuruta, H. (1994). The Sweetness and Stereochemistry of L-Aspartyl-Fenchylaminoalcohol Derivatives. *Tetrahedron Letters*, *35*(37), 6891-6894.
- Zhong, M., Chong, Y., Nie, X., Yan, A., & Yuan, Q. (2013). Prediction of Sweetness by Multilinear Regression Analysis and Support Vector Machine. *Journal of Food Science, 78*(9), S1445-S1450.

CONCLUSIONES GENERALES PROYECCIONES FUTURAS

En la presente tesis doctoral se ha estudiado y aplicado la teoría QSAR/QSPR para generar relaciones predictivas para actividades/propiedades de interés en Química Analítica y Química de los Alimentos.

Para garantizar que las predicciones de los modelos desarrollados a lo largo de esta tesis sean confiables, se ha seguido el protocolo recomendado por la Organización para la Cooperación Económica y el Desarrollo (OECD), el cual estipula que se deben considerar 5 principios básicos: actividad/propiedad definida, uso de un algoritmo inequívoco, definición del dominio de aplicabilidad del modelo, medida apropiada de la calidad del modelo (ajuste, robustez y predictividad) e interpretación del mecanismo de acción de los descriptores involucrados en el modelo.

De esta manera, se han utilizado descriptores moleculares proporcionados por el programa DRAGON como representación de la estructura molecular, los cuales fueron seleccionados mediante el Método de Reemplazo (RM) para los modelos continuos y Algoritmos Genéticos (GAs) para los modelos discretos. En cada modelo de regresión se ha definido el dominio de aplicabilidad (AD) mediante el criterio del valor de influencia, mientras que en los modelos de clasificación se definió el AD mediante el análisis de similitudes de los k-vecinos más cercanos (kNN). Finalmente, el mecanismo de acción de los descriptores se realizó mediante el análisis de los coeficientes de regresión y el análisis de componentes principales.

La preparación y curado de los datos ha sido un aspecto fundamental para garantizar la confiabilidad en la construcción de los modelos QSAR/QSPR. Por ello se ha automatizado esta etapa mediante el uso del programa de minería de datos KNIME, tanto para el curado de bases de datos de índices de retención como la discriminación del dulzor y no dulzor, así como la predicción del dulzor relativo. Esto ha permitido definir bases de datos confiables y que cubren un amplio espectro de diversidad molecular, lo que permite una mayor generalización de los modelos desarrollados.

Los modelos QSPR independientes de la conformación son un enfoque útil cuando se trabaja con bases de datos de índices de retención cromatográficos de compuestos orgánicos volátiles. De hecho, la consideración de los descriptores moleculares 3D para el desarrollo de los modelos no refleja mejoras significativas que justifiquen su inclusión. Así, para esta propiedad, los descriptores moleculares que

181

brindan información de la conectividad molecular brindan una buena correlación tanto en fases apolares como en fases polares.

Por otra parte, diferentes métodos de clasificación (lineal y no lineal basado en similitudes locales) han sido usados para establecer las relaciones cuantitativas para la discriminación de moléculas dulces y no dulces (amargas e insípidas), y la predicción del dulzor relativo de diversos edulcorantes. Particularmente, los modelos basados en similitudes locales kNN usando descriptores moleculares independientes de la conformación han mostrado buenos resultados predictivos para la discriminación del dulzor. Adicionalmente, se ha desarrollado por primera vez un modelo para la predicción del dulzor que contempla una representación más general de la estructura molecular, la cual está basada en el uso de las huellas digitales moleculares de conectividad ampliada (ECFPs) y descriptores moleculares independientes de la conformación. Para analizar dichos datos, se ha recurrido a diversas técnicas quimiométricas, tales como el escalado multidimensional, los métodos de clasificación de los N-vecinos más cercanos (N3), el análisis discriminante de mínimos cuadrados parciales (PLSDA) y el análisis de componentes principales (PCA).

Los modelos QSAR/QSPR independientes de la conformación son un enfoque válido y útil para desarrollar relaciones cuantitativas estructuraactividad/propiedad predictivas. Para su uso, es importante un curado minucioso de las bases de datos, de tal forma que se evite trabajar con presenten la misma estructura moléculas que molecular no conformacional y diferente valor de actividad/propiedad. El proceso de curado permite su identificación y el aplicar tratamientos específicos para dichas estructuras, según se trabaje en regresión o clasificación. Cuando se trata de una respuesta continua (regresión) es una práctica común el uso del valor medio de la actividad/propiedad para todas las moléculas que tienen la misma representación independiente de la conformación. Por otro lado, cuando se trata de una respuesta discreta (clasificación), se distinguen dos casos: 1) retener una sola estructura cuando existen diversos compuestos con la misma representación molecular y 2) excluir las estructuras moleculares ambiguas, es decir, aquellas representaciones moleculares no conformacionales que pertenecen a clases diferentes.

Por otra parte, el modelado QSAR/QSPR independiente de la conformación no requiere información adicional experimental de la forma en la que interactúa el ligando con el receptor (docking molecular), de la forma en que se optimizan las geometrías moleculares mediante diversos métodos computaciones disponibles (QSAR/QSPR 3D), de las energías de interacción en el espacio 3D entre la molécula y grupos específicos (QSAR/QSPR 3D–CoMFA) ni de las regiones de la molécula con afinidad/no afinidad en presencia de dicho grupo (QSAR/QSPR 3D–CoMSIA).

Existe aún mucho por explorar dentro del desarrollo de este trabajo de tesis doctoral, particularmente el desarrollo de nuevos modelos que contemplen: 1) uso de nuevos descriptores moleculares, tales como descriptores flexibles implementados en el programa CORAL, huellas digitales moleculares implementadas en el programa PADEL, así como nuevos descriptores topológicos propuestos en el programa QuBiLS–MAS; 2) utilización de otros métodos quimiométricos, por ejemplo, regresión de mínimos cuadrados parciales (PLS), redes neuronales de contrapropagación (CP–ANN), método de árboles de clasificación y regresión (CART), máquinas de soporte vectorial (SVM), funciones potenciales (estimadores de densidad de Kernel), y otros métodos basados en máquinas de aprendizaje; y 3) uso de nuevas bases de datos con las mismas actividades/propiedades que se han estudiado para fusionarlas y poder generar modelos QSAR/QSPR que cubran un mayor espectro del dominio químico.

Finalmente, existen también otras propiedades/actividades que se podrían estudiar dentro del campo de la Química Analítica: índices de retención medidos en otras fases estacionarias apolares (SE-30, DB-1, OV-1, CP-Sil-5CB), ligeramente polares (DB-5, HP-5, SE-52, SE-54, BPX-5) propiedades polares (DB–Wax), espectroscópicas. ۷ propiedades de transición vítrea, propiedades calorimétricas, estabilidad térmica y solubilidad, entre otras. De igual manera en el campo de la Química de los Alimentos se podrían estudiar: péptidos bioactivos, capacidad antioxidante, actividad bactericida y fungicida de aditivos alimentarios, mejoradores de sabor/olor para alimentos, estudio de compuestos activos/nutraceúticos, toxicidad y carcinogenicidad de aditivos, QSAR para suplementos alimenticios y productos naturales, entre los más importantes.

PUBLICACIONES PRESENTADOS CIENTÍFICOS

Y EN

TRABAJOS EVENTOS

El presente trabajo de tesis doctoral dio lugar a las siguientes publicaciones científicas:

- C. Rojas, PR. Duchowicz y R. Pis Diez. Análisis QSPR de índices de retención de aromas medidos en cromatografía de gases. Investigación Joven, Vol. 1 (2) (2014): 61
- F. Cárdenas, P. Tripaldi y C. Rojas. Estudio de la relación cuantitativa estructura–actividad de pesticidas mediante técnicas de clasificación. Avances en Ciencias e Ingenierías, Vol. 6 (2) (2014): B26–B37
- C. Rojas, PR. Duchowicz, P. Tripaldi and R. Pis Diez. QSPR analysis for the retention index of flavors and fragrances on a OV–101 column. Chemometrics and Intelligent Laboratory Systems, Vol. 140 (2015): 126–132
- C. Rojas, PR. Duchowicz, P. Tripaldi, R. Pis Diez. Quantitative structure–property relationship Analysis for the Retention Index of Fragrance–Like Compounds on a Polar Stationary Phase. Journal of Chromatography A. Vol. 1422 (2015): 277–288
- C. Rojas, PR. Duchowicz, R. Pis Diez, P. Tripaldi. Applications of quantitative structure–relative sweetness relationships in food chemistry. In Handbook of Research on Chemometrics: QSAR in Medicinal Chemistry (Vol I). Edited by Mercader, AG., Duchowicz, PR. and Sivakumar, PM. Apple Academic Press (2016)
- C. Rojas, P. Tripaldi, PR. Duchowicz. A new QSPR study on relative sweetness. International Journal of QSPR. Vol. 1 (1) (2016): 76–90
- C. Rojas, D. Ballabio, P. Tripaldi, V. Consonni, A. Mauri, R. Todeschini. Quantitative structure–activity relationships to predict sweet and non–sweet tastes. Theoretical Chemistry Accounts. Vol. 135 (3) (2016): 1–13
- 8. C. Rojas, R. Todeschini, D. Ballabio, A. Mauri, V. Consonni, P. Tripaldi, F. Grisoni. A QSTR-based Expert System to Predict

Sweetness of Molecules. Frontiers in Chemistry. 5(53) (2017): 1–12

 C. Rojas, PR. Duchowicz, P. Tripaldi, Pis Diez, R. Quantitative Structure–Property Relationships for Predicting the Retention Indices of Fragrances on Stationary Phases of Different Polarity. Journal of the Argentine Chemical Society, In Press (2017)

así como a los siguientes trabajos presentados en congresos nacionales e internacionales:

- F. Cárdenas, P. Tripaldi, D. Matamoros y C. Rojas. Estudio cuantitativo de la relación estructura–actividad de pesticidas empleando el algoritmo de clasificación *k*–NN. Sexta Semana Internacional de la Estadística y la Probabilidad. Puebla, México. Junio 2013
- F. Cárdenas, P. Tripaldi y C. Rojas. Modelización de la estructura–actividad de pesticidas utilizando los métodos CP– ANN y k–NN. III Congreso Binacional AUSENP. Lambayeque, Perú. Octubre 2013
- C. Rojas. Análisis QSPR sobre índices de retención de aromas y fragancias medidos por cromatografía de gases. Seminario de la División Química Teórica del INIFTA. La Plata, Argentina. Abril 2014.
- 4. F. Cárdenas, P. Tripaldi y C. Rojas. Uso de técnicas estadísticas multivariantes aplicadas a un estudio de calidad del agua. VII Congreso Iberoamericano de Física y Química Ambiental y XII Encuentro de Química Analítica y Ambiental. Viña del Mar, Chile. Octubre 2014
- C. Rojas. Desarrollo y aplicación de técnicas matemáticas de la teoría QSAR–QSPR en química analítica y química de los alimentos. IX Jornadas de Becarios del INIFTA–2014. La Plata, Argentina. Octubre 2014
- P. Tripaldi y C. Rojas. Funciones de deseabilidad como función de puntuación (fitness function) en la utilización de los algoritmos genéticos para la selección de variables. 30° Congreso Argentino de Química. Buenos Aires, Argentina. Octubre 2014
- C. Rojas, PR. Duchowicz, P. Tripaldi y R. Pis Diez. Análisis QSPR para índices de retención medidos en la columna OV–101. 30° Congreso Argentino de Química. Buenos Aires, Argentina. Octubre 2014
- 8. C. Rojas, PR. Duchowicz, P.Tripaldi y R. Pis Diez. Relación cuantitativa estructura–dulzor relativo. V Congreso de Ingeniería

de Alimentos y XIV Jornadas de Ciencia y Tecnología de Alimentos. Quito, Ecuador. Noviembre 2014

- P. Tripaldi, C. Rojas y A. Pérez. Clasificación del poder edulcorante de moléculas naturales y sintéticas mediante aplicación de métodos QSAR. V Congreso de Ingeniería de Alimentos y XIV Jornadas de Ciencia y Tecnología de Alimentos. Quito, Ecuador. Noviembre 2014
- 10.C. Rojas, PR. Duchowicz, P. Tripaldi y R. Pis Diez. Análisis QSPR para índices de retención medidos en la columna Carbowax 20M. XIX Congreso Argentino de Fisicoquímica y Química Inorgánica. Buenos Aires, Argentina. Abril 2015
- Rojas, PR. Duchowicz, R. Pis Diez, P. Tripaldi, A. Pérez. A preliminary quantitative structure–relative sweetness relationship.
 13th Latin American Conference on Physical Organic Chemistry. Carlos Paz, Argentina. Mayo 2015
- 12. C. Rojas, D. Ballabio, PR. Duchowicz, R. Todeschini, P. Tripaldi. QSAR study for modelling the sweetness and bitterness tastes. Congress of Theoretical Chemists of Latin Expression. Torino, Italia. Julio 2015
- 13. C. Rojas. Relaciones cuantitativas estructura–actividad para predecir los gustos dulce y no dulce. Seminario de la División Química Teórica del INIFTA. La Plata, Argentina. Abril 2016
- 14. C. Rojas, P. Tripaldi, PR. Duchowicz, R. Pis Diez, A. Pérez. Modelado QSPR de índices de retención de aromas de arroz. Primer Workshop Latinoamericano de Modelado Molecular & Simulación Computacional. Buenos Aires, Argentina. Julio 2016
- 15. P. Tripaldi, C. Rojas, A. Pérez, Davide Ballabio, R. Todeschini. Desarrollo de un modelo QSAR–N3 para péptidos inhibidores de acetilcolinesterasa (AChE). XXXI Congreso Argentino de Química. Buenos Aires, Argentina. Octubre 2016
- 16. M. Valdez, P. Tripaldi, A. Pérez, C. Rojas. Caracterización reológica de mayonesas comerciales mediante análisis de componentes principales. XXXI Congreso Argentino de Química. Buenos Aires, Argentina. Octubre 2016
- 17.A. Pérez, P. Tripaldi, C. Morales, C. Rojas. Estudio de la calidad fisicoquímica de mieles de abeja comerciales mediante métodos quimiométricos. XXXI Congreso Argentino de Química. Buenos Aires, Argentina. Octubre 2016
- 18.C. Rojas, R. Todeschini, D. Ballabio, A. Mauri, V. Consonni, P. Tripaldi, F. Grisoni. Relaciones cuantitativas estructura–dulzor

basadas en los métodos de clasificación N3 y PLSDA. XXXI Congreso Argentino de Química. Buenos Aires, Argentina. Octubre 2016

- 19. C. Rojas, PR. Duchowicz, P. Tripaldi, PR. Pis Diez. Desarrollo de modelos QSPR para índices de retención de aromas medidos en columnas de diferente polaridad. XXXI Congreso Argentino de Química. Buenos Aires, Argentina. Octubre 2016
- 20. C. Rojas, R. Todeschini, D. Ballabio, A. Mauri, V. Consonni, P. Tripaldi, F. Grisoni Quantitative structure-taste relationship to predict the sweetness of molecules. International Workshop on Drug Design and Neglected Tropical Diseases. La Plata, Argentina. November 2016

TABLAS ANEXAS (en CD)

Tabla 1A. Nombres químicos e índices de retención experimentales de 1208 sabores y aromas medidos en la columna apolar OV–101

No.	Nombre	I
1	Acetaldehyde di–(cis–3–hexenil) acetal	1465
2^	Acetaldehyde ethyl-cis-3-hexenyl-acetal	1095
3	Acetaldehyde linalyl ethyl acetal	1361.5
4*	Acetaldehyde phenylethyl n-propyl acetal	1424
5^	Acetaldehyde styleneglycol acetal	1279.5
6	Acetone	530
7	Acetone–1–phenyl 1,2–ethandiol ketal	1260
8*	Acetonyl acetone	894
9	Acetophenone	1048
10	4–Acetyl–6–tert–butyl–1,1–dimethyl indan	1706
11*	Acetyl eugenol eugenyl acetate	1541
12	2-Acetylfuran	892
13	Acetyl methyl carbinol acetoin	697
14^	2–Acetylpyridine	1014
15	2–Acetylthiazole	995
16*	2–Acetylthiophene	1069
17^	Allyl acetate	675
18^	Allyl anthranilate	1411
19*	Allyl benzoate	1239
20*	Allyl n-butyrate	867
21^	Allyl cyclohexane propionate	1405
22*	Allyl n–decanoate	1462
23^	Allyl 2–ethyl butyrate	995
24*	Allyl formate	586
25*	Allyl 2-furoate	1113
26^	Allyl n-heptanoate	1164
27^	Allyl n-hexanoate	1065
28*	Allyl ionone	1676.8
29^	Allyl levulinate	1114
30*	Allyl n-nonanoate	1365
31^	Allyl n–octanoate	1265

32^	Allyl phenoxy acetate	1429
33^	Allyl phenyl acetate	1422
34^	Allyl n–propionate	777
35	Allyl salicylate	1339
36*	Allyl tiglate	1002
37^	Allyl iso-valerate	920
38^	o-Amino acetophenone	1288
39	p–Amino acetophenone	1506
40*	n–Amyl acetate	985
41	iso–Amyl acetate	860
42*	2-n-Amyl-3-acetonyl-1-cyclopentanone	1600
43	n–Amyl alcohol	756
44^	iso–Amyl alcohol	719
45	sec–Amyl alcohol	685
46	tert–Amyl alcohol	631
47*	iso–Amyl benzoate	1421
48	iso–Amyl benzyl ether	1297
49^	n–Amyl n–butyrate	1078
50^	n–Amyl iso–butyrate	1035
51	iso-Amyl n-butyrate	1042
52	iso–Amyl iso–butyrate	997
53^	iso–Amyl cinnamate	1719
54*	alpha–Amyl cinnamic aldehyde	1631
55*	alpha–n–Amyl cinnamyl acetate	1757
56^	n–Amyl cyclopentenone	1180
57	p-tert-amyl cyclohexanone	1334
58^	iso-Amyl n-decanoate	1633
59*	iso-Amyl n-dodecanoate	1829
60	n–Amyl formate	810
61*	iso–Amyl formate	775
62^	iso–Amyl 2–furoate	1287
63	n-amyl furylpropionate	1453
64*	iso-amyl furylpropionate	1415
65*	iso-amyl n-pentanoate	1334
66^	n-amyl n-hexanoate	1279
67^	iso-amyl n-hexanoate	1238
68*	n-amyl levulinate	1325
69^	iso–amyl levulinate	1284
70^	n-amyl 2-methyl butyrate	1126
71	iso-amyl 2-metyl butyrate	1087

72*	n-amyl n-octanoate	1471
73*	iso-amyl n-octanoate	1433
74^	n-amyl phenylacetate	1506
75^	iso-amyl phenylacetate	1468
76*	n–amyl n–propionate	955
77^	iso-amyl n-propionate	954
78^	6–amyl alpha–pyrone	1434
79	iso–amyl pyruvate	1027
80*	n-amyl salicylate	1557
81*	iso-amyl salicylate	1528
82*	iso–amyl tiglate	1178
83	iso-amyl 10-undecenoate	1717
84^	n-amyl n-valerate	1185
85*	n–amyl iso–valerate	1135
86^	iso-amyl n-valerate	1138
87^	Isoamyl isovalerate	1092
88*	anethole	1270
89	anis alcohol	1267
90*	anis aldehyde	1234
91^	anis aldeyde-propyleneglycol acetal	1510
92*	anisole	900
93^	benzal acetone	1337
94	benzaldehyde	947
95*	benzonitrile	965
96*	benzophenone	1604
97	Benzyl acetate	1144
98*	Benzyl acetone	1218
99^	Benzyl alcohol	1033
100*	Benzyl n-butyrate	1322
101*	Benzyl iso-butirate	1277
102*	Benzyl ethyl ether	1046
103^	Benzyl formate	1058
104^	Benzyl n-heptanoate	1620
105^	Benzyl n-hexanoate	1521
106^	Benzyl n–nonanoate	1823
107	Benzyl n–octanoate	1720
108^	Benzyl n–propionate	1234
109^	Benzyl tiglate	1474
110	Benzyl n–valerate	1421
111	Benzyl iso-valerate	1374

112*	iso-bornyl acetate	1279
113*	iso-bornyl n-propionate	1376
114	bromostryrol	1197
115*	2,3 butadienone diacetyl	606
116	n butanol	655
117^	n-butanol-2-ol	586
118^	2-butanoylfuran	1078
119^	2-butanoyl-5-methylfuran	1192
120	2-butanoylthiophene	1252
121^	n-butyl acetate	793
122	iso-butyl acetate	758
123*	iso–butyl aldehyde	500
124	iso-butyl aldehyde-1-phenyl,1,2-ethanediol acetal	1384
125*	iso-butyl aldehyde-propylene glycol acetal	835.5
126^	n-butyl anisate	1632
127^	iso-butyl anisate	1586
128	n-butyl antranilate	1600
129*	iso-butyl antranilate	1556
130^	n–butyl benzoate	1354
131	iso-butyl benzoate	1310
132*	iso-butyl benzyl carbinol	1366
133^	n-butyl n-butyrate	979
134*	n-butyl iso-butyrate	939
135	iso-butyl n-butyrate	941
136*	iso-butyl iso-butyrate	900
137^	n butyl n–butyrul lactate	1331
138*	iso-butyl cinnamate	1605
139*	o-ter-butyl cyclohexyl acetate	1295
140*	p-tert-butyl cyclohexyl-acetate trans	1322
141^	p-tert-butyl cyclohexyl-acetate cis	1360
142	p-tert-butyl cyclohexanone	1208
143*	n–Butyl n–decanoate	1575
144^	2-iso-Butyl-4,5-dimethyloxazole	1044
145^	2-n-Butyl-4-5-dimetylthiazole	1251
146*	2-iso-Butyl-4,5-dimethylthizole	1193
147^	n–Butyl n–dodecanoate	1772
148	iso–Butyl 2–ethyl n–hexanoate	1248
149*	2-n-Butyl-4-ethyl-5-methyloxazole	1159
150^	2-iso-Butyl-4-ethyl-5-methyloxazole	1106
151^	n–Butyl formate	696
147^ 148 149* 150^ 151^	n–Butyl n–dodecanoate iso–Butyl 2–ethyl n–hexanoate 2–n–Butyl–4–ethyl–5–methyloxazole 2–iso–Butyl–4–ethyl–5–methyloxazole n–Butyl formate	1772 1248 1159 1106 696

152 iso-Butyl formate 673 153* 2-n-Butyl furan 883 154* iso-Butyl beta-2-furyl acrylate 1435 155* n-Butyl n-propionate 1354 156* n-Butyl n-heptanoate 1276 157* iso-Butyl n-heptanoate 1239 158* n-Butyl n-hexanoate 1177 159 iso-Butyl n-hexanoate 1140 160* tert-Butyl-4-hydroxy anisole 1480 161* n-Butyl levulinate 1225 162* iso-Butyl n-methyl anthranilate 1617 164* n-Butyl 2-methyl butyrate 1929 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (liiy aldehyde) 1506 167* n-Butyl n-octanoate 1373 170* n-Butyl n-octanoate 1373 171* iso-Butyl -alpha-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171* iso-Butyl n-octanoate 1373 171* iso-Butyl n-propionate 889 172* n-Butyl phenyl acetate 1408 173* iso-Butyl n-propi			
153 ^A 2-n-Butyl furan 883 154 [*] iso-Butyl beta-2-furyl acrylate 1435 155 [*] n-Butyl ruyl n-propionate 1354 156 [*] n-Butyl n-heptanoate 1276 iso-Butyl n-heptanoate 1239 158 [*] n-Butyl n-heptanoate 1140 160 [*] tert-Butyl-A-hydroxy anisole 1480 161 n-Butyl levulinate 1225 162 [*] iso-Butyl evulinate 1029 165 [*] iso-Butyl acritical 1617 164 [*] n-Butyl 2-methyl anthranilate 1029 165 [*] iso-Butyl 2-methyl butyrate 991 166 [*] p-fert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily alde-hyde) 1506 167 n-Butyl methyl phenyl-glycidate 1645.5 168 [*] 2-n-Butyl-4-methylthiazole 1086 170 [*] n-Butyl n-octanoate 1373 171 [*] iso-Butyl n-poctanoate 1371 174 p-tert-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl acetate 1371	152	iso–Butyl formate	673
154* iso-Butyl beta-2-furyl acrylate 1435 155^ n-Butyl n-neptanoate 1276 157* iso-Butyl n-heptanoate 1276 157* iso-Butyl n-heptanoate 1276 157* iso-Butyl n-heptanoate 1140 160* tert-Butyl-A-hydroxy anisole 1480 161 n-Butyl levulinate 1225 162* iso-Butyl n-methyl anthranilate 1617 164* n-Butyl 2-methyl butyrate 1029 165* iso-Butyl 2-methyl butyrate 1991 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily aldehyde) 1506 hyde) n-Butyl a-methylthiazole 1141 168 2-n-Butyl-4-methylthiazole 1141 169 2-iso-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1338 172* n-Butyl phenyl acetate 1408 173* iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 176 n-Butyl phenyl acetate 1408 173* iso-Butyl n-propionate 852 176 <td>153^</td> <td>2-n-Butylfuran</td> <td>883</td>	153^	2-n-Butylfuran	883
155^ n-Butyl furyl n-propionate 1354 156^ n-Butyl n-heptanoate 1276 157' iso-Butyl n-heptanoate 1139 158 n-Butyl n-hexanoate 1140 160' tert-Butyl-4-hydroxy anisole 1480 161 n-Butyl levulinate 1225 162' iso-Butyl n-methyl anthranilate 1617 164' n-Butyl 2-methyl butyrate 1091 166' p-tert-Butyl-4-methyl-butyrate 1029 166' n-Butyl 2-methyl butyrate 1506 166' p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (illy alde-hyde) 1506 167' n-Butyl n-octanoate 1338 170' n-Butyl n-octanoate 1338 171' iso-Butyl n-octanoate 1338 172' n-Butyl phenyl acetate 1408 173' iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl propyl-aldehyde 1212 175' iso-Butyl n-propionate 852 176 n-Butyl n-propionate 852 <td< td=""><td>154*</td><td>iso-Butyl beta-2-furyl acrylate</td><td>1435</td></td<>	154*	iso-Butyl beta-2-furyl acrylate	1435
156^ n-Butyl n-heptanoate 1239 157* iso-Butyl n-heptanoate 1177 159 iso-Butyl n-hexanoate 1140 160* tert-Butyl-4-hydroxy anisole 1480 161 n-Butyl levulinate 1225 162* iso-Butyl levulinate 183 163^ iso-Butyl 2-methyl butyrate 1029 165^ iso-Butyl 2-methyl butyrate 991 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (illy alde-hyde) 1506 167 n-Butyl methyl phenyl-glycidate 1645.5 168* 2-n-Butyl-4-methylthiazole 1141 169 2-iso-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171^ iso-Butyl phenyl acetate 1371 172^ n-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylpropyl-aldehyde 1212 175* iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 <	155^	n–Butyl furyl n–propionate	1354
157* iso-Butyl n-heptanoate 1239 158^ n-Butyl n-hexanoate 1177 159 iso-Butyl n-hexanoate 1140 160* tert-Butyl-4-hydroxy anisole 1480 161 n-Butyl levulinate 1225 162* iso-Butyl levulinate 1833 163^ iso-Butyl 2-methyl butyrate 1029 165^ iso-Butyl 2-methyl butyrate 991 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (illy alde-hyde) 1506 167 n-Butyl n-octanoate 1373 168* 2-n-Butyl-4-methylthiazole 1046 170 n-Butyl n-octanoate 1373 171^ iso-Butyl phenyl acetate 1408 173^ iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylpropyl-aldehyde 1212 175* iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 178 n-Butyl n-propionate 852 180*	156^	n–Butyl n–heptanoate	1276
158 ⁿ n-Butyl n-hexanoate 1140 160* tert-Butyl-4-hydroxy anisole 1480 161 n-Butyl levulinate 1225 162* iso-Butyl n-methyl anthranilate 1183 163* iso-Butyl n-methyl anthranilate 1029 165* iso-Butyl 2-methyl butyrate 991 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily alde-hyde) 1506 167 n-Butyl methyl phenyl-glycidate 1645.5 168* 2-n-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171* iso-Butyl n-octanoate 1338 172* n-Butyl phenyl acetate 1408 173* iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl acetate 1371 175* iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylpropyl-aldehyde 1212 175* iso-Butyl phenylacetate 1371 174 p-tert-Butyl phenylacetate 1455 178 6-sec-Butyl quinoline 1592 178 iso-Butyl salicylate 1457	157*	iso–Butyl n–heptanoate	1239
159 iso-Butyl n-hexanoate 1140 160* tert-Butyl-4-hydroxy anisole 1480 161 n-Butyl levulinate 1225 162* iso-Butyl levulinate 1183 163* iso-Butyl levulinate 1029 165* iso-Butyl 2-methyl butyrate 991 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily alde-hyde) 1506 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily alde-hyde) 1506 166* p-tert-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171* iso-Butyl n-octanoate 1373 171* iso-Butyl phenyl acetate 1408 173* iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylacetate 1371 175* iso-Butyl phenylacetate 1408 173* iso-Butyl phenylacetate 1408 175* iso-Butyl alicylate 1410 174 p-tert-Butyl phenylacetate 1592 178 6-sec-Butyl quinoline 1592	158^	n–Butyl n–hexanoate	1177
160* tert-Butyl-4-hydroxy anisole 1480 161 n-Butyl levulinate 1225 162* iso-Butyl n-methyl anthranilate 1617 164* n-Butyl 2-methyl butyrate 1029 165* iso-Butyl 2-methyl butyrate 1029 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily alde-hyde) 1506 167 n-Butyl methyl phenyl-glycidate 1645.5 168* 2-n-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171* iso-Butyl acetate 1408 173* iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylacetate 1371 175* iso-Butyl phenylacetate 1371 174 p-tert-Butyl phenylacetate 1371 175* iso-Butyl n-propionate 852 176 n-Butyl n-propionate 1457 180* iso-Butyl salicylate 1410 181* 2-iso-butylthiazole 1020 177* iso-Butyl salicylate 1457 18	159	iso-Butyl n-hexanoate	1140
161 n-Butyl levulinate 1225 162* iso-Butyl levulinate 1183 163^ iso-Butyl n-methyl anthranilate 1617 164* n-Butyl 2-methyl butyrate 991 166* iso-Butyl 2-methyl butyrate 991 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily aldehyde) 1506 167 n-Butyl methyl phenyl-glycidate 1645.5 168* 2-n-Butyl-4-methylthiazole 1141 169 2-iso-Butyl-4-methylthiazole 1373 170 n-Butyl n-octanoate 1338 170 n-Butyl phenyl acetate 1408 173' iso-Butyl phenyl acetate 1408 173' iso-Butyl phenyl acetate 1331 174 p-tert-Butyl phenylacetate 1333 175 iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^<	160*	tert-Butyl-4-hydroxy anisole	1480
162* iso-Butyl levulinate 1183 163^ iso-Butyl n-methyl anthranilate 1617 164* n-Butyl 2-methyl butyrate 991 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (iily aldehyde) 1506 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (iily aldehyde) 1506 166* p-tert-Butyl-4-methylthiazole 1645.5 168* 2-n-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171^ iso-Butyl n-octanoate 1338 172^ n-Butyl phenyl acetate 1408 173^ iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl acetate 1371 175* iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^ n-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 178 n-Butyl iglate 1116 <	161	n–Butyl levulinate	1225
163^ iso-Butyl n-methyl anthranilate 1617 164* n-Butyl 2-methyl butyrate 991 165^ iso-Butyl 2-methyl butyrate 991 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily aldehyde) 1506 167 n-Butyl methyl phenyl-glycidate 1645.5 168* 2-n-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171^ iso-Butyl n-octanoate 1338 172^ n-Butyl phenyl acetate 1408 173^ iso-Butyl phenyl acetate 1408 173^ iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl acetate 1371 175* iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 1592 178^ n-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 178 iso-Butyl isoleta 1076 184^ iso-Butyl isoleta 1076 185 n-Butyl	162*	iso-Butyl levulinate	1183
164* n-Butyl 2-methyl butyrate 991 165^ iso-Butyl 2-methyl butyrate 991 166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily aldehyde) 1506 167 n-Butyl methyl phenyl-glycidate 1645.5 168* 2-n-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171^ iso-Butyl n-octanoate 1338 172^ n-Butyl phenyl acetate 1408 173^ iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl acetate 1371 175* iso-Butyl phenyl acetate 1371 175* iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^ n-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiazole 1020 184* iso-Butyl tiglate 1166 184* iso-Butyl iso-valerate 1076 184* iso-Buty	163^	iso-Butyl n-methyl anthranilate	1617
165^h iso-Butyl 2-methyl butyrate 991 166 ⁺ p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily aldehyde) 1506 167 n-Butyl methyl phenyl-glycidate 1645.5 168 [*] 2-n-Butyl-4-methylthiazole 1141 169 2-iso-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171 ^{^+} iso-Butyl n-octanoate 1338 172 ^{^+} n-Butyl phenyl acetate 1408 173 ^{^+} iso-Butyl phenyl acetate 1408 173 ⁺ iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylpropyl-aldehyde 1212 175 [*] iso-Butyl phenylpropyl-aldehyde 1212 175 [*] iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179 ⁺ n-Butyl salicylate 1410 181 ⁺ 2-iso-butylthiazole 1020 182 [*] 2-n-butylthiazole 1020 182 [*] 2-n-butylthiazole 1052 <td>164*</td> <td>n–Butyl 2–methyl butyrate</td> <td>1029</td>	164*	n–Butyl 2–methyl butyrate	1029
166* p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily aldehyde) 1506 167 n-Butyl methyl phenyl-glycidate 1645.5 168* 2-n-Butyl-4-methylthiazole 1141 169 2-iso-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171* iso-Butyl n-octanoate 1338 172* n-Butyl phenyl acetate 1408 173* iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl acetate 1371 175* iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179* n-Butyl salicylate 1410 181* 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 178 n-Butyl salicylate 1410 181* 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl iglate 1076 184* iso-Butyl iglate <td>165^</td> <td>iso-Butyl 2-methyl butyrate</td> <td>991</td>	165^	iso-Butyl 2-methyl butyrate	991
167 n-Butyl methyl phenyl-glycidate 1645.5 168* 2-n-Butyl-4-methylthiazole 1141 169 2-iso-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171* iso-Butyl n-octanoate 1338 172* n-Butyl phenyl acetate 1408 173* iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylacetate 1371 175* iso-Butyl phenylacetate 1371 176 n-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 6-sec-Butyl quinoline 1592 1457 178* iso-Butyl salicylate 1410 181* 2-iso-butylthiazole 1020 182* 2-n-butylthiazole 1020 182* 2-n-butylthiazole 1052 183 n-Butyl recencate 1660 184* iso-Butyl tiglate 1076 185 n-Butyl 10-undecencate 1660 186* n-Butyl iso-valerate 992 188 iso-Butyl iso-valerate 992 <	166*	p-tert-Butyl-alpha-methyl-hydrocinnamic aldehyde (lily alde- hyde)	1506
168* 2-n-Butyl-4-methylthiazole 1141 169 2-iso-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171^ iso-Butyl n-octanoate 1338 172^ n-Butyl phenyl acetate 1408 173^ iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylpropyl-aldehyde 1212 175* iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^ n-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl salicylate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl n-undecanoate 1660 186* n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyl rophenone 1185 190^ Camphor 1136 191^ <td>167</td> <td>n–Butyl methyl phenyl–glycidate</td> <td>1645.5</td>	167	n–Butyl methyl phenyl–glycidate	1645.5
169 2-iso-Butyl-4-methylthiazole 1086 170 n-Butyl n-octanoate 1373 171^ iso-Butyl n-octanoate 1338 172^ n-Butyl phenyl acetate 1408 173^ iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylpropyl-aldehyde 1212 175* iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^n n-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl iglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1136 191^	168*	2-n-Butyl-4-methylthiazole	1141
170 n-Butyl n-octanoate 1373 171^ iso-Butyl n-octanoate 1338 172^ n-Butyl phenyl acetate 1408 173^ iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenyl acetate 1371 175* iso-Butyl phenylpropyl-aldehyde 1212 175* iso-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^ n-Butyl salicylate 1410 181^ 2-iso-Butyl tiglate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl tiglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl tiglate 1076 186* n-Butyl iso-valerate 1660 187^ n-Butyl iso-valerate 1992 188* iso-Butyl iso-valerate 1992 189 iso-Butyl iso-valerate 1921 188* iso-Butyl iso-valerate 1992 189	169	2-iso-Butyl-4-methylthiazole	1086
171^ iso-Butyl n-octanoate 1338 172^ n-Butyl phenyl acetate 1408 173^ iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylpropyl-aldehyde 1212 175* iso-Butyl n-propionate 933 176 n-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^ n-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl iglate 1076 184^ iso-Butyl tiglate 1076 185 n-Butyl tiglate 1076 184^ iso-Butyl tiglate 1076 185 n-Butyl tiglate 1076 185 n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyl ophenone 1185 1890^ Camphor 1136 191^ Carvacrol 1297	170	n-Butyl n-octanoate	1373
172^ n-Butyl phenyl acetate 1408 173^ iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylpropyl-aldehyde 1212 175* iso-Butyl pivalate 933 176 n-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^ n-Butyl salicylate 1410 180* iso-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl iglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyl iso-valerate 1021 186* n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 1021 189 iso-Butyl ophenone 1185 190^ Camphor 1136 191^ Carvacrol 1297	171^	iso–Butyl n–octanoate	1338
173^ iso-Butyl phenyl acetate 1371 174 p-tert-Butyl phenylpropyl-aldehyde 1212 175* iso-Butyl pivalate 933 176 n-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^ n-Butyl salicylate 1457 180* iso-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl iglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl 10-undecanoate 1660 187^ n n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyl ophenone 1185 190^ Camphor 1136 1136	172^	n–Butyl phenyl acetate	1408
174 p-tert-Butyl phenylpropyl-aldehyde 1212 175* iso-Butyl pivalate 933 176 n-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^ n-Butyl salicylate 1457 180* iso-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl iglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl in-undecanoate 1660 187^ n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyl ophenone 1185 190^ Camphor 1136 191^ Carvacrol 1297	173^	iso–Butyl phenyl acetate	1371
175* iso-Butyl pivalate 933 176 n-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^ n-Butyl salicylate 1457 180* iso-Butyl salicylate 1410 181^ 2-iso-butyl thiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl tiglate 1116 184^/ iso-Butyl tiglate 1076 185 n-Butyl tiglate 1076 185 n-Butyl tiglate 1021 186* n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyl ophenone 1185 190^ Camphor 1136 191^/ Carvacrol 1297	174	p-tert-Butyl phenylpropyl-aldehyde	1212
176 n-Butyl n-propionate 889 177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^ n-Butyl salicylate 1457 180* iso-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl tiglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl tiglate 1660 186* n-Butyl 10-undecenoate 1660 187^ n-Butyl iso-valerate 992 188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1136 190^ Camphor 1136	175*	iso–Butyl pivalate	933
177 iso-Butyl n-propionate 852 178 6-sec-Butyl quinoline 1592 179^ n-Butyl salicylate 1457 180* iso-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl tiglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl n-undecanoate 1674 186* n-Butyl 10-undecenoate 1060 187^ n-Butyl iso-valerate 992 188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1136 190^ Camphor 1136	176	n–Butyl n–propionate	889
178 6-sec-Butyl quinoline 1592 179^n n-Butyl salicylate 1457 180* iso-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl tiglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl n-undecanoate 1674 186* n-Butyl 10-undecenoate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyl iso-valerate 1136 190^ Camphor 1136 191^ Carvacrol 1297	177	iso-Butyl n-propionate	852
179^ n-Butyl salicylate 1457 180* iso-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl tiglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl n-undecanoate 1674 186* n-Butyl 10-undecenoate 1660 187^ n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1136 190^ Camphor 1136	178	6-sec-Butyl quinoline	1592
180* iso-Butyl salicylate 1410 181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl tiglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl n-undecanoate 1674 186* n-Butyl 10-undecenoate 1660 187^ n-Butyl iso-valerate 992 188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1136 190^ Camphor 1136	179^	n–Butyl salicylate	1457
181^ 2-iso-butylthiazole 1020 182* 2-n-butylthiophene 1052 183 n-Butyl tiglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl n-undecanoate 1674 186* n-Butyl 10-undecenoate 1660 187^ n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1136 190^ Camphor 1136 191^ Carvacrol 1297	180*	iso–Butyl salicylate	1410
182* 2-n-butylthiophene 1052 183 n-Butyl tiglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl n-undecanoate 1674 186* n-Butyl 10-undecenoate 1660 187^ n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1185 190^ Camphor 1136 191^ Carvacrol 1297	181^	2-iso-butylthiazole	1020
183 n-Butyl tiglate 1116 184^ iso-Butyl tiglate 1076 185 n-Butyl n-undecanoate 1674 186* n-Butyl 10-undecenoate 1660 187^ n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1185 190^ Camphor 1136 191^ Carvacrol 1297	182*	2-n-butylthiophene	1052
184^ iso-Butyl tiglate 1076 185 n-Butyl n-undecanoate 1674 186* n-Butyl 10-undecenoate 1660 187^ n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1185 190^ Camphor 1136 191^ Carvacrol 1297	183	n–Butyl tiglate	1116
185 n-Butyl n-undecanoate 1674 186* n-Butyl 10-undecenoate 1660 187^ n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1185 190^ Camphor 1136 191^ Carvacrol 1297	184^	iso–Butyl tiglate	1076
186* n-Butyl 10-undecenoate 1660 187^ n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1185 190^ Camphor 1136 191^ Carvacrol 1297	185	n–Butyl n–undecanoate	1674
187^ n-Butyl iso-valerate 1021 188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1185 190^ Camphor 1136 191^ Carvacrol 1297	186*	n-Butyl 10-undecenoate	1660
188* iso-Butyl iso-valerate 992 189 iso-Butyrophenone 1185 190^ Camphor 1136 191^ Carvacrol 1297	187^	n–Butyl iso–valerate	1021
189 iso-Butyrophenone 1185 190^ Camphor 1136 191^ Carvacrol 1297	188*	iso-Butyl iso-valerate	992
190^ Camphor 1136 191^ Carvacrol 1297	189	iso-Butyrophenone	1185
191^ Carvacrol 1297	190^	Camphor	1136
	191^	Carvacrol	1297

192*	Carveol	1215.5
193^	Carvone	1228
194	Caryophyllene	1428
195^	Cedrol	1609
196*	Cinnamic aldehyde	1250
197*	Cinnamyl acetate	1419
198*	Cinnamyl alcohol	1300
199^	Cinnamyl n-butyrate	1604
200	Cinnamyl iso-butyrate	1555
201^	Cinnamyl n-hexanoate	1805
202^	Cinnamyl n-propionate	1515
203^	Cinnamyl n-valerate	1705
204*	Cinnamyl iso-valerate	1655
205	Citral	1236
206^	Citronellal	1137
207^	Citronellol	1215
208^	Citronellyl acetate	1335
209^	Citronellyl n-butyrate	1511
210	Citronellyl iso-butryrate	1469
211*	Citronellyl formate	1261
212^	Citronellyl n-proprionate	1427
213^	Citronellyl iso-valerate	1563
214	Coumarin	1418
215	p–Cresol methyl ether	1005
216*	p–Cresyl acetate	1150
217^	p–Cresyl iso–butyrate	1291
218^	p–Cresyl n–octanoate	1755
219*	Cumin alcohol	1283
220	Cumin aldehyde	1227
221	Cyclohexane glycidate	1344
222	Cyclohexanol	880
223*	Cyclohexanone	875
224	Cyclohexanone–1,3–butylene ketal	1186
225	Cyclohexanone–1–phenyl–1,2–ethanodiol ketal	1665
226^	Cyclohexil acetate	1027
227*	Cyclohexyl n–butyrate	1209
228^	Cyclohexyl iso-butyrate	1164
229^	2–Cyclohexylethyl acetate	1233
230	Cyclohexyl formate	951
231*	Cyclohexyl n-hexanoate	1411

232^ Cyclohexyl n-propionate 1120 233^ Cyclohexyl iso-valerate 1264 234^ trans-2-trans-4-Decadienol 1310 235 Decahydro beta-naphthol 1301.5 236 gamma-Decalactone 1463 238 n-Decanal 1487 239 n-Decanal diethyl acetal 1473 240* n-Decanal dimethyl acetal 1366 241 n-Decanal 1177 242* n-Decanal 1263 242* n-Decanal 1251 243 cis-4-Decenal 1251 244* 1-Decene 991 245* 9-Decen-1-al 1251 246 9-Decen-1-yl acetate 1383 247* n-Decyl acetate 1393 248* n-Decyl n-propionate 1486 250* Di-n-amyl ketone 1258 251* Di-n-butyl fumarate 1558 252 Di-n-butyl ketone 1383 255* Diethyleneglycol diethyl ether 136			
233^ Cyclohexyl iso-valerate 1264 234^ trans-2-trans-4-Decadienol 1310 235 Decahydro beta-naphthol 1301.5 236* gamma-Decalactone 1463 237 delta-Decalactone 1463 238 n-Decanal 1188 239 n-Decanal diethyl acetal 1473 240* n-Decanal dimethyl acetal 1366 241 n-Decane 1000 242* n-Decanel 1263 243* cis-4-Decenal 1263 244^ 1-Decene 1917 244* 1-Decene-1-al 1251 246 9-Decen-1-al 1251 246 9-Decen-1-al 1251 247 n-Decyl acetate 1393 248* n-Decyl acetate 1393 248* n-Decyl acetate 1258 251* Di-n-Butyl fumarate 1558 252* Di-n-butyl fumarate 1558 253 Diethyleneglycol diethyl ether 983 255* Diethyleneglycol dimonothyl ether 920	232^	Cyclohexyl n-propionate	1120
234^ trans-2-trans-4-Decadienol 1310 235* Decahydro beta-naphthol 1301.5 236* gamma-Decalactone 1437 237 delta-Decalactone 1483 238 n-Decanal 1188 239 n-Decanal diethyl acetal 1473 240* n-Decanal dimethyl acetal 1366 241 n-Decane 1000 242* n-Decene 1000 243* cis-4-Decenal 1177 244 1-Decene 1991 245^ 9-Decen-1-al 1263 244* 1-Decene 1991 245 9-Decen-1-yl acetate 1383 247^ n-Decyl acetate 1393 248 n-Decyl acetate 1393 248 n-Decyl acetate 1258 251^ Di-n-amyl ketone 1258 252* Di-n-butyl fumarate 1358 253 Di-n-butyl fumarate 1358 254 Diethyleneglycol dimethyl ether 926 255^ Diethyleneglycol monoethyl ether 926	233^	Cyclohexyl iso-valerate	1264
235* Decahydro beta-naphthol 1301.5 236* gamma-Decalactone 1437 237 delta-Decalactone 1463 238 n-Decanal 1188 239 n-Decanal diethyl acetal 1473 240* n-Decanal diethyl acetal 1366 241 n-Decanal 1177 242* n-Decanal 1177 244* 1-Decene 991 245^ 9-Decen-1-al 1251 246 9-Decen-1-yl acetate 1383 247* n-Decyl acetate 1383 248* n-Decyl acetate 1383 249 Di-so-amyl ether 1000 250* Di-n-amyl ether 1000 250* Di-n-butyl fumarate 1258 251* Di-n-butyl ether 876 252* Di-n-butyl ketone 1058 255* Diethyleneglycol monoethyl ether 1058 255* Diethyleneglycol monoethyl ether 983 255* Diethyleneglycol monoethyl ether	234^	trans-2-trans-4-Decadienol	1310
236* gamma–Decalactone 1437 237 delta–Decalactone 1463 238 n–Decanal 1188 239 n–Decanal diethyl acetal 1473 240* n–Decanal dimethyl acetal 1473 240* n–Decanal dimethyl acetal 1366 241 n–Decane 1000 242* n–Decenel 991 245^ 9–Decen–1–al 1251 246 9–Decen–1–yl acetate 1383 247^ n–Decyl acetate 1393 248^ n–Decyl acetate 1393 248^ n–Decyl n–propionate 1486 249 Di–iso–amyl ether 1000 250^ Di–n–amyl ketone 1258 251^ Di–n–butyl fumarate 1558 252* Di–n–butyl ketone 1058 255 Diethyl adipate 1358 256 Diethyl eneglycol diethyl ether 920 260* Diethyl ether 572 261 Diethyl eneglycol monomethyl ether 920 2659 Diethyleneglycol monomethyl ether 920 <td>235*</td> <td>Decahydro beta-naphthol</td> <td>1301.5</td>	235*	Decahydro beta-naphthol	1301.5
237 delta-Decalactone 1463 238 n-Decanal 1188 239 n-Decanal diethyl acetal 1473 240* n-Decanal dimethyl acetal 1366 241 n-Decanal dimethyl acetal 1366 241* n-Decane 1000 242* n-Decenal 1263 243* cis-4-Decenal 1271 244^ 1-Decene 991 245^ 9-Decen-1-al 1251 246 9-Decen-1-yl acetate 1383 247^ n-Decyl acetate 1393 248^ n-Decyl acetate 1393 248^ n-Decyl n-propionate 1486 249 Di-iso-amyl ether 1000 250^ Di-n-amyl ketone 1258 251^ Di-n-butyl ether 876 252* Di-n-butyl ketone 1058 255* Diethyl eneglycol diethyl ether 1058 255* Diethyleneglycol dimethyl ether 920 260* Diethyleneglycol monomethyl ether 926 255* Diethyleneglycol monomethyl ether	236*	gamma–Decalactone	1437
238 n-Decanal 1188 239 n-Decanal diethyl acetal 1473 240* n-Decanal dimethyl acetal 1366 241 n-Decanal dimethyl acetal 1366 241 n-Decane 1000 242* n-Decanal 1263 243* cis-4-Decenal 1177 244 1-Decene 991 245 9-Decen-1-al 1251 246 9-Decen-1-yl acetate 1383 247^ n-Decyl acetate 1393 248^ n-Decyl acetate 1393 248^ n-Decyl acetate 1258 250^ Di-n-amyl ether 1000 250^ Di-n-amyl ether 1258 251^ Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 983 254 Di-iso-butyl ketone 983 255^ Diethyleneglycol dimethyl ether 920 260* Diethyleneglycol monomethyl ether 920 260* Diethyleneglycol monomethyl ether 920 260* Diethyleneglycol monomethyl ether 922 <td>237</td> <td>delta–Decalactone</td> <td>1463</td>	237	delta–Decalactone	1463
239 n-Decanal direthyl acetal 1473 240* n-Decanal dimethyl acetal 1366 241 n-Decane 1000 242* n-Decanol 1263 243* cis-4-Decenal 1177 244^ 1-Decene 991 245* 9-Decen-1-al 1251 246 9-Decen-1-yl acetate 1383 247^ n-Decyl acetate 1393 248^ n-Decyl acetate 1393 250^ Di-n-Buyl acetate 1258 251^ Di-n-Buyl ether 1000 250^ Di-n-Buyl ketone 1258 251^ Di-n-buyl fumarate 1558 253 Di-n-buyl ketone 983 255^ Diethyl adipate 1358 256 Diethyleneglycol dimethyl ether 920 260* Diethyl ether 920 260* Diethyl ether 572 261 Diethyl ether 572 261 Diethyl ether 572 261 Diethyl ether 572 261 Diethyl ether	238	n–Decanal	1188
240* n-Decane 1000 241 n-Decane 1000 242* n-Decanol 1263 243* cis-4-Decenal 1177 244^ 1-Decene 991 245^ 9-Decen-1-al 1251 246 9-Decen-1-al 1251 246 9-Decen-1-yl acetate 1383 247^ n-Decyl acetate 1393 248^ n-Decyl acetate 1393 248^ n-Decyl acetate 1000 250^ Di-n-amyl ether 1000 250^ Di-n-amyl ether 1000 251^ Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 1058 254 Di-iso-butyl ketone 983 255 Diethyleneglycol diethyl ether 1058 255* Diethyleneglycol dimethyl ether 924 258* Diethyleneglycol monoethyl ether 924 258* Diethyleneglycol monoethyl ether 920 260* Diethyl ether 572 261 Diethyl ether 572 2621 <td>239</td> <td>n–Decanal diethyl acetal</td> <td>1473</td>	239	n–Decanal diethyl acetal	1473
241 n-Decane 1000 242* n-Decanol 1263 243* cis-4-Decenal 1177 244^ 1-Decene 991 245^ 9-Decen-1-al 1251 246 9-Decen-1-yl acetate 1383 247^ n-Decyl acetate 1393 248^ n-Decyl n-propionate 1486 249 Di-iso-amyl ether 1000 250^ Di-n-amyl ketone 1258 251^ Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 983 2554 Di-n-butyl ketone 983 2555 Diethyl adipate 1358 256 Diethyleneglycol diethyl ether 1058 257* Diethyleneglycol dimethyl ether 924 258^ Diethyleneglycol monoethyl ether 926 259 Diethyleneglycol monoethyl ether 920 260* Diethyl ether 572 261 Diethyl ether 572 2621 Diethyl ether 572 2635 Diethyl ether 572 <td< td=""><td>240*</td><td>n–Decanal dimethyl acetal</td><td>1366</td></td<>	240*	n–Decanal dimethyl acetal	1366
242* n-Decanol 1263 243* cis-4-Decenal 1177 244^ 1-Decene 991 245^ 9-Decen-1-al 1251 246 9-Decen-1-yl acetate 1383 247^ n-Decyl acetate 1393 248^ n-Decyl n-propionate 1486 249 Di-iso-amyl ether 1000 250^ Di-n-amyl ketone 1258 251^ Di-n-Butyl ether 876 252* Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 983 254 Di-iso-butyl ketone 983 255^ Diethyl adipate 1358 256 Diethyleneglycol dimethyl ether 920 260* Diethyleneglycol monoethyl ether 920 260* Diethyl ether 572 261 Diethyl ketone 681 262 Diethyl malonate 1043 263* Diethyl-5-methyloxazole 983 264* Diethyl phthalate 1565 265* Diethyl sebacate 1752 266	241	n-Decane	1000
243* cis-4-Decenal 1177 244^ 1-Decene 991 245^ 9-Decen-1-al 1251 246 9-Decen-1-yl acetate 1383 247^ n-Decyl acetate 1393 248^ n-Decyl n-propionate 1486 249 Di-iso-amyl ether 1000 250^ Di-n-amyl ketone 1258 251^ Di-n-Butyl ether 876 252* Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 983 254 Di-iso-butyl ketone 983 255^ Diethyl adipate 1358 256 Diethyleneglycol diethyl ether 920 260* Diethyleneglycol monoethyl ether 920 260* Diethyleneglycol monoethyl ether 920 260* Diethyl ether 572 261 Diethyl ketone 681 262 Diethyl malonate 1043 263* Diethyl ether 572 266 Diethyl phthalate 1565 265* Diethyl phthalate 1565	242*	n–Decanol	1263
244^ 1-Decene 991 245^ 9-Decen-1-al 1251 246 9-Decen-1-yl acetate 1383 247^ n-Decyl acetate 1393 248^ n-Decyl acetate 1393 248^ n-Decyl n-propionate 1486 249 Di-iso-amyl ether 1000 250^ Di-n-amyl ketone 1258 251^ Di-n-butyl ether 876 252* Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 1058 254 Di-iso-butyl ketone 983 255^ Diethyl adipate 1358 256 Diethyleneglycol diethyl ether 1058 257* Diethyleneglycol monoethyl ether 920 260* Diethyleneglycol monomethyl ether 920 260* Diethyleneglycol monomethyl ether 920 260* Diethyl ether 572 261 Diethyl ether 572 2621 Diethyl halate 1565 265* Diethyl phthalate 1565 265* Diethyl phthalate 1565 <td>243*</td> <td>cis–4–Decenal</td> <td>1177</td>	243*	cis–4–Decenal	1177
245^ 9-Decen-1-al 1251 246 9-Decen-1-yl acetate 1383 247^ n-Decyl acetate 1393 248^ n-Decyl n-propionate 1486 249 Di-iso-amyl ether 1000 250^ Di-n-amyl ketone 1258 251^ Di-n-Butyl ether 876 252* Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 1058 254 Di-iso-butyl ketone 983 255^ Diethyl adipate 1358 255 Diethyleneglycol diethyl ether 1058 257* Diethyleneglycol monoethyl ether 983 255* Diethyleneglycol monoethyl ether 924 258^ Diethyleneglycol monomethyl ether 920 260* Diethyleneglycol monomethyl ether 920 260* Diethyl ether 572 261 Diethyl ether 572 2621 Diethyl hether 572 263* Diethyl ether 1043 263* Diethyl hythalate 1565 265* Diethyl sebacate <td>244^</td> <td>1–Decene</td> <td>991</td>	244^	1–Decene	991
246 9-Decen-1-yl acetate 1383 247^ n-Decyl acetate 1393 248^ n-Decyl n-propionate 1486 249 Di-iso-amyl ether 1000 250^ Di-n-amyl ketone 1258 251^ Di-n-Butyl ether 876 252* Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 983 254 Di-so-butyl ketone 983 255^ Diethyl adipate 1358 256 Diethyleneglycol diethyl ether 924 258^ Diethyleneglycol monoethyl ether 924 258^ Diethyleneglycol monoethyl ether 920 260* Diethyl ether 572 261 Diethyl ketone 681 262 Diethyl ether 572 261 Diethyl ketone 681 263* Diethyl alonate 1043 264* Diethyl phthalate 1565 265* Diethyl sebacate 1752 266 Diethyl suberate 1553 267* Diethyl suberate 1553	245^	9–Decen–1–al	1251
247^ n-Decyl acetate 1393 248^ n-Decyl n-propionate 1486 249 Di-iso-amyl ether 1000 250^ Di-n-amyl ketone 1258 251^ Di-n-Butyl ether 876 252* Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 1058 254 Di-n-butyl ketone 983 255^ Diethyl adipate 1358 256 Diethyleneglycol diethyl ether 1058 257* Diethyleneglycol dimethyl ether 924 258^ Diethyleneglycol monoethyl ether 920 260* Diethyleneglycol monomethyl ether 920 260* Diethyl ketone 681 262 Diethyl malonate 1043 263^ Diethyl-5-methyloxazole 983 264* Diethyl phthalate 1565 265* Diethyl sebacate 1752 266 Diethyl suberate 1553 267* Diethyl suberate 1553 266* Diethyl suberate 1553 266* Diethyl suberate	246	9–Decen–1–yl acetate	1383
248^ nDecyl npropionate 1486 249 Di-iso-amyl ether 1000 250^ Di-n-amyl ketone 1258 251^ Di-n-Butyl ether 876 252* Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 983 254 Di-iso-butyl ketone 983 255^ Diethyl adipate 1358 358 256 Diethyleneglycol diethyl ether 1058 257* Diethyleneglycol dimethyl ether 924 258^ Diethyleneglycol monoethyl ether 926 259 Diethyleneglycol monomethyl ether 920 260* Diethyl ketone 681 262 Diethyl alonate 1043 263^ Diethyl alonate 1043 263^ Diethyl phthalate 1565 264* Diethyl sebacate 1752 266 Diethyl suberate 1553 267* Diethyl suberate 1553 268* Di-n-hexyl ketone 1553 268* Di-n-hexyl ketone 1458 269^ Dihydro anethole 1458	247^	n–Decyl acetate	1393
249 Di-iso-amyl ether 1000 250^ Di-n-amyl ketone 1258 251^ Di-n-Butyl ether 876 252* Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 1058 254 Di-n-butyl ketone 983 255^ Diethyl adipate 1358 256 Diethyleneglycol diethyl ether 1058 257* Diethyleneglycol dimethyl ether 986 259 Diethyleneglycol monoethyl ether 986 259 Diethyleneglycol monoethyl ether 920 260* Diethyl ketone 681 262 Diethyl malonate 1043 263^A Diethyl ether 572 261 Diethyl malonate 1043 263^A Diethyl phthalate 1565 264* Diethyl subcate 1553 265* Diethyl subcrate 1553 266* Diethyl subcrate 1553 266* Diethyl subcrate 1553 266* Diethyl subcrate 1553 268* Di-n-hexyl ketone 145	248^	n–Decyl n–propionate	1486
250^ Di-n-amyl ketone 1258 251^ Di-n-Butyl ether 876 252* Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 1058 254 Di-iso-butyl ketone 983 255^ Diethyl adipate 1358 256 Diethyleneglycol diethyl ether 1058 257* Diethyleneglycol dimethyl ether 924 258^ Diethyleneglycol monoethyl ether 924 258^ Diethyleneglycol monoethyl ether 920 260* Diethyl ether 920 260* Diethyl ether 572 261 Diethyl ketone 681 262 Diethyl malonate 1043 263^A Diethyl phthalate 1565 264* Diethyl sebacate 1752 266 Diethyl suberate 1553 267* Diethyl subcrate 1553 266* Diethyl subcrate 1553 266* Diethyl subcrate 1553 266* Diethyl subcrate 1553 268* Di-n-hexyl ketone 1458	249	Di–iso–amyl ether	1000
251^ Di-n-Butyl ether 876 252* Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 1058 254 Di-iso-butyl ketone 983 255^ Diethyl adipate 1358 256 Diethyleneglycol diethyl ether 1058 257* Diethyleneglycol dimethyl ether 924 258^ Diethyleneglycol monoethyl ether 926 259 Diethyleneglycol monoethyl ether 920 260* Diethyl ether 572 261 Diethyl ether 572 261 Diethyl adipate 1043 263^ Diethyl halate 1043 263^ Diethyl malonate 1043 263^ Diethyl sebacate 1565 264* Diethyl sebacate 1565 265* Diethyl suberate 1553 266* Diethyl succinate 1153 268* Di-n-hexyl ketone 1458 269^ Dihydro anethole 1193	250^	Di–n–amyl ketone	1258
252* Di-n-butyl fumarate 1558 253 Di-n-butyl ketone 1058 254 Di-iso-butyl ketone 983 255^ Diethyl adipate 1358 256 Diethyl adipate 1058 257* Diethyleneglycol diethyl ether 924 258^ Diethyleneglycol dimethyl ether 926 259 Diethyleneglycol monoethyl ether 920 260* Diethyl ether 572 261 Diethyl ketone 681 262 Diethyl malonate 1043 263^ Diethyl phthalate 1565 264* Diethyl phthalate 1565 265* Diethyl subcrate 1553 266 Diethyl subcrate 1553 267* Diethyl subcrate 1553 268* Di-n-hexyl ketone 1458 269^ Dihydro anethole 1458	251^	Di–n–Butyl ether	876
253Di-n-butyl ketone1058254Di-iso-butyl ketone983255^Diethyl adipate1358256Diethyleneglycol diethyl ether1058257*Diethyleneglycol dimethyl ether924258^Diethyleneglycol monoethyl ether986259Diethyleneglycol monomethyl ether920260*Diethyl ether572261Diethyl ketone681262Diethyl halonate1043263^Diethyl-5-methyloxazole983264*Diethyl subcrate1553265*Diethyl subcrate1553266*Diethyl subcrate1553267*Diethyl succinate1153268*Di-n-hexyl ketone1458269^Dihydro anethole1193	252*	Di–n–butyl fumarate	1558
254Di-iso-butyl ketone983255^Diethyl adipate1358256Diethyleneglycol diethyl ether1058257*Diethyleneglycol dimethyl ether924258^Diethyleneglycol monoethyl ether986259Diethyleneglycol monomethyl ether920260*Diethyl ether572261Diethyl ketone681262Diethyl ketone681263^Diethyl-5-methyloxazole983264*Diethyl phthalate1565265*Diethyl sebacate1752266Diethyl suberate1553267*Diethyl succinate1153268*Di-n-hexyl ketone1458269^Dihydro anethole1193	253	Di–n–butyl ketone	1058
255^Diethyl adipate1358256Diethyleneglycol diethyl ether1058257*Diethyleneglycol dimethyl ether924258^Diethyleneglycol monoethyl ether986259Diethyleneglycol monomethyl ether920260*Diethyl ether572261Diethyl ketone681262Diethyl malonate1043263^Diethyl –5methyloxazole983264*Diethyl sebacate1565265*Diethyl suberate1553266Diethyl suberate1553267*Diethyl succinate1153268*Di-n-hexyl ketone1458269^Dihydro anethole1193	254	Di–iso–butyl ketone	983
256Diethyleneglycol diethyl ether1058257*Diethyleneglycol dimethyl ether924258^Diethyleneglycol monoethyl ether986259Diethyleneglycol monomethyl ether920260*Diethyl ether572261Diethyl ketone681262Diethyl malonate1043263^Diethyl-5-methyloxazole983264*Diethyl sebacate1752266Diethyl suberate1553267*Diethyl succinate1153268*Di-n-hexyl ketone1458269^Dihydro anethole1193	255^	Diethyl adipate	1358
257*Diethyleneglycol dimethyl ether924258^Diethyleneglycol monoethyl ether986259Diethyleneglycol monomethyl ether920260*Diethyl ether572261Diethyl ketone681262Diethyl malonate1043263^Diethyl-5-methyloxazole983264*Diethyl sebacate1565265*Diethyl suberate1553266Diethyl suberate1553267*Diethyl succinate1153268*Di-n-hexyl ketone1458269^Dihydro anethole1193	256	Diethyleneglycol diethyl ether	1058
258^Diethyleneglycol monoethyl ether986259Diethyleneglycol monomethyl ether920260*Diethyl ether572261Diethyl ketone681262Diethyl malonate1043263^Diethyl–5–methyloxazole983264*Diethyl phthalate1565265*Diethyl sebacate1752266Diethyl suberate1553267*Diethyl succinate1153268*Di–n–hexyl ketone1458269^Dihydro anethole1193	257*	Diethyleneglycol dimethyl ether	924
259Diethyleneglycol monomethyl ether920260*Diethyl ether572261Diethyl ketone681262Diethyl malonate1043263^Diethyl–5–methyloxazole983264*Diethyl phthalate1565265*Diethyl sebacate1752266Diethyl suberate1553267*Diethyl succinate1153268*Di–n–hexyl ketone1458269^Dihydro anethole1193	258^	Diethyleneglycol monoethyl ether	986
260*Diethyl ether572261Diethyl ketone681262Diethyl malonate1043263^Diethyl–5–methyloxazole983264*Diethyl phthalate1565265*Diethyl sebacate1752266Diethyl suberate1553267*Diethyl succinate1153268*Di–n–hexyl ketone1458269^Dihydro anethole1193	259	Diethyleneglycol monomethyl ether	920
261Diethyl ketone681262Diethyl malonate1043263^Diethyl-5-methyloxazole983264*Diethyl phthalate1565265*Diethyl sebacate1752266Diethyl suberate1553267*Diethyl succinate1153268*Di-n-hexyl ketone1458269^Dihydro anethole1193	260*	Diethyl ether	572
262Diethyl malonate1043263^Diethyl–5–methyloxazole983264*Diethyl phthalate1565265*Diethyl sebacate1752266Diethyl suberate1553267*Diethyl succinate1153268*Di–n–hexyl ketone1458269^Dihydro anethole1193	261	Diethyl ketone	681
263^Diethyl–5–methyloxazole983264*Diethyl phthalate1565265*Diethyl sebacate1752266Diethyl suberate1553267*Diethyl succinate1153268*Di–n–hexyl ketone1458269^Dihydro anethole1193	262	Diethyl malonate	1043
264*Diethyl phthalate1565265*Diethyl sebacate1752266Diethyl suberate1553267*Diethyl succinate1153268*Di-n-hexyl ketone1458269^Dihydro anethole1193	263^	Diethyl–5–methyloxazole	983
265*Diethyl sebacate1752266Diethyl suberate1553267*Diethyl succinate1153268*Di-n-hexyl ketone1458269^Dihydro anethole1193	264*	Diethyl phthalate	1565
266Diethyl suberate1553267*Diethyl succinate1153268*Di-n-hexyl ketone1458269^Dihydro anethole1193	265*	Diethyl sebacate	1752
267* Diethyl succinate 1153 268* Di–n–hexyl ketone 1458 269^ Dihydro anethole 1193	266	Diethyl suberate	1553
268* Di-n-hexyl ketone1458269^ Dihydro anethole1193	267*	Diethyl succinate	1153
269 [^] Dihydro anethole 1193	268*	Di–n–hexyl ketone	1458
	269^	Dihydro anethole	1193
270 [^] Dihydrocarveol 1188	270^	Dihydrocarveol	1188
271 Dihydro–nor–dicyclopentadienyl 1406	271	Dihydro-nor-dicyclopentadienyl	1406

272^	Dihydrio iso-jasmone	1374
273	Dihydro myrcenol	1063
274	Dihydro terpynil acetate	1282
275*	1,4–Dimethoxy benzene	1145
276	1,4-Dimethoxy-2-tert-butylbenzene	1398
277*	2,4-Dimethyl-5-acetylthiazole	1217
278	Dimethyl adipate	1212
279*	Dimethyl benzyl carbinol	1147
280*	Dimethyl benzyl carbinyl acetate	1302
281	Dimethyl benzyl carbinyl n-butyrate	1476
282	Dimethyl benzyl carbinyl propionate	1391
283^	2,5-Dimethyl-4-ethyloxazole	900
284*	Dimethyl fumarate	997
285^	2,5–Dimethylfuran	697
286^	2,6–Dimethyl n–heptan–2–ol	983
287	2,6–Dimethyl hept–5–en–1–al	1039
288	2,6-Dimethylheptyl-4-acetate	1092
289	Dimethyl malonate	896
290*	Dimethyl phenyl ethyl carbinol	1282
291*	2,3–Dimethyl pyrazine	900
292	2,5–Dimethyl pyrazine	893
293^	Dimethyl sebacate	1616
294	Dimethyl succinate	1002
295	2,4–Dimethylthiazole	869
296	4,5–Dimethylthiazole	917
297	Diphenyl oxide	1386
298*	Di–n–propyl ketone	857
299	Di–iso–propyl ketone	783
300	Di–n–propyl malonate	1227
301^	gamma–Dodecalactone	1647
302	delta–Dodecalactone	1675
303*	n–Dodecanal	1392
304*	n–Dodecanal dimethyl acetal	1565
305*	n-Dodecane	1200
306*	n–Dodecanol	1468
307	n–Eicosane	2000
308	Estragole	1183
309*	p–Ethoxy benzaldehyde	1308
310*	Ethyl acetate	595
311	Ethyl acetyl acetate	907
312^	Ethyl acrilate	681
------	---------------------------------	------
313	Ethyl alcohol	500
314^	Ethyl n–amyl ketone	928
315	Ethyl anisate	1426
316*	Ethyl anthranilate	1396
317^	Ethyl benzoate	1154
318	Ethyl n-butyl ketone	869
319	Ethyl n-butyrate	784
320*	Ethyl iso-butyrate	746
321	Ethyl cloro acetate	810
322^	Ethyl cinnamate	1443
323*	Ethyl crotonate	823
324*	Ethyl n-decanoate	1379
325	2–Ethyl–4,5–dimethyloxazole	914
326	2-Ethyl-4,5-dimethylthiazole	1065
327*	Ethyl n-deodecanoate	1579
328^	Ethyleneglycol monophenyl ether	1213
329	Ethyl formate	530
330*	2-Ethylfuran	694
331	Ethyl 2–furoate	1029
332	Ethyl n-heptanoate	1082
333	Ethyl n-hexanoate	983
334*	Ethyl iso-hexanoate	951
335*	Ethyl levulinate	1029
336^	Ethyl 2-methyl butyrate	837
337^	2-Ethyl-4-methylthiazole	955
338*	4–Ethyl–5–methylthiazole	991
339^	Ethyl n–nonanoate	1280
340	Ethyl n-octanoate	1180
341	Ethyl phenyl acetate	1219
342	Ethyl pivalate	776
343^	Ethyl n-propionate	691
344	Ethyl n–propyl ketone	767
345^	Ethyl salicylate	1257
346	Ethyl n-tetradecanoate	1780
347	2-Ethylthiazole	879
348^	2–Ethylthiophene	861
349*	Ethyl tiglate	922
350*	Ethyl n–undecanoate	1479
351	Ethyl 10-undecenoate	1469

352*	Ethyl n-valerate	884
353*	Ethyl iso-valerate	840
354	Ethyl vanillin	1448
355^	Eugenol	1351
356	iso-Eugenol	1416
357	Furfural	815
358*	Furfuryl acetate	969
359*	Furfuryl n-butyrate	1148
360	Furfuryl n-hexanoate	1343
361*	Galaxolide	1837
362*	Geraniol	1243
363*	Gerano nitrile	1217.5
364	Geranyl acetate	1364
365	Geranyl n-butyrate	1532
366	Geranyl iso-butyrate	1493
367^	Geranyl ethyl ether	1265
368^	Geranyl formate	1282
369*	Geranyl n-hexanoate	1731
370	Geranyl n-propionate	1424
371*	Geranyl iso-valerate	1593
372	Helional	1543
373*	Heliotropine	1318
374	n–Heneicosane	2100
375*	n-Heptadecane	1700
376*	n–Heptanal	883
377^	n–Heptanal diethyl acetal	1179
378*	n–Heptanal dimethyl acetal	1069
379*	n–Heptanal ethyleneglycol acetal	1144
380	n–Heptane	700
381	2,3–Heptanedione	816
382^	n–Heptanol	957
383^	n–Heptan–2–ol	888
384*	n-Heptan-4-ol	879
385^	2–Heptanoylfuran	1384
386	2–Heptanoylthiophene	1565
387*	1-Hepten-3-ol	868
388^	n–Heptyl acetate	1095
389*	n–Heptyl n–butyrate	1275
390^	n–Heptyl iso butyrate	1233
391*	n–Heptyl formate	1012

392	2–n–Heptylfuran	1184
393^	n–Heptyl n–octanoate	1666
394^	2–n–Heptylthiophene	1359
395^	n-Hexadecane	1600
396	n–Hexanal	780
397	n–Hexanal diethyl acetal	1082
398*	n-Hexane	600
399	3,4-Hexanedione	777
400^	n-Hexanol	858
401^	n-Hexan-2-ol	786
402	2–Hexanoyfuran	1281
403*	2-Hexanoylthiophene	1459
404*	trans–2–Hexenal	832
405*	1-Hexen-3-ol	770
406	cis–3–Hexenol	847
407*	trans-2-Hexenol	854
408^	cis–3–Hexenyl acetate	987
409*	trans–2–Hexenyl acetate	997
410	cis–3–Hexenyl n–butyrate	1170
411^	trans-2-Hexenyl n-butyrate	1180
412*	cis–3–Hexenyl iso–butyrate	1129
413	cis–3–Hexenyl n–decanoate	1760
414*	cis–3–Hexenyl formate	902
415	cis-3-Hexenyl n-hexanoate	1370
416^	trans-2-hexenyl n-hexanoate	1375
417	cis–3–Hexenyl lactate	1187
418*	cis–3–Hexenyl methoxy formate	1073
419*	cis–3–Hexanyl n–octanoate	1564
420^	trans-2-Hexenyl n-octanoate	1573
421*	cis–3–Hexenyl n–propionate	1083
422	trans-2-Hexenyl n-propionate	1085
423*	cis–3–Hexenyl salicylate	1654
424	cis–3–Hexenyl n–valerate	1270
425*	cis–3–Hexenyl iso valerate	1223
426*	2–Hexoxy acetaldehyde dimethyl acetal	1234
427*	n–Hexyl acetate	1012
428*	n–Hexyl n–butyrate	1176
429^	n–Hexyl iso–butyrate	1135
430^	alpha–n–Hexyl cinnamic aldehyde	1727
431^	n–Hexyl formate	994

432	2–Hexylfuran	1083
433^	n–Hexyl n–hexaonate	1371
434	n–Hexyl 2–methyl butyrate	1224
435^	n–Hexyl pivalate	1163
436^	n–Hexyl n–propionate	1088
437	n–Hexyl salicylate	1664
438*	2–n–Hexylthiophene	1256
439*	n–Hexyl iso–valerate	1228
440	Hydroxy citronellal	1269
441	Indole	1304
442	alpha-lonone	1416
443^	Beta-Ionone	1474
444^	cis–Jasmone	1378
445	Lavandulyl acetate	1274
446^	Limonene	1030
447*	Linalool	1092
448	cis–Linalool oxide	1068
449	trans-Linalool oxide	1082
450*	Linalyl acetate	1246
451	Linalyl iso-butyrate	1366
452	Linalyl formate	1206
453*	Linalyl n-hexanoate	1582
454^	Linalyl n–propionate	1324
455^	Linalyl n–valerate	1500
456*	Linalyl iso-valerate	1461
457^	Menthol	1171
458	m–Methoxy acetophenone	1279
459*	o-Methoxy acetophenone	1269
460^	p–Methoxy acetophenone	1327
461	m–Methyl acetophenone	1156
462^	o–Methyl acetophenone	1118
463	p–Methyl acetophenone	1166
464	2–Methyl–5–acetylthiophene	1185
465^	Methyl n–amyl ketone	872
466*	Methyl iso-amyl ketone	825
467*	Methyl anisate	1354
468	Methyl anthranilate	1332
469	Methyl benzoate	1078
470^	3–Methylbutan–2–ol	671
471^	Methyl n-butyl ketone	772

472^	Methyl iso-butyl ketone	725
473*	Methyl n-butyrate	705
474*	Methyl iso-butyrate	673
475^	Methyl cinnamate	1365
476*	Methyl crotonate	745
477^	Methyl n–decanoate	1307
478*	Methyl n-dodecanoate	1507
479	2–Methyl–5–ethylfuran	791
480^	2–Methyl–3–ethyl pyrazine	987
481^	Methyl iso-eugenol	1447.5
482^	2–Methylfuran	614
483*	5–Methyl furfural	942
484*	Methyl furoate	956
485^	Methyl n-heptanoate	1006
486*	6–Methyl hept–5–en–2–one	968
487	Methyl n-heptyl ketone	1074
488*	Methyl n-hexanoate	906
489*	Methyl n-hexyl ketone	972
490	Methyl n-hexyl ketone-1-phenyl-1,2-ethanediol ketal	1748.5
491	alpha–n–Methyl ionone	1530
492*	beta-n-Methyl ionone	1564
493	alpha–iso–Methyl ionone	1471
494^	beta-iso-Methyl ionone	1506
495*	Methyl levulinate	956
496^	Methyl n-methyl anthranilate	1389
497	Methyl 2-methyl butyrate	765
498*	beta-Methyl naphthyl ketone	1592
499*	Methyl n–nonanoate	1207
500	Methyl n–nonyl ketone	1276
501*	Methyl n–octanoate	1107
502*	Methyl n-octyl ketone	1176
503^	Methyl phenylactetate	1154
504	Methyl phenyl carbinol	1051
505^	2–Methyl–1–propanol	616
506^	2–Methyl n–propan–2–ol	500
507^	2–Methyl–5–propionylthiophene	1280
508*	Methyl n–propyl ketone	672
509^	beta–Methyl–p–iso–propyl phenyl propionaldehyde (cyclamen aldehyde)	1444
510*	2–Methyl–3–iso–propyl pyrazine	1028
511	2–Methyl pyrazine	805

512^	Methyl salicylate (wintergreen)	1181
513^	Methyl n-tetradecanoate	1707
514^	4–Methylthiazole	800
515	4–Methyl–5–thiazole ethanol	1283
516*	Methyl p-toluate	1194
517	2–Methyl undecanal	1353
518	Methyl 10-undecenoate	1396
519	Methyl n–undecyl ketone	1479
520^	Methyl n-valerate	806
521	Methyl iso-valerate	764
522*	Muscone	1831
523	Musk xylol	1506
524	(S)–Myrac aldehyde	1506
525*	(R)–Myrac aldehyde	1509
526^	Myrcene	986
527	Nerol	1218
528	Nerolidol	1538.5
529*	Neryl acetate	1345
530^	Neryl n-butyrate	1519
531	Neryl iso-butyrate	1474
532^	Neryl n-propionate	1436
533*	n-Nonadecane	1900
534	gamma-Nonalactone	1328
535*	delta-Nonalactone	1356
536	n–Nonanal	1087
537*	n–Nonanal diethyl acetal	1374
538	n–Nonanal dimethyl acetal	1267
539*	n–Nonane	900
540^	n–Nonanol	1161
541*	n-Nonan-2-ol	1089
542^	1–Nonen–3–ol	1068
543	Nopyl acetate	1412
544	n–Octadecane	1800
545^	gamma–Octalactone	1225
546	delta–Octalactone	1252
547*	n–Octanal	985
548*	n–Octanal diethyl acetal	1276
549^	n–Octanal dimethyl acetal	1167
550^	n–Octane	800
551	n–Octanol	1061

000
988
1487
1667
968
1180
1193
1373
1332
1285
1422
1463
763
1500
500
681
1355
673
983
1400
1153
1493
1002
1200
1459
1233
1104
1374
1156
1718
1618
1472
1921
1819
1400
1328
1562
1517
1474
1347
1010

592^	Phenylpropyl n-butyrate	1535
593^	Phenylpropyl iso-butyrate	1490
594^	Phenylpropyl n-propionate	1445
595*	alpha-Pinene	942
596	n–Propanol	535
597*	2–Propanol	500
598*	Propionaldehyde-1-phenyl-1,2-ethenodiol acetal	1330
599	2–Propionylfuran	988
600*	2–Propionyl 5–methylfuran	1106
601^	2–Propionylthiophene	1164
602	n–Propyl acetate	694
603^	iso–Propyl acetate	645
604*	iso-Propyl benzoate	1189
605^	n–Propyl n–butyrate	881
606^	n–Propyl iso–butyrate	842
607	iso–Propyl n–butyrate	825
608^	iso–Propyl cinnamate	1485
609	2-n-Propyl-4,5-dimethyloxazole	996
610*	2-iso-Propyl-4,5-dimethyloxazole	960
611	2–n–Propyl–4,5–dimethylthiazole	1151
612*	2-iso-Propyl-4,5-dimethyloxazole	1109
613	2-n-Propyl-4-ethyl-5-methyloxazole	1064
614*	2-iso-Propyl-4-ethyl-5-methyloxazole	1021
615	n–Propyl formate	606
616^	iso–Propyl formate	573
617^	2–n–Propylfuran	782
618^	n–Propyl n–heptanoate	1177
619	iso–Propyl n–heptanoate	1120
620^	n–Propyl n–hexanoate	1079
621^	iso–Propyl n–hexanoate	1021
622	n–Propyl levulinate	1125
623^	iso–Propyl levulinate	1068
624	n–Propyl n–methyl anthranilate	1560
625^	iso–Propyl n–methyl anthranilate	1491
626	n–Propyl 2–methyl butyrate	933
627^	2-n-Propyl-4-methylthiazole	1040
628^	n–Propyl n–octanoate	1277
629	iso-propyl n-octanoate	1219
630*	iso–Propyl pivalate	810

632^	iso-Propyl n-propionate	738
633*	n–Propyl salicylate	1357
634^	iso-Propyl n-tetradacanoate	1811
635	2–n–Propylthiazole	970
636*	2–n–Propylthiophene	951
637*	iso-Propyl tiglate	959
638^	n–Propyl 10–undecenoate	1565
639*	n–Propyl n–valerate	981
640*	n–Propyl iso–valerate	924
641^	iso-Propyl iso-valerate	883
642	Pyrazine	739
643*	cis–Rose oxide	1087
644^	trans–Rose oxide	1100
645	Rosephenone trichloro methyl phenyl-carbinyl acetate	1538
646	Sabinete	976
647	Salicylic aldehyde	1029
648^	Styrallyl acetate	1173
649	alpha-Terpineol	1185
650*	Terpinyl acetate	1333
651	Terpinyl n–butyrate	1514
652^	Terpinyl iso-butyrate	1467
653*	Terpinyl n-propionate	1426
654^	Terpinyl iso-valerate	1565
655*	n–Tetradecane	1400
656*	Tetrahydro geraniol	1185
657	Tetrahydro geranyl acetate	1306
658^	Tetrahydro linalool	1087
659*	Tetrahydro myrcenol	1090
660*	2,3,5,6–Tetramethyl pyrazine	1069
661	Thiophene	650
662*	Thymol	1287
663	Tonalid	1849
664	n–Tridecane	1300
665	Triethyl citrate	1627
666	3,5,5–Trimethyl n–hexanal	963
667*	3,5,5–trimethyl n–hexanol	1041
668	2,4,5–Trimethyloxazole	829
669	2,3,5–Trimethyl pyrazine	985
670^	Trimethylthiazole	981
671^	delta–Undecalactone	1579

672^	n–Undecanal	1290
673^	n–Undecane	1100
674	n–Undecanol	1364
675^	6–Undecanol	1281
676	iso-Valeraldehyde-propyleneglycol acetal	941.5
677*	Vanillin	1392
678	Methyl ether	350
679*	Acetaldehyde	363
680*	Propionaldehyde	481
681	Furan	500
682	tert-Butanol	512
683	Propyl methyl ether	512
684*	Methyl acetate	513
685	Methyl vinyl ketone	550
686	Vinyl acetate	562
687*	tert-Butyl methyl ether	563
688	2,3 Butanedione	575
689^	2–Butanone	579
690*	Allyl ethyl ether	586
691	Isopropyl ether	590
692	sec–Butanol	591
693	Methyl propionate	611
694^	Butyl methyl ether	615
695*	Tetrahydrofuran	636
696*	3–Buten–1–ol	638
697	Isovaleraldehyde	649
698^	2-Butene-1-ol	650
699*	Vinyl propionate	650
700	Isobutyl mercaptan	660
701*	2–Methyltetrahydrofuran	674
702	tert–Butyl acetate	676
703*	Propyl ether	676
704	Cyclohexane	677
705*	Methyl pyruvate	680
706	n–Butyl ethyl ether	684
707*	Diethyl sulfide	690
708	Tetrahydropyran	690
709^	Valeraldehyde	694
710	Pinacolone	695
711	Pyridine	695

99 05 10 15 15 30 45
05 10 15 15 30 45
10 15 15 30 45
15 15 30 45
15 30 45
30 45
45 16
16
+0
46
48
50
50
55
57
58
75
77
30
31
35
36
97
97
97
01
)2
)2
)5
)5
11
11
13
20
24
37
38
40
50
52
54

0 0 3 6 6 5 3 4 4 5 2 2 3
0 3 6 53 4 5 2 2 3
3 3 6 53 4 4 5 2 2 3
3 6 53 4 5 2 2 3
6 53 4 4 5 2 2 3
6 53 4 5 2 2 3
53 4 5 2 2 3
4 5 2 2 3
4 5 2 2 3
5 2 2 3
2 2 3
2 3
3
5
0
0
0
0
1
8
1
3
2
4
7
9
9
3
4
5
8
9
1
1
1
2
5
7
8
5 5 6 6 6 8 8 8 8 8

994 995
995
997
998
999
999
1000
1000
1000
1000
1002
1002
1005
1005
1010
1011
1011
1014
1016
1020
1021
1022
1024
1025
1025
1027
1033
1038
1038
1040
1045
1046
1048
1050
1050
1051
1053
1054
1055
1055

832*	gamma–Terpinene	1057
833^	n–Pentyl ether	1065
834	p–Tolualdehyde	1067
835	m–Diethylbenzene	1070
836*	Guaiacol	1071
837^	Di–n–butyl sulfide	1073
838^	2-Methyl-3-n-propylpyrazine	1074
839^	5-Nonanone	1074
840*	Ethyl sorbate	1075
841*	p–Diethylbenzene	1080
842^	alpha-p-dimethylstyrene	1080
843	Fenchone	1080
844*	trans-3-Heptenyl acetate	1080
845^	cis–3–Heptenyl acetate	1084
846^	2,6–Dimethyl phenol	1087
847	o–Diethylbenzene	1088
848*	2-Nonanone	1093
849^	Amyl vinyl carbinyl acetate	1094
850*	cis–3–Hexenyl ethyl acetal	1094
851*	Propyl disulfide	1096
852	2–Cyclohexyl ethanol	1098
853^	Myrcenol	1103
854*	2-Buten-1,4-diol	1104
855*	Butyl acetoacetate	1104
856*	Maltol	1105
857^	alpha–Fenchyl alcohol	1110
858*	Norbornyl acetate	1112
859*	p-tert-Amylcyclohexanone	1113
860	2–Ethyl phenol	1113
861*	Methyl 2-hydroxyisobutyrate	1116
862*	Methyl nicotinate	1116
863*	Octyl formate	1117
864^	2-methyl-1-octanol	1119
865^	Dihydrolinalool	1122
866^	p–Methyl benzyl alcohol	1122
867	Diethyl trisulfide	1125
868	Propyl furoate	1125
869	Cyclooctanol	1133
870*	Sabinol	1135
871	Dihydrocinnamic aldehyde	1139

872^	1,3–Dimethoxy benzene	1143
873*	Menthone	1143
874^	p–Hydroxyacetophenone	1144
875	Isopulegol	1145
876^	3–Ethyl phenol	1146
877^	trans-2-Nonenal	1146
878*	Tetrahydrofurfuryl propionate	1153
879*	Lavandulol	1154
880*	Isooctyl acetate	1154
881^	Isobutyl 2-methylpentanoate	1155
882	Isoborneol	1157
883*	trans-2-nonenol	1157
884	Diethyl fumarate	1160
885*	Borneol	1164
886^	Methyl 2-methylbenzoate	1165
887^	cis-3-Heptenyl propionate	1171
888	Amyl butyl carbinol	1175
889^	Terpinene–4–ol	1175
890^	Isobutyl 2-hexenoate	1180
891	2–Pentanoylfuran	1180
892^	Methyl chavicol	1182
893^	Dihydrocarvone	1183
894*	Methyl 3-methylbenzoate	1190
895	Verbenone	1195
896	Methyl 4-methylbenzoate	1199
897*	p–isopropylphenol	1200
898^	Dihydromyrcenyl acetate	1202
899*	Isobutyl disulfide	1205
900^	Fenchyl acetate	1220
901^	Benzyl ethyl carbinol	1222
902	2–Ethyl–1–hexyl acrylate	1224
903*	2,4–Dimethyl benzyl alcohol	1226
904*	Neral	1227
905^	Isobornyl formate	1228
906^	Pulegone	1230
907^	2,4–Dimethylacetophenone	1233
908	Citronellyl vinyl ether	1235
909*	n–Butyl benzyl ether	1238
910^	Chavicol	1238
911	Bornyl formate	1239

912	Myrcenyl acetate	1247
913	Piperitone	1247
914^	Geranial	1252
915^	Methyl octyl acetaldehyde	1254
916	n–Propyl benzoate	1254
917^	cis–3–Heptenyl butyrate	1255
918	2-decen-1-ol	1257
919*	trans-2-Decenol	1257
920*	Diisoamyl ketone	1258
921*	Methyl dihydrocinnamate	1258
922^	Isopulegyl acetate	1258
923	Carvone oxide	1261
924*	Sabinyl acetate	1262
925*	4–Ethylguaiacol	1265
926	Neryl formate	1267
927^	Safrole	1278
928	10-Undecen-1-al	1280
929	Octyl propionate	1283
930*	Dihydrosafrole	1286
931*	n–Nonanoic acid	1286
932*	n–Nonyl acetate	1292
933*	Isopropyl salicylate	1292
934	Butyl disulfide	1295
935	2–Nonyn–1–al dimethyl acetal	1300
936	n–Propyl phenylacetate	1300
937^	Anisyl formate	1307
938^	alpha–Methylcinnamic aldehyde	1309
939	Cyclohexyl n-valerate	1310
940*	n–Hexyltiglate	1310
941^	Methyl 3-hydroxybutyrate	1318
942*	Methyl undecyl ether	1318
943	Dihydrocarvyl acetate	1319
944	Myrcenyl propionate	1327
945	Cinnamyl formate	1330
946^	p–lsopropylacetophenone	1332
947^	Terpinyl formate	1333
948^	Methyllavender ketone	1341
949*	alpha–Methylcinnamyl alcohol	1343
950*	Hydroxycitronellol	1347
951*	gamma-lonone	1347

952^	2,4–Dimethyl benzylacetate	1348
953^	Undecenol	1350
954*	Methyl nonyl acetaldehyde	1352
955*	2-Methyl-5-isopropylacetophenone	1358
956*	Dihydrocoumarin	1359
957	Isosafrole	1360
958^	beta–Methylcinnamyl alcohol	1365
959	4–Methyl–5–thiazoleethanol acetate	1368
960^	Diphenyl	1369
961	n–Pentadecanol	1373
962*	Acetaldehyde citronellyl methyl acetal	1374
963^	cis–3–Decenyl acetate	1376
964	Acetylcymene	1381
965^	Isoamyl phenylethyl ether	1384
966^	p–Cresyl isovalerate	1389
967*	Anisyl acetate	1390
968	alpha–Copaene	1398
969*	Dihydrojasmone	1400
970^	Cuminyl acetate	1401
971	beta–Bourbonene	1406
972*	m-Aminoacetophenone	1409
973^	Dimethyl suberate	1414
974^	Isopropyl n-decanoate	1417
975*	Dihydrocuminyl acetate	1418
976^	Linalyl n-butyrate	1420
977^	2–Methyl–1–undecanol	1422
978*	Phenylethyl butyrate	1422
979^	Dimethyl phenyl ethyl carbinyl acetate	1428
980*	alpha–Cedrene	1436
981^	Carvyl propionate	1440
982	beta-Copaene	1445
983	beta-Cedrene	1446
984*	Phenoxyethyl propionate	1447
985	2–Decenal	1449
986	Linalyl 2-methylbutyrate	1450
987*	Thujopsene	1451
988^	n–Amyl benzoate	1454
989*	Di–n–heptyl ether	1458
990*	alpha-Humulene	1465
991^	Citronellyl isobutyrate	1469

992	Bornyl butyrate	1473
993^	Dihydropseudo ionone	1473
994	p–Methoxybenzylacetone	1473
995	Alloaromadendrene	1478
996	p–Cresyl isotiglate	1482
997*	alpha–Methylcinnamyl acetate	1484
998*	Heliotropyl acetate	1485
999*	Phenoxyethyl isobutyrate	1486
1000*	n–Undecyl acetate	1487
1001^	Valencene	1487
1002^	3–Methylcoumarin	1490
1003	2-Cyclohexylcyclohexanone	1496
1004*	alpha-Muurolene	1500
1005	o–Methoxy cinnamic aldehyde	1504
1006^	Methyl isovalerate	1505
1007^	Bornyl isovalerate	1512
1008	gamma–Cadinene	1518
1009^	Calamenene	1518
1010^	delta-Cadinene	1524
1011*	alpha–Nerolidol	1524
1012*	Citronellyl isocrotonate	1526
1013*	3,4–Dimethoxyacetophenone	1532
1014	Di–n–butyl succinate	1534
1015^	gamma–Undecalactone	1542
1016^	Tangerinal	1554.5
1017	6–Methylcoumarin	1545
1018^	cis–3–Hexenyl benzoate	1553
1019	7–Methylcoumarin	1553
1020^	beta-Nerolidol	1553
1021^	Citronellyl crotonate	1558
1022*	Di–n–amyl fumarate	1558
1023*	n–Hexyl benzoate	1558
1024	Triacetin	1563
1025^	n–Hexyl octanoate	1564
1026^	Anisyl n–butyrate	1569
1027	Geranyl 2-methylbutyrate	1574
1028^	Neryl isovalerate	1574
1029	alpha-Cedrene epoxide	1585
1030^	Phenylpropyl isovalerate	1590
1031*	n–Hexyl nhenylacetate	1607

1032	cis-3-hexenyl phenylacetate	1610
1033^	Methyl n-tridecanoate	1612
1034^	Isobutyl 10-undecenoate	1617
1035	Dibenzyl ether	1631
1036^	Geranyl tiglate	1650
1037^	Isoamyl anthranilate	1656
1038	Di–n–butyl adipate	1658
1039	Furfuryl disulfide	1660
1040*	Methyl zingerone	1660
1041	Patchouli alcohol	1667
1042^	Methyl N-propylanthranilate	1678
1043^	Guaiacyl n–caproate	1681
1044*	Isoamyl pyruvate	1712
1045	Cyclohexadecanone	1731
1046	Acetyl cedrene	1768
1047^	n-heptyl salicylate	1790
1048	Neryl n-Heptanoate	1808
1049^	Pentalide	1823
1050^	Geranyl n-heptanoate	1831
1051	Nerolidyl ethanol	1851
1052*	Octyl salicylate	1895
1053^	Methyl hexadecanoate	1911
1054*	Phenylethyl n-decanoate	2022
1055*	Methyl octadecanoate	2101
1056	Ethyl oleate	2155
1057	n–Butyl n–hexanoate	2180
1058	Ethyl n–octanoate	2180
1059^	beta-Terpinenol	1137
1060*	delta-Terpinenol	1160
1061^	sec-butylcyclohexanone	1195
1062^	4-(2,4,6-Trimethyl-3-cyclohexen-1-yl)-3-buten-2-one	1434
1063	Allyl cinnamate	1450
1064*	Cedryl acetate	1596.5
1065	1,1–Dimethoxy–n–propane	650
1066*	n-Pentan-2-ol	685
1067	Nootketone	1802
1068	Dibutyl butyrolactone	1531
1069*	2–Propionylpyrrol	1145
1070^	Octyl–n–valerate	1474
1071	n–Propyl n–decanoate	1476

1072	Isoamyl n-nonanoate	1533
1073^	n–Butyl n–nonanoate	1475
1074*	1,1–Dimethoxy–n–butane	770
1075	1,1–Dimethoxy–n–pentane	868
1076	2–n–Butylthiazole	1070
1077^	n–gamma–heptalactone	1126
1078*	n–Heptyl pivalate	1263
1079*	Isopropyl n-dodecanoate	1814
1080	n–Butyl n–tridecanoate	1880
1081^	2,2-Dimethyl-n-pentanol	874
1082^	Isopropyl n-valerate	924
1083*	Salicaldehyde	1027
1084	n–Butyl propyl sulfide	972
1085^	Furfuryl n-propionate	1059
1086	n–Propyl tiglate	1020
1087*	2,4-Dimethyl-n-pentan-3-ol	828
1088*	2–Ethyl–2–n–hexanal	1007
1089	1,1–Dimethoxy–n–heptane	1063
1090*	n–Decan–2–ol	1190
1091^	D–n–hexyl ether	1269
1092*	n–Butyl angelate	1116
1093	n–Amyl tiglate	1216
1094*	Benzyl n–decanoate	1923
1095	n–Propyl anisate	1527
1096*	Anisyl n-propionate	1482
1097*	n–Propyl anthranilate	1500
1098^	Neryl n–valerate	1610
1099^	Furfuryl n-heptanoate	1443
1100*	Isopropyl n-nonanoate	1318
1101*	n–Heptyl valerate	1372
1102*	n–Amyl anthranilate	1700
1103	Cinnamyl n-heptanoate	1905
1104	trans-2-Hexenyl n-heptanoate	1474
1105*	Citronellyl n-valerate	1608
1106^	n-hexyl nonanoate	1668
1107	Linalyl n-heptanoate	1670
1108*	Terpinyl n-valerate	1614
1109*	n–Heptyl 2–methylbutyrate	1324
1110*	n–Amyl furfurylacrylate	1544
1111	Geranyl n-valerate	1632

1112	n–Amyl anisate	1732
1113*	n–Butyl n–valerate	1078
1114*	Isopropyl n–undecanoate	1516
1115	Methyl n–dodecyl ketone	1580
1116^	Neryl n-hexanoate	1709
1117*	n–Heptyl phenylacetate	1717
1118	n–Undecanal diethyl acetal	1572
1119	Methyl n–decyl ketone	1377
1120^	n–Hexyl n–heptanoate	1470
1121*	n–Amyl n–heptanoate	1375
1122^	n–Undecanal dimethyl acetal	1466
1123*	Isoamyl n–undecanoate	1733
1124^	n–Amyl 10–undecenoate	1760
1125	n–Butyl n–pentadecanoate	2080
1126*	n–Butyl n–tetradecanoate	1977
1127*	n–Propyl n–dodecanoate	1676
1128^	n–Propyl n–nonanoate	1377
1129^	Furfuryl n–valerate	1245
1130	n–Hexyl n–valerate	1275
1131	alpha–n–Butyl cinnamic aldehyde	1535
1132*	n–Dodecanal diethyl acetal	1671
1133*	n–Butyl N–methylanthranilate	1660
1134	2–Nonanoylfuran	1588
1135^	2–Decanoylfuran	1689
1136	alpha–n–Heptylcinnamic aldehyde	1827
1137^	2–Ethyl–2–n–hexene–1–ol	1051
1138^	Benzyl n–propyl carbinol	1310
1139	Benzyl isopropyl carbinol	1292
1140*	n–Propyl cinnamic aldehyde	1531
1141^	cis-3-Hexenyl n-heptanoate	1465
1142^	trans-2-Hexenyl n-valerate	1275
1143	Cyclooctanyl acetate	1280
1144^	cis–3–Decenol	1245
1145*	p-cresyl ethylcarbonate	1304
1146^	2–Ethyl–1–hexyl propionate	1231
1147*	2-Methyl-2-phenylhexan-4-one	1405
1148*	4–Methyl–5–hydroxy phenyl acetate	1263
1149^	Jasmal	1459
1150*	cis-3-Octenol	1041
1151^	trans-3-Octenol	1036

1152^	cis–3–Decenyl butyrate	1563
1153	trans-2-Decenyl butyrate	1563
1154^	n–Hexyl angelate	788
1155	n–Propyl n–undecanoate	1576
1156^	cis–3–Hexenyl n–nonanoate	1664
1157	trans–2–Hexenyl n–nonanoate	1673
1158^	cis–3–Hexenyl methyl acetal	1035
1159	trans-2-Heptenyl butyrate	1275
1160*	trans-2-Heptenyl propionate	1182
1161	Citronellyl ethyl acetal	1423
1162^	o–Toluyl thiol	1067
1163^	Isoamyl anisate	1686
1164*	n–Amyl pivalate	1063
1165^	Isolongiforanone	1616
1166*	Di–n–Propyl fumarate	1360
1167^	N–Methyl–2–pyrrolaldehyde	986
1168^	1–Methyl 4–hepten–1–ol	982
1169*	alpha–Methyl citronellol	1220
1170^	Phenylpropyl n-valerate	1635
1171*	n–Propionyl methylanthranilate	1673
1172*	1,1–Diethyoxyhexane	1080
1173	o–Methyl phenyl ethyl alcohol	1216
1174*	omega–Decenyl butyrate	1558
1175^	omega–Methyl undecylenate	1400
1176^	4–Ethyl isohexanoate	951
1177*	Dihydrolinalyl acetaldehyde	1315
1178*	Methyl isogeranylacetate	1362
1179	Dihydrocumin alcohol	1286
1180^	Methyl isohexyl carbinyl acetate	1080
1181	Ethyl phenyl ethyl acetal	1332
1182	2–Methyl–2–(4–methyl n–amyl) tetrahydrofuran	1159
1183*	sec–Butyl ethyl formal	826
1184	1,3–Butylene glycol formal	777
1185*	1,4–Butylene glycol formal	829
1186*	2,3–Butylene glycol formal	740
1187	Pinacol	843
1188^	sec–Butyl benzene	1011
1189^	trans–Sabinene hydrate	1078
1190^	gamma–Muurolene	1475
1191*	Anisyl isobutyrate	1520

1192^	Zingerone	1625
1193*	Anisyl n-valerate	1665
1194^	Benzyl benzoate	1741
1195^	Phenyl salicylate	1742
1196	Bornyl benzoate	1749
1197	p–Cresyl benzoate	1764
1198^	cis–3–hexenyl anthranilate	1807
1199^	p–Cresyl phenylacetate	1827
1200	Phenylethyl benzoate	1841
1201*	p–Cresyl salicylate	1850
1202	2-Mercaptobenzothiazole	1944
1203*	Geranyl benzoate	1949
1204	Cinnamyl cinnamate	2055
1205*	Phenylethyl anthranilate	2091
1206*	Phenylethyl cinnamate	2147
1207*	Anisyl n-heptanoate	1862
1208^	Anisyl n-hexanoate	1763

* validación, ^ predicción

No.	Nombre	Ι
1	Acetaldehyde di–(cis–3–hexenil) acetal	1700
2*	Acetaldehyde ethyl-cis-3-hexenyl-acetal	1297
3^	Acetaldehyde linalyl ethyl acetal	1561
4^	Acetaldehyde phenylethyl n-propyl acetal	1836
5^	Acetaldehyde styleneglycol acetal	1786.5
6	Acetone	810
7*	Acetone–1–phenyl 1,2–ethandiol ketal	1766
8*	Acetonyl acetone	1500
9*	Acetophenone	1627
10	4-Acetyl-6-tert-butyl-1,1-dimethyl indan	2145
11*	Acetyl eugenol eugenyl acetate	2277
12	2–Acetylfuran	1491
13	Acetyl methyl carbinol acetoin	1276
14^	2–Acetylpyridine	1600
15	2–Acetylthiazole	1639
16^	2-Acetylthiophene	1760
17*	Allyl acetate	1010
18	Allyl anthranilate	2289
19^	Allyl benzoate	1800
20^	Allyl n-butyrate	1161
21*	Allyl cyclohexane propionate	1800
22*	Allyl n–decanoate	1755
23*	Allyl 2–ethyl butyrate	1254
24*	Allyl formate	957
25*	Allyl 2–furoate	1748
26^	Allyl n-heptanoate	1454
27^	Allyl n-hexanoate	1356
28	Allyl ionone	2088
29^	Allyl levulinate	1743
30*	Allyl n–nonanoate	1655
31^	Allyl n–octanoate	1554
32*	Allyl phenoxy acetate	2176
33^	Allyl phenyl acetate	2175
34*	Allyl n–propionate	1090
35^	Allyl salicylate	1946
36^	Allyl tiglate	1370
37*	Allyl iso-valerate	1190

Tabla 2A. Nombres químicos e índices de retención experimentales de1184 sabores y aromas medidos en la columna polar Carbowax 20M

38*	o-Amino acetophenone	2181
39	p–Amino acetophenone	2181
40*	n–Amyl acetate	1161
41	iso–Amyl acetate	1110
42	2-n-Amyl-3-acetonyl-1-cyclopentanone	2259
43	n–Amyl alcohol	1213
44*	iso–Amyl alcohol	1184
45	sec–Amyl alcohol	1091
46	tert–Amyl alcohol	987
47^	iso–Amyl benzoate	1894
48	iso–Amyl benzyl ether	1668
49	n–Amyl n–butyrate	1305
50*	n–Amyl iso–butyrate	1237
51	iso–Amyl n–butyrate	1259
52	iso–Amyl iso–butyrate	1187
53*	iso–Amyl cinnamate	2355
54*	alpha–Amyl cinnamic aldehyde	2211
55*	alpha–n–Amyl cinnamyl acetate	2318
56^	n–Amyl cyclopentenone	1719
57	p-tert-amyl cyclohexanone	1800
58^	iso–Amyl n–decanoate	1848
59^	iso-Amyl n-dodecanoate	2048
60	n–Amyl formate	1107
61	iso–Amyl formate	1058
62*	iso–Amyl 2–furoate	1840
63	n-amyl furylpropionate	1947
64^	iso-amyl furylpropionate	1894
65	iso-amyl n-pentanoate	1548
66*	n-amyl n-hexanoate	1500
67*	iso-amyl n-hexanoate	1451
68	n-amyl levulinate	1860
69*	iso-amyl levulinate	1807
70^	n–amyl 2–methyl butyrate	1324
71*	iso–amyl 2–metyl butyrate	1273
72	n-amyl n-octanoate	1700
73^	iso–amyl n–octanoate	1648
74*	n-amyl phenylacetate	2047
75^	iso-amyl phenylacetate	1991
76*	n-amyl n-propionate	1180
77^	iso-amyl n-propionate	1180

78^	6-amyl alpha-pyrone	2166
79	iso-amyl pyruvate	1464
80	n–amyl salicylate	2077
81*	iso-amyl salicylate	2021
82^	iso-amyl tiglate	1469
83	iso-amyl 10-undecenoate	2000
84^	n–amyl n–valerate	1401
85*	n–amyl iso–valerate	1337
86^	iso-amyl n-valerate	1354
87*	Isoamyl isovalerate	1287
88*	anethole	1809
89	anis alcohol	2210
90*	anis aldehyde	1982
91^	anis aldeyde-propyleneglycol acetal	2232.5
92*	anisole	1327
93^	benzal acetone	2065
94^	benzaldehyde	1502
95	benzonitrile	1583
96^	benzophenone	2410
97	Benzyl acetate	1697
98*	Benzyl acetone	1849
99	Benzyl alcohol	1822
100^	Benzyl n–butyrate	1856
101*	Benzyl iso-butirate	1771
102^	Benzyl ethyl ether	1439
103*	Benzyl formate	1675
104^	Benzyl n-heptanoate	2158
105^	Benzyl n-hexanoate	2057
106*	Benzyl n–nonanoate	2362
107	Benzyl n–octanoate	2260
108^	Benzyl n–propionate	1769
109*	Benzyl tiglate	2075
110	Benzyl n–valerate	1956
111	Benzyl iso-valerate	1880
112*	iso-bornyl acetate	1584
113^	iso-bornyl n-propionate	1676
114	bromostryrol	1778
115	2,3 butadienone diacetyl	963
116	n butanol	1113
117*	n-butanol-2-ol	1000

118 119^ 120 121* 122 123 124* 125 126^ 127* 128 129^	2-butanoylfuran 2-butanoyl-5-methylfuran 2-butanoylthiophene n-butyl acetate iso-butyl acetate iso-butyl aldehyde iso-butyl aldehyde-1-phenyl,1,2-ethanediol acetal iso-butyl aldehyde-propylene glycol acetal n-butyl anisate iso-butyl anisate n-butyl anisate	1644 1748 1894 1059 1000 800 1900 1067 2305 2233
119 [^] 120 121* 122 123 124* 125 126 [^] 127* 128 129 [^]	2-butanoyl-5-methylfuran 2-butanoylthiophene n-butyl acetate iso-butyl acetate iso-butyl aldehyde iso-butyl aldehyde-1-phenyl,1,2-ethanediol acetal iso-butyl aldehyde-propylene glycol acetal n-butyl anisate iso-butyl anisate n-butyl anisate	1748 1894 1059 1000 800 1900 1067 2305 2233
120 121* 122 123 124* 125 126^ 127* 128 129^	2-butanoylthiophene n-butyl acetate iso-butyl acetate iso-butyl aldehyde iso-butyl aldehyde-1-phenyl,1,2-ethanediol acetal iso-butyl aldehyde-propylene glycol acetal n-butyl anisate iso-butyl anisate n-butyl anisate	1894 1059 1000 800 1900 1067 2305 2233
121* 122 123 124* 125 126^ 127* 128 129^	n-butyl acetate iso-butyl acetate iso-butyl aldehyde iso-butyl aldehyde-1-phenyl,1,2-ethanediol acetal iso-butyl aldehyde-propylene glycol acetal n-butyl anisate iso-butyl anisate n-butyl anisate	1059 1000 800 1900 1067 2305 2233
122 123 124* 125 126^ 127* 128 129^	iso–butyl acetate iso–butyl aldehyde iso–butyl aldehyde–1–phenyl,1,2–ethanediol acetal iso–butyl aldehyde–propylene glycol acetal n–butyl anisate iso–butyl anisate n–butyl antranilate	1000 800 1900 1067 2305 2233
123 124* 125 126^ 127* 128 129^	iso–butyl aldehyde iso–butyl aldehyde–1–phenyl,1,2–ethanediol acetal iso–butyl aldehyde–propylene glycol acetal n–butyl anisate iso–butyl anisate n–butyl antranilate	800 1900 1067 2305 2233
124* 125 126^ 127* 128 129^	iso–butyl aldehyde–1–phenyl,1,2–ethanediol acetal iso–butyl aldehyde–propylene glycol acetal n–butyl anisate iso–butyl anisate n–butyl antranilate	1900 1067 2305 2233
125 126^ 127* 128 129^	iso–butyl aldehyde–propylene glycol acetal n–butyl anisate iso–butyl anisate n–butyl antranilate	1067 2305 2233
126^ 127* 128 129^	n–butyl anisate iso–butyl anisate n–butyl antranilate	2305 2233
127* 128 129^	iso–butyl anisate n–butyl antranilate	2233
128 129^	n-butyl antranilate	
129^		2419
	iso-butyl antranilate	2347
130*	n-butyl benzoate	1841
131*	iso-butyl benzoate	1771
132^	iso-butyl benzyl carbinol	1983
133^	n-butyl n-butyrate	1207
134*	n-butyl iso-butyrate	1139
135^	iso-butyl n-butyrate	1152
136*	iso-butyl iso-butyrate	1084
137^	n butyl n-butyrul lactate	1733
138^	iso-butyl cinnamate	2228
139^	o-ter-butyl cyclohexyl acetate	1580.5
140	p-tert-butyl cyclohexyl-acetate trans	1628
141*	p-tert-butyl cyclohexyl-acetate cis	1675
142	p-tert-butyl cyclohexanone	1645
143^	n–Butyl n–decanoate	1798
144*	2-iso-Butyl-4,5-dimethyloxazole	1330
145	2-n-Butyl-4-5-dimetylthiazole	1600
146	2-iso-Butyl-4,5-dimethylthizole	1517
147*	n–Butyl n–dodecanoate	2000
148*	iso–Butyl 2–ethyl n–hexanoate	1400
149*	2-n-Butyl-4-ethyl-5-methyloxazole	1441
150	2-iso-Butyl-4-ethyl-5-methyloxazole	1359
151^	n–Butyl formate	996
152*	iso–Butyl formate	955
153^	2-n-Butylfuran	1130
154*	iso-Butyl beta-2-furyl acrylate	2006
155^	n–Butyl furyl n–propionate	1728
156^	n–Butyl n–heptanoate	1500
157*	iso-Butvl n-heptanoate	1448
134* 135^ 136* 137^ 138^ 139^ 140 141* 142 143^ 144* 145 146 147* 148* 149* 150 151^ 152* 153^ 154* 155^ 156^ 157*	n-butyl iso-butyrate iso-butyl n-butyrate iso-butyl iso-butyrate n butyl n-butyrul lactate iso-butyl cinnamate o-ter-butyl cyclohexyl acetate p-tert-butyl cyclohexyl-acetate trans p-tert-butyl cyclohexyl-acetate cis p-tert-butyl cyclohexanone n-Butyl n-decanoate 2-iso-Butyl-4,5-dimethyloxazole 2-n-Butyl-4-5-dimethylthizole n-Butyl n-dodecanoate iso-Butyl 2-ethyl n-hexanoate 2-n-Butyl 2-ethyl n-hexanoate 2-iso-Butyl-4-ethyl-5-methyloxazole 2-iso-Butyl-4-ethyl-5-methyloxazole 2-n-Butyl formate iso-Butyl formate iso-Butyl formate ace-Butyl formate n-Butyl formate ace-Butyl formate ace-Butyl formate n-Butyl formate ace-Butyl formate ace-Butyl formate ace-Butyl formate ace-Butyl formate ace-Butyl formate ace-Butyl formate ace-Butyl formate ace-Butyl n-heptanoate ace-Butyl n-heptanoate ace-Butyl n-heptanoate	1139 1152 1084 1733 2228 1580.5 1628 1675 1645 1798 1330 1600 1517 2000 1400 1441 1359 996 955 1130 2006 1728 1500 1448

158*	n-Butyl n-hexanoate	1402
159	iso-Butyl n-hexanoate	1350
160*	tert–Butyl–4–hydroxy anisole	2424
161^	n–Butyl levulinate	1760
162*	iso-Butyl levulinate	1696
163	iso-Butyl n-methyl anthranilate	2174
164^	n–Butyl 2–methyl butyrate	1226
165^	iso-Butyl 2-methyl butyrate	1171
166^	p–tert–Butyl–alpha–methyl–hydrocinnamic aldehyde (lily alde- hyde)	2039
167	n–Butyl methyl phenyl–glycidate	2273
168^	2-n-Butyl-4-methylthiazole	1500
169*	2-iso-Butyl-4-methylthiazole	1420
170^	n-Butyl n-octanoate	1600
171*	iso–Butyl n–octanoate	1543
172^	n–Butyl phenyl acetate	1932
173*	iso–Butyl phenyl acetate	1864
174	p-tert-Butyl phenylpropyl-aldehyde	2030
175^	iso–Butyl pivalate	1085
176	n–Butyl n–propionate	1130
177	iso-Butyl n-propionate	1071
178	6-sec-Butyl quinoline	2235
179	n–Butyl salicylate	1976
180*	iso–Butyl salicylate	1896
181	2-iso-butylthiazole	1404
182*	2-n-butylthiophene	1353
183^	n–Butyl tiglate	1419
184*	iso–Butyl tiglate	1357
185	n-Butyl n-undecanoate	1900
186*	n–Butyl 10–undecenoate	1954
187^	n–Butyl iso–valerate	1242
188*	iso–Butyl iso–valerate	1184
189	iso-Butyrophenone	1685
190*	Camphor	1518
191^	Carvacrol	2159
192^	Carveol	1805
193*	Carvone	1715
194	Caryophyllene	1617
195*	Cedrol	2100
196^	Cinnamic aldehyde	1996
197^	Cinnamyl acetate	2103

198^	Cinnamyl alcohol	2207
199^	Cinnamyl n-butyrate	2247
200	Cinnamyl iso-butyrate	2171
201^	Cinnamyl n-hexanoate	2445
202^	Cinnamyl n-propionate	2169
203^	Cinnamyl n-valerate	2347
204^	Cinnamyl iso-valerate	2271
205*	Citral	1685
206^	Citronellal	1465
207*	Citronellol	1722
208	Citronellyl acetate	1645
209	Citronellyl n-butyrate	1786
210^	Citronellyl iso-butryrate	1705
211	Citronellyl formate	1600
212^	Citronellyl n-proprionate	1700
213^	Citronellyl iso-valerate	1800
214	Coumarin	2361
215*	p–Cresol methyl ether	1415
216*	p–Cresyl acetate	1700
217	p–Cresyl iso–butyrate	1763
218^	p–Cresyl n–octanoate	2264
219*	Cumin alcohol	2045
220	Cumin aldehyde	1766
221	Cyclohexane glycidate	1875
222	Cyclohexanol	1375
223^	Cyclohexanone	1306
224	Cyclohexanone–1,3–butylene ketal	1500
225*	Cyclohexanone-1-phenyl-1,2-ethanodiol ketal	2268
226^	Cyclohexil acetate	1343
227*	Cyclohexyl n-butyrate	1492
228^	Cyclohexyl iso-butyrate	1427
229*	2–Cyclohexylethyl acetate	1591
230	Cyclohexyl formate	1305
231	Cyclohexyl n-hexanoate	1695
232	Cyclohexyl n–propionate	1408
233^	Cyclohexyl iso-valerate	1527
234*	trans-2-trans-4-Decadienol	1938
235*	Decahydro beta-naphthol	1918
236	gamma-Decalactone	2101
237	delta-Decalactone	2144

238*	n–Decanal	1485
239^	n–Decanal diethyl acetal	1613
240^	n–Decanal dimethyl acetal	1567
241	n–Decane	1000
242	n–Decanol	1723
243	cis–4–Decenal	1523
244*	1–Decene	1043
245^	9–Decen–1–al	1775
246^	9–Decen–1–yl acetate	1722
247*	n–Decyl acetate	1662
248	n–Decyl n–propionate	1729
249	Di–iso–amyl ether	1064
250*	Di–n–amyl ketone	1528
251^	Di–n–Butyl ether	965
252*	Di–n–butyl fumarate	2006
253^	Di–n–butyl ketone	1330
254*	Di–iso–butyl ketone	1207
255^	Diethyl adipate	1858
256	Diethyleneglycol diethyl ether	1572
257*	Diethyleneglycol dimethyl ether	1396
258^	Diethyleneglycol monoethyl ether	1583
259	Diethyleneglycol monomethyl ether	1321
260*	Diethyl ether	590
261	Diethyl ketone	980
262*	Diethyl malonate	1542
263*	Diethyl–5–methyloxazole	1274
264	Diethyl phthalate	2303
265	Diethyl sebacate	2272
266	Diethyl suberate	2065
267*	Diethyl succinate	1642
268*	Di–n–hexyl ketone	1728
269^	Dihydro anethole	1600
270*	Dihydrocarveol	1713
271	Dihydro-nor-dicyclopentadienyl	1881
272^	Dihydrio iso–jasmone	1842
273	Dihydro myrcenol	1438
274^	Dihydro terpynil acetate	1561
275*	1,4–Dimethoxy benzene	1705
276*	1,4–Dimethoxy–2–tert–butylbenzene	1870
277*	2,4-Dimethyl-5-acetvlthiazole	1835

278	Dimethyl adipate	1779
279*	Dimethyl benzyl carbinol	1715
280	Dimethyl benzyl carbinyl acetate	1755
281	Dimethyl benzyl carbinyl n-butyrate	1889
282	Dimethyl benzyl carbinyl propionate	1810
283	2,5–Dimethyl–4–ethyloxazole	1231
284*	Dimethyl fumarate	1530
285*	2,5–Dimethylfuran	951
286^	2,6–Dimethyl n–heptan–2–ol	1300
287^	2,6–Dimethyl hept–5–en–1–al	1358
288	2,6–Dimethylheptyl–4–acetate	1265
289	Dimethyl malonate	1472
290^	Dimethyl phenyl ethyl carbinol	1916
291	2,3–Dimethyl pyrazine	1330
292	2,5–Dimethyl pyrazine	1306
293^	Dimethyl sebacate	2195
294	Dimethyl succinate	1558
295	2,4–Dimethylthiazole	1271
296*	4,5–Dimethylthiazole	1359
297	Diphenyl oxide	1991
298^	Di–n–propyl ketone	1131
299	Di–iso–propyl ketone	1007
300*	Di–n–propyl malonate	1700
301	gamma–Dodecalactone	2317
302^	delta-Dodecalactone	2358
303*	n–Dodecanal	1695
304*	n–Dodecanal dimethyl acetal	1769
305^	n–Dodecane	1200
306*	n–Dodecanol	1925
307	n–Eicosane	2000
308^	Estragole	1652
309	p–Ethoxy benzaldehyde	2017
310	Ethyl acetate	872
311*	Ethyl acetyl acetate	1427
312^	Ethyl acrilate	980
313	Ethyl alcohol	900
314^	Ethyl n–amyl ketone	1190
315	Ethyl anisate	2110
316^	Ethyl anthranilate	2232
317^	Ethyl benzoate	1647

318	Ethyl n-butyl ketone	1155
319^	Ethyl n-butyrate	1025
320*	Ethyl iso-butyrate	956
321	Ethyl cloro acetate	1281
322*	Ethyl cinnamate	2095
323^	Ethyl crotonate	1161
324*	Ethyl n-decanoate	1624
325*	2-Ethyl-4,5-dimethyloxazole	1243
326	2-Ethyl-4,5-dimethylthiazole	1429
327*	Ethyl n-deodecanoate	1826
328*	Ethyleneglycol monophenyl ether	2100
329	Ethyl formate	806
330*	2-Ethylfuran	951
331*	Ethyl 2–furoate	1599
332^	Ethyl n-heptanoate	1321
333	Ethyl n-hexanoate	1223
334	Ethyl iso-hexanoate	1181
335*	Ethyl levulinate	1567
336*	Ethyl 2-methyl butyrate	1049
337*	2-Ethyl-4-methylthiazole	1331
338^	4–Ethyl–5–methylthiazole	1400
339*	Ethyl n-nonanoate	1523
340	Ethyl n-octanoate	1423
341	Ethyl phenyl acetate	1773
342	Ethyl pivalate	947
343^	Ethyl n-propionate	944
344	Ethyl n-propyl ketone	1055
345	Ethyl salicylate	1787
346^	Ethyl n-tetradecanoate	2027
347	2-Ethylthiazole	1300
348^	2–Ethylthiophene	1179
349^	Ethyl tiglate	1234
350*	Ethyl n–undecanoate	1725
351^	Ethyl 10-undecenoate	1775
352^	Ethyl n-valerate	1124
353*	Ethyl iso-valerate	1060
354^	Ethyl vanillin	2414
355	Eugenol	2103
356*	iso-Eugenol	2227.5
357	Furfural	1449

358	Furfuryl acetate	1518
359^	Furfuryl n-butyrate	1655
360*	Furfuryl n-hexanoate	1850
361*	Galaxolide	2303
362^	Geraniol	1797
363^	Gerano nitrile	1701.5
364^	Geranyl acetate	1735
365	Geranyl n-butyrate	1872
366	Geranyl iso-butyrate	1795
367^	Geranyl ethyl ether	1491
368*	Geranyl formate	1684
369^	Geranyl n-hexanoate	2057
370^	Geranyl n-propionate	1799
371^	Geranyl iso-valerate	1895
372	Helional	2383
373*	Heliotropine	2171
374*	n–Heneicosane	2100
375^	n-Heptadecane	1700
376*	n–Heptanal	1186
377^	n–Heptanal diethyl acetal	1319
378*	n–Heptanal dimethyl acetal	1265
379*	n–Heptanal ethyleneglycol acetal	1460
380	n–Heptane	700
381*	2,3–Heptanedione	1138
382^	n–Heptanol	1419
383*	n–Heptan–2–ol	1284
384	n–Heptan–4–ol	1250
385	2–Heptanoylfuran	1956
386*	2–Heptanoylthiophene	2209
387^	1–Hepten–3–ol	1322
388^	n–Heptyl acetate	1361
389^	n–Heptyl n–butyrate	1503
390	n–Heptyl iso butyrate	1433
391	n–Heptyl formate	1310
392*	2-n-Heptylfuran	1429
393^	n–Heptyl n–octanoate	1892
394*	2-n-Heptylthiophene	1670
395*	n-Hexadecane	1600
396*	n-Hexanal	1084
397^	n–Hexanal diethyl acetal	1223

398*	n-Hexane	600
399	3,4-Hexanedione	1123
400*	n–Hexanol	1316
401^	n-Hexan-2-ol	1192
402*	2–Hexanoyfuran	1850
403*	2–Hexanoylthiophene	2104
404^	trans-2-Hexenal	1207
405*	1–Hexen–3–ol	1225
406^	cis–3–Hexenol	1351
407	trans-2-Hexenol	1368
408	cis–3–Hexenyl acetate	1300
409*	trans-2-Hexenyl acetate	1315
410	cis-3-Hexenyl n-butyrate	1450
411^	trans-2-Hexenyl n-butyrate	1461
412^	cis-3-Hexenyl iso-butyrate	1377
413^	cis-3-Hexenyl n-decanoate	2038
414	cis–3–Hexenyl formate	1252
415	cis-3-Hexenyl n-hexanoate	1654
416*	trans-2-hexenyl n-hexanoate	1656
417	cis–3–Hexenyl lactate	1727
418*	cis-3-Hexenyl methoxy formate	1475
419^	cis-3-Hexanyl n-octanoate	1838
420^	trans-2-Hexenyl n-octanoate	1853
421^	cis–3–Hexenyl n–propionate	1371
422	trans-2-Hexenyl n-propionate	1370
423^	cis–3–Hexenyl salicylate	2227
424	cis–3–Hexenyl n–valerate	1584
425^	cis–3–Hexenyl iso valerate	1480
426*	2–Hexoxy acetaldehyde dimethyl acetal	1528
427^	n–Hexyl acetate	1307
428	n–Hexyl n–butyrate	1398
429^	n–Hexyl iso–butyrate	1333
430*	alpha–n–Hexyl cinnamic aldehyde	2309
431^	n–Hexyl formate	1258
432^	2–Hexylfuran	1326
433*	n–Hexyl n–hexaonate	1599
434^	n–Hexyl 2–methyl butyrate	1418
435^	n–Hexyl pivalate	1328
436^	n–Hexyl n–propionate	1326
437*	n–Hexyl salicylate	2175

438* 2-n-Hexylthiophene 1564 439* n-Hexyl iso-valerate 1433 440 Hydroxy citronellal 1882 441 Indole 2351 442 alpha-lonone 1833 443* Beta-lonone 1918 444* cis-Jasmone 1914 445* Lavandulyl acetate 1597 446* Limonene 1206 447* Linalool oxide 1423 449 trans-Linalool oxide 1423 449 trans-Linalool oxide 1451 450 Linalyl acetate 1597 451 Linalyl iso-butyrate 1597 452 Linalyl iso-butyrate 1596 453* Linalyl n-propionate 1596 455 Linalyl iso-valerate 1698 456* Linalyl iso-valerate 1698 456* Linalyl iso-valerate 1698 456* D-Methoxy acetophenone 2011 458 m-Methoxy acetophenone 1759 460* p-Methoxy acetophenone 1759 <			
439* n-Hexyl iso-valerate 1433 440 Hydroxy citronellal 1882 441 Indole 2351 442 alpha-lonone 1833 443* Beta-lonone 1918 444 cis-Jasmone 1914 445^ Lavandulyl acetate 1597 446* Linalool 1506 447* Linalool oxide 1451 450 Linalyl acetate 1538 451* Linalool oxide 1451 450 Linalyl acetate 1587 451* Linalyl formate 1570 452 Linalyl formate 1570 453 Linalyl n-hexanoate 1843 454* Linalyl n-propionate 1596 455 Linalyl n-valerate 1688 455 Linalyl n-valerate 1612 455 Linalyl n-valerate 1765 455 Linalyl n-valerate 1612 455 Menthol 1612 456 Menthol 1612 457* Menthol 1612 <td>438*</td> <td>2–n–Hexylthiophene</td> <td>1564</td>	438*	2–n–Hexylthiophene	1564
440 Hydroxy citronellal 1882 441 Indole 2351 442 alpha-lonone 1833 443* Beta-lonone 1918 444* cis-Jasmone 1914 445* Lavandulyl acetate 1597 446* Limonene 1206 447* Linalool 1506 448* cis-Linalool oxide 1423 449 trans-Linalool oxide 1451 450 Linalyl acetate 1538 451* Linalyl acetate 1538 451* Linalyl formate 1597 452 Linalyl n-hexanoate 1843 454* Linalyl n-propionate 1596 455 Linalyl n-valerate 1765 456* Linalyl iso-valerate 1698 457* Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1750 460* p-Methyl acetophenone 1750 463* p-Methyl acetophenone 1750 464* 2-Methy	439*	n–Hexyl iso–valerate	1433
441 Indole 2351 442 alpha-lonone 1833 443* Beta-lonone 1918 444* cis-Jasmone 1914 445* Lavandulyl acetate 1597 446* Limonene 1206 447* Linalool 1506 448* cis-Linalool oxide 1423 449 trans-Linalool oxide 1451 450 Linalyl acetate 1538 451* Linalyl acetate 1538 451* Linalyl formate 1597 452 Linalyl no-butyrate 1597 453 Linalyl no-butyrate 1597 454 Linalyl no-butyrate 1596 455 Linalyl no-propionate 1596 455 Linalyl no-valerate 1688 457* Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1750 460* p-Methyl acetophenone 1750 462* o-Methyl acetophenone 1750 463* p-Methyl	440	Hydroxy citronellal	1882
442 alpha-lonone 1833 443* Beta-lonone 1918 444* cis-Jasmone 1914 445* Lavandulyl acetate 1597 446* Limonene 1206 447* Linalool 1506 448* cis-Linalool oxide 1423 449 trans-Linalool oxide 1451 450 Linalyl acetate 1538 451* Linalyl acetate 1557 450 Linalyl acetate 1557 451 Linalyl acetate 1557 452 Linalyl n-hexanoate 1583 453* Linalyl n-propionate 1596 455 Linalyl n-propionate 1596 455 Linalyl iso-valerate 1698 455* Linalyl iso-valerate 1698 455* Menthol 1612 458 m-Methoxy acetophenone 1975 460* p-Methoxy acetophenone 1769 462* o-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465*	441	Indole	2351
443* Beta-lonone 1918 444^ cis-Jasmone 1914 445^ Lavandulyl acetate 1597 446* Limonene 1206 447* Linalool 1506 448* cis-Linalool oxide 1423 449 trans-Linalool oxide 1423 449 trans-Linalool oxide 1451 450 Linalyl acetate 1538 451^ Linalyl acetate 1597 452 Linalyl formate 1597 452 Linalyl n-hexanoate 1843 454* Linalyl n-propionate 1596 455 Linalyl ioo-valerate 1698 457* Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1750 460* p-Methyl acetophenone 1750 464 2-Methyl acetophenone 172 466* Methyl acetophenone 172 466* Methyl acetophenone 172 466* Methyl acetophenone 1750 465* <td>442</td> <td>alpha-lonone</td> <td>1833</td>	442	alpha-lonone	1833
444^ cis–Jasmone 1914 445^ Lavandulyl acetate 1597 446* Limonene 1206 447* Linalool 1506 448* cis–Linalool oxide 1423 449 trans–Linalool oxide 1451 450 Linalyl acetate 1538 451^ Linalyl acetate 1597 452 Linalyl formate 1597 453 Linalyl ormate 1597 454 Linalyl n-hexanoate 1843 454* Linalyl n-propionate 1596 455 Linalyl n–valerate 1698 457^A Menthol 1612 458 m–Methoxy acetophenone 2011 459* o–Methoxy acetophenone 1750 460* p–Methoxy acetophenone 1750 462^ o–Methyl acetophenone 1750 464* 2-Methyl acetophenone 1750 465* Methyl acetophenone 1750 464* 2-Methyl acetophenone 1750 465* Methyl acetophenone 1750 <t< td=""><td>443*</td><td>Beta-Ionone</td><td>1918</td></t<>	443*	Beta-Ionone	1918
445^ Lavandulyl acetate 1597 446* Limonene 1206 447* Linalool 1506 448* cis-Linalool oxide 1423 449 trans-Linalool oxide 1451 450 Linalyl acetate 1538 451^ Linalyl acetate 1597 452 Linalyl no-butyrate 1597 453 Linalyl n-hexanoate 1843 454* Linalyl n-propionate 1596 455 Linalyl no-valerate 1698 457^ Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1750 460* p-Methyl acetophenone 1769 461* m-Methyl acetophenone 1750 462^ o-Methyl acetophenone 1750 463* p-Methyl acetophenone 1750 464 2-Methyl acetophenone 1750 465* Methyl nacetophenone 1172 466* Methyl acetophenone 1172 466* Methyl aceatophenone 1172 <td>444^</td> <td>cis–Jasmone</td> <td>1914</td>	444^	cis–Jasmone	1914
446* Limonene 1206 447* Linalool 1506 448* cis-Linalool oxide 1423 449 trans-Linalool oxide 1451 450 Linalyl acetate 1538 451^ Linalyl iso-butyrate 1597 452 Linalyl iso-butyrate 1597 453* Linalyl n-hexanoate 1843 454* Linalyl n-propionate 1596 455 Linalyl n-valerate 1698 457* Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1750 460* p-Methoxy acetophenone 1749 462* o-Methyl acetophenone 1750 464 2-Methyl acetophenone 1750 464 2-Methyl acetophenone 1750 465* Methyl acetophenone 172 466* Methyl acetophenone 172 466* Methyl acetophenone 172 465* Methyl acetophenone 172 466* Methyl anisate 2071	445^	Lavandulyl acetate	1597
447* Linalool 1506 448* cis-Linalool oxide 1423 449 trans-Linalool oxide 1451 450 Linalyl acetate 1538 451^ Linalyl iso-butyrate 1597 452 Linalyl formate 1597 452 Linalyl no-butyrate 1597 453* Linalyl no-propionate 1843 454* Linalyl no-valerate 1765 455 Linalyl no-valerate 1698 457^ Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1775 460* p-Methoxy acetophenone 1749 462^ o-Methyl acetophenone 1770 463* p-Methyl acetophenone 1770 464 2-Methyl acetophenone 1770 465* Methyl acetophenone 172 466* Methyl acetophenone 172 466* Methyl anisate 2071 465* Methyl no-anyl ketone 1100 467* Methyl anisate 2071 </td <td>446*</td> <td>Limonene</td> <td>1206</td>	446*	Limonene	1206
448* cis-Linalool oxide 1423 449 trans-Linalool oxide 1451 450 Linalyl acetate 1538 451 ⁺ Linalyl iso-butyrate 1597 452 Linalyl formate 1597 453* Linalyl n-hexanoate 1843 454* Linalyl n-propionate 1596 455 Linalyl n-valerate 1765 456* Linalyl iso-valerate 1698 457* Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1749 460* p-Methyl acetophenone 1750 461 m-Methyl acetophenone 1750 462* o-Methyl acetophenone 1750 463* p-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anisate 2181 469 Methyl n-butyl ketone 1070 470* 3-Methyl bor_butyl ketone	447*	Linalool	1506
449 trans-Linalool oxide 1451 450 Linalyl acetate 1538 451^ Linalyl iso-butyrate 1597 452 Linalyl formate 1597 452 Linalyl no-bexanoate 1843 454* Linalyl n-propionate 1596 455 Linalyl no-valerate 1765 456* Linalyl iso-valerate 1698 457^ Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1975 460* p-Methoxy acetophenone 1749 462^ o-Methyl acetophenone 1750 463* p-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl no-amyl ketone 1172 466* Methyl anisate 2071 468* Methyl anisate 2181 469 Methyl no-butyl ketone 1070 470* 3-Methyl no-butyl ketone 1070 472^ Methyl no-butyl ketone 1070 473 Methyl no-butyl ketone	448*	cis-Linalool oxide	1423
450 Linalyl acetate 1538 451 ⁺ Linalyl iso-butyrate 1597 452 Linalyl formate 1570 453 [*] Linalyl n-hexanoate 1843 454 [*] Linalyl n-propionate 1596 455 Linalyl n-propionate 1596 455 Linalyl n-valerate 1698 457 ⁺ Menthol 1612 458 m-Methoxy acetophenone 2011 459 [*] o-Methoxy acetophenone 1975 460 [*] p-Methoxy acetophenone 1749 462 [*] o-Methyl acetophenone 1779 463 [*] p-Methyl acetophenone 1779 463 [*] p-Methyl acetophenone 1750 464 2-Methyl acetophenone 1750 464 2-Methyl acetophenone 1172 466 [*] Methyl n-amyl ketone 1100 467 [*] Methyl anisate 2071 468 [*] Methyl anisate 2181 469 Methyl benzoate 1600 470 [*] 3-Methylbutan-2-ol 1052 471 ^A Methyl n-butyl	449	trans-Linalool oxide	1451
451^ Linalyl iso-butyrate 1597 452 Linalyl formate 1570 453* Linalyl n-hexanoate 1843 454* Linalyl n-propionate 1596 455 Linalyl n-valerate 1765 456* Linalyl n-valerate 1698 457^ Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1975 460* p-Methoxy acetophenone 1749 462^ o-Methyl acetophenone 1749 462* o-Methyl acetophenone 1750 463* p-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1100 46* Methyl anisate 2071 468* Methyl anitranilate 2181 469 Methyl benzoate 1000 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1000 472^ Methyl n-butyl ketone 1000	450	Linalyl acetate	1538
452 Linalyl formate 1570 453* Linalyl n-hexanoate 1843 454* Linalyl n-propionate 1596 455 Linalyl n-valerate 1765 456* Linalyl iso-valerate 1698 457^ Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1975 460* p-Methoxy acetophenone 1749 462^ o-Methyl acetophenone 1750 463* p-Methyl acetophenone 1750 464 2-Methyl acetophenone 1750 463* p-Methyl acetophenone 1172 466* Methyl n-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anisate 2071 468* Methyl anthranilate 2181 469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1070 472^ Methyl n-butyl ketone 1000 473 Methyl n-butyl ketone <t< td=""><td>451^</td><td>Linalyl iso-butyrate</td><td>1597</td></t<>	451^	Linalyl iso-butyrate	1597
453* Linalyl n-hexanoate 1843 454* Linalyl n-propionate 1596 455 Linalyl n-valerate 1765 456* Linalyl iso-valerate 1698 457^ Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1975 460* p-Methoxy acetophenone 1749 461 m-Methyl acetophenone 1749 462^ o-Methyl acetophenone 1750 463* p-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anitranilate 2181 469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1070 472^ Methyl n-butyl ketone 1000 473 Methyl n-butyl ketone 1000	452	Linalyl formate	1570
454* Linalyl n-propionate 1596 455 Linalyl n-valerate 1765 456* Linalyl iso-valerate 1698 457^ Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1975 460* p-Methoxy acetophenone 1749 461 m-Methyl acetophenone 1749 462^ o-Methyl acetophenone 1779 462^ o-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anisate 2071 468* Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1070 472^ Methyl n-butyl ketone 1000 473 Methyl n-butyl ketone 1000	453*	Linalyl n-hexanoate	1843
455 Linalyl n-valerate 1765 456* Linalyl iso-valerate 1698 457^ Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1975 460* p-Methoxy acetophenone 1749 461* m-Methyl acetophenone 1749 462^ o-Methyl acetophenone 1750 463* p-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1172 466* Methyl anisate 2071 468* Methyl anisate 2071 468* Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1070 472^ Methyl n-butyl ketone 1000 473 Methyl n-butyl ketone 1000	454*	Linalyl n-propionate	1596
456* Linalyl iso-valerate 1698 457^ Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1975 460* p-Methoxy acetophenone 2115 461 m-Methyl acetophenone 2115 461 m-Methyl acetophenone 1749 462^ o-Methyl acetophenone 1679 463* p-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1172 466* Methyl anisate 2071 466* Methyl anisate 2071 468* Methyl anthranilate 2181 469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl iso-butyl ketone 1070 472^ Methyl iso-butyl ketone 1000 473 Methyl n-butyrate 975	455	Linalyl n-valerate	1765
457^ Menthol 1612 458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1975 460* p-Methoxy acetophenone 2115 461 m-Methyl acetophenone 1749 462^ o-Methyl acetophenone 1679 463* p-Methyl acetophenone 1679 463* p-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1172 466* Methyl iso-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anisate 2181 469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl iso-butyl ketone 1070 472^ Methyl iso-butyl ketone 1000 473 Methyl n-butyrate 975	456*	Linalyl iso-valerate	1698
458 m-Methoxy acetophenone 2011 459* o-Methoxy acetophenone 1975 460* p-Methoxy acetophenone 2115 461 m-Methyl acetophenone 1749 462^ o-Methyl acetophenone 1679 463* p-Methyl acetophenone 1750 464 2-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1172 466* Methyl iso-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anthranilate 2181 469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl iso-butyl ketone 1070 472^ Methyl iso-butyl ketone 1000 473 Methyl n-butyl ketone 1000	457^	Menthol	1612
459*o-Methoxy acetophenone1975460*p-Methoxy acetophenone2115461m-Methyl acetophenone1749462^o-Methyl acetophenone1679463*p-Methyl acetophenone17504642-Methyl-5-acetylthiophene1836465*Methyl n-amyl ketone1172466*Methyl iso-amyl ketone1100467*Methyl anisate2071468*Methyl anisate2181469Methyl benzoate1600470*3-Methylbutan-2-ol1052471^Methyl n-butyl ketone1000472^Methyl n-butyl ketone1000473Methyl n-butyl ketone1000	458	m–Methoxy acetophenone	2011
460*p-Methoxy acetophenone2115461m-Methyl acetophenone1749462^o-Methyl acetophenone1679463*p-Methyl acetophenone17504642-Methyl-5-acetylthiophene1836465*Methyl n-amyl ketone1172466*Methyl iso-amyl ketone1100467*Methyl anisate2071468*Methyl anthranilate2181469Methyl benzoate1600470*3-Methylbutan-2-ol1052471^Methyl iso-butyl ketone1000472^Methyl iso-butyl ketone1000473Methyl n-butyl ketone1000	459*	o-Methoxy acetophenone	1975
461 m-Methyl acetophenone 1749 462^ o-Methyl acetophenone 1679 463* p-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1172 466* Methyl iso-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anisate 2181 469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1070 472^ Methyl iso-butyl ketone 1000 473 Methyl n-butyl ketone 975	460*	p-Methoxy acetophenone	2115
462^ o-Methyl acetophenone 1679 463* p-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1172 466* Methyl iso-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anthranilate 2181 469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1070 472^ Methyl iso-butyl ketone 1000 473 Methyl n-butyrate 975	461	m–Methyl acetophenone	1749
463* p-Methyl acetophenone 1750 464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1172 466* Methyl iso-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anisate 2181 469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1000 472^ Methyl n-butyl ketone 1000	462^	o–Methyl acetophenone	1679
464 2-Methyl-5-acetylthiophene 1836 465* Methyl n-amyl ketone 1172 466* Methyl iso-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anthranilate 2181 469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1070 472^ Methyl n-butyl ketone 1000 473 Methyl n-butyrate 975	463*	p–Methyl acetophenone	1750
465* Methyl n-amyl ketone 1172 466* Methyl iso-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anisate 2181 469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1070 472^ Methyl iso-butyl ketone 1000 473 Methyl n-butyrate 975	464	2–Methyl–5–acetylthiophene	1836
466* Methyl iso-amyl ketone 1100 467* Methyl anisate 2071 468* Methyl anthranilate 2181 469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1070 472^ Methyl iso-butyl ketone 1000 473 Methyl n-butyrate 975	465*	Methyl n–amyl ketone	1172
467*Methyl anisate2071468*Methyl anthranilate2181469Methyl benzoate1600470*3-Methylbutan-2-ol1052471^Methyl n-butyl ketone1070472^Methyl iso-butyl ketone1000473Methyl n-butyrate975	466*	Methyl iso-amyl ketone	1100
468*Methyl anthranilate2181469Methyl benzoate1600470*3-Methylbutan-2-ol1052471^Methyl n-butyl ketone1070472^Methyl iso-butyl ketone1000473Methyl n-butyrate975	467*	Methyl anisate	2071
469 Methyl benzoate 1600 470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1070 472^ Methyl iso-butyl ketone 1000 473 Methyl n-butyrate 975	468*	Methyl anthranilate	2181
470* 3-Methylbutan-2-ol 1052 471^ Methyl n-butyl ketone 1070 472^ Methyl iso-butyl ketone 1000 473 Methyl n-butyrate 975	469	Methyl benzoate	1600
471^ Methyl n-butyl ketone1070472^ Methyl iso-butyl ketone1000473 Methyl n-butyrate975	470*	3–Methylbutan–2–ol	1052
472^Methyl iso-butyl ketone1000473Methyl n-butyrate975	471^	Methyl n-butyl ketone	1070
473 Methyl n-butyrate 975	472^	Methyl iso-butyl ketone	1000
	473	Methyl n-butyrate	975
474* Methyl iso-butyrate 913	474*	Methyl iso-butyrate	913
475 [^] Methyl cinnamate 2051	475^	Methyl cinnamate	2051
476* Methyl crotonate 1100	476*	Methyl crotonate	1100
477 [^] Methyl n–decanoate 1581	477^	Methyl n–decanoate	1581

 478[^] Methyl n–dodecanoate 479 2–Methyl–5–ethylfuran 480[*] 2–Methyl–3–ethyl pyrazine 481 Methyl iso–eugenol 	1785 1024 1381 2085	
 479 2–Methyl–5–ethylfuran 480* 2–Methyl–3–ethyl pyrazine 481 Methyl iso–eugenol 	1024 1381 2085	
480* 2–Methyl–3–ethyl pyrazine481 Methyl iso–eugenol	1381 2085	
481 Methyl iso-eugenol	2085	
482 [^] 2–Methylfuran	866	
483 [^] 5–Methyl furfural	1563	
484 Methyl furoate	1561	
485 [^] Methyl n–heptanoate	1276	
486* 6–Methyl hept–5–en–2–one	1335	
487 Methyl n-heptyl ketone	1377	
488 [^] Methyl n-hexanoate	1177	
489 Methyl n-hexyl ketone	1275	
490 Methyl n-hexyl ketone-1-phenyl-1,2-ethanediol ketal	2236	
491^ alpha–n–Methyl ionone	1930	
492 beta-n-Methyl ionone	1981	
493 alpha-iso-Methyl ionone	1836	
494 [^] beta-iso-Methyl ionone	1897	
495 Methyl levulinate	1534	
496 [^] Methyl n–methyl anthranilate	2042	
497 Methyl 2–methyl butyrate	1000	
498 beta-Methyl naphthyl ketone	2471	
499* Methyl n–nonanoate	1479	
500 Methyl n–nonyl ketone	1585	
501* Methyl n–octanoate	1378	
502 [^] Methyl n–octyl ketone	1480	
503 [^] Methyl phenylactetate	1747	
504 [^] Methyl phenyl carbinol	1765	
505 [^] 2–Methyl–1–propanol	1054	
506 [^] 2–Methyl n–propan–2–ol	871	
507 [^] 2–Methyl–5–propionylthiophene	1900	
508* Methyl n–propyl ketone	969	
509* beta–Methyl–p–iso–propyl phenyl propionaldehyde (cyclamen aldehyde)	1954	
510 2–Methyl–3–iso–propyl pyrazine	1387	
511 [^] 2–Methyl pyrazine	1251	
512* Methyl salicylate (wintergreen)	1754	
513 [^] Methyl n-tetradecanoate	1990	
514* 4–Methylthiazole	1263	
515 [^] 4–Methyl–5–thiazole ethanol	2216	
516 Methyl p–toluate	1725	
517* 2–Methyl undecanal	1609	
518	Methyl 10-undecenoate	1733
------	---------------------------	--------
519	Methyl n–undecyl ketone	1792
520^	Methyl n-valerate	1076
521*	Methyl iso-valerate	1008
522*	Muscone	2281
523	Musk xylol	2475
524^	(S)–Myrac aldehyde	1959
525*	(R)–Myrac aldehyde	1978
526*	Myrcene	1156
527	Nerol	1757
528	Nerolidol	1980.5
529*	Neryl acetate	1699
530*	Neryl n–butyrate	1838
531*	Neryl iso-butyrate	1764
532	Neryl n–propionate	1771
533^	n–Nonadecane	1900
534	gamma–Nonalactone	1991
535^	delta-Nonalactone	2038
536	n–Nonanal	1382
537	n–Nonanal diethyl acetal	1514
538	n–Nonanal dimethyl acetal	1465
539*	n–Nonane	900
540*	n–Nonanol	1624
541	n–Nonan–2–ol	1484
542*	1–Nonen–3–ol	1520
543	Nopyl acetate	1777
544	n–Octadecane	1800
545*	gamma–Octalactone	1883
546	delta-Octalactone	1929
547*	n–Octanal	1278
548*	n–Octanal diethyl acetal	1417
549^	n–Octanal dimethyl acetal	1366
550^	n–Octane	800
551*	n–Octanol	1519
552^	n-Octan-2-ol	1385
553^	2–Octanoylfuran	2062
554^	2–Octanoylthiphene	2313
555	1–Octen–3–ol	1420
556*	1-Octen-3-yl-n-propionate	1432
557^	n–Octvl–acetate	1459

558	n–Octyl n–butyrate	1597
559^	n-Octyl iso-butyrate	1529
560	2–n–Octylfuran	1530
561*	n–Octyl 2–methyl butyrate	1615
562*	2–n–Octylthiphene	1780
563	Paraldehyde	1069
564	n–Pentadecane	1500
565	n–Pentane	500
566*	2,3–Pentanedione	1044
567^	2–Pentanoylthiophene	1993
568*	1-Penten-3-ol	1130
569	2–n–Pentylfuran	1229
570	2-n-Pentyl-3-methyl-2-cyclopenten-1-one	1892
571	2-n-Pentylthiophene	1462
572	beta–Phenoxyethyl iso–butyrate	2100
573	Phenol	1932
574*	Phenylacetaldehyde dimethyl acetal	1665
575^	Phenyl iso-butyl methyl-carbinyl acetate	1943
576*	Phenylethyl acetate	1785
577*	Phenylethyl alcohol	1859
578^	Phenylethyl iso-butyrate	1855
579^	Phenylethyl formate	1752
580^	Phenylethyl n-heptanoate	2233
581^	Phenylethyl n-hexanoate	2134
582^	Phenylethyl 2-methyl butyrate	1945
583	Phenylethyl n-nonanoate	2439
584	Phenylethyl n-octanoate	2337
585*	Phenylethyl pivalate	1832
586^	Phenylethyl n-propionate	1855
587^	Phenylethyl tiglate	2154
588	Phenylethyl n-valerate	2034
589	Phenylethyl iso-valerate	1955
590*	Phenylpropyl acetate	1926
591	3–Phenylpropyl alcohol	1993
592^	Phenylpropyl n-butyrate	2083
593*	Phenylpropyl iso-butyrate	1996
594^	Phenylpropyl n-propionate	1994
595^	alpha–Pinene	1039
596^	n–Propanol	1002
597*	2-Propanol	884

598	Propionaldehyde-1-phenyl-1,2-ethenodiol acetal	1875.5
599	2–Propionylfuran	1563
600*	2–Propionyl 5–methylfuran	1672
601*	2–Propionylthiophene	1821
602	n–Propyl acetate	962
603^	iso-Propyl acetate	883
604^	iso-Propyl benzoate	1639
605*	n–Propyl n–butyrate	1110
606^	n–Propyl iso–butyrate	1044
607^	iso-Propyl n-butyrate	1030
608*	iso-Propyl cinnamate	2097
609^	2-n-Propyl-4,5-dimethyloxazole	1310
610*	2-iso-Propyl-4,5-dimethyloxazole	1249
611*	2-n-Propyl-4,5-dimethylthiazole	1500
612*	2-iso-Propyl-4,5-dimethyloxazole	1439
613^	2-n-Propyl-4-ethyl-5-methyloxazole	1345
614	2-iso-Propyl-4-ethyl-5-methyloxazole	1279
615	n–Propyl formate	907
616	iso–Propyl formate	838
617^	2–n–Propylfuran	1083
618^	n–Propyl n–heptanoate	1398
619	iso-Propyl n-heptanoate	1317
620*	n–Propyl n–hexanoate	1298
621*	iso-Propyl n-hexanoate	1223
622	n–Propyl levulinate	1663
623^	iso-Propyl levulinate	1575
624*	n–Propyl n–methyl anthranilate	2166
625^	iso-Propyl n-methyl anthranilate	2058
626	n–Propyl 2–methyl butyrate	1134
627^	2-n-Propyl-4-methylthiazole	1400
628	n–Propyl n–octanoate	1498
629^	iso-propyl n-octanoate	1419
630*	iso-Propyl pivalate	956
631	n–Propyl n–propionate	1010
632	iso-Propyl n-propionate	950
633*	n–Propyl salicylate	1878
634*	iso–Propyl n–tetradacanoate	2017
635	2–n–Propylthiazole	1380
636	2–n–Propylthiophene	1259
637*	iso–Propyl tiglate	1238

638^	n-Propyl 10-undecenoate	1860
639	n–Propyl n–valerate	1200
640	n–Propyl iso–valerate	1144
641	iso-Propyl iso-valerate	1034
642	Pyrazine	1194
643	cis–Rose oxide	1354
644^	trans-Rose oxide	1370
645	Rosephenone trichloro methyl phenyl-carbinyl acetate	2172
646	Sabinete	1130
647^	Salicylic aldehyde	1668
648^	Styrallyl acetate	1673
649	alpha–Terpineol	1661
650	Terpinyl acetate	1687
651	Terpinyl n–butyrate	1828
652*	Terpinyl iso-butyrate	1748
653^	Terpinyl n-propionate	1747
654*	Terpinyl iso-valerate	1858
655^	n-Tetradecane	1400
656^	Tetrahydro geraniol	1626
657*	Tetrahydro geranyl acetate	1562
658^	Tetrahydro linalool	1397
659*	Tetrahydro myrcenol	1414
660*	2,3,5,6–Tetramethyl pyrazine	1458
661*	Thiophene	1035
662	Thymol	2100
663	Tonalid	2373
664	n-Tridecane	1300
665	Triethyl citrate	2386
666*	3,5,5–Trimethyl n–hexanal	1200
667	3,5,5-trimethyl n-hexanol	1480
668*	2,4,5–Trimethyloxazole	1179
669	2,3,5–Trimethyl pyrazine	1387
670^	Trimethylthiazole	1367
671*	delta–Undecalactone	2251
672	n–Undecanal	1589
673*	n–Undecane	1100
674^	n–Undecanol	1822
675^	6–Undecanol	1640
676	iso-Valeraldehyde-propyleneglycol acetal	1174
677^	Vanillin	2449

678 Methyl ether 524 679* Acetaldehyde 680 680 Propionaldehyde 784 681 Furan 786 682 tert-Butanol 330 683 Propyl methyl ether 644 684* Methyl acetate 813 685 Vinyl acetate 878 686* Vinyl acetate 878 687 tert-Butyl methyl ether 688 688* 2.3 Butanedione 963 689* 2-Butanone 908 690* Aliyl ethyl ether 767 691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 898 694* Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isobulyl metropionate 960 700* Isobulyl metropionate 960 701* Isobulyl metropionate 960 702* Isobulyl metropionate 960			
679* Acetaldehyde 690 680 Propionaldehyde 784 681 Furan 786 682 tert-Butanol 830 683 Propyl methyl ether 644 684* Methyl acetate 878 685 Methyl acetate 878 686* Vinyl acetate 878 687 tert-Butyl methyl ether 688 688* 2.3 Butanedione 903 680* Allyl ethyl ether 767 691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694* Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butene_1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893	678	Methyl ether	524
680 Propionaldehyde 784 681 Furan 786 682 tert-Butanol 830 683 Propyl methyl ether 644 684* Methyl acetate 813 685 Vinyl acetate 878 686* Vinyl acetate 878 687 tert-Butyl methyl ether 688 688* 2,3 Butanedione 963 689* 2-Butanone 908 690* Allyl ethyl ether 767 691* Sopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694* Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 337 698* 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methylterahydrofuran 901 702 tert-Butyl acetate 893 703* Propyl ether 765 704 Cyclohexane 765 705* Methyl pyruvate 1217 <	679*	Acetaldehyde	690
681 Furan 786 682 tert-Butanol 630 682 tert-Butanol 631 683 Propyl methyl ether 644 684* Methyl acetate 813 685 Methyl ingl ketone 995 686* Vinyl acetate 878 687 tert-Butyl methyl ether 688 688* 2,3 Butanedione 908 680* Allyl ethyl ether 767 691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butane-1-ol 1193 696* 3-Buten-1-ol 1193 697* Isovaleraldehyde 937 698* 2-Butene 901 700* Isovalerata 893 700* Isovalerata 933 703* Propyl ether 765 704 Cyclohexane 765 705* </td <td>680</td> <td>Propionaldehyde</td> <td>784</td>	680	Propionaldehyde	784
682 tert-Butanol 830 683 Propyl methyl ether 644 684* Methyl acetate 813 685 Methyl inpl ketone 995 686* Vinyl acetate 878 687 tert-Butyl methyl ether 683 687 tert-Butyl methyl ether 683 688* 2,3 Butanedione 903 690* Allyl ethyl ether 767 691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694* Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten=1-ol 1137 697* Isobutyl mercaptan 889 700* Isobutyl mercaptan 889 701* 2-Methyl ether 766 704 Cyclohexane 765 705* Methyl pryuvate 1217 706 n-Butyl ether 786 707 Diethyl sulfide 904 708 Peropyl ether 76	681	Furan	786
683 Propyl methyl ether 644 684* Methyl acetate 813 685 Methyl vinyl ketone 995 686* Vinyl acetate 878 687 tert-Butyl methyl ether 688 688* 2,3 Butanedione 963 689* 2-Butanone 908 690* Allyl ethyl ether 677 691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694* Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isobutyl mercaptan 889 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703* Propyl ether 766 704 Cyclohexane 765 705* Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide	682	tert-Butanol	830
684* Methyl acetate 813 685 Methyl vinyl ketone 995 666* Vinyl acetate 878 687 tert-Butyl methyl ether 688 688* 2,3 Butanedione 963 689^ 2-Butanone 908 690* Allyl ethyl ether 676 691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694^ Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703* Propyl ether 765 705* Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide	683	Propyl methyl ether	644
685 Methyl vinyl ketone 995 686* Vinyl acetate 878 687 tert-Butyl methyl ether 688 688* 2.3 Butanedione 903 689* 2-Butanone 908 690* Allyl ethyl ether 767 691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694* Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703* Propyl ether 765 705* Methyl pryruate 1217 706 n-Butyl ethyl ether 788 707	684*	Methyl acetate	813
686* Vinyl acetate 878 687 tert-Butyl methyl ether 688 688* 2,3 Butanedione 963 689^ 2-Butanone 908 690* Allyl ethyl ether 767 691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694* Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703^<	685	Methyl vinyl ketone	995
687 tert-Butyl methyl ether 688 688* 2,3 Butanedione 963 689^ 2-Butanone 908 690* Allyl ethyl ether 767 691 lsopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694^ Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703^<	686*	Vinyl acetate	878
688* 2,3 Butanedione 963 689^ 2-Butanone 908 690* Allyl ethyl ether 767 691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694^ Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703* Propyl ether 765 704 Cyclohexane 765 705* Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valer	687	tert-Butyl methyl ether	688
689 ^A 2-Butanone 908 690* Allyl ethyl ether 767 691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694 ^A Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698 ^A 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703 ^A Propyl ether 766 704 Cyclohexane 765 705 ^A Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709 ^A Valeraldehyde 1002 710	688*	2,3 Butanedione	963
690* Allyl ethyl ether 649 691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694^ Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703^ Propyl ether 766 704 Cyclohexane 765 705^ Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008	689^	2–Butanone	908
691 Isopropyl ether 649 692 sec-Butanol 975 693* Methyl propionate 895 694* Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703* Propyl ether 766 704 Cyclohexane 765 705* Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacryl	690*	Allyl ethyl ether	767
692 sec–Butanol 975 693* Methyl propionate 895 694* Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3–Buten–1–ol 1137 697* Isovaleraldehyde 937 698* 2–Butene–1–ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2–Methyltetrahydrofuran 901 702 tert–Butyl acetate 893 703* Propyl ether 766 704 Cyclohexane 765 705* Methyl pyruvate 1217 706 n–Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4–Dihydr	691	Isopropyl ether	649
693* Methyl propionate 895 694* Butyl methyl ether 755 695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703^ Propyl ether 766 704 Cyclohexane 765 705^ Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4-Dihydropyran 982 714* 1,1-Diethoxyethane 880 715 N-Methylpyrrole 11	692	sec–Butanol	975
694 ^A Butyl methyl ether 755 695 Tetrahydrofuran 898 696 [*] 3-Buten-1-ol 1137 697 [*] Isovaleraldehyde 937 698 ^A 2-Butene-1-ol 1193 699 [*] Vinyl propionate 960 700 [*] Isobutyl mercaptan 889 701 [*] 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703 ^A Propyl ether 766 704 Cyclohexane 765 705 ^A Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709 [*] Valeraldehyde 1002 710 Pinacolone 960 711 [*] Pyridine 1180 712 Methyl methacrylate 1008 713 [*] 3,4-Dihydropyran 982 714 [*] 1,1-Diethoxyethane 880 715 N-Methylpyrrole 1139 716 Thiazole<	693*	Methyl propionate	895
695 Tetrahydrofuran 898 696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703* Propyl ether 766 704 Cyclohexane 765 705* Methyl pyruvate 1217 706 n-Butyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4-Dihydropyran 982 714* 1,1-Diethoxyethane 880 715 N-Methylpyrrole 1139 716 Thiazole	694^	Butyl methyl ether	755
696* 3-Buten-1-ol 1137 697* Isovaleraldehyde 937 698* 2-Butene-1-ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703* Propyl ether 766 704 Cyclohexane 765 705* Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4-Dihydropyran 982 714* 1,1-Diethoxyethane 880 715 N-Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	695	Tetrahydrofuran	898
697* Isovaleraldehyde 937 698^ 2–Butene–1–ol 1193 699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2–Methyltetrahydrofuran 901 702 tert–Butyl acetate 893 703^ Propyl ether 766 704 Cyclohexane 765 705^ Methyl pyruvate 1217 706 n–Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4–Dihydropyran 982 714* 1,1–Diethoxyethane 880 715 N–Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	696*	3–Buten–1–ol	1137
698 ^A 2–Butene–1–ol 1193 699 [*] Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2–Methyltetrahydrofuran 901 702 tert–Butyl acetate 893 703 ^A Propyl ether 766 704 Cyclohexane 765 705 ^A Methyl pyruvate 1217 706 n–Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709 [*] Valeraldehyde 1002 710 Pinacolone 960 711 [*] Pyridine 1180 712 Methyl methacrylate 1008 713 [*] 3,4–Dihydropyran 982 714 [*] 1,1–Diethoxyethane 880 715 N–Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	697*	Isovaleraldehyde	937
699* Vinyl propionate 960 700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703^ Propyl ether 766 704 Cyclohexane 765 705^ Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4-Dihydropyran 982 714* 1,1-Diethoxyethane 880 715 N-Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	698^	2-Butene-1-ol	1193
700* Isobutyl mercaptan 889 701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703^ Propyl ether 766 704 Cyclohexane 765 705^ Methyl pyruvate 1217 706 n-Butyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4-Dihydropyran 982 714* 1,1-Diethoxyethane 880 715 N-Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	699*	Vinyl propionate	960
701* 2-Methyltetrahydrofuran 901 702 tert-Butyl acetate 893 703^ Propyl ether 766 704 Cyclohexane 765 705^ Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4-Dihydropyran 982 714* 1,1-Diethoxyethane 880 715 N-Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	700*	Isobutyl mercaptan	889
702 tert-Butyl acetate 893 703^ Propyl ether 766 704 Cyclohexane 765 705^ Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4Dihydropyran 982 714* 1,1-Diethoxyethane 880 715 N-Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	701*	2–Methyltetrahydrofuran	901
703 [^] Propyl ether 766 704 Cyclohexane 765 705 [^] Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709 [*] Valeraldehyde 1002 710 Pinacolone 960 711 [*] Pyridine 1180 712 Methyl methacrylate 1008 713 [*] 3,4-Dihydropyran 982 714 [*] 1,1-Diethoxyethane 880 715 N-Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	702	tert-Butyl acetate	893
704 Cyclohexane 765 705^A Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4-Dihydropyran 982 714* 1,1-Diethoxyethane 880 715 N-Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	703^	Propyl ether	766
705^ Methyl pyruvate 1217 706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4-Dihydropyran 982 714* 1,1-Diethoxyethane 880 715 N-Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	704	Cyclohexane	765
706 n-Butyl ethyl ether 788 707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4-Dihydropyran 982 714* 1,1-Diethoxyethane 880 715 N-Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	705^	Methyl pyruvate	1217
707 Diethyl sulfide 904 708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4–Dihydropyran 982 714* 1,1–Diethoxyethane 880 715 N–Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	706	n–Butyl ethyl ether	788
708 Tetrahydropyran 930 709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4–Dihydropyran 982 714* 1,1–Diethoxyethane 880 715 N–Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	707	Diethyl sulfide	904
709* Valeraldehyde 1002 710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4–Dihydropyran 982 714* 1,1–Diethoxyethane 880 715 N–Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	708	Tetrahydropyran	930
710 Pinacolone 960 711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4–Dihydropyran 982 714* 1,1–Diethoxyethane 880 715 N–Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	709*	Valeraldehyde	1002
711* Pyridine 1180 712 Methyl methacrylate 1008 713* 3,4–Dihydropyran 982 714* 1,1–Diethoxyethane 880 715 N–Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	710	Pinacolone	960
712 Methyl methacrylate 1008 713* 3,4–Dihydropyran 982 714* 1,1–Diethoxyethane 880 715 N–Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	711*	Pyridine	1180
713* 3,4–Dihydropyran 982 714* 1,1–Diethoxyethane 880 715 N–Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	712	Methyl methacrylate	1008
714* 1,1–Diethoxyethane 880 715 N–Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	713*	3,4–Dihydropyran	982
715 N-Methylpyrrole 1139 716 Thiazole 1246 717 Methyl disulfide 1081	714*	1,1–Diethoxyethane	880
716 Thiazole 1246 717 Methyl disulfide 1081	715	N–Methylpyrrole	1139
717 Methyl disulfide 1081	716	Thiazole	1246
	717	Methyl disulfide	1081

718	Vinyl butyrate	1045
719^	sec–Butyl acetate	982
720^	Ethyl isobutyrate	956
721^	Methyl isobutyl carbinol	1142
722^	Piperidine	1042
723	Propylene glycol	1561
724*	3–Methyl–2–pentanol	1054
725	3–Methyl–3–pentanol	1080
726*	4–Methyl–2–pentanol	1124
727^	2–Methylthiophene	1123
728	2–Methyl–3–pentanol	1121
729	2–Methylthiazole	1256
730^	Isobutyl acrylate	1107
731*	Ethyl pyruvate	1253
732*	1,3–Butylene glycol acetal	1072
733*	2–Methyl–2–pentanol	1160
734*	3–Methyl–2–pentanol	1160
735	1–Octene	830
736	Tetrahydrothiophene	1130
737^	Cyclopentanol	1283
738^	Methyl mercaptoacetate	1346
739	Cyclopentanone	1238
740*	Elemol	1318
741^	3-Buten-2-ol	1022
742*	2–Octene	880
743*	n–Butyl methyl sulfide	1043
744*	Allyl isobutyrate	1090
745^	Methyl hexyl ether	960
746	2–Methyl–1–pentanol	1268
747*	4–Methyl–1–pentanol	1282
748	Dimethyl sulfoxide	1554
749*	Methyl tiglate	1188
750^	3–Methyl–1–pentanol	1297
751*	Diallyl sulfide	1150
752	Allyl isothiocyanate	1352
753*	p–Xylene	1140
754	n–Propyl pivalate	1028
755^	m–Xylene	1147
756	2,5–Dimethylthiophene	1161
757*	3–Ethyl–3–pentanol	1183

758*	Cyclohexenyl cyclohexanone	2128
759^	Tetrahydrofurfuryl alcohol	1494
760	o–Xylene	1191
761*	gamma–Butyrolactone	1632
762	Butyl acrylate	1189
763^	n–Butyl mercaptan	944
764	n–Butyl ethyl sulfide	1090
765*	2,6–Dimethylpyrazine	1325
766^	Prenyl acetate	1243
767*	Ethyl disulfide	1232
768^	n–Hexyl mercaptan	1145
769	Ethyl angelate	1228
770*	gamma–Valerolactone	1617
771^	alpha–Thujene	1036
772*	1,3–Butanediol	1692
773*	2–Ethoxythiazole	1380
774*	Dimethyl trisulfide	1400
775	Camphene	1083
776^	2–Methyl–5–ethylthiophene	1245
777^	2–Ethylbutyl acetate	1205
778	2–Ethylhexanal	1216
779	n–Butyl pivalate	1128
780^	1,1–Dimethoxy–n–hexane	1156
781^	Allyl n–valerate	1256
782*	Amyl vinyl carbinol	1426
783	Diisobutyl sulfide	1149
784^	Methyl benzyl ether	1391
785*	trans-Pinane	1062
786	beta-Pinene	1124
787*	cis–Dihydroocimene	1088
788	2,6–Dimethylcyclohexanone	1322
789^	cis–Pinane	1075
790*	tert-Butyl benzene	1247
791*	2–Octanone	1304
792	Diethyl malate	1638
793^	trans-Dihydroocimene	1110
794*	n–Butyl lactate	1508
795	Methyl sorbate	1488
796	Diisobutyl acetal	1072
797*	Isopentyl ether	1067
794* 795 796 797*	n–Butyl lactate Methyl sorbate Diisobutyl acetal Isopentyl ether	1508 1488 1072 1067

798	Angelica lactone	1430
799	o-Methyl anisole	1432
800	p–Methyl anisole	1432
801^	2-Isopropyl-4-methylthiazole	1339
802*	Dimethyl succinate	1558
803	alpha-Phellandrene	1177
804^	Ethyl 2-methylpentanoate	1302
805*	Pyrrol–2–carboxaldehyde	1976
806	1,4–Cineole	1185
807*	n–Heptyl mercaptan	1256
808*	4–Methyl–5–vinylthiazole	1500
809	Isopropyl disulfide	1264
810	Methyl octyl ether	1152
811	p–Cimene	1272
812^	2-Isopropyl-4-ethyl-5-methyloxazole	1279
813^	Carvomenthene	1150
814*	Phenylacetaldehyde	1646
815	cis–Ocimene	1228
816^	beta–Phellandrene	1216
817*	1,8–Cineole	1228
818	Isobutyl angelate	1289
819*	2–Ethyl–1–hexyl vinyl ether	1165
820^	trans-Ocimene	1250
821	Isobutyl n-valerate	1252
822^	trans-2-Octenal	1427
823*	1,4-Butanediol	1861
824^	Methyl hexyl acetaldehyde	1306
825*	2–Acetylpyrrole	1935
826*	2,5–Dimethyl–4–ethylthiazole	1398
827	p–Cresol	2003
828*	m-Tolualdehyde	1632
829	o-Tolualdehyde	1632
830	n–Methyl–2–acetylpyrrole	1653
831^	Tetrahydrofurfuryl acetate	1585
832^	gamma-Terpinene	1251
833*	n–Pentyl ether	1165
834	p–Tolualdehyde	1652
835	m–Diethylbenzene	1339
836^	Guaiacol	1840
837*	Di–n–butyl sulfide	1270

838^	2–Methyl–3–n–propylpyrazine	1462
839	5–Nonanone	1360
840*	Ethyl sorbate	1505
841*	p–Diethylbenzene	1353
842^	alpha-p-dimethylstyrene	1278
843*	Fenchone	1410
844*	trans-3-Heptenyl acetate	1388
845^	cis-3-Heptenyl acetate	1400
846*	2,6–Dimethyl phenol	1883
847^	o–Diethylbenzene	1372
848*	2-Nonanone	1420
849*	Amyl vinyl carbinyl acetate	1365
850^	cis–3–Hexenyl ethyl acetal	1298
851*	Propyl disulfide	1358
852	2–Cyclohexyl ethanol	1668
853^	Myrcenol	1585
854	2-Buten-1,4-diol	1983
855*	Butyl acetoacetate	1798
856*	Maltol	2030
857^	alpha–Fenchyl alcohol	1574
858	Norbornyl acetate	1476
859*	p-tert-Amylcyclohexanone	1800
860	2–Ethyl phenol	2028
861	Methyl 2-hydroxyisobutyrate	2054
862*	Methyl nicotinate	1779
863	Octyl formate	1426
864^	2-methyl-1-octanol	1573
865^	Dihydrolinalool	1512
866*	p–Methyl benzyl alcohol	1956
867	Diethyl trisulfide	1535
868	Propyl furoate	1700
869	Cyclooctanol	1700
870*	Sabinol	1683
871	Dihydrocinnamic aldehyde	1783
872^	1,3–Dimethoxy benzene	1740
873^	Menthone	1478
874^	p–Hydroxyacetophenone	1790
875	Isopulegol	1573
876^	3–Ethyl phenol	2150
877	trans-2-Nonenal	1540

878*	Tetrahydrofurfuryl propionate	1632
879^	Lavandulol	1662
880*	Isooctyl acetate	1419
881*	Isobutyl 2-methylpentanoate	1417
882	Isoborneol	1660
883^	trans-2-nonenol	1691
884^	Diethyl fumarate	1632
885*	Borneol	1698
886*	Methyl 2-methylbenzoate	1709
887^	cis-3-Heptenyl propionate	1472
888	Amyl butyl carbinol	1550
889^	Terpinene-4-ol	1628
890*	Isobutyl 2-hexenoate	1461
891	2–Pentanoylfuran	1747
892	Methyl chavicol	1670
893	Dihydrocarvone	1600
894^	Methyl 3-methylbenzoate	1744
895*	Verbenone	1730
896^	Methyl 4-methylbenzoate	1755
897*	p–isopropylphenol	2178
898*	Dihydromyrcenyl acetate	1431
899	Isobutyl disulfide	1435
900^	Fenchyl acetate	1473
901^	Benzyl ethyl carbinol	1882
902	2–Ethyl–1–hexyl acrylate	1494
903^	2,4–Dimethyl benzyl alcohol	2032
904	Neral	1680
905	Isobornyl formate	1596
906*	Pulegone	1662
907^	2,4–Dimethylacetophenone	1809
908*	Citronellyl vinyl ether	1445
909*	n–Butyl benzyl ether	1613
910*	Chavicol	2300
911*	Bornyl formate	1610
912^	Myrcenyl acetate	1574
913^	Piperitone	1739
914^	Geranial	1730
915^	Methyl octyl acetaldehyde	1521
916*	n–Propyl benzoate	1745
917^	cis-3-Heptenyl butyrate	1545

918^	2-decen-1-ol	1794
919	trans-2-Decenol	1792
920	Diisoamyl ketone	1528
921*	Methyl dihydrocinnamate	1842
922*	Isopulegyl acetate	1585
923	Carvone oxide	1805
924*	Sabinyl acetate	1651
925^	4–Ethylguaiacol	2011
926^	Neryl formate	1663
927*	Safrole	1876
928^	10–Undecen–1–al	1642
929^	Octyl propionate	1536
930^	Dihydrosafrole	1822
931*	n–Nonanoic acid	2110
932*	n–Nonyl acetate	1560
933^	Isopropyl salicylate	1773
934^	Butyl disulfide	1580
935	2–Nonyn–1–al dimethyl acetal	1666
936	n–Propyl phenylacetate	1848
937^	Anisyl formate	1710
938^	alpha–Methylcinnamic aldehyde	1992
939*	Cyclohexyl n–valerate	1595
940*	n–Hexyltiglate	1621
941^	Methyl 3-hydroxybutyrate	1454
942	Methyl undecyl ether	1453
943^	Dihydrocarvyl acetate	1670
944^	Myrcenyl propionate	1625
945	Cinnamyl formate	2094
946^	p–lsopropylacetophenone	1912
947^	Terpinyl formate	1666
948	Methyllavender ketone	2067
949*	alpha–Methylcinnamyl alcohol	2252
950*	Hydroxycitronellol	2143
951^	gamma–lonone	1882
952^	2,4–Dimethyl benzylacetate	1916
953*	Undecenol	1889
954	Methyl nonyl acetaldehyde	1621
955*	2-Methyl-5-isopropylacetophenone	1876
956*	Dihydrocoumarin	2286
957	Isosafrole	2029

958^	beta–Methylcinnamyl alcohol	2283
959	4–Methyl–5–thiazoleethanol acetate	2077
960*	Diphenyl	1981
961^	n–Pentadecanol	2252
962	Acetaldehyde citronellyl methyl acetal	1596
963*	cis–3–Decenyl acetate	1701
964	Acetylcymene	1928
965*	Isoamyl phenylethyl ether	1741
966*	p–Cresyl isovalerate	1898
967*	Anisyl acetate	2199
968*	alpha–Copaene	1519
969*	Dihydrojasmone	1892
970*	Cuminyl acetate	1952
971*	beta-Bourbonene	1546
972^	m-Aminoacetophenone	2181
973^	Dimethyl suberate	1985
974	Isopropyl n–decanoate	1615
975*	Dihydrocuminyl acetate	1900
976	Linalyl n-butyrate	1680
977^	2-Methyl-1-undecanol	1875
978*	Phenylethyl butyrate	1930
979*	Dimethyl phenyl ethyl carbinyl acetate	1908
980^	alpha–Cedrene	1600
981	Carvyl propionate	1833
982	beta–Copaene	1626
983	beta-Cedrene	1633
984^	Phenoxyethyl propionate	2126
985^	2–Decenal	1842
986^	Linalyl 2-methylbutyrate	1695
987*	Thujopsene	1660
988^	n–Amyl benzoate	1940
989*	Di–n–heptyl ether	1550
990*	alpha-Humulene	1682
991^	Citronellyl isobutyrate	1705
992	Bornyl butyrate	1760
993*	Dihydropseudo ionone	1885
994	p–Methoxybenzylacetone	2236
995	Alloaromadendrene	1662
996^	p–Cresyl isotiglate	2011
997^	alpha–Methylcinnamyl acetate	2158

998*	Heliotropyl acetate	2325
999^	Phenoxyethyl isobutyrate	2106
1000*	n–Undecyl acetate	1775
1001^	Valencene	1751
1002	3–Methylcoumarin	2424
1003	2–Cyclohexylcyclohexanone	1975
1004	alpha-Muurolene	1730
1005^	o–Methoxy cinnamic aldehyde	2430
1006	Methyl isovalerate	1734
1007*	Bornyl isovalerate	1774
1008^	gamma–Cadinene	1766
1009^	Calamenene	1842
1010*	delta-Cadinene	1761
1011*	alpha–Nerolidol	1961
1012^	Citronellyl isocrotonate	1833
1013^	3,4-Dimethoxyacetophenone	2393
1014	Di-n-butyl succinate	2000
1015^	gamma–Undecalactone	2210
1016	Tangerinal	1874.5
1017	6–Methylcoumarin	2630
1018*	cis-3-Hexenyl benzoate	2122
1019^	7–Methylcoumarin	2620
1020*	beta–Nerolidol	2000
1021^	Citronellyl crotonate	1929
1022*	Di–n–amyl fumarate	2006
1023^	n–Hexyl benzoate	2066
1024	Triacetin	2029
1025^	n–Hexyl octanoate	1805
1026^	Anisyl n-butyrate	2274
1027^	Geranyl 2-methylbutyrate	1886
1028	Neryl isovalerate	1864
1029*	alpha–Cedrene epoxide	1961
1030*	Phenylpropyl isovalerate	2100
1031	n–Hexyl phenylacetate	2148
1032^	cis–3–hexenyl phenylacetate	2220
1033^	Methyl n–tridecanoate	1895
1034^	Isobutyl 10–undecenoate	1900
1035*	Dibenzyl ether	2323
1036^	Geranyl tiglate	1985
1037^	Isoamyl anthranilate	2447

1038 E	Di–n–butyl adipate	2087
1039 F	Furfuryl disulfide	2600
1040 N	lethyl zingerone	2640
1041^ F	Patchouli alcohol	2156
1042^ N	/lethyl N-propylanthranilate	2575
1043* 0	Guaiacyl n–caproate	2296
1044^ Is	soamyl pyruvate	1910
1045 C	Cyclohexadecanone	2392
1046 A	Acetyl cedrene	2213
1047 n	-heptyl salicylate	2332
1048 N	Veryl n–Heptanoate	2120
1049^ F	Pentalide	2255
1050* 0	Geranyl n-heptanoate	2157
1051 N	Verolidyl ethanol	2462
1052* C	Dctyl salicylate	2435
1053^ N	Nethyl hexadecanoate	2204
1054^ F	Phenylethyl n-decanoate	2540
1055* N	lethyl octadecanoate	2418
1056 E	Ethyl oleate	2489
1057^ b	eta-Terpinenol	1616
1058* d	lelta–Terpinenol	1655
1059^ s	ec-butylcyclohexanone	1565
1060^ 4	-(2,4,6-Trimethyl-3-cyclohexen-1-yl)-3-buten-2-one	1886.5
1061 A	Allyl cinnamate	2156
1062* C	Cedryl acetate	1882
1063 1	,1–Dimethoxy–n–propane	880
1064^ n	–Pentan–2–ol	1091
1065 N	Nootketone	2250
1066* E	Dibutyl butyrolactone	2141
1067^ 2	2–Propionylpyrrol	1990
1068 C	Dctyl-n-valerate	1719
1069^ n	–Propyl n–decanoate	1697
1070 ls	soamyl n–nonanoate	1748
1071* n	–Butyl n–nonanoate	1700
1072^ 1	,1–Dimethoxy–n–butane	969
1073 1	,1–Dimethoxy–n–pentane	1057
1074 2	2-n-Butylthiazole	1480
1075^ n	n–gamma–heptalactone	1860
1076 0	–Hentyl nivalate	1428
1070 1		

1078	n–Butyl n–tridecanoate	2118
1079	2,2–Dimethyl–n–pentanol	1405
1080^	Isopropyl n-valerate	1125
1081	Salicaldehyde	1705
1082	n–Butyl propyl sulfide	1173
1083^	Furfuryl n-propionate	1587
1084	n–Propyl tiglate	1320
1085*	2,4-Dimethyl-n-pentan-3-ol	1157
1086*	2–Ethyl–2–n–hexanal	1336
1087	1,1–Dimethoxy–n–heptane	1261
1088^	n-Decan-2-ol	1585
1089*	D–n–hexyl ether	1349
1090	n–Butyl angelate	1417
1091	n–Amyl tiglate	1519
1092*	Benzyl n-decanoate	2460
1093	n–Propyl anisate	2205
1094*	Anisyl n-propionate	2205
1095*	n–Propyl anthranilate	2320
1096^	Neryl n-valerate	1930
1097*	Furfuryl n-heptanoate	1950
1098^	Isopropyl n-nonanoate	1516
1099*	n–Heptyl valerate	1614
1100*	n–Amyl anthranilate	2510
1101^	Cinnamyl n-heptanoate	2545
1102^	trans-2-Hexenyl n-heptanoate	1755
1103	Citronellyl n-valerate	1880
1104^	n–hexyl nonanoate	1900
1105^	Linalyl n-heptanoate	1930
1106^	Terpinyl n–valerate	1928
1107*	n–Heptyl 2–methylbutyrate	1518
1108^	n–Amyl furfurylacrylate	2153
1109*	Geranyl n–valerate	1960
1110	n–Amyl anisate	2405
1111^	n–Butyl n–valerate	1305
1112^	Isopropyl n-undecanoate	1715
1113*	Methyl n–dodecyl ketone	1893
1114	Neryl n-hexanoate	2021
1115*	n–Heptyl phenylacetate	2265
1116	n–Undecanal diethyl acetal	1712
1117^	Methyl n–decyl ketone	1688

1118^	n-Hexyl n-heptanoate	1699
1119*	n–Amyl n–heptanoate	1600
1120^	n–Undecanal dimethyl acetal	1668
1121^	Isoamyl n–undecanoate	1948
1122*	n–Amyl 10–undecenoate	2053
1123	n-Butyl n-pentadecanoate	2330
1124^	n–Butyl n–tetradecanoate	2229
1125*	n–Propyl n–dodecanoate	1897
1126^	n–Propyl n–nonanoate	1598
1127	Furfuryl n–valerate	1752
1128^	n–Hexyl n–valerate	1498
1129*	alpha–n–Butyl cinnamic aldehyde	2160
1130*	n–Dodecanal diethyl acetal	1811
1131^	n–Butyl N–methylanthranilate	2266
1132	2–Nonanoylfuran	2163
1133*	2–Decanoylfuran	2264
1134	alpha–n–Heptylcinnamic aldehyde	2409
1135^	2-Ethyl-2-n-hexene-1-ol	1518
1136*	Benzyl n–propyl carbinol	1655
1137	Benzyl isopropyl carbinol	1913
1138	n–Propyl cinnamic aldehyde	2111
1139	cis-3-Hexenyl n-heptanoate	1743
1140^	trans-2-Hexenyl n-valerate	1560
1141	Cyclooctanyl acetate	1645
1142*	cis–3–Decenol	1765
1143*	p-cresyl ethylcarbonate	1919
1144^	2–Ethyl–1–hexyl propionate	1450
1145*	2-Methyl-2-phenylhexan-4-one	1938
1146^	4–Methyl–5–hydroxy phenyl acetate	1767
1147	Jasmal	1879
1148^	cis-3-Octenol	1563
1149	trans-3-Octenol	1541
1150*	cis–3–Decenyl butyrate	1866
1151	trans-2-Decenyl butyrate	1866
1152^	n–Hexyl angelate	1621
1153	n–Propyl n–undecanoate	1797
1154^	cis–3–Hexenyl n–nonanoate	1938
1155	trans-2-Hexenyl n-nonanoate	1953
1156^	cis–3–Hexenyl methyl acetal	1267
1157*	trans-2-Heptenyl butyrate	1568

1158*	trans-2-Heptenyl propionate	1497
1159*	Citronellyl ethyl acetal	1626
1160^	o–Toluyl thiol	1631
1161^	Isoamyl anisate	2333
1162^	n–Amyl pivalate	1228
1163^	Isolongiforanone	2092
1164*	Di–n–Propyl fumarate	1806
1165*	N–Methyl–2–pyrrolaldehyde	1616
1166^	1–Methyl 4–hepten–1–ol	1433
1167^	alpha–Methyl citronellol	1540
1168^	Phenylpropyl n-valerate	2183
1169	n–Propionyl methylanthranilate	2350
1170	1,1–Diethyoxyhexane	1228
1171	o–Methyl phenyl ethyl alcohol	2012
1172^	omega–Decenyl butyrate	1870
1173^	omega–Methyl undecylenate	1747
1174*	4–Ethyl isohexanoate	1181
1175*	Dihydrolinalyl acetaldehyde	1659
1176^	Methyl isogeranylacetate	1765
1177	Dihydrocumin alcohol	1981
1178*	Methyl isohexyl carbinyl acetate	1300
1179	Ethyl phenyl ethyl acetal	1770
1180	2–Methyl–2–(4–methyl n–amyl) tetrahydrofuran	1325
1181*	sec–Butyl ethyl formal	992
1182	1,3–Butylene glycol formal	1128
1183	1,4–Butylene glycol formal	1176
1184*	2,3–Butylene glycol formal	1037

* validación, ^ predicción

No. Nombre CAS 1 000765-70-8 1464.7 1^ 1,2-Cyclopentanedione, 3-methyl-2^ 1,6,10–Dodecatrien–3–ol, 3,7,11–trimethyl– 007212-44-4 1877.2 3* 1,6-Octadien-3-ol, 3,7-dimethyl-000078-70-6 1448.2 4* 10-Undecenal 000112-45-8 1819.5 5^ 000123-51-3 913.3 1-Butanol, 3-methyl-6* 1-Butanol, 3-methyl-, acetate 000123-92-2 1085.5 7^ 1-Butanol, 3-methyl-, formate 000110-45-2 1045.3 8^ 1-Butanol, 3-methyl-, propanoate 000105-68-0 1193.4 9^ 1-Cyclohexene-1-methanol, 4-(1-methylethenyl)-000536-59-4 1750.9 10* 000112-30-1 1551.4 1–Decanol 11^ 1-Hexanol 000111-27-3 1128.0 12* 1-Hexanol, 2-ethyl-000104-76-7 1233.3 1-Hexanol, 3,5,5-trimethyl-003452-97-9 1172.5 13 14^ 1-Octanol 000111-87-5 1350.0 15^ 1-Octen-3-ol 003391-86-4 1636.0 000104-50-7 1801.6 16 2(3H)-Furanone, 5-butyldihydro-17 2(3H)-Furanone, 5-ethyldihydro-000695-06-7 1574.9 18* 2(3H)-Furanone, 5-heptyldihydro-000104-67-6 2101.9 19 2(3H)-Furanone, 5-hexyldihydro-000706-14-9 2002.9 20 2(3H)-Furanone, 5-methyl-000591-12-8 1282.5 21* 2(3H)-Furanone, dihydro-5-methyl-000108-29-2 1483.0 22* 2(3H)-Furanone, dihydro-5-propyl-000105-21-5 1698.5 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-23 015356-74-8 1805.3 trimethyl-24 2(5H)-Furanone, 5-ethyl-3-hydroxy-4-methyl-000698-10-2 1793.3 25* 025152-84-5 1633.7 2,4-Decadienal, (E,E)-26^ 2,4-Heptadienal, (E,E)-004313-03-5 1315.0 27 2,6,6-Trimethyl-2-cyclohexene-1,4-dione 001125-21-9 1588.5 28* 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-000106-25-2 1435.5 29^ 2,6-Octadien-1-ol, 3,7-dimethyl-, formate, (E)-000105-86-2 1602.9 30* 2-Acetyl-5-methylfuran 001193-79-9 1449.2 31^ 2-Acetylthiazole 024295-03-2 1514.9 32 2-Butanone, 4-(4-hydroxyphenyl)-005471-51-2 1958.2 33 2-Buten-1-ol, 3-methyl-000556-82-1 960.9 2-Buten-1-one, 1-(2,6,6-trimethyl-1-cyclohexen-1-34^ 035044-68-9 1752.2 yl)– 2-Buten-1-one, 1-(2,6,6-trimethyl-2-cyclohexen-1-024720-09-0 1752.2 35 vI)-, (E)-2-Cyclopenten-1-one, 3-methyl-2-(2-pentenyl)-, 36* 000488-10-8 1762.4 (Z)-

Tabla 3A. Nombres químicos, número de registro CAS e índices de retención experimentales de las 269 fragancias medidas en la columna polar DB–225MS

37^	2–Ethyl–3–methoxypyrazine	025680-58-4	1447.8
38	2–Furancarboxaldehyde, 5–methyl–	000620020	1425.5
39	2–Furanmethanol, acetate	000623-17-6	1583.2
40*	2–Furfurylthiol	000098-02-2	1331.3
41*	2–Heptanone	000110-43-0	1144.0
42^	2–Hexen–1–ol, (E)–	000928–95–0	1173.3
43^	2-Hexen-1-ol, acetate, (E)-	002497-18-9	1346.9
44^	2–Hexenal, (E)–	006728-26-3	1154.3
45*	2H–Pyran, tetrahydro–4–methyl–2–(2–methyl–1– propenyl)–	016409–43–1	1664.5
46^	2H–Pyran–2–one, 6–hexyltetrahydro–	000710-04-3	2075.9
47*	2H–Pyran–2–one, tetrahydro–6–methyl–	000823-22-3	1573.9
48	2H–Pyran–2–one, tetrahydro–6–nonyl–	002721-22-4	2370.8
49	2H–Pyran–2–one, tetrahydro–6–pentyl–	000705-86-2	1982.0
50^	2H–Pyran–2–one, tetrahydro–6–propyl–	000698-76-0	1773.1
51^	2–Methylheptanoic acid	001188–02–9	1416.0
52^	2–Naphthyl methyl ketone	000093083	2129.4
53^	2-Nonanone	000821–55–6	1372.3
54^	2–Nonen–1–ol, (E)–	031502–14–4	1491.6
55*	2–Nonenal, (Z)–	060784–31–8	1488.5
56	2–Octanone	000111-13-7	1263.3
57*	2–Octenal, (E)–	002548-87-0	1389.1
58*	2–Octynoic acid, methyl ester	000111-12-6	1572.6
59^	2–Propanone, 1–(4–methoxyphenyl)–	000122-84-9	1842.9
60^	2–Propen–1–ol, 3–phenyl–	000104–54–1	1839.8
61^	2–Propen–1–ol, 3–phenyl–, propanoate	000103-56-0	1974.3
62^	2–Propenal, 3–(2–methoxyphenyl)–	001504–74–1	1957.8
63	2-Tridecanone	000593-08-8	1778.2
64^	2–Undecanone	000112-12-9	1580.3
65*	3–(4–Isopropylphenyl)–2–methylpropionaldehyde	000103–95–7	1857.7
66*	3–(Methylthio)propanoic acid methyl ester	013532–18–8	1344.1
67	3,4-Hexanedione	004437–51–8	1169.5
68	3–Hexen–1–ol	000544-12-7	1170.6
69	3-Hexen-1-ol, acetate, (Z)-	003681-71-8	1339.7
70^	3–Hexen–1–ol, formate, (Z)–	033467–73–1	1311.8
71*	3–Hexenoic acid, (E)–	001577-18-0	1353.0
72*	3–Phenylpropanol	000122–97–4	1803.4
73	4–Heptenal, (Z)–	006728-31-0	1278.2
74^	4H–Pyran–4–one, 2–ethyl–3–hydroxy–	004940-11-8	1683.5
75	4–Methylthiazole	000693–95–8	1269.6
76	5,6,7,8-Tetrahydroquinoxaline	034413–35–9	1743.1
77^	5,9–Undecadien–2–one, 6,10–dimethyl–	000689–67–8	1655.4
78	5,9–Undecadien–2–one, 6,10–dimethyl–, (E)–	003796-70-1	1655.4

	79	5H–5–Methyl–6,7–dihydrocyclopentapyrazine	023747-48-0	1656.1
	80*	5–Heptenal, 2,6–dimethyl–	000106–72–9	1299.6
	81*	5–Methyl–2–phenyl–2–hexenal	021834–92–4	1987.6
	82*	5–Thiazoleethanol, 4–methyl–	000137–00–8	1632.4
	83*	6-Octen-1-ol, 3,7-dimethyl-, acetate	000150-84-5	1584.3
	84	6–Octen–1–ol, 3,7–dimethyl–, formate	000105–85–1	1568.9
	85^	6-Octen-1-ol, 3,7-dimethyl-, propanoate	000141-14-0	1669.2
	86	6–Octenal, 3,7–dimethyl–, (R)–	002385–77–5	1411.3
	87	9,12–Octadecadienoic acid (Z,Z)–, methylester	000112–63–0	2607.8
	88^	Acetic acid, 2-phenylethyl ester	000103–45–7	1831.6
	89^	Acetic acid, 4-methylphenyl ester	000140–39–6	1654.6
	90^	Acetic acid, decyl ester	000112–17–4	1741.9
	91	Acetic acid, heptyl ester	000112–06–1	1416.2
	92^	Acetic acid, nonyl ester	000143–13–5	1640.5
	93	Acetic acid, octyl ester	000112-14-1	1530.7
	94	Acetic acid, phenyl-, isopentyl ester	000102–19–2	2032.0
	95	Acetophenone	000098-86-2	1582.6
	96*	Acetylpyrazine	022047–25–2	1434.9
	97^	Allyl nonanoate	007493–72–3	1880.6
	98^	Anisyl propionate	007549–33–9	1969.5
	99*	Benzaldehyde	000100-52-7	1582.4
	100*	Benzaldehyde, 2-hydroxy-	000090–02–8	1803.3
	101^	Benzaldehyde, 4–(1–methylethyl)–	000122-03-2	1674.2
	102*	Benzaldehyde, 4-ethoxy-	010031–82–0	1715.4
	103	Benzaldehyde, 4–ethyl–	004748–78–1	1671.7
	104*	Benzene, 1,1'-[oxybis(methylene)]bis-	000103–50–4	2338.1
	105^	Benzene, 1,2-dimethoxy-4-(1-propenyl)-	000093–16–3	1875.1
	106^	Benzene, 1,3–dimethoxy–	000151-10-0	1619.5
	107*	Benzene, 1–methoxy–4–methyl–	000104–93–8	1480.2
	108*	Benzene, 2-methoxy-4-methyl-1-(1-methylethyl)-	001076–56–8	1592.4
	109	Benzene, ethoxy–	000103–73–1	1478.1
	110^	Benzeneacetaldehyde, α-ethylidene-	004411–89–6	1801.3
	111^	Benzeneacetic acid, 2-methylpropyl ester	000102–13–6	1948.4
	112	Benzeneacetic acid, 2-phenylethyl ester	000102–20–5	2676.1
	113^	Benzeneacetic acid, methyl ester	000101–41–7	1832.4
	114^	Benzeneacetic acid, phenylmethyl ester	000102–16–9	2593.2
	115^	Benzeneethanol, α, α -dimethyl-	000100-86-7	1710.8
	116^	Benzenemethanol, 4-methoxy-	000105–13–5	1737.3
	117*	Benzenemethanol, 4-methoxy-, acetate	000104–21–2	1887.2
	118^	Benzenemethanol, 4-methoxy-, formate	000122–91–8	1873.0
	119^	Benzenemethanol,α–methyl–, acetate	000093–92–5	1973.5
_	120	Benzenepropanal	000104–53–0	1789.1

121^	Benzoic acid	000065-85-0	1799.1
122	Benzoic acid, 2–hydroxy–, 2–methylpropyl ester	000087-19-4	2000.0
123	Benzoic acid, 2–hydroxy–, ethyl ester	000118-61-6	1901.8
124	Benzoic acid, 2–hydroxy–, phenylmethyl ester	000118–58–1	2650.1
125	Benzoic acid, ethyl ester	000093-89-0	1716.9
126^	Benzophenone	000119-61-9	2311.4
127	Benzyl alcohol	000100-51-6	1631.6
128*	Benzyl Benzoate	000120-51-4	2475.3
100	Bicyclo[2.2.1]heptan–2–ol, 1,7,7–trimethyl–, acetate,	005655-61-8	1002.0
129	Isobornyl acetate	000125-12-2	1993.9
130*	Butanal, 3-methyl-	000590-86-3	912.8
131	Butanedioic acid, dimethyl ester	000106-65-0	1427.4
132*	Butanoic acid	000107-92-6	1084.4
133*	Butanoic acid, 2-methyl-, ethyl ester	007452–79–1	1069.4
134*	Butanoic acid, 2-methylpropyl ester	000539–90–2	1211.6
135*	Butanoic acid, 3,7–dimethyl–2,6–octadienyl ester, (E)–	000106–29–6	1817.0
136	Butanoic acid, 3-methyl-	000503-74-2	1116.5
137*	Butanoic acid, 3-methyl-, 2-phenylethyl ester	000140-26-1	2036.0
138	Butanoic acid, 3-methyl-, 3-methylbutyl ester	000659–70–1	1337.1
139*	Butanoic acid, 3-methyl-, 3-phenyl-2-propenyl ester	000140-27-2	2175.8
140*	Butanoic acid, 3-methyl-, butyl ester	000109–19–3	1322.9
141^	Butanoic acid, 3-methyl-, ethyl ester	000108-64-5	1093.0
142	Butanoic acid, 3-methyl-, phenylmethyl ester	000103-38-8	1950.8
143^	Butanoic acid, 3-methylbutyl ester	000106-27-4	1310.7
144	Butanoic acid, butyl ester	000109–21–7	1295.3
145	Butanoic acid, ethyl ester	000105–54–4	1048.9
146*	Butanoic acid, phenylmethyl ester	000103-37-7	1936.9
147	Butanoic acid, propyl ester	000105-66-8	1182.7
148	Caryophyllene	000087-44-5	1979.9
149	Cedrol	000077-53-2	2047.9
150*	Cinnamaldehyde, (E)-	014371–10–9	1812.5
151*	Cinnamaldehyde, α-pentyl-	000122-40-7	2179.8
152	Cinnamyl cinnamate	000122-69-0	2923.9
153^	Citronellol	000106-22-9	1401.4
154	Citronellyl butyrate	000141-16-2	1783.5
155*	Creosol	000093-51-6	1667.8
156^	Cyclohexane, 1–ethenyl–1–methyl–2, 4–bis (1– methylethenyl)–,[1S–(1 α ,2 β ,4 β)]–	000515–13–9	1933.6
157*	Cyclohexanol, 5 -methyl-2-(1-methylethyl)-, $(1\alpha,2\alpha,5\alpha)$ -	000491–02–1 015356–70–4	1729.4
158*	Cyclohexanone, 2–(1–mercapto–1–methylethyl)–5– methyl–	038462–22–5	1592.6
159	Cyclohexanone, 5-methyl-2-(1-methylethyl)-, (2R-	001196-31-2	1501.1

160* Cyclobexne, 1-methyl-4-(1-methylethylidene)- 000586-62-9 1392.5 161 cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl 024851-98-7 2201.3 162 D-Carvone 002244-16-8 1672.3 163 Decanal 000112-31-2 1566.6 164 Decanoic acid, ethyl ester 000110-40-7 166.7 165 Decanoic acid, ethyl ester 000111-34-3 1736.0 166 Diphenyl ether 00010-33-2 1941.1 170* Ethanone, 1-(2,4-dimethylphenyl)- 000106-33-2 1941.1 170* Ethanone, 1-(2,4-dimethylphenyl)- 000122-00-9 1592.0 173* Ethanone, 1-(2,4-dimethylphenyl)- 000122-00-9 1592.0 174* Ethanone, 1-(4-methylphenyl)- 000122-00-9 1592.0 175* Ethyl Oleate 000111-62-6 2574.7 176* Ethyl Vanillin 000121-32-4 1895.5 177 Eucalyptol 000470-82-6 1513.9 178* Ethyl Vanillin 000121-32-1 1852.6		cis)–		
161 Cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl ester Q24851-98-7 2201.3 162 D-Carvone 002244-16-8 1672.3 163 Decanal 000112-31-2 1566.6 164 Decanoic acid, ethyl ester 000110-84-8 2153.7 165 Decanoic acid, ethyl ester 000101-84-8 2153.7 166 Diphenyl ether 000101-84-8 2153.7 167 D-Limonene 005989-27-5 1508.7 168 Dodecanoic acid, ethyl ester 000106-67-7 808.3 170* Ethanone, 1-(2-pyridinyl)- 001122-61-9 1516.8 173* Ethanone, 1-(2-pyridinyl)- 000350-03-8 1516.9 174* Ethanone, 1-(4-methylphenyl)- 000326-03-8 1516.9 175* Ethyl Vanillin 000121-26-2 1516.8 176* Eugenol 000097-53-0 2004.7 176* Eugenol 000012-67-4 173.9 177* Eocalyptol 000638-49-3 1145.2 180* Formic acid, pentyl ester	160*	Cyclohexene, 1-methyl-4-(1-methylethylidene)-	000586-62-9	1392.5
162 D-Carvone 002244-16-8 1672.3 163 Decanal 000112-31-2 1566.6 164 Decanoic acid, diethyl ester 000110-38-3 1736.0 165 Decanoic acid, ethyl ester 000110-38-3 1736.0 166 Diphenyl ether 000112-54-9 1771.0 167 D-Limonene 000105-37-7 188.3 170* Ethanone, 1-(2.4-dimethylphenyl)- 00105-57-7 188.3 171* Ethanone, 1-(2.4-dimethylphenyl)- 000350-03-8 1516.9 172 Ethanone, 1-(4-methylphenyl)- 000122-00-9 1592.0 174* Ethanone, 1-(4-methylphenyl)- 000122-00-9 1592.0 175* Ethyl Oleate 00017-082-6 1574.7 176* Ethyl Vanillin 000122-00-9 1592.0 177* Eugenol 00047-082-6 1574.7 176* Ethyl Vanillin 00012-03-0 2004.7 178* Eugenol 00047-082-6 153.9 178* Eugenol 00014-57-4 1731.9 </td <td>161</td> <td>Cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl ester</td> <td>024851–98–7</td> <td>2201.3</td>	161	Cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl ester	024851–98–7	2201.3
163 Decanal 000112–31–2 1566.6 164 Decanotic acid, ethyl ester 000110–38–3 1736.0 165 Decanotic acid, ethyl ester 000110–38–3 1736.0 166 Diphenyl ether 000112–54–9 1736.0 167 D-Limonene 005898–27–5 1508.7 168 Dodecanal 000112–54–9 1771.0 169* Dodecanoic acid, ethyl ester 000106–33–2 1941.1 170* Ethanone, 1–(2,4–dimethylphenyl)– 000125–47–7 808.3 171* Ethanone, 1–(2,4–dimethylphenyl)– 000122–00–9 1592.0 174* Ethanone, 1–(4–methylphenyl)– 000121–32–4 1855.5 175* Ethyl Oleate 000111–62–6 2574.7 176* Ethyl Vanillin 000121–32–4 1855.5 177 Eucalyptol 000047–82–6 1513.9 178* Eugenol 000047–82–6 1513.9 178* Furnic acid, penylmethyl ester 000104–57–4 173.2 180* Furan, 2–([methylthio)methyl]–	162	D-Carvone	002244-16-8	1672.3
164 Decanedioic acid, diethyl ester 000110–40–7 2166.7 165* Decanoic acid, ethyl ester 000110–38–3 1736.0 166 Diphenyl ether 000101–84–8 2153.7 167* D-Limonene 005989–27-5 1508.7 168* Dodecanal 00112–54–9 1771.0 169* Dodecanoic acid, ethyl ester 000106–33–2 1941.1 170* Ethanone, 1–(2,4–dimethylphenyl)– 000125–57–7 808.3 171* Ethanone, 1–(2–pyridinyl)– 000350-03–8 1516.9 174* Ethanone, 1–(4–methylphenyl)– 000121–32–4 1895.5 177 Eucalyptol 000121–32–4 1895.5 177 Eucalyptol 000470–82–6 1513.9 178* Eugenol 0000470–82–6 1513.9 178* Eugenol 0000470–82–6 1513.9 178* Furan, 2–(methyltheyl ester 000104–57–4 1731.9 181 Furan, 2–(methylthyl ester 000104–57–4 1731.9 181 Furan, 2–(methylthyl ester	163	Decanal	000112-31-2	1566.6
165* Decanoic acid, ethyl ester 000110–38–3 1736.0 166 Diphenyl ether 000101–84–8 2153.7 177* D-Limonene 005989–27–5 1508.7 168* Dodecanal 000112–54–9 1771.0 169* Dodecanoic acid, ethyl ester 000106–33–2 1941.1 170* Ethane, 1.1–diethoxy– 00015–57–7 808.3 171* Ethanone, 1–(2.4–dimethylphenyl)– 001122–62–9 1516.8 173* Ethanone, 1–(4–methylphenyl)– 000122–00–9 1592.0 175* Ethyl Oleate 00017–82–6 1574.7 176* Eugenol 00047–62–6 1574.7 176* Eugenol 00047–63–0 2004.7 178* Eugenol 00047–63–0 2004.7 179* Formic acid, pentyl ester 000104–57–4 173.9 181 Furan, 2–(methylthio)methyl]– 011438–91–1 1558.6 182* Furan, 2–(methylthio)methyl]– 0113678–59–6 1438.5 183* Heptanoic acid, ethyl ester <t< td=""><td>164</td><td>Decanedioic acid, diethyl ester</td><td>000110-40-7</td><td>2166.7</td></t<>	164	Decanedioic acid, diethyl ester	000110-40-7	2166.7
166 Diphenyl ether 000101-84-8 2153.7 167^ D-Limonene 005989-27-5 1508.7 168^ Dodecanal 000112-54-9 1771.0 169* Dodecanoic acid, ethyl ester 000105-57-7 808.3 171^ Ethanone, 1-(2,4-dimethylphenyl)- 001089-74-7 1601.0 172 Ethanone, 1-(2-pyridinyl)- 001122-62-9 1516.8 173^ Ethanone, 1-(4-methylphenyl)- 000350-03-8 1516.9 174* Ethanone, 1-(4-methylphenyl)- 000122-00-9 1592.0 175* Ethyl Oleate 000111-62-6 2574.7 176* Ethyl Vanillin 000121-32-4 1895.5 177 Eucalyptol 000470-83-0 2004.7 179* Formic acid, pentyl ester 0001638-49-3 1145.2 180* Furan, 2-[(methylthio)methyl]- 0113678-59-6 1438.6 182^ Furan, 2-[(methylthio)methyl]- 013678-59-6 1438.6 183* Heptanoic acid, ethyl ester 000109-25-1 1635.2 186* <	165*	Decanoic acid, ethyl ester	000110-38-3	1736.0
167^ D-Limonene 005989-27-5 1508.7 168^ Dodecanal 000112-54-9 1771.0 169* Dodecanoic acid, ethyl ester 000106-33-2 1941.1 170* Ethanone, 1(2.4-dimethylphenyl)- 00105-57-7 808.3 171^ Ethanone, 1-(2.4-dimethylphenyl)- 001122-62-9 1516.8 173* Ethanone, 1-(3-pyridinyl)- 000122-00-9 1592.0 174* Ethanone, 1-(4-methylphenyl)- 000122-00-9 1592.0 175* Ethyl Oleate 000111-62-6 2574.7 176* Ethyl Vanillin 000121-32-4 1895.5 177 Eucalyptol 000470-82-6 1513.9 178* Eugenol 000097-53-0 2004.7 179* Formic acid, pentyl ester 000144-57-4 173.9 181 Furan, 2-([methylthio]methyl]- 0113678-59-6 1438.6 182^ Furan, 2-methyl-5-(methylthio)- 113678-59-6 1438.6 183* Heptanoic acid, amethylbutyl ester 000109-25-1 165.2 185^	166	Diphenyl ether	000101-84-8	2153.7
168^ Dodecanal 000112–54–9 1771.0 169* Dodecanoic acid, ethyl ester 000106–33–2 1941.1 170* Ethane, 1,1–diethoxy– 000105–57–7 808.3 171^ Ethanone, 1–(2,4–dimethylphenyl)– 000189–74–7 1601.0 172 Ethanone, 1–(2–pyridinyl)– 001122–60–9 1516.9 173* Ethanone, 1–(4–methylphenyl)– 000350–03–8 1516.9 174* Ethanone, 1–(4–methylphenyl)– 000122–00–9 1592.0 175* Ethyl Oleate 000111–62–6 2574.7 176* Ethyl Vanillin 000121–32–4 1895.5 177 Eucalyptol 000470–82–6 1513.9 178* Eugenol 000097–53–0 2004.7 179* Formic acid, pentyl ester 000104–57–4 173.9 181 Furan, 2–((methylthio)methyl]– 01438–91–1 1558.6 182* Furan, 2–((methylthio)methyl]– 013678–596–1 1438.4 184* Heptanoic acid, 3–methylbutyl ester 000106–30–9 1411.3 184*	167^	D-Limonene	005989–27–5	1508.7
169* Dodecanoic acid, ethyl ester 000106-33-2 1941.1 170* Ethane, 1,1-diethoxy- 000105-57-7 808.3 171^ Ethanone, 1-(2,4-dimethylphenyl)- 001122-62-9 1516.8 173* Ethanone, 1-(3-pyridinyl)- 00032-00-8 1516.9 174* Ethanone, 1-(4-methylphenyl)- 000122-00-9 1592.0 175* Ethyl Oleate 000111-62-6 2574.7 176* Ethyl Vanillin 000121-32-4 1895.5 177 Eucalyptol 000470-82-6 1513.9 178* Eugenol 000097-53-0 2004.7 179* Formic acid, pentyl ester 000104-57-4 1731.9 181 Furan, 2((methylthio)methyl]- 0113678-59-6 1438.6 182* Furan, 2((methylthio)methyl]- 013678-59-6 1438.6 183* Heptanoic acid, ethyl ester 000109-25-1 1635.2 185* Heptanoic acid, ethyl ester 000162-30-7 2344.8 184* Heptanoic acid, ethyl ester 000162-32-6 1310.1 188* Hexanoic acid, 2-methyl- 004536-23-6 1310.1	168^	Dodecanal	000112–54–9	1771.0
170* Ethane, 1,1-diethoxy- 000105-57-7 808.3 171^ Ethanone, 1-(2,4-dimethylphenyl)- 000089-74-7 1601.0 172 Ethanone, 1-(2-pyridinyl)- 001122-62-9 1516.8 173^ Ethanone, 1-(4-methylphenyl)- 000350-03-8 1516.9 174* Ethanone, 1-(4-methylphenyl)- 000122-00-9 1592.0 175* Ethyl Oleate 000111-62-6 2574.7 176* Ethyl Vanillin 00012-32-4 1895.5 177 Eucalyptol 000470-82-6 1513.9 178^ Eugenol 000097-53-0 2004.7 179* Formic acid, pentyl ester 00014-57-4 1731.9 181 Furan, 2-((methylthio)methyl)- 013678-59-6 1438.6 182^ Furan, 2-methyl-5-(methylthio)- 013678-59-6 1438.6 183* Heptanoic acid, amethylbutyl ester 000109-25-1 165.2 185^ Heptanoic acid, ethyl ester 00012-68-2 111.3 186* Hexanoic acid, 2-methyl- 004536-23-6 1310.1 189 Hexanoic acid, 2-mothyl ester 000123-68-2 155.0	169*	Dodecanoic acid, ethyl ester	000106-33-2	1941.1
171^ Ethanone, 1-(2,4-dimethylphenyl)- 000089-74-7 1601.0 172 Ethanone, 1-(2-pyridinyl)- 001122-62-9 1516.8 173^ Ethanone, 1-(3-pyridinyl)- 000350-03-8 1516.9 174* Ethanone, 1-(4-methylphenyl)- 000122-00-9 1592.0 175* Ethyl Vanillin 000121-32-4 1895.5 176* Ethyl Vanillin 000470-82-6 1513.9 178^* Eugenol 0000097-53-0 2004.7 179* Formic acid, pentyl ester 000144-57-4 1731.9 181 Furan, 2-[(methylthio)methyl]- 01438-91-1 1558.6 182^* Furan, 2-(methylthio)methyl]- 013678-59-6 1438.6 183* Heptanoic acid 000111-14-8 1418.3 184^* Heptanoic acid, a-methylbutyl ester 000108-30-9 1411.3 186* Hexanoic acid, ethyl ester 000123-68-2 1555.0 187* Hexanoic acid, ethyl ester 000123-68-2 1555.0 188^* Hexanoic acid, pentyl ester 000123-68-2 1555.0 190* Hexanoic acid, pentyl ester 000123-66-0 12	170*	Ethane, 1,1–diethoxy–	000105–57–7	808.3
172 Ethanone, 1-(2-pyridinyl)- 001122-62-9 1516.8 173^ Ethanone, 1-(3-pyridinyl)- 000350-03-8 1516.9 174* Ethanone, 1-(4-methylphenyl)- 000122-00-9 1592.0 175* Ethyl Vanillin 000121-32-4 1895.5 177 Eucalyptol 000097-63-0 2004.7 178* Eugenol 000097-53-0 2004.7 179* Formic acid, pentyl ester 000144-57-4 1731.9 180^ Formic acid, pentyl ester 0001438-91-1 1558.6 182* Furan, 2[(methylthio)methyl]- 01438-91-1 1558.6 183* Heptanoic acid 000111-14-8 1418.3 184^ Heptanoic acid, amethylbutyl ester 000109-25-1 1635.2 185* Heptanoic acid, ethyl ester 000162-897-7 2344.8 186* Hexadoccancic acid, ethyl ester 00012-36-61 1310.1 189 Hexanoic acid, 2-methyl- 004536-23-6 1310.1 189 Hexanoic acid, 2-propenyl ester 00012-66-0 1293.9 190^ Hexanoic acid, ethyl ester 00012-66-0 1293.9 <	171^	Ethanone, 1–(2,4–dimethylphenyl)–	000089–74–7	1601.0
173^ Ethanone, 1-(3-pyridinyl)- 000350-03-8 1516.9 174* Ethanone, 1-(4-methylphenyl)- 000122-00-9 1592.0 175* Ethyl Oleate 000111-62-6 2574.7 176* Ethyl Vanillin 000470-82-6 1513.9 177 Eucalyptol 000097-53-0 2004.7 178^ Eugenol 000097-53-0 2004.7 179* Formic acid, pentyl ester 000144-57-4 1731.9 181 Furan, 2-((methylthio)methyl]- 001438-91-1 1558.6 182^ Furan, 2-methyl-5-(methylthio)- 013678-59-6 1438.6 183* Heptanoic acid 000111-14-8 1418.3 184^ Heptanoic acid, amethylbutyl ester 000106-30-9 1411.3 185* Heptanoic acid, ethyl ester 000106-25-1 11632.2 186* Hexaal 000066-25-1 1121.3 186* Hexanoic acid, ethyl ester 000123-66-0 1293.9 191* Hexanoic acid, ethyl ester 000123-66-0 1293.9 191* Hexanoic acid, pentyl ester 000540-07-8 1625.3 192	172	Ethanone, 1–(2–pyridinyl)–	001122–62–9	1516.8
174* Ethanone, 1-(4-methylphenyl)- 000122-00-9 1592.0 175* Ethyl Oleate 000111-62-6 2574.7 176* Ethyl Vanillin 000121-32-4 1895.5 177 Eucalyptol 000470-82-6 1513.9 178* Eugenol 000097-53-0 2004.7 179* Formic acid, pentyl ester 000144-57-4 1731.9 181 Furan, 2[(methylthio)methyl]- 011438-91-1 1558.6 182* Furan, 2methyl-5-(methylthio)- 013678-59-6 1438.6 183* Heptanoic acid 000111-14-8 1418.3 184* Heptanoic acid, 3-methylbutyl ester 000106-30-9 1411.3 186* Hexadecanoic acid, ethyl ester 000106-30-9 1411.3 186* Hexanoic acid, 2-methyl- 004536-23-6 1310.1 189 Hexanoic acid, 2-propenyl ester 000123-68-2 155.0 190^A Hexanoic acid, pentyl ester 000123-66-0 1293.9 191* Hexanoic acid, pentyl ester 000123-66-0 1293.9 192* Humulene 006753-98-6 1830.2 <t< td=""><td>173^</td><td>Ethanone, 1–(3–pyridinyl)–</td><td>000350-03-8</td><td>1516.9</td></t<>	173^	Ethanone, 1–(3–pyridinyl)–	000350-03-8	1516.9
175* Ethyl Oleate 000111-62-6 2574.7 176* Ethyl Vanillin 000121-32-4 1895.5 177 Eucalyptol 000097-53-0 2004.7 179* Formic acid, pentyl ester 000638-49-3 1145.2 180^ Formic acid, pentyl ester 00014-57-4 173.9 181 Furan, 2	174*	Ethanone, 1–(4–methylphenyl)–	000122-00-9	1592.0
176* Ethyl Vanillin 000121-32-4 1895.5 177 Eucalyptol 000470-82-6 1513.9 178* Eugenol 000097-53-0 2004.7 179* Formic acid, pentyl ester 000638-49-3 1145.2 180* Formic acid, phenylmethyl ester 00104-57-4 1731.9 181 Furan, 2[(methylthio)methyl]- 0113678-59-6 1438.6 183* Heptanoic acid 000111-14-8 1418.3 184* Heptanoic acid, 3methylbutyl ester 000109-25-1 1635.2 185* Heptanoic acid, ethyl ester 000106-30-9 1411.3 186* Hexadecanoic acid, ethyl ester 000628-97-7 2344.8 187* Hexanal 000066-25-1 1121.3 186* Hexanoic acid, 2-methyl- 004536-23-6 1310.1 189 Hexanoic acid, 2-propenyl ester 000123-66-0 1293.9 191* Hexanoic acid, pentyl ester 000540-07-8 1625.3 192 Humulene 006753-98-6 1830.2 193* Hydrocoumarin 000119-84-6 1942.5 194*	175*	Ethyl Oleate	000111–62–6	2574.7
177 Eucalyptol 000470-82-6 1513.9 178 Eugenol 000097-53-0 2004.7 179* Formic acid, pentyl ester 000638-49-3 1145.2 180^ Formic acid, phenylmethyl ester 00104-57-4 1731.9 181 Furan, 2[(methylthio)methyl]- 0113678-59-6 1438.6 182^ Furan, 2methyl-5-(methylthio)- 013678-59-6 1438.6 183* Heptanoic acid 000111-14-8 1418.3 184* Heptanoic acid, 3methylbutyl ester 000109-25-1 1635.2 185* Heptanoic acid, ethyl ester 000106-30-9 1411.3 186* Hexadecanoic acid, ethyl ester 000628-97-7 2344.8 187* Hexanoic acid, 2-methyl- 004536-23-6 1310.1 188 Hexanoic acid, 2-mothyl ester 000123-66-0 1293.9 191* Hexanoic acid, pentyl ester 0006753-98-6 130.2 192 Humulene 006753-98-6 130.2 193* Hydrocoumarin 000119-84-6 1942.5 194* Isoamyl cinnamate 007779-65-9 2154.9	176*	Ethyl Vanillin	000121-32-4	1895.5
178^ Eugenol 000097–53–0 2004.7 179* Formic acid, pentyl ester 000638–49–3 1145.2 180^ Formic acid, phenylmethyl ester 000104–57–4 1731.9 181 Furan, 2–[(methylthio)methyl]– 001438–91–1 1558.6 182^ Furan, 2–methyl–5–(methylthio)– 013678–59–6 1438.6 183* Heptanoic acid 000111–14–8 1418.3 184^ Heptanoic acid, 3–methylbutyl ester 000109–25–1 1635.2 185^ Heptanoic acid, ethyl ester 000106–30–9 1411.3 186* Hexadecanoic acid, ethyl ester 0000628–97–7 2344.8 187* Hexanal 000066–25–1 1121.3 188^ Hexanoic acid, 2–methyl– 004536–23–6 1310.1 189 Hexanoic acid, 2–methyl– 004536–23–6 1310.1 189 Hexanoic acid, pentyl ester 000123–66–0 1293.9 190^ Hexanoic acid, pentyl ester 00013–66–0 1293.9 191* Hexanoic acid, pentyl ester 000123–66–0 1293.9 192* Humulene 006753–98–6 1830.2	177	Eucalyptol	000470-82-6	1513.9
179* Formic acid, pentyl ester 000638–49–3 1145.2 180^ Formic acid, phenylmethyl ester 000104–57–4 1731.9 181 Furan, 2–[(methylthio)methyl]– 011438–91–1 1558.6 182^ Furan, 2–methyl–5–(methylthio)– 013678–59–6 1438.6 183* Heptanoic acid 000111–14–8 1418.3 184^ Heptanoic acid, 3–methylbutyl ester 000106–30–9 1411.3 186* Hexadecanoic acid, ethyl ester 000066–25–1 1121.3 188^* Hexanoic acid, 2–methyl– 004536–23–6 1310.1 189 Hexanoic acid, 2–methyl– 004536–23–6 1310.1 189 Hexanoic acid, 2–propenyl ester 000123–66–0 1293.9 190^ Hexanoic acid, pentyl ester 000540–07–8 1625.3 192 Humulene 006753–98–6 1830.2 193* Hydrocoumarin 000110–19–0 969.1 196^ Isopentyl hexanoate 002198–61–0 1529.5 197* Isophorone 000078–59–1 1464.4 198 Isopropyl myristate 000110–27–0 2398.4	178^	Eugenol	000097–53–0	2004.7
180^ Formic acid, phenylmethyl ester 000104–57–4 1731.9 181 Furan, 2–[(methylthio)methyl]– 001438–91–1 1558.6 182^ Furan, 2–methyl–5–(methylthio)– 013678–59–6 1438.6 183* Heptanoic acid 000111–14–8 1418.3 184^ Heptanoic acid, 3–methylbutyl ester 000109–25–1 1635.2 185^ Heptanoic acid, ethyl ester 00016–30–9 1411.3 186* Hexadecanoic acid, ethyl ester 000628–97–7 2344.8 187* Hexanal 000066–25–1 1121.3 188 Hexanoic acid, 2–methyl– 004536–23–6 1310.1 189 Hexanoic acid, 2–methyl– 004536–23–6 1310.1 189 Hexanoic acid, ethyl ester 000123–66–0 1293.9 190^ Hexanoic acid, pentyl ester 000540–07–8 1625.3 192 Humulene 006753–98–6 1830.2 193* Hydrocoumarin 000110–19–0 969.1 196^ Isopentyl hexanoate 002198–61–0 1529.5 197* Isophorone 0000110–27–0 2398.4 1	179*	Formic acid, pentyl ester	000638–49–3	1145.2
181 Furan, 2[(methylthio)methyl]- 001438-91-1 1558.6 182^ Furan, 2-methyl-5-(methylthio)- 013678-59-6 1438.6 183* Heptanoic acid 000111-14-8 1418.3 184^ Heptanoic acid, 3-methylbutyl ester 000109-25-1 1635.2 185^ Heptanoic acid, ethyl ester 000106-30-9 1411.3 186* Hexadecanoic acid, ethyl ester 000628-97-7 2344.8 187* Hexanal 000066-25-1 1121.3 188^ Hexanoic acid, 2-methyl- 004536-23-6 1310.1 189 Hexanoic acid, 2-propenyl ester 000123-68-2 1555.0 190^ Hexanoic acid, pentyl ester 000540-07-8 1625.3 191* Hexanoic acid, pentyl ester 0006753-98-6 1830.2 193* Hydrocoumarin 000119-84-6 1942.5 194^ Isoamyl cinnamate 007779-65-9 2154.9 195^ Isobutyl acetate 000110-19-0 969.1 196^ Isopentyl hexanoate 002198-61-0 1529.5 197* Isophorone 00000000078-59-1 1464.4	180^	Formic acid, phenylmethyl ester	000104–57–4	1731.9
182^ Furan, 2-methyl-5-(methylthio)- 013678-59-6 1438.6 183* Heptanoic acid 000111-14-8 1418.3 184^ Heptanoic acid, 3-methylbutyl ester 000109-25-1 1635.2 185^ Heptanoic acid, ethyl ester 000106-30-9 1411.3 186* Hexadecanoic acid, ethyl ester 000628-97-7 2344.8 187* Hexanoic acid, 2-methyl- 004536-23-6 1310.1 188 Hexanoic acid, 2-methyl- 004536-23-6 1310.1 189 Hexanoic acid, 2-propenyl ester 000123-68-2 1555.0 190^ Hexanoic acid, pentyl ester 000540-07-8 1625.3 192 Humulene 006753-98-6 1830.2 193* Hydrocoumarin 000110-84-6 1942.5 194^ Isoamyl cinnamate 007779-65-9 2154.9 195^ Isobutyl acetate 000110-19-0 969.1 196^ Isopentyl hexanoate 002198-61-0 1529.5 197* Isophorone 000078-59-1 1464.4 198 Isopropyl myristate 016409-46-4 2088.5 200	181	Furan, 2–[(methylthio)methyl]–	001438–91–1	1558.6
183* Heptanoic acid 000111-14-8 1418.3 184^ Heptanoic acid, 3-methylbutyl ester 000109-25-1 1635.2 185^ Heptanoic acid, ethyl ester 000106-30-9 1411.3 186* Hexadecanoic acid, ethyl ester 000628-97-7 2344.8 187* Hexanoic acid, 2-methyl- 004536-23-6 1310.1 189 Hexanoic acid, 2-methyl- 004536-23-6 1310.1 189 Hexanoic acid, ethyl ester 000123-68-2 1555.0 190^ Hexanoic acid, pentyl ester 000540-07-8 1625.3 191* Hexanoic acid, pentyl ester 000119-84-6 1942.5 192 Humulene 006753-98-6 1830.2 193* Hydrocoumarin 000119-84-6 1942.5 194^ Isoamyl cinnamate 007779-65-9 2154.9 195^ Isobutyl acetate 000110-19-0 969.1 196^ Isopentyl hexanoate 002198-61-0 1529.5 197* Isophorone 000078-59-1 1464.4 198 Isopropyl myristate 016409-46-4 2088.5 200 M	182^	Furan, 2–methyl–5–(methylthio)–	013678–59–6	1438.6
184^ Heptanoic acid, 3-methylbutyl ester 000109-25-1 1635.2 185^ Heptanoic acid, ethyl ester 000106-30-9 1411.3 186* Hexadecanoic acid, ethyl ester 000628-97-7 2344.8 187* Hexanal 000066-25-1 1121.3 188^ Hexanoic acid, 2-methyl- 004536-23-6 1310.1 189 Hexanoic acid, 2-propenyl ester 000123-68-2 1555.0 190^ Hexanoic acid, ethyl ester 000540-07-8 1625.3 192 Humulene 006753-98-6 1830.2 193* Hydrocoumarin 000110-84-6 1942.5 194^ Isoamyl cinnamate 007779-65-9 2154.9 195^ Isobutyl acetate 000110-19-0 969.1 196^ Isopentyl hexanoate 002198-61-0 1529.5 197* Isophorone 0000078-59-1 1464.4 198 Isopropyl myristate 000110-27-0 2398.4 199* Menthyl isovalerate 016409-46-4 2088.5 200 Methional 003268-49-3 1215.9	183*	Heptanoic acid	000111-14-8	1418.3
185^Heptanoic acid, ethyl ester000106-30-91411.3186*Hexadecanoic acid, ethyl ester000628-97-72344.8187*Hexanal000066-25-11121.3188^Hexanoic acid, 2-methyl-004536-23-61310.1189Hexanoic acid, 2-propenyl ester000123-68-21555.0190^Hexanoic acid, ethyl ester000540-07-81625.3191*Hexanoic acid, pentyl ester000540-07-81625.3192Humulene006753-98-61830.2193*Hydrocoumarin000110-84-61942.5194^Isoamyl cinnamate007779-65-92154.9195^Isobutyl acetate000110-19-0969.1196^Isopentyl hexanoate002198-61-01529.5197*Isophorone000078-59-11464.4198Isopropyl myristate000110-27-02398.4199*Menthyl isovalerate016409-46-42088.5200Methional003268-49-31215.9	184^	Heptanoic acid, 3–methylbutyl ester	000109–25–1	1635.2
186*Hexadecanoic acid, ethyl ester000628–97–72344.8187*Hexanal000066–25–11121.3188^Hexanoic acid, 2–methyl–004536–23–61310.1189Hexanoic acid, 2–propenyl ester000123–68–21555.0190^Hexanoic acid, ethyl ester000540–07–81625.3192Humulene006753–98–61830.2193*Hydrocoumarin000119–84–61942.5194^Isoamyl cinnamate007779–65–92154.9195^Isobutyl acetate000110–19–0969.1196^Isopentyl hexanoate002198–61–01529.5197*Isophorone000078–59–11464.4198Isopropyl myristate016409–46–42088.5200Methional003268–49–31215.9	185^	Heptanoic acid, ethyl ester	000106-30-9	1411.3
187*Hexanal000066-25-11121.3188^Hexanoic acid, 2-methyl-004536-23-61310.1189Hexanoic acid, 2-propenyl ester000123-68-2155.0190^Hexanoic acid, ethyl ester000123-66-01293.9191*Hexanoic acid, pentyl ester000540-07-81625.3192Humulene006753-98-61830.2193*Hydrocoumarin000119-84-61942.5194^Isoamyl cinnamate007779-65-92154.9195^Isobutyl acetate000110-19-0969.1196^Isopentyl hexanoate002198-61-01529.5197*Isophorone000110-27-02398.4199*Menthyl isovalerate016409-46-42088.5200Methional003268-49-31215.9	186*	Hexadecanoic acid, ethyl ester	000628–97–7	2344.8
188^Hexanoic acid, 2-methyl-004536-23-61310.1189Hexanoic acid, 2-propenyl ester000123-68-21555.0190^Hexanoic acid, ethyl ester000123-66-01293.9191*Hexanoic acid, pentyl ester000540-07-81625.3192Humulene006753-98-61830.2193*Hydrocoumarin000119-84-61942.5194^Isoamyl cinnamate007779-65-92154.9195^Isobutyl acetate000110-19-0969.1196^Isopentyl hexanoate002198-61-01529.5197*Isophorone000078-59-11464.4198Isopropyl myristate000110-27-02398.4199*Menthyl isovalerate016409-46-42088.5200Methional003268-49-31215.9	187*	Hexanal	000066–25–1	1121.3
189Hexanoic acid, 2-propenyl ester000123-68-21555.0190^Hexanoic acid, ethyl ester000123-66-01293.9191*Hexanoic acid, pentyl ester000540-07-81625.3192Humulene006753-98-61830.2193*Hydrocoumarin000119-84-61942.5194^Isoamyl cinnamate007779-65-92154.9195^Isobutyl acetate000110-19-0969.1196^Isopentyl hexanoate002198-61-01529.5197*Isophorone000078-59-11464.4198Isopropyl myristate000110-27-02398.4199*Menthyl isovalerate016409-46-42088.5200Methional003268-49-31215.9	188^	Hexanoic acid, 2–methyl–	004536–23–6	1310.1
190^Hexanoic acid, ethyl ester000123-66-01293.9191*Hexanoic acid, pentyl ester000540-07-81625.3192Humulene006753-98-61830.2193*Hydrocoumarin000119-84-61942.5194^Isoamyl cinnamate007779-65-92154.9195^Isobutyl acetate000110-19-0969.1196^Isopentyl hexanoate002198-61-01529.5197*Isophorone000078-59-11464.4198Isopropyl myristate000110-27-02398.4199*Menthyl isovalerate016409-46-42088.5200Methional003268-49-31215.9	189	Hexanoic acid, 2–propenyl ester	000123–68–2	1555.0
191*Hexanoic acid, pentyl ester000540-07-81625.3192Humulene006753-98-61830.2193*Hydrocoumarin000119-84-61942.5194^Isoamyl cinnamate007779-65-92154.9195^Isobutyl acetate000110-19-0969.1196^Isopentyl hexanoate002198-61-01529.5197*Isophorone000078-59-11464.4198Isopropyl myristate000110-27-02398.4199*Menthyl isovalerate016409-46-42088.5200Methional003268-49-31215.9	190^	Hexanoic acid, ethyl ester	000123-66-0	1293.9
192Humulene006753–98–61830.2193*Hydrocoumarin000119–84–61942.5194^Isoamyl cinnamate007779–65–92154.9195^Isobutyl acetate000110–19–0969.1196^Isopentyl hexanoate002198–61–01529.5197*Isophorone000078–59–11464.4198Isopropyl myristate000110–27–02398.4199*Menthyl isovalerate016409–46–42088.5200Methional003268–49–31215.9	191*	Hexanoic acid, pentyl ester	000540–07–8	1625.3
193*Hydrocoumarin000119–84–61942.5194^Isoamyl cinnamate007779–65–92154.9195^Isobutyl acetate000110–19–0969.1196^Isopentyl hexanoate002198–61–01529.5197*Isophorone000078–59–11464.4198Isopropyl myristate000110–27–02398.4199*Menthyl isovalerate016409–46–42088.5200Methional003268–49–31215.9	192	Humulene	006753–98–6	1830.2
194^Isoamyl cinnamate007779–65–92154.9195^Isobutyl acetate000110–19–0969.1196^Isopentyl hexanoate002198–61–01529.5197*Isophorone000078–59–11464.4198Isopropyl myristate000110–27–02398.4199*Menthyl isovalerate016409–46–42088.5200Methional003268–49–31215.9	193*	Hydrocoumarin	000119–84–6	1942.5
195^Isobutyl acetate000110–19–0969.1196^Isopentyl hexanoate002198–61–01529.5197*Isophorone000078–59–11464.4198Isopropyl myristate000110–27–02398.4199*Menthyl isovalerate016409–46–42088.5200Methional003268–49–31215.9	194^	Isoamyl cinnamate	007779–65–9	2154.9
196^Isopentyl hexanoate002198–61–01529.5197*Isophorone000078–59–11464.4198Isopropyl myristate000110–27–02398.4199*Menthyl isovalerate016409–46–42088.5200Methional003268–49–31215.9	195^	Isobutyl acetate	000110–19–0	969.1
197*Isophorone000078–59–11464.4198Isopropyl myristate000110–27–02398.4199*Menthyl isovalerate016409–46–42088.5200Methional003268–49–31215.9	196^	Isopentyl hexanoate	002198–61–0	1529.5
198 Isopropyl myristate 000110-27-0 2398.4 199* Menthyl isovalerate 016409-46-4 2088.5 200 Methional 003268-49-3 1215.9	197*	Isophorone	000078–59–1	1464.4
199* Menthyl isovalerate 016409-46-4 2088.5 200 Methional 003268-49-3 1215.9	198	Isopropyl myristate	000110–27–0	2398.4
200 Methional 003268–49–3 1215.9	199*	Menthyl isovalerate	016409–46–4	2088.5
	200	Methional	003268-49-3	1215.9

201*	Methyl isovalerate	000556–24–1	1060.5
202*	Methyl salicylate	000119–36–8	1916.7
203*	Methyleugenol	000093-15-2	1986.4
204*	Naphthalene, 2-ethoxy-	000093185	2048.2
205	Naphthalene, 2-methoxy-	000093–04–9	2046.5
206^	n–Decanoic acid	000334-48-5	1726.6
207	Nonanal	000124196	1458.9
208^	Nonanoic acid	000112–05–0	1619.6
209	Nonanoic acid, ethyl ester	000123–29–5	1627.4
210*	Nonanoic acid, methyl ester	001731-84-6	1612.1
211*	n–Propyl acetate	000109–60–4	922.0
212^	Octanal, 7-hydroxy-3,7-dimethyl-	000107-75-5	1530.4
213*	Octanoic acid	000124-07-2	1524.8
214^	Octanoic acid, 3-methylbutyl ester	002035–99–6	1742.4
215^	Octanoic acid, ethyl ester	000106-32-1	1524.9
216*	Octanoic acid, methyl ester	000111-11-5	1508.1
217	Oxacycloheptadec-8-en-2-one, (8Z)	000123–69–3	2475.0
218*	Oxacyclohexadecan-2-one	000106-02-5	2339.3
	Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl	000077-83-8	
219	Oxiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl ester cis–	019464–95–0	2286.1
220^	p–Cymene	000099–87–6	1437.5
221^	Pentanoic acid, 3–methyl–	000105–43–1	1212.9
222^	Pentanoic acid, butyl ester	000591–68–4	1409.3
223^	Pentanoic acid, ethyl ester	000539-82-2	1181.1
224	Pentyl octanoate	000638–25–5	1841.7
225^	Phenol, 2–(1–methylethyl)–	000088–69–7	1606.2
226	Phenol, 2–methoxy–	000090-05-1	1672.5
227	Phenol, 2-methyl-5-(1-methylethyl)-	000499–75–2	1602.5
228^	Phenylethyl Alcohol	000060-12-8	1708.9
229*	Piperonal	000120-57-0	1867.3
230*	Propanedioic acid, diethyl ester	000105–53–3	1382.7
231*	Propanethioic acid, S–(2–furanylmethyl) ester	059020-85-8	1776.4
232	Propanoic acid, 2–methyl–	000079-31-2	976.3
233*	Propanoic acid, 2-methyl-, 2-phenylethyl ester	000103-48-0	1924.3
234^	Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester	000103–59–3	2056.2
235*	Propanoic acid, 2-methyl-, 4-formyl-2- methoxyphenyl ester	020665-85-4	2126.6
236	Propanoic acid, 2-methyl-, ethyl ester	000097–62–1	939.6
237^	Propanoic acid, 2-methyl-, octyl ester	000109-15-9	1628.8
238^	Propanoic acid, 2-methyl-, phenylmethyl ester	000103–28–6	1831.0
239	Pyrazine, 2,3-diethyl-5-methyl-	018138–04–0	1424.2

240*	Pyrazine, 2,3-dimethyl-	005910-89-4	1215.6
241^	Pyrazine, 2-ethyl-3,5-dimethyl-	013925–07–0	1329.0
242^	Pyrazine, 2-ethyl-3-methyl-	015707–23–0	1319.4
243*	Pyrazine, 2-methoxy-3-(2-methylpropyl)-	024683-00-9	1596.1
244	Pyrazine, 2-methyl-3-(methylthio)-	002882–20–4	1484.4
245*	Pyrazine, 2-methyl-6-(methylthio)-	002884–13–1	1485.9
246*	Pyrazine, 3-ethyl-2,5-dimethyl-	013360–65–1	1334.7
247	Pyrazine, ethyl–	013925–00–3	1291.5
248	Pyrazine, tetramethyl–	001124–11–4	1247.2
249	Pyrazine, trimethyl-	014667–55–1	1237.0
250^	Tetradecanoic acid, ethyl ester	000124–06–1	2147.1
251	Thiazole, 5–ethenyl–4–methyl–	001759–28–0	1498.4
252	trans-Isoeugenol	005932–68–3	1891.2
253	Triacetin	000102-76-1	1999.2
254	Triethyl citrate	000077–93–0	2219.5
255*	Undecanal	000112-44-7	1672.8
256^	α–lonone	000127-41-3	1753.5
257*	α–lrone	000079–69–6	1754.8
258	α-Phellandrene	000099-83-2	1404.1
259^	β–Myrcene	000123–35–3	1435.4
260^	β–Phenylethyl butyrate	000103–52–6	2025.2
261	β–Pinene	000127–91–3	1598.0
262*	δ–Nonalactone	003301–94–8	1882.5
263	2–Propenoic acid, ethyl ester	000140-88-5	1043.8
264*	Acetoin	000513–86–0	1210.4
265*	Pentanal	000110–62–3	1002.3
266	Propanoic acid	000079–09–4	939.8
267*	1–Propanol, 2–methyl–	000078-83-1	774.7
268	Ethyl Acetate	000141–78–6	756.2
269*	Isopropyl acetate	000108–21–4	1071.2

* validación, ^ predicción

No. Nombre CAS Ι 1* 000765-70-8 1,2-Cyclopentanedione, 3-methyl-1027 2* 1,6,10–Dodecatrien–3–ol, 3,7,11–trimethyl– 007212-44-4 1534 3^ 1,6-Octadien-3-ol, 3,7-dimethyl-000078-70-6 1099 4^ 10-Undecenal 000112-45-8 1299 5^ 1-Butanol, 3-methyl-000123-51-3 734 6 1-Butanol, 3-methyl-, acetate 000123-92-2 876 7^ 1-Butanol, 3-methyl-, formate 000110-45-2 792 8^ 1-Butanol, 3-methyl-, propanoate 000105-68-0 968 1-Cyclohexene-1-methanol, 4-(1-methylethenyl)-9 000536-59-4 1301 10^ 000112-30-1 1271 1–Decanol 11* 1-Hexanol 000111-27-3 867 12* 1-Hexanol, 2-ethyl-000104-76-7 1028 1-Hexanol, 3,5,5-trimethyl-003452-97-9 1047 13 14^ 1-Octanol 000111-87-5 1069.3 15^ 1-Octen-3-ol 003391-86-4 978 16* 2(3H)-Furanone, 5-butyldihydro-000104-50-7 1259 17 2(3H)-Furanone, 5-ethyldihydro-000695-06-7 1054.5 18* 2(3H)-Furanone, 5-heptyldihydro-000104-67-6 1576 19 2(3H)-Furanone, 5-hexyldihydro-000706-14-9 1471 20 2(3H)-Furanone, 5-methyl-000591-12-8 869 21* 2(3H)-Furanone, dihydro-5-methyl-000108-29-2 953 22^ 2(3H)-Furanone, dihydro-5-propyl-000105-21-5 1154 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-23 015356-74-8 1537 trimethyl-24 2(5H)-Furanone, 5-ethyl-3-hydroxy-4-methyl-1195 000698-10-2 25* 2,4-Decadienal, (E,E)-025152-84-5 1316 26* 2,4-Heptadienal, (E,E)-004313-03-5 1010 27 2,6,6-Trimethyl-2-cyclohexene-1,4-dione 001125-21-9 1144 28^ 2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-000106-25-2 1228 29^ 2,6-Octadien-1-ol, 3,7-dimethyl-, formate, (E)-000105-86-2 1306 30* 2-Acetyl-5-methylfuran 001193-79-9 1038 31 2-Acetylthiazole 024295-03-2 1019 32 2-Butanone, 4-(4-hydroxyphenyl)-005471-51-2 1553 33 2-Buten-1-ol, 3-methyl-000556-82-1 776 2-Buten-1-one, 1-(2,6,6-trimethyl-1-cyclohexen-1-34^ 035044-68-9 1418 yl)– 2-Buten-1-one, 1-(2,6,6-trimethyl-2-cyclohexen-1-024720-09-0 35 1393 vI)-, (E)-2-Cyclopenten-1-one, 3-methyl-2-(2-pentenyl)-, 36* 000488-10-8 1401 (Z)-

Tabla 4A. Nombres químicos, número de registro CAS e índices de retención experimentales de las 266 fragancias medidas en la columna ligeramente polar HP5–MS

37*	2–Ethyl–3–methoxypyrazine	025680–58–4	1053
38	2–Furancarboxaldehyde, 5–methyl–	000620-02-0	963
39^	2–Furanmethanol, acetate	000623–17–6	995
40*	2–Furfurylthiol	000098–02–2	911
41*	2–Heptanone	000110-43-0	891
42*	2–Hexen–1–ol, (E)–	000928–95–0	865
43^	2–Hexen–1–ol, acetate, (E)–	002497–18–9	1015
44^	2–Hexenal, (E)–	006728–26–3	852
45^	2H–Pyran, tetrahydro–4–methyl–2–(2–methyl–1– propenyl)–	016409–43–1	1111
46^	2H–Pyran–2–one, 6–hexyltetrahydro–	000710–04–3	1607
47	2H–Pyran–2–one, tetrahydro–6–methyl–	000823–22–3	1095
48*	2H–Pyran–2–one, tetrahydro–6–nonyl–	002721–22–4	1926
49*	2H–Pyran–2–one, tetrahydro–6–pentyl–	000705–86–2	1499
50	2H–Pyran–2–one, tetrahydro–6–propyl–	000698–76–0	1287
51^	2–Methylheptanoic acid	001188–02–9	1141
52*	2–Naphthyl methyl ketone	000093–08–3	1620
53*	2-Nonanone	000821–55–6	1091
54^	2–Nonen–1–ol, (E)–	031502–14–4	1168
55	2–Nonenal, (Z)–	060784–31–8	1159
56	2–Octanone	000111–13–7	991
57*	2–Octenal, (E)–	002548–87–0	1057
58^	2–Octynoic acid, methyl ester	000111–12–6	1202
59*	2–Propanone, 1–(4–methoxyphenyl)–	000122-84-9	1386
60^	2–Propen–1–ol, 3–phenyl–	000104–54–1	1306
61^	2–Propen–1–ol, 3–phenyl–, propanoate	000103–56–0	1555
62*	2–Propenal, 3–(2–methoxyphenyl)–	001504–74–1	1533
63^	2-Tridecanone	000593–08–8	1495
64^	2–Undecanone	000112–12–9	1293
65	3–(4–Isopropylphenyl)–2–methylpropionaldehyde	000103–95–7	1464
66*	3–(Methylthio)propanoic acid methyl ester	013532–18–8	1024
67	3,4–Hexanedione	004437–51–8	802
68	3–Hexen–1–ol	000544–12–7	855
69	3–Hexen–1–ol, acetate, (Z)–	003681–71–8	1006
70^	3–Hexen–1–ol, formate, (Z)–	033467–73–1	920
71*	3–Hexenoic acid, (E)–	001577–18–0	1003
72^	3–Phenylpropanol	000122–97–4	1233
73	4–Heptenal, (Z)–	006728–31–0	901
74^	4H–Pyran–4–one, 2–ethyl–3–hydroxy–	004940–11–8	1197
75	4–Methylthiazole	000693–95–8	817
76	5,6,7,8-Tetrahydroquinoxaline	034413–35–9	1209
77	5,9–Undecadien–2–one, 6,10–dimethyl–	000689–67–8	1434
78^	5,9–Undecadien–2–one, 6,10–dimethyl–, (E)–	003796–70–1	1453

79	5H–5–Methyl–6,7–dihydrocyclopentapyrazine	023747-48-0	1140
80*	5–Heptenal, 2,6–dimethyl–	000106–72–9	1054
81^	5–Methyl–2–phenyl–2–hexenal	021834–92–4	1493
82	5–Thiazoleethanol, 4–methyl–	000137–00–8	1277
83*	6-Octen-1-ol, 3,7-dimethyl-, acetate	000150-84-5	1352
84	6–Octen–1–ol, 3,7–dimethyl–, formate	000105–85–1	1275
85*	6-Octen-1-ol, 3,7-dimethyl-, propanoate	000141–14–0	1448
86	6–Octenal, 3,7–dimethyl–, (R)–	002385–77–5	1153
87	9,12–Octadecadienoic acid (Z,Z)–, methylester	000112–63–0	2094
88^	Acetic acid, 2-phenylethyl ester	000103-45-7	1257.5
89^	Acetic acid, 4-methylphenyl ester	000140–39–6	1170
90*	Acetic acid, decyl ester	000112–17–4	1409
91*	Acetic acid, heptyl ester	000112–06–1	1111
92^	Acetic acid, nonyl ester	000143–13–5	1309
93	Acetic acid, octyl ester	000112–14–1	1210
94	Acetic acid, phenyl–, isopentyl ester	000102–19–2	1497
95	Acetophenone	000098-86-2	1067
96*	Acetylpyrazine	022047–25–2	1022
97^	Allyl nonanoate	007493–72–3	1377
98*	Anisyl propionate	007549–33–9	1514
99*	Benzaldehyde	000100–52–7	961
100^	Benzaldehyde, 2–hydroxy–	000090–02–8	1044
101	Benzaldehyde, 4–(1–methylethyl)–	000122–03–2	1242
102*	Benzaldehyde, 4–ethoxy–	010031–82–0	1333
103^	Benzaldehyde, 4–ethyl–	004748–78–1	1179
104*	Benzene, 1,1'–[oxybis(methylene)]bis–	000103–50–4	1654
105	Benzene, 1,2-dimethoxy-4-(1-propenyl)-	000093–16–3	1457
106*	Benzene, 1,3–dimethoxy–	000151–10–0	1168
107^	Benzene, 1-methoxy-4-methyl-	000104–93–8	1021
108	Benzene, 2-methoxy-4-methyl-1-(1-methylethyl)-	001076–56–8	1235
109	Benzene, ethoxy-	000103–73–1	993
110^	Benzeneacetaldehyde, α–ethylidene–	004411–89–6	1274
111^	Benzeneacetic acid, 2-methylpropyl ester	000102–13–6	1392
112*	Benzeneacetic acid, 2-phenylethyl ester	000102–20–5	1922
113^	Benzeneacetic acid, methyl ester	000101–41–7	1178
114	Benzeneacetic acid, phenylmethyl ester	000102–16–9	1815
115*	Benzeneethanol, α,α–dimethyl–	000100-86-7	1158
116	Benzenemethanol, 4-methoxy-	000105–13–5	1284
117^	Benzenemethanol, 4-methoxy-, acetate	000104–21–2	1421
118*	Benzenemethanol, 4-methoxy-, formate	000122–91–8	1334
119^	Benzenemethanol, α –methyl–, acetate	000093–92–5	1194
120	Benzenepropanal	000104–53–0	1163

121^	Benzoic acid	000065-85-0	1178
122*	Benzoic acid, 2-hydroxy-, 2-methylpropyl ester	000087-19-4	1475
123	Benzoic acid, 2-hydroxy-, ethyl ester	000118-61-6	1273
124*	Benzoic acid, 2-hydroxy-, phenylmethyl ester	000118-58-1	1876
125	Benzoic acid, ethyl ester	000093-89-0	1172
126^	Benzophenone	000119-61-9	1635
127^	Benzyl alcohol	000100-51-6	1034
128^	Benzyl Benzoate	000120-51-4	1770
400	Bicyclo[2.2.1]heptan–2–ol, 1,7,7–trimethyl–, acetate,	005655–61–8	4000
129	(1S-endo)- Isobornyl acetate	000125-12-2	1289
130*	Butanal. 3–methyl–	000590-86-3	900
131	Butanedioic acid, dimethyl ester	000106-65-0	1032
132*	Butanoic acid	000107-92-6	794
133*	Butanoic acid, 2-methyl-, ethyl ester	007452–79–1	849
134	Butanoic acid, 2-methylpropyl ester	000539-90-2	954
135^	Butanoic acid, 3,7–dimethyl–2,6–octadienyl ester,	000106-29-6	1561.5
136	Butanoic acid, 3–methyl–	000503–74–2	850
137^	Butanoic acid, 3-methyl-, 2-phenylethyl ester	000140-26-1	1494
138*	Butanoic acid, 3–methyl–, 3–methylbutyl ester	000659–70–1	1104.5
139*	Butanoic acid, 3-methyl-, 3-phenyl-2-propenyl ester	000140-27-2	1686
140	Butanoic acid, 3–methyl–, butyl ester	000109–19–3	1045
141^	Butanoic acid, 3–methyl–, ethyl ester	000108-64-5	852
142	Butanoic acid, 3-methyl-, phenylmethyl ester	000103-38-8	1396
143^	Butanoic acid, 3-methylbutyl ester	000106-27-4	1055
144*	Butanoic acid, butyl ester	000109–21–7	995
145	Butanoic acid, ethyl ester	000105544	804
146*	Butanoic acid, phenylmethyl ester	000103-37-7	1347
147^	Butanoic acid, propyl ester	000105-66-8	899
148	Caryophyllene	000087-44-5	1426
149	Cedrol	000077-53-2	1611
150*	Cinnamaldehyde, (E)–	014371-10-9	1272
151*	Cinnamaldehyde, α-pentyl-	000122-40-7	1651
152	Cinnamyl cinnamate	000122-69-0	2416
153^	Citronellol	000106-22-9	1227
154	Citronellyl butyrate	000141-16-2	1528
155^	Creosol	000093-51-6	1193
156*	Cyclohexane, 1–ethenyl–1–methyl–2, 4–bis (1– methylethenyl)–,[1S– $(1\alpha, 2\beta, 4\beta)$]–	000515–13–9	1426
157*	Cyclohexanol, $5-methyl-2-(1-methylethyl)-,$ (1 α ,2 α ,5 α)-	000491–02–1 015356–70–4	1174
158*	Cyclohexanone, 2–(1–mercapto–1–methylethyl)–5– methyl–	038462–22–5	1367
159	Cyclohexanone, 5-methyl-2-(1-methylethyl)-, (2R-	001196-31-2	1155

cis)–		
Cyclohexene, 1-methyl-4-(1-methylethylidene)-	000586–62–9	1089
Cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl ester	024851–98–7	1657
D-Carvone	002244–16–8	1246
Decanal	000112–31–2	1205
Decanedioic acid, diethyl ester	000110-40-7	1787
Decanoic acid, ethyl ester	000110–38–3	1394
Diphenyl ether	000101–84–8	1404
D-Limonene	005989–27–5	1029
Dodecanal	000112–54–9	1408
Dodecanoic acid, ethyl ester	000106–33–2	1593
Ethane, 1,1–diethoxy–	000105–57–7	729
Ethanone, 1–(2,4–dimethylphenyl)–	000089–74–7	1253
Ethanone, 1–(2–pyridinyl)–	001122–62–9	1033
Ethanone, 1–(3–pyridinyl)–	000350–03–8	1111
Ethanone, 1–(4–methylphenyl)–	000122–00–9	1186
Ethyl Oleate	000111–62–6	2167
Ethyl Vanillin	000121–32–4	1459
Eucalyptol	000470-82-6	1032
Eugenol	000097–53–0	1359
Formic acid, pentyl ester	000638–49–3	826
Formic acid, phenylmethyl ester	000104–57–4	1078
Furan, 2–[(methylthio)methyl]–	001438–91–1	1001
Furan, 2-methyl-5-(methylthio)-	013678–59–6	951
Heptanoic acid	000111–14–8	1084
Heptanoic acid, 3-methylbutyl ester	000109–25–1	1347
Heptanoic acid, ethyl ester	000106–30–9	1127
Hexadecanoic acid, ethyl ester	000628–97–7	1993
Hexanal	000066–25–1	803
Hexanoic acid, 2-methyl-	004536–23–6	1043
Hexanoic acid, 2-propenyl ester	000123–68–2	1079
Hexanoic acid, ethyl ester	000123–66–0	999
Hexanoic acid, pentyl ester	000540–07–8	1287
Humulene	006753–98–6	1460
Hydrocoumarin	000119–84–6	1387
Isoamyl cinnamate	007779–65–9	1745
Isobutyl acetate	000110–19–0	773
Isopentyl hexanoate	002198–61–0	1249
Isophorone	000078–59–1	1122
Isopropyl myristate	000110–27–0	1824
Menthyl isovalerate	016409–46–4	1518
Methional	003268–49–3	907
	cis)- Cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl ester D-Carvone Decanal Decanedioic acid, diethyl ester Decanoic acid, ethyl ester Diphenyl ether D-Limonene Dodecanal Dodecanoic acid, ethyl ester Ethane, 1,1-diethoxy- Ethanone, 1-(2,4-dimethylphenyl)- Ethanone, 1-(2-pyridinyl)- Ethanone, 1-(2-pyridinyl)- Ethanone, 1-(4-methylphenyl)- Ethyl Oleate Ethyl Vanillin Eucalyptol Eugenol Formic acid, pentyl ester Furan, 2[(methylthio)methyl]- Furanoic acid Heptanoic acid, 3-methylbutyl ester Hexadecanoic acid, ethyl ester Hexanoic acid, 2-propenyl ester Hexanoic acid, 2-methyl- Hexanoic acid, 2-methyl- Hexanoic acid, 2-propenyl ester Hexanoic acid, pentyl ester Hexanoic acid, pentyl ester Hexanoic acid, pentyl ester Hexanoic acid, 2-propenyl ester Hexanoic acid, pentyl ester Hexanoic	CIS)- 000586-62-9 Cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl 024851-98-7 D-Carvone 002244-16-8 Decanal 000112-31-2 Decanedioic acid, diethyl ester 000110-40-7 Decanoic acid, ethyl ester 000110-38-3 Diphenyl ether 000101-84-3 D-Limonene 00589-27-5 Dodecanoic acid, ethyl ester 000105-57-7 Ethane, 1,1-diethoxy- 000105-57-7 Ethanone, 1-(2,4-dimethylphenyl)- 00122-62-9 Ethanone, 1-(2,4-dimethylphenyl)- 000122-00-9 Ethanone, 1-(2,4-dimethylphenyl)- 000122-00-9 Ethanone, 1-(3-pyridinyl)- 000122-00-9 Ethyl Vanillin 00012-32-4 Eucalyptol 00047-82-6 Eugenol 000097-53-0 Formic acid, pentyl ester 000104-57-4 Furan, 2((methylthio)methyl]- 0114-82-8 Eugenol 000122-00-9 Formic acid, pentyl ester 000102-30-0 Ethyl Vanillin 00112-32-4 Eucalyptol 00047-82-6 Eugenol 000104-57-4

201*	Methyl isovalerate	000556-24-1	777
202*	Methyl salicylate	000119–36–8	1196
203*	Methyleugenol	000093-15-2	1404.5
204^	Naphthalene, 2-ethoxy-	000093185	1528
205	Naphthalene, 2-methoxy-	000093-04-9	1454.5
206^	n–Decanoic acid	000334-48-5	1370
207	Nonanal	000124-19-6	1104
208^	Nonanoic acid	000112-05-0	1274
209*	Nonanoic acid, ethyl ester	000123–29–5	1295
210^	Nonanoic acid, methyl ester	001731-84-6	1223
211	n–Propyl acetate	000109–60–4	715
212^	Octanal, 7-hydroxy-3,7-dimethyl-	000107-75-5	1288
213^	Octanoic acid	000124-07-2	1179
214^	Octanoic acid, 3-methylbutyl ester	002035–99–6	1445
215^	Octanoic acid, ethyl ester	000106-32-1	1196
216	Octanoic acid, methyl ester	000111-11-5	1125
217	Oxacycloheptadec-8-en-2-one, (8Z)	000123–69–3	1937.5
218*	Oxacyclohexadecan-2-one	000106-02-5	1839
	Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl	000077-83-8	
219	ester Oxiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl ester. cis–	019464–95–0	1517
220^	p–Cymene	000099–87–6	1025
221^	Pentanoic acid, 3–methyl–	000105-43-1	944
222^	Pentanoic acid, butyl ester	000591–68–4	1093
223	Pentanoic acid, ethyl ester	000539-82-2	852
224*	Pentyl octanoate	000638-25-5	1484
225^	Phenol, 2–(1–methylethyl)–	000088–69–7	1199
226*	Phenol, 2-methoxy-	000090-05-1	1090
227*	Phenol, 2-methyl-5-(1-methylethyl)-	000499-75-2	1291
228*	Phenylethyl Alcohol	000060-12-8	1114
229*	Piperonal	000120-57-0	1336
230*	Propanedioic acid, diethyl ester	000105–53–3	1070
231	Propanethioic acid, S–(2–furanylmethyl) ester	059020-85-8	1256
232	Propanoic acid, 2-methyl-	000079-31-2	765
233*	Propanoic acid, 2-methyl-, 2-phenylethyl ester	000103-48-0	1396
234^	Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester	000103–59–3	1584
235*	Propanoic acid, 2–methyl–, 4–formyl–2– methoxyphenyl ester	020665-85-4	1671
236	Propanoic acid, 2-methyl-, ethyl ester	000097–62–1	757
237^	Propanoic acid, 2-methyl-, octyl ester	000109-15-9	1344
238^	Propanoic acid, 2-methyl-, phenylmethyl ester	000103–28–6	1298
239^	Pyrazine, 2,3–diethyl–5–methyl–	018138-04-0	1155

240	Pyrazine, 2,3–dimethyl–	005910-89-4	918
241	Pyrazine, 2-ethyl-3,5-dimethyl-	013925–07–0	1084
242	Pyrazine, 2-ethyl-3-methyl-	015707–23–0	1003
243*	Pyrazine, 2-methoxy-3-(2-methylpropyl)-	024683–00–9	1181
244^	Pyrazine, 2-methyl-3-(methylthio)-	002882–20–4	1169
245*	Pyrazine, 2-methyl-6-(methylthio)-	002884–13–1	1187
246^	Pyrazine, 3-ethyl-2,5-dimethyl-	013360–65–1	1078
247*	Pyrazine, ethyl–	013925–00–3	915
248	Pyrazine, tetramethyl–	001124–11–4	1087
249	Pyrazine, trimethyl–	014667–55–1	1004
250*	Tetradecanoic acid, ethyl ester	000124–06–1	1792.3
251*	Thiazole, 5-ethenyl-4-methyl-	001759–28–0	1026
252*	trans-Isoeugenol	005932–68–3	1451
253	Triacetin	000102–76–1	1352
254	Triethyl citrate	000077–93–0	1664
255^	Undecanal	000112-44-7	1306
256*	α–lonone	000127-41-3	1431
257^	α–lrone	000079–69–6	1519
258	α-Phellandrene	000099-83-2	1006
259^	β–Myrcene	000123–35–3	991
260^	β–Phenylethyl butyrate	000103–52–6	1443
261	β–Pinene	000127–91–3	978
262*	δ–Nonalactone	003301–94–8	1394
263*	2–Propenoic acid, ethyl ester	000140-88-5	702
264*	Acetoin	000513-86-0	714
265	Pentanal	000110–62–3	704
266	Propanoic acid	000079–09–4	706

* validación, ^ predicción

Tabla 5A. Nombres químicos, número de registro CAS e índices de retención experimentales de las 262 fragancias medidas en la columna apolar HP–1

No.	Nombre	CAS	1
1^	1,2-Cyclopentanedione, 3-methyl-	000765–70–8	982.5
2^	1,6,10–Dodecatrien–3–ol, 3,7,11–trimethyl–	007212-44-4	1506.8
3*	1,6-Octadien-3-ol, 3,7-dimethyl-	000078–70–6	1099.7
4*	10–Undecenal	000112–45–8	1298.7
5*	1–Butanol, 3–methyl–	000123–51–3	688.7
6^	1–Butanol, 3–methyl–, acetate	000123–92–2	847.6
7^	1–Butanol, 3–methyl–, formate	000110-45-2	770.8
8^	1–Butanol, 3–methyl–, propanoate	000105–68–0	986.6
9	1–Cyclohexene–1–methanol, 4–(1–methylethenyl)–	000536–59–4	1248.0
10*	1–Decanol	000112–30–1	1216.9
11*	1–Hexanol	000111–27–3	843.8
12*	1–Hexanol, 2–ethyl–	000104–76–7	1018.7
13	1–Hexanol, 3,5,5–trimethyl–	003452–97–9	945.5
14^	1–Octanol	000111-87-5	1032.9
15^	1–Octen–3–ol	003391-86-4	1025.8
16	2(3H)–Furanone, 5–butyldihydro–	000104–50–7	1124.1
17	2(3H)–Furanone, 5–ethyldihydro–	000695–06–7	929.1
18*	2(3H)–Furanone, 5–heptyldihydro–	000104–67–6	1393.5
19	2(3H)–Furanone, 5–hexyldihydro–	000706-14-9	1311.6
20	2(3H)–Furanone, 5–methyl–	000591-12-8	799.4
21*	2(3H)–Furanone, dihydro–5–methyl–	000108–29–2	800.0
22^	2(3H)–Furanone, dihydro–5–propyl–	000105–21–5	1010.7
23	2(4H)–Benzofuranone, 5,6,7,7a–tetrahydro–4,4,7a– trimethyl–	015356–74–8	1299.0
24	2(5H)–Furanone, 5–ethyl–3–hydroxy–4–methyl–	000698-10-2	1142.3
25*	2,4–Decadienal, (E,E)–	025152-84-5	1198.5
26^	2,4–Heptadienal, (E,E)–	004313-03-5	930.0
27*	2,6,6–Trimethyl–2–cyclohexene–1,4–dione	001125–21–9	1115.6
28^	2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-	000106-25-2	1123.2
29^	2,6–Octadien–1–ol, 3,7–dimethyl–, formate, (E)–	000105-86-2	1245.5
30	2–Acetyl–5–methylfuran	001193–79–9	989.3
31*	2–Acetylthiazole	024295–03–2	1031.0
32	2-Butanone, 4-(4-hydroxyphenyl)-	005471–51–2	1338.3
33	2–Buten–1–ol, 3–methyl–	000556-82-1	700.1
34^	2-Buten-1-one, 1-(2,6,6-trimethyl-1-cyclohexen-1- yl)-	035044–68–9	1351.7
35	2-Buten-1-one, 1-(2,6,6-trimethyl-2-cyclohexen-1- yl)-, (E)-	024720090	1351.7

36	2–Cyclopenten–1–one, 3–methyl–2–(2–pentenyl)–, (Z)–	000488-10-8	1315.4
37*	2–Ethyl–3–methoxypyrazine	025680–58–4	1073.5
38*	2–Furancarboxaldehyde, 5–methyl–	000620020	928.6
39*	2–Furanmethanol, acetate	000623-17-6	1043.7
40	2–Furfurylthiol	000098-02-2	842.8
41*	2–Heptanone	000110-43-0	866.4
42^	2–Hexen–1–ol, (E)–	000928–95–0	852.0
43^	2-Hexen-1-ol, acetate, (E)-	002497-18-9	1009.8
44*	2–Hexenal, (E)–	006728–26–3	815.0
45^	2H–Pyran, tetrahydro–4–methyl–2–(2–methyl–1– propenyl)–	016409–43–1	1125.8
46^	2H–Pyran–2–one, 6–hexyltetrahydro–	000710-04-3	1400.1
47*	2H–Pyran–2–one, tetrahydro–6–methyl–	000823–22–3	892.4
48	2H–Pyran–2–one, tetrahydro–6–nonyl–	002721–22–4	1663.1
49	2H–Pyran–2–one, tetrahydro–6–pentyl–	000705-86-2	1291.6
50^	2H–Pyran–2–one, tetrahydro–6–propyl–	000698–76–0	1098.9
51^	2–Methylheptanoic acid	001188–02–9	1073.7
52^	2–Naphthyl methyl ketone	000093–08–3	1452.1
53^	2-Nonanone	000821–55–6	1058.7
54*	2–Nonen–1–ol, (E)–	031502–14–4	1140.1
55	2–Nonenal, (Z)–	060784–31–8	1115.1
56	2–Octanone	000111–13–7	979.0
57	2–Octenal, (E)–	002548–87–0	1009.6
58^	2–Octynoic acid, methyl ester	000111–12–6	1135.9
59^	2–Propanone, 1–(4–methoxyphenyl)–	000122-84-9	1259.4
60*	2–Propen–1–ol, 3–phenyl–	000104–54–1	1239.9
61*	2–Propen–1–ol, 3–phenyl–, propanoate	000103–56–0	1392.0
62^	2–Propenal, 3–(2–methoxyphenyl)–	001504–74–1	1324.9
63	2-Tridecanone	000593–08–8	1428.5
64^	2–Undecanone	000112–12–9	1245.2
65	3–(4–Isopropylphenyl)–2–methylpropionaldehyde	000103–95–7	1441.2
66*	3–(Methylthio)propanoic acid methyl ester	013532–18–8	967.3
67*	3,4–Hexanedione	004437–51–8	911.6
68	3–Hexen–1–ol	000544–12–7	852.0
69	3–Hexen–1–ol, acetate, (Z)–	003681–71–8	1009.8
70^	3–Hexen–1–ol, formate, (Z)–	033467–73–1	938.6
71*	3–Hexenoic acid, (E)–	001577–18–0	913.4
72^	3–Phenylpropanol	000122–97–4	1232.9
73	4–Heptenal, (Z)–	006728-31-0	927.2
74*	4H–Pyran–4–one, 2–ethyl–3–hydroxy–	004940-11-8	1171.6
75	4–Methylthiazole	000693–95–8	863.0
76	5,6,7,8–Tetrahydroquinoxaline	034413–35–9	1229.2

77^ 5,9–Undecadien–2–one, 6,10–dimethyl– 000689–67–8 78* 5,9–Undecadien–2–one, 6,10–dimethyl–, (E)– 003796–70–1 79 5H–5–Methyl–6,7–dihydrocyclopentapyrazine 023747–48–0 80^ 5–Heptenal, 2,6–dimethyl– 000106–72–9 914 5 Mathyl 2, phagnal 021024–02, 4	1331.7 1331.7 1192.8 1028.8 1467.5 1151.5 1305.6
78* 5,9–Undecadien–2–one, 6,10–dimethyl–, (E)– 003796–70–1 79 5H–5–Methyl–6,7–dihydrocyclopentapyrazine 023747–48–0 80^ 5–Heptenal, 2,6–dimethyl– 000106–72–9 244 5 Mathyl 2, phagnal 021024,02,4	1331.7 1192.8 1028.8 1467.5 1151.5 1305.6
79 5H–5–Methyl–6,7–dihydrocyclopentapyrazine 023747–48–0 80^ 5–Heptenal, 2,6–dimethyl– 000106–72–9 814 5 Matthyl 2, phagod 2, p	1192.8 1028.8 1467.5 1151.5 1305.6
80^ 5-Heptenal, 2,6-dimethyl- 000106-72-9 814 5 Mathud 2 bauenal	1028.8 1467.5 1151.5 1305.6
044 E Mathud O shared O havenal	1467.5 1151.5 1305.6
81 ^A 5–Metnyi–2–phenyi–2–nexenai 021834–92–4	1151.5 1305.6
82* 5–Thiazoleethanol, 4–methyl– 000137–00–8	1305.6
83 6–Octen–1–ol, 3,7–dimethyl–, acetate 000150–84–5	1045 0
84* 6–Octen–1–ol, 3,7–dimethyl–, formate 000105–85–1	1245.0
85 [^] 6–Octen–1–ol, 3,7–dimethyl–, propanoate 000141–14–0	1433.6
86* 6–Octenal, 3,7–dimethyl–, (R)– 002385–77–5	1096.5
87 9,12–Octadecadienoic acid (Z,Z)–, methylester 000112–63–0	2075.0
88^Acetic acid, 2-phenylethyl ester000103-45-7	1281.4
89^Acetic acid, 4-methylphenyl ester000140-39-6	1172.8
90^Acetic acid, decyl ester000112–17–4	1403.5
91* Acetic acid, heptyl ester 000112–06–1	1123.1
92 [^] Acetic acid, nonyl ester 000143–13–5	1317.6
93 Acetic acid, octyl ester 000112–14–1	1210.4
94 Acetic acid, phenyl–, isopentyl ester 000102–19–2	1513.0
95* Acetophenone 000098–86–2	1070.5
96^ Acetylpyrazine 022047–25–2	1004.9
97^ Allyl nonanoate 007493-72-3	1443.1
98* Anisyl propionate 007549–33–9	1470.0
99^ Benzaldehyde 000100–52–7	1021.1
100* Benzaldehyde, 2–hydroxy– 000090–02–8	1146.2
101Benzaldehyde, 4–(1–methylethyl)–000122–03–2	1219.2
102* Benzaldehyde, 4–ethoxy– 010031–82–0	1220.3
103 [^] Benzaldehyde, 4–ethyl– 004748–78–1	1179.6
104* Benzene, 1,1'–[oxybis(methylene)]bis– 000103–50–4	1650.4
105 Benzene, 1,2–dimethoxy–4–(1–propenyl)– 000093–16–3	1344.7
106* Benzene, 1,3–dimethoxy– 000151–10–0	1085.6
107 [^] Benzene, 1–methoxy–4–methyl– 000104–93–8	1010.1
108* Benzene, 2-methoxy-4-methyl-1-(1-methylethyl)- 001076-56-8	1223.7
109 Benzene, ethoxy- 000103-73-1	1044.0
110 ^{$^{\circ}$} Benzeneacetaldehyde, α -ethylidene- 004411-89-6	1253.0
111*Benzeneacetic acid, 2-methylpropyl ester000102-13-6	1442.1
112Benzeneacetic acid, 2-phenylethyl ester000102-20-5	1891.9
113^Benzeneacetic acid, methyl ester000101-41-7	1207.4
114*Benzeneacetic acid, phenylmethyl ester000102–16–9	1821.7
115 [*] Benzeneethanol, α , α -dimethyl- 000100-86-7	1185.1
116*Benzenemethanol, 4-methoxy-000105-13-5	1180.7
117^Benzenemethanol, 4-methoxy-, acetate000104-21-2	1341.7
118^Benzenemethanol, 4-methoxy-, formate000122-91-8	1273.3

119*	Benzenemethanol, α -methyl-, acetate	000093–92–5	1268.9
120	Benzenepropanal	000104–53–0	1194.8
121^	Benzoic acid	000065-85-0	1145.2
122^	Benzoic acid, 2-hydroxy-, 2-methylpropyl ester	000087-19-4	1465.2
123^	Benzoic acid, 2-hydroxy-, ethyl ester	000118–61–6	1318.5
124	Benzoic acid, 2-hydroxy-, phenylmethyl ester	000118–58–1	1850.2
125	Benzoic acid, ethyl ester	000093-89-0	1220.3
126^	Benzophenone	000119–61–9	1598.8
127	Benzyl alcohol	000100-51-6	1076.5
128^	Benzyl Benzoate	000120-51-4	1757.7
100	Bicyclo[2.2.1]heptan–2–ol, 1,7,7–trimethyl–, acetate,	005655–61–8	4000.0
129	(15–endo)– Isobornyl acetate	000125-12-2	1383.0
130^	Butanal, 3–methyl–	000590-86-3	651.8
131	Butanedioic acid, dimethyl ester	000106-65-0	929.2
132*	Butanoic acid	000107–92–6	703.4
133^	Butanoic acid, 2-methyl-, ethyl ester	007452–79–1	912.7
134*	Butanoic acid, 2-methylpropyl ester	000539–90–2	982.8
135*	Butanoic acid, 3,7–dimethyl–2,6–octadienyl ester, (E)–	000106–29–6	1503.0
136	Butanoic acid, 3–methyl–	000503–74–2	748.0
137^	Butanoic acid, 3–methyl–, 2–phenylethyl ester	000140–26–1	1512.2
138*	Butanoic acid, 3-methyl-, 3-methylbutyl ester	000659–70–1	1107.2
139^	Butanoic acid, 3-methyl-, 3-phenyl-2-propenyl ester	000140-27-2	1620.6
140^	Butanoic acid, 3–methyl–, butyl ester	000109–19–3	1061.9
141*	Butanoic acid, 3-methyl-, ethyl ester	000108-64-5	850.9
142	Butanoic acid, 3-methyl-, phenylmethyl ester	000103–38–8	1439.9
143	Butanoic acid, 3-methylbutyl ester	000106–27–4	1063.6
144	Butanoic acid, butyl ester	000109–21–7	1015.5
145	Butanoic acid, ethyl ester	000105–54–4	794.9
146	Butanoic acid, phenylmethyl ester	000103-37-7	1402.4
147	Butanoic acid, propyl ester	000105–66–8	927.7
148	Caryophyllene	000087-44-5	1485.1
149	Cedrol	000077-53-2	1593.0
150^	Cinnamaldehyde, (E)-	014371–10–9	1194.8
151*	Cinnamaldehyde, α-pentyl-	000122-40-7	1604.0
152	Cinnamyl cinnamate	000122–69–0	2108.8
153^	Citronellol	000106-22-9	1119.4
154	Citronellyl butyrate	000141-16-2	1502.5
155^	Creosol	000093–51–6	1143.7
156^	Cyclohexane, 1-ethenyl-1-methyl-2, 4-bis (1-methylethenyl)-,[1S-(1 α ,2 β ,4 β)]-	000515–13–9	1434.7
157*	Cyclohexanol, 5 -methyl-2-(1-methylethyl)-, $(1\alpha,2\alpha,5\alpha)$ -	000491–02–1 015356–70–4	1170.0

158*	Cyclohexanone, 2–(1–mercapto–1–methylethyl)–5– methyl–	038462–22–5	1166.4	
159	Cyclohexanone, 5–methyl–2–(1–methylethyl)–, (2R–	001196–31–2	1146.7	
160	Cyclohexene, 1–methyl–4–(1–methylethylidene)–	000586-62-9	1089.8	
161	Cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl ester	024851–98–7	1642.3	
162*	D–Carvone	002244–16–8	1183.2	
163	Decanal	000112-31-2	1195.7	
164	Decanedioic acid, diethyl ester	000110-40-7	1745.5	
165*	Decanoic acid, ethyl ester	000110–38–3	1411.3	
166	Diphenyl ether	000101-84-8	1484.0	
167*	D-Limonene	005989–27–5	1089.8	
168*	Dodecanal	000112–54–9	1379.8	
169*	Dodecanoic acid, ethyl ester	000106-33-2	1599.9	
170*	Ethane, 1,1–diethoxy–	000105–57–7	717.9	
171^	Ethanone, 1–(2,4–dimethylphenyl)–	000089-74-7	1146.7	
172	Ethanone, 1–(2–pyridinyl)–	001122-62-9	1051.1	
173*	Ethanone, 1–(3–pyridinyl)–	000350-03-8	1041.6	
174^	Ethanone, 1–(4–methylphenyl)–	000122-00-9	1108.8	
175*	Ethyl Oleate	000111–62–6	2150.9	
176	Ethyl Vanillin	000121–32–4	1346.9	
177	Eucalyptol	000470-82-6	1158.9	
178*	Eugenol	000097–53–0	1328.8	
179*	Formic acid, pentyl ester	000638–49–3	838.4	
180^	Formic acid, phenylmethyl ester	000104–57–4	1143.4	
181*	Furan, 2–[(methylthio)methyl]–	001438–91–1	1028.0	
182^	Furan, 2-methyl-5-(methylthio)-	013678–59–6	1017.1	
183*	Heptanoic acid	000111-14-8	1013.5	
184^	Heptanoic acid, 3-methylbutyl ester	000109–25–1	1374.0	
185*	Heptanoic acid, ethyl ester	000106309	1132.7	
186*	Hexadecanoic acid, ethyl ester	000628–97–7	1968.9	
187^	Hexanal	000066–25–1	811.7	
188*	Hexanoic acid, 2-methyl-	004536–23–6	998.2	
189*	Hexanoic acid, 2-propenyl ester	000123–68–2	1139.0	
190^	Hexanoic acid, ethyl ester	000123-66-0	1015.5	
191*	Hexanoic acid, pentyl ester	000540–07–8	1331.7	
192	Humulene	006753–98–6	1453.6	
193*	Hydrocoumarin	000119-84-6	1278.9	
194	Isoamyl cinnamate	007779–65–9	1627.9	
195^	Isobutyl acetate	000110-19-0	758.0	
196^	Isopentyl hexanoate	002198–61–0	1262.9	
197	Isophorone	000078–59–1	994.7	
198 Isopropyl myristate 000110-27-0 1831.3 199* Menthyl isovalerate 016409-46-4 1581.6 200 Methyl isovalerate 003268-49-3 842.8 201* Methyl isovalerate 000556-24-1 755.7 202* Methyl isovalerate 000093-15-2 1344.3 204* Naphthalene, 2-methoxy- 000093-16-2 1344.3 206* n-Decanoic acid 00033-48-5 1273.3 207 Nonanoic acid 000124-19-6 1113.4 208* Nonanoic acid, methyl ester 00173-29-5 1326.3 210* Nonanoic acid, methyl ester 00109-60-4 686.7 212^ Octanoic acid, methyl ester 000107-75-5 1162.7 213* Octanoic acid, 3-methylbutyl ester 000106-02-1 1274.7 214* Octanoic acid, methyl ester 000106-02-5 1768.3 216* Octanoic acid, methyl ester 000106-02-5 1768.4 217* Pentanoic acid, a-methyl-3-phenyl-, ethyl 000077-8-8 179.3 e				
---	------	---	-------------	--------
199* Menthyl isovalerate 016409-46-4 1581.6 200 Methyl siovalerate 003268-49-3 842.8 201* Methyl salicylate 0001556-24-1 755.7 202* Methyl salicylate 000093-15-2 1344.3 204* Naphthalene, 2-enthoxy- 000093-18-5 1450.7 205 Naphthalene, 2-methoxy- 000033-44-5 1273.3 206* n-Decanoic acid 000124-09-6 1133.3 207 Nonanoic acid, ethyl ester 000123-29-5 1326.3 210* Nonanoic acid, methyl ester 00109-60-4 686.7 212* Octanal, 7-hydroxy-3,7-dimethyl- 000107-55 1162.2 213* Octanoic acid, athyl ester 000108-32-1 1217.9 214* Octanoic acid, athyl ester 000108-39-8 6454.3 216 Octanoic acid, athyl ester 000108-9-3 1675.7 216 Oxacycloheptadec-8-en-2-one 000106-02-5 1768.3 0xiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000077-83-8 297.7 220* </td <td>198</td> <td>Isopropyl myristate</td> <td>000110-27-0</td> <td>1831.3</td>	198	Isopropyl myristate	000110-27-0	1831.3
200 Methional 003268-49-3 842.8 201* Methyl isovalerate 000556-24-1 755.7 202* Methyleugenol 000093-15-2 1344.1 203* Methyleugenol 000093-18-5 1450.0 204* Naphthalene, 2-emthoxy- 000093-18-5 1450.0 205 Naphthalene, 2-emthoxy- 000093-04-9 1373.2 206^ n-Decanoic acid 000124-19-6 1113.3 207 Nonanoic acid, ethyl ester 00112-05-0 1195.1 209 Nonanoic acid, methyl ester 001731-84-6 1244.1 211 n-Propyl acetate 000109-60-4 686.7 210* Nonanoic acid 00112-07-2 1091.0 214^ Octanoic acid, methyl ester 000108-32-1 1217.1 216 Octanoic acid, methyl ester 000106-02-5 1768.1 217 Oxacyclohexadecan-2-one 000106-02-5 1768.2 204* p-Cymene 0000591-68-4 138.0 219 ester 0000105-43-1	199*	Menthyl isovalerate	016409–46–4	1581.6
201* Methyl isovalerate 000556-24-1 755.7 202* Methyl salicylate 000119-36-8 1245. 203* Methyleugenol 000093-15-2 1344.3 204* Naphthalene, 2-methoxy- 000093-04-9 1373.3 206* n-Decanoic acid 000112-05-0 1195.3 207 Nonanoic acid, ethyl ester 001012-05-0 1195.3 209 Nonanoic acid, methyl ester 00173-184-6 1244.4 211 n-Propyl acetate 000109-60-4 686.7 212* Octanoic acid, methyl ester 000124-07-2 1091.0 214* Octanoic acid, 3-methylbutyl ester 000106-62-4 1247.3 216* Octanoic acid, methyl ester 000112-05-0 127.3 216 Octanoic acid, methyl ester 000106-02-5 1768.3 218* Oxacyclohexadecan-2-one 000106-02-5 1768.4 0xiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 0000778-8-8 199 ester Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 0000591-68-4 1133.0	200	Methional	003268–49–3	842.8
202* Methyl salicylate 000119-36-8 1245. 203* Methyleugenol 000093-15-2 1344.3 204* Naphthalene, 2methoxy- 000093-18-3 1450.7 205 Naphthalene, 2methoxy- 000093-04-9 1373.3 206 nDecanoic acid 00034-48-5 1273.3 207 Nonanoic acid 000112-05-0 1195.7 209 Nonanoic acid, ethyl ester 000132-29-5 1326.3 210* Nonanoic acid, methyl ester 000173-29-5 1162.7 211 n-Propyl acetate 000109-60-4 686.7 212* Octanoic acid, athyl ester 000107-75-5 1162.7 214^ Octanoic acid, 3methylbutyl ester 000106-32-1 1217.3 216 Octanoic acid, ethyl ester 000106-32-1 138.7 218* Oxacyclohexadecan-2-one 000102-69-3 1867.3 219 Oxiranecarboxylic acid, 3methyl-3-phenyl-, ethyl 019464-95-0 1593.7 220* p-Cymene 0000591-68-4 1138.4 1234.7 <t< td=""><td>201*</td><td>Methyl isovalerate</td><td>000556-24-1</td><td>755.7</td></t<>	201*	Methyl isovalerate	000556-24-1	755.7
203* Methyleugenol 000093–15–2 1344.3 204* Naphthalene, 2–ettoxy– 000093–18–5 1450.7 205 Naphthalene, 2–methoxy– 000033–18–5 1450.7 206 n –Decanoic acid 00033–448–5 1273.7 207 Nonanoic acid 000124–19–6 1113.3 208 Nonanoic acid, ethyl ester 000123–29–5 1326.3 210* Nonanoic acid, methyl ester 0011731-84–6 1244.7 211 n-Propyl acetate 000109–60–4 666.7 212* Octanoic acid, 3–methylbutyl ester 000107–75–5 1162.7 213* Octanoic acid, amethyl ester 000106–32–1 1217.3 216 Octanoic acid, amethyl ester 000106–32–1 1217.3 216 Octanoic acid, amethyl ester 000106–32–1 1867.3 218* Oxacycloheptadec-8–en-2–one, (8Z) 000107–83–8 1867.9 219 Oxiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl 000007–83–8 1593.7 220* p-Cymene 00000591–68–4 1138.0 <t< td=""><td>202*</td><td>Methyl salicylate</td><td>000119–36–8</td><td>1245.1</td></t<>	202*	Methyl salicylate	000119–36–8	1245.1
204* Naphthalene, 2-ethoxy- 000093-18-5 1450. 205 Naphthalene, 2-methoxy- 000093-04-9 1373. 206^ n-Decanoic acid 000124-19-6 1113. 206^ Nonanoic acid 000123-29-5 1326. 207 Nonanoic acid, ethyl ester 000123-29-5 1326. 208 Nonanoic acid, methyl ester 00017-75-5 1162. 210* Nonanoic acid, amethyl ester 000109-60-4 686.7 212* Octanoic acid, 3-methylbutyl ester 000107-75-5 1162. 213* Octanoic acid, amethyl ester 000106-32-1 1217. 216 Octanoic acid, methyl ester 000111-11-5 1133. 217 Oxacycloheptadec-8-en-2-one, (8Z) 000106-02-5 1768. 218* Oxacyclohexadecan-2-one 000106-02-5 1768. 0xiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1593. ester Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1523. 220* p-Cymene 0000105-43-1 879.1 <t< td=""><td>203*</td><td>Methyleugenol</td><td>000093-15-2</td><td>1344.7</td></t<>	203*	Methyleugenol	000093-15-2	1344.7
205 Naphthalene, 2-methoxy- 000093-04-9 1373.2 206 ^A n-Decanoic acid 000334-48-5 1273.3 207 Nonanal 000124-19-6 1113.4 208 ^A Nonanoic acid, ethyl ester 000123-29-5 1326.3 209 Nonanoic acid, methyl ester 00112-05-5 1126.3 210 [*] Nonanoic acid, methyl ester 000109-60-4 686.7 211 [*] Octanoic acid 000112-07-5 1162.3 211 [*] Octanoic acid, 3-methylbutyl ester 002035-99-6 1454.3 215 [*] Octanoic acid, ethyl ester 000106-02-1 178.3 216 Octanoic acid, athyl ester 000106-02-5 1768.3 218 [*] Oxacyclohexadecan-2-one 000106-02-5 1768.3 0Xiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1593.3 220 [*] p-Cymene 000099-87-6 1089.8 221 [*] Pentanoic acid, a-methyl-3-phenyl-, ethyl 019464-95-0 1593.3 222 [*] p-Cymene 000009-87-6 1089.8 1	204*	Naphthalene, 2-ethoxy-	000093	1450.1
206^ n-Decanoic acid 000334-48-5 1273. 207 Nonanal 000124-19-6 1113. 208 Nonanoic acid 000112-05-0 1195. 209 Nonanoic acid, ethyl ester 000123-29-5 1326. 210* Nonanoic acid, methyl ester 000103-29-5 1326. 211* n-Propyl acetate 000107-75-5 1162. 213* Octanoic acid, 3-methylbutyl ester 000102-63-1 1217. 216 Octanoic acid, 3-methylbutyl ester 000106-02-1 1217. 216 Octanoic acid, ethyl ester 000106-02-5 1768. 217 Oxacycloheptadec-8-en-2-one, (8Z) 000106-02-5 1768. 0xiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1593. ester Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1593. 220* p-Cymene 000099-87-6 1089.8 139.0 221^ Pentanoic acid, butyl ester 000591-68-4 1130.0 222* Pentol, 2-methoy- 000088-69-7 1147.6	205	Naphthalene, 2-methoxy-	000093–04–9	1373.2
207 Nonanal 000124–19–6 1113.4 208 ^A Nonanoic acid 000112–05–0 1195.7 209 Nonanoic acid, ethyl ester 000123–29–5 1326.9 210 [*] Nonanoic acid, methyl ester 001173–84–6 1244.7 211 n–Propyl acetate 000109–60.4 686.7 212 [*] Octanoic acid, 3–methylbutyl ester 0001024–07–2 1091.0 214 [*] Octanoic acid, 4thyl ester 000106–32–1 1217.9 216 Octanoic acid, methyl ester 000108–60–3 1867.9 217 Oxacycloheptadec–8–en–2–one, (8Z) 000106–02–5 1768.9 0Xiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl 000099–87–6 1089.8 219 Oxtranecarboxylic acid, 3–methyl–3–phenyl–, ethyl 000105–43–1 879.1 220* p–Cymene 0000108–64.1 1138.0 1224 Pentanoic acid, 3–methyl–1 000105–43–1 879.1 1222.1 2210* p–Cymene 0000591–68.4 1138.0 2222* Pentanoic acid, ethyl ester <td< td=""><td>206^</td><td>n–Decanoic acid</td><td>000334-48-5</td><td>1273.7</td></td<>	206^	n–Decanoic acid	000334-48-5	1273.7
208^ Nonanoic acid 000112-05-0 1195. 209 Nonanoic acid, ethyl ester 000123-29-5 1326.8 210* Nonanoic acid, methyl ester 001173-184-6 1244.2 211 n-Propyl acetate 000107-75-5 1162.7 213^ Octanoic acid, 3-methylbutyl ester 000102-07-2 1091.2 214^ Octanoic acid, 4thyl ester 000106-32-1 1217.9 216 Octanoic acid, ethyl ester 000106-32-3 1867.3 218* Oxacycloheptadec-8-en-2-one, (8Z) 000106-02-5 1768.3 0Xiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000099-87-6 1089.8 219 Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000105-43-1 879.1 220* p-Cymene 000099-87-6 1089.8 221^ Pentanoic acid, butyl ester 000591-68-4 1138.0 223^ Pentanoic acid, ethyl ester 000593-82-2 927.7 224 Pentyl octanoate 000593-82-2 927.7 225 Phenol, 2-(1-methylethyl)- 000088-69-7 1147.6	207	Nonanal	000124–19–6	1113.4
209 Nonanoic acid, ethyl ester 000123–29–5 1326.5 210* Nonanoic acid, methyl ester 001731–84–6 1244. 211 n–Propyl acetate 000109–60–4 686.7 212^ Octanai, 7–hydroxy–3,7–dimethyl– 000107–75–5 1162.7 213^ Octanoic acid 000124–07–2 1091.0 214^ Octanoic acid, a-methylbutyl ester 002035–99–6 1454.3 215^ Octanoic acid, ethyl ester 000106–32–1 1217.5 216 Octanoic acid, methyl ester 000111–11–5 1133.3 217 Oxacyclohexadecan–2–one, (8Z) 000106–02–5 1768.5 Oxiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl 000077–83–8 1867.5 218* Oxacyclohexadecan–2–one 000105–43–1 879.1 0Xiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl 019464–95–0 1593.7 220* p–Cymene 000099–87–6 1089.8 221^ Pentanoic acid, butyl ester 000539–82–2 927.7 224 Pentanoic acid, ethyl ester 00053–82–5 1523.0 225* Phenol, 2–(1–methylethyl)– 000088–69–7 147	208^	Nonanoic acid	000112-05-0	1195.1
210* Nonanoic acid, methyl ester 001731-84-6 1244: 211 n-Propyl acetate 000109-60-4 686.7 212^ Octanal, 7-hydroxy-3,7-dimethyl- 000107-75-5 1162.' 213^ Octanoic acid 000124-07-2 1091.0 214^ Octanoic acid, 3-methylbutyl ester 000106-32-1 1217.5 216 Octanoic acid, methyl ester 0001012-69-3 1867.5 217 Oxacycloheptadec-8-en-2-one, (8Z) 000102-69-3 1867.5 0xiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000077-83-8 1879.1 219 Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1593.' 220* p-Cymene 000099-87-6 1089.6 221^ Pentanoic acid, 3-methyl- 000105-43-1 879.1 222* Pentanoic acid, 3-methyl- 000105-43-1 879.1 222* Pentanoic acid, ethyl ester 000539-82-2 927.7 224 Pentanoic acid, ethyl ester 000539-82-2 927.7 224 Pentol, 2-(1-methylethyl)- 000638-25-5 1523.0 225* Phenol, 2-methoxy- 000099-05-1 <td>209</td> <td>Nonanoic acid, ethyl ester</td> <td>000123–29–5</td> <td>1326.9</td>	209	Nonanoic acid, ethyl ester	000123–29–5	1326.9
211 n-Propyl acetate 000109-60-4 686.7 212^ Octanal, 7-hydroxy-3,7-dimethyl- 000107-75-5 1162.7 213^ Octanoic acid 000124-07-2 1091.0 214^ Octanoic acid, 3-methylbutyl ester 002035-99-6 1454.3 215^ Octanoic acid, ethyl ester 000106-32-1 1217.9 216 Octanoic acid, methyl ester 000111-11-5 1133.7 217 Oxacycloheptadec-8-en-2-one, (8Z) 000103-69-3 1867.9 218* Oxacyclohexadecan-2-one 000106-02-5 1768.9 Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000077-83-8 ester 219 ester, cis- 000105-43-1 879.1 220* p-Cymene 0000591-68-4 1188.0 221^ Pentanoic acid, butyl ester 0000539-82-2 927.7 224 Pentaloic acid, ethyl ester 0000638-25-5 1523.0 225* Phenol, 2-(1-methylethyl)- 000088-69-7 1147.6 226^ Pienol, 2-methyl-5-(1-methylethyl)- 000049-75-2 1215.6 226* Phenol, 2-methyl-5(1-methylethyl)- 000000-51 <td< td=""><td>210*</td><td>Nonanoic acid, methyl ester</td><td>001731-84-6</td><td>1244.1</td></td<>	210*	Nonanoic acid, methyl ester	001731-84-6	1244.1
212^ Octanal, 7-hydroxy-3,7-dimethyl- 000107-75-5 1162. 213^ Octanoic acid 000124-07-2 1091.0 214^ Octanoic acid, 3-methylbutyl ester 002035-99-6 1454.3 215^ Octanoic acid, ethyl ester 000106-32-1 1217.3 216 Octanoic acid, methyl ester 000111-11-5 1133.7 217 Oxacycloheptadec-8-en-2-one, (8Z) 000106-02-5 1768.5 Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000077-83-8 ester Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000099-87-6 1089.5 220* p-Cymene 0000591-68-4 1183.6 221^ Pentanoic acid, butyl ester 0000591-68-4 1183.6 223^ Pentanoic acid, ethyl ester 0000591-68-4 1183.6 224^ Pentanoic acid, ethyl ester 0000591-68-4 1183.6 225* Phenol, 2-(1-methylethyl)- 000088-69-7 147.6 226^ Phenol, 2-methyl-5-(1-methylethyl)- 000099-75-2 1215.6 228* Phenol, 2-methyl-5-(1-methylethyl)- 0000060-12-8 130.5 229* Piperonal 000	211	n–Propyl acetate	000109–60–4	686.7
213^ Octanoic acid 000124-07-2 1091.0 214^ Octanoic acid, 3-methylbutyl ester 002035-99-6 1454.3 215^ Octanoic acid, ethyl ester 000106-32-1 1217.3 216 Octanoic acid, methyl ester 000111-11-5 1133.1 217 Oxacycloheptadec-8-en-2-one, (8Z) 000123-69-3 1867.3 218* Oxacyclohexadecan-2-one 000106-02-5 1768.3 Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000077-83-8 1593.7 ester Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1593.7 220* p-Cymene 000099-87-6 1089.8 221^ Pentanoic acid, butyl ester 000591-68-4 1138.0 222^ Pentanoic acid, ethyl ester 000539-82-2 927.7 224 Pentyl octanoate 000638-25-5 1523.0 225* Phenol, 2-(1-methylethyl)- 000088-69-7 1147.6 226^ Phenol, 2-methoxy- 000099-05-1 1072.6 227^ Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.8 228* Phenol, 2-methyl-5-(1-methylethyl)-	212^	Octanal, 7-hydroxy-3,7-dimethyl-	000107-75-5	1162.1
214^ Octanoic acid, 3-methylbutyl ester 002035-99-6 1454.3 215^ Octanoic acid, ethyl ester 000106-32-1 1217.3 216 Octanoic acid, methyl ester 000111-11-5 1133.3 217 Oxacycloheptadec-8-en-2-one, (8Z) 000123-69-3 1867.3 218* Oxacyclohexadecan-2-one 000106-02-5 1768.3 Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000077-83-8 1593.3 ester Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1593.3 0xiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000099-87-6 1089.8 220* p-Cymene 0000591-68-4 1138.0 223^ Pentanoic acid, butyl ester 000539-82-2 927.7 224 Pentyl octanoate 000638-25-5 1523.0 225* Phenol, 2-(1-methylethyl)- 000088-69-7 1147.6 226^ Phenol, 2-methoxy- 000099-05-1 1072.6 227^ Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.8 228* Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.8 230* Propanetioic acid, die	213^	Octanoic acid	000124–07–2	1091.0
215^ Octanoic acid, ethyl ester 000106-32-1 1217.3 216 Octanoic acid, methyl ester 000111-11-5 1133.3 217 Oxacycloheptadec-8-en-2-one, (8Z) 000123-69-3 1867.9 218* Oxacyclohexadecan-2-one 000106-02-5 1768.9 Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000077-83-8 1593.7 ester Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1593.7 220* p-Cymene 000059-87-6 1089.8 221^ Pentanoic acid, 3-methyl- 000591-68-4 1138.0 223^ Pentanoic acid, butyl ester 000539-82-2 927.7 224 Pentyl octanoate 000638-25-5 1523.0 225* Phenol, 2-(1-methylethyl)- 000088-69-7 1147.6 226^ Phenol, 2-methoxy- 000009-05-1 1072.6 227* Phenol, 2-(1-methylethyl)- 0000499-75-2 1215.3 228* Phenol, 2-methyl-5-(1-methylethyl)- 0000499-75-2 1215.3 229* Piperonal 000102-57-0 1240.7 230* Propanethioic acid, S-(2-furanylmethyl) ester <t< td=""><td>214^</td><td>Octanoic acid, 3-methylbutyl ester</td><td>002035–99–6</td><td>1454.3</td></t<>	214^	Octanoic acid, 3-methylbutyl ester	002035–99–6	1454.3
216 Octanoic acid, methyl ester 000111-11-5 1133.1 217 Oxacycloheptadec-8-en-2-one, (8Z) 000123-69-3 1867.9 218* Oxacyclohexadecan-2-one 000106-02-5 1768.5 Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000077-83-8 1593.7 219 ester 0xiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1593.7 220* p-Cymene 000099-87-6 1089.8 1227 Pentanoic acid, 3-methyl- 000591-68-4 1138.0 223^ Pentanoic acid, ethyl ester 000539-82-2 927.7 224 Pentyl octanoate 000038-69-7 1147.6 225* Phenol, 2-(1-methylethyl)- 0000090-05-1 1072.6 226^ Phenol, 2-methoxy- 0000090-05-1 1072.6 227^ Phenol, 2-methyl-5-(1-methylethyl)- 0000499-75-2 1215.6 228* Phenylethyl Alcohol 000102-57-0 1240.7 230* Propanethioic acid, S-(2-furanylmethyl) ester 000103-53-3 1001.6 231 Propancic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 234*	215^	Octanoic acid, ethyl ester	000106-32-1	1217.9
217 Oxacycloheptadec–8–en–2–one, (8Z) 000123–69–3 1867.5 218* Oxacyclohexadecan–2–one 000106–02–5 1768.5 Oxiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl 000077–83–8 1593.7 219 ester Oxiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl 019464–95–0 1593.7 220* p–Cymene 000099–87–6 1089.8 221^ Pentanoic acid, 3–methyl– 000105–43–1 879.1 222^ Pentanoic acid, butyl ester 000539–82–2 927.7 224 Pentanoic acid, ethyl ester 000088–69–7 1147.6 225* Phenol, 2–(1–methylethyl)– 000088–69–7 1147.6 226^ Phenol, 2–methoxy– 000009–05–1 1072.6 227^ Phenol, 2–methyl–5–(1–methylethyl)– 000499–75–2 1215.8 228* Phenol, 2–methyl–5–(1–methylethyl)– 0000499–75–2 1215.8 229* Piperonal 000105–53–3 1001.6 230* Propanedioic acid, Ge–(-furanylmethyl) ester 059020–85–8 1310.3 232 Propanoic acid, 2–methyl–, 2–phenylethyl ester 000103–48–0 1451.6 234*<	216	Octanoic acid, methyl ester	000111-11-5	1133.7
218* Oxacyclohexadecan–2–one 000106–02–5 1768.5 Oxiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl 000077–83–8 1593.7 219 ester Oxiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl 019464–95–0 1593.7 220* p–Cymene 000099–87–6 1089.8 221^ Pentanoic acid, 3–methyl– 000105–43–1 879.1 222^ Pentanoic acid, butyl ester 000591–68–4 1138.6 223^ Pentanoic acid, ethyl ester 000088–69–7 1147.6 226* Phenol, 2–(1–methylethyl)– 000088–69–7 1147.6 226^ Phenol, 2–(1–methylethyl)– 000090–05–1 1072.6 227^ Phenol, 2–methoxy– 0000090–05–1 1072.6 228* Phenol, 2–methyl–5–(1–methylethyl)– 000499–75–2 1215.8 229* Piperonal 000102–57–0 1240.7 230* Propanedioic acid, diethyl ester 000103–53–3 1001.6 231 Propanoic acid, 2–methyl–, 2–phenylethyl ester 000103–48–0 1451.6 234* Propanoic acid, 2–methyl–, 2–phenylethyl ester 000103–48–0 1451.6 234*	217	Oxacycloheptadec-8-en-2-one, (8Z)	000123–69–3	1867.9
Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 000077-83-8 219 ester 0:iranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1593.* 220* p-Cymene 000099-87-6 1089.8 221^ Pentanoic acid, 3-methyl- 000105-43-1 879.1 222* Pentanoic acid, butyl ester 000591-68-4 1138.0 223^ Pentanoic acid, ethyl ester 000539-82-2 927.7 224 Pentalocic acid, ethyl ester 000638-25-5 1523.0 225* Phenol, 2-(1-methylethyl)- 000090-05-1 1072.6 226^ Phenol, 2-methoxy- 000090-05-1 1072.6 227* Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.8 228* Phenol, 2-methyl-5-(1-methylethyl)- 000102-57-0 1240.* 229* Piperonal 000120-57-0 1240.* 230* Propanedioic acid, diethyl ester 000105-53-3 1001.6 231 Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 233^ Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 000103-59-3 1558.5 235	218*	Oxacyclohexadecan-2-one	000106-02-5	1768.5
219 Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl 019464-95-0 1593.1 220* p-Cymene 000099-87-6 1089.8 221^ Pentanoic acid, 3-methyl- 000105-43-1 879.1 222^ Pentanoic acid, butyl ester 000591-68-4 1138.0 223^ Pentanoic acid, ethyl ester 000539-82-2 927.7 224 Pentanoic acid, ethyl ester 000638-25-5 1523.0 225* Phenol, 2-(1-methylethyl)- 000090-05-1 1072.6 226^ Phenol, 2-methoxy- 000090-05-1 1072.6 227^ Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.8 228* Phenylethyl Alcohol 000102-57-0 1240.7 230* Propanedioic acid, diethyl ester 000102-57-0 1240.7 230* Propanethioic acid, S-(2-furanylmethyl) ester 059020-85-8 1310.3 232 Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 233^ Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 020665-85-4 1588.7 <td></td> <td>Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl</td> <td>000077-83-8</td> <td></td>		Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl	000077-83-8	
220* p-Cymene 000099-87-6 1089.8 221^ Pentanoic acid, 3-methyl- 000105-43-1 879.1 222^ Pentanoic acid, butyl ester 000591-68-4 1138.0 223^ Pentanoic acid, ethyl ester 000539-82-2 927.7 224 Pentyl octanoate 000638-25-5 1523.0 225* Phenol, 2-(1-methylethyl)- 000088-69-7 1147.6 226^ Phenol, 2-methoxy- 000090-05-1 1072.6 227^ Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.8 228* Phenylethyl Alcohol 000102-57-0 1240.7 230* Propanedioic acid, diethyl ester 000105-53-3 1001.6 231 Propanethioic acid, S-(2-furanylmethyl) ester 059020-85-8 1310.3 232 Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 020665-85-4 1588.7 236 Propanoic acid, 2-methyl-, ethyl ester 0200097-62-1 771.5 <td>219</td> <td>Oxiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl ester, cis–</td> <td>019464–95–0</td> <td>1593.1</td>	219	Oxiranecarboxylic acid, 3–methyl–3–phenyl–, ethyl ester, cis–	019464–95–0	1593.1
221^ Pentanoic acid, 3-methyl- 000105-43-1 879.1 222^ Pentanoic acid, butyl ester 000591-68-4 1138.0 223^ Pentanoic acid, ethyl ester 000539-82-2 927.7 224 Pentyl octanoate 000638-25-5 1523.0 225* Phenol, 2-(1-methylethyl)- 000088-69-7 1147.6 226^ Phenol, 2-methoxy- 000090-05-1 1072.6 227^ Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.8 228* Phenylethyl Alcohol 0000120-57-0 1240.7 230* Propanedioic acid, diethyl ester 000105-63-3 1001.6 231 Propanethioic acid, S-(2-furanylmethyl) ester 059020-85-8 1310.2 232 Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 233^ Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 020665-85-4 1588.5 236 Propanoic acid, 2-methyl-, ethyl ester 020665-85-4 1588.5	220*	p–Cymene	000099–87–6	1089.8
222^ Pentanoic acid, butyl ester 000591-68-4 1138.0 223^ Pentanoic acid, ethyl ester 000539-82-2 927.7 224 Pentyl octanoate 000638-25-5 1523.0 225* Phenol, 2-(1-methylethyl)- 000088-69-7 1147.6 226^ Phenol, 2-methoxy- 000090-05-1 1072.6 227^ Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.8 228* Phenylethyl Alcohol 000120-57-0 1240.7 230* Propanedioic acid, diethyl ester 000105-53-3 1001.6 231 Propanethioic acid, S-(2-furanylmethyl) ester 059020-85-8 1310.3 232 Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 000103-48-0 1451.6 235 Propanoic acid, 2-methyl-, 4-formyl-2- methyl-, 4-formyl-2- 771.5 020665-85-4 1588.7 236 Propanoic acid, 2-methyl-, ethyl ester 000097-62-1 771.5	221^	Pentanoic acid, 3–methyl–	000105–43–1	879.1
223^ Pentanoic acid, ethyl ester 000539-82-2 927.7 224 Pentyl octanoate 000638-25-5 1523.0 225* Phenol, 2-(1-methylethyl)- 000088-69-7 1147.6 226^ Phenol, 2-methoxy- 000090-05-1 1072.6 227^ Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.6 228* Phenylethyl Alcohol 000120-57-0 1240.7 230* Propanedioic acid, diethyl ester 000105-53-3 1001.6 231 Propanethioic acid, S-(2-furanylmethyl) ester 059020-85-8 1310.3 232 Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 020665-85-4 1588.5 235 Propanoic acid, 2-methyl-, 4-formyl-2- methyl-2-propenyl ester 020665-85-4 1588.5 236 Propanoic acid, 2-methyl-, ethyl ester 000097-62-1 771.5	222^	Pentanoic acid, butyl ester	000591–68–4	1138.0
224 Pentyl octanoate 000638–25–5 1523.0 225* Phenol, 2–(1–methylethyl)– 000088–69–7 1147.6 226^ Phenol, 2–methoxy– 000090–05–1 1072.6 227^ Phenol, 2–methyl–5–(1–methylethyl)– 000499–75–2 1215.6 228* Phenylethyl Alcohol 000060–12–8 1130.5 229* Piperonal 000120–57–0 1240.7 230* Propanedioic acid, diethyl ester 000105–53–3 1001.6 231 Propanethioic acid, S–(2–furanylmethyl) ester 059020–85–8 1310.3 232 Propanoic acid, 2–methyl–, 2–phenylethyl ester 000103–48–0 1451.6 233^ Propanoic acid, 2–methyl–, 3–phenyl–2–propenyl ester 000103–48–0 1451.6 234* Propanoic acid, 2–methyl–, 3–phenyl–2–propenyl ester 020665–85–4 1588.5 235 Propanoic acid, 2–methyl–, ethyl ester 020665–85–4 1588.5 236 Propanoic acid, 2–methyl–, ethyl ester 000097–62–1 771.5	223^	Pentanoic acid, ethyl ester	000539-82-2	927.7
225* Phenol, 2-(1-methylethyl)- 000088-69-7 1147.6 226^ Phenol, 2-methoxy- 000090-05-1 1072.6 227^ Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.8 228* Phenylethyl Alcohol 000120-57-0 1240.7 229* Piperonal 000120-57-0 1240.7 230* Propanedioic acid, diethyl ester 000105-53-3 1001.6 231 Propanethioic acid, S-(2-furanylmethyl) ester 059020-85-8 1310.3 232 Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 233^A Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 000103-59-3 1558.5 235 Propanoic acid, 2-methyl-, 4-formyl-2- 020665-85-4 1588.7 236 Propanoic acid, 2-methyl-, ethyl ester 000097-62-1 771.5	224	Pentyl octanoate	000638-25-5	1523.0
226^ Phenol, 2-methoxy- 000090-05-1 1072.6 227^ Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.8 228* Phenylethyl Alcohol 000060-12-8 1130.9 229* Piperonal 000120-57-0 1240.7 230* Propanedioic acid, diethyl ester 000105-53-3 1001.6 231 Propanethioic acid, S-(2-furanylmethyl) ester 059020-85-8 1310.3 232 Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 000103-59-3 1558.5 235 Propanoic acid, 2-methyl-, 4-formyl-2- methyl-, 4-formyl-2- methoxyphenyl ester 020665-85-4 1588.7 236 Propanoic acid, 2-methyl-, ethyl ester 000097-62-1 771.5	225*	Phenol, 2–(1–methylethyl)–	000088–69–7	1147.6
227^ Phenol, 2-methyl-5-(1-methylethyl)- 000499-75-2 1215.8 228* Phenylethyl Alcohol 000060-12-8 1130.9 229* Piperonal 000120-57-0 1240.7 230* Propanedioic acid, diethyl ester 000105-53-3 1001.6 231 Propanethioic acid, S-(2-furanylmethyl) ester 059020-85-8 1310.7 232 Propanoic acid, 2-methyl- 000079-31-2 681.9 233^ Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 000103-59-3 1558.9 235 Propanoic acid, 2-methyl-, 4-formyl-2- 020665-85-4 1588.7 236 Propanoic acid, 2-methyl-, ethyl ester 000097-62-1 771.5	226^	Phenol, 2–methoxy–	000090-05-1	1072.6
228* Phenylethyl Alcohol 000060–12–8 1130.9 229* Piperonal 000120–57–0 1240.7 230* Propanedioic acid, diethyl ester 000105–53–3 1001.6 231 Propanethioic acid, S–(2–furanylmethyl) ester 059020–85–8 1310.3 232 Propanoic acid, 2–methyl– 000079–31–2 681.9 233^ Propanoic acid, 2–methyl–, 2–phenylethyl ester 000103–48–0 1451.6 234* Propanoic acid, 2–methyl–, 3–phenyl–2–propenyl ester 000103–59–3 1558.9 235 Propanoic acid, 2–methyl–, 4–formyl–2– 020665–85–4 1588.7 236 Propanoic acid, 2–methyl–, ethyl ester 000097–62–1 771.5	227^	Phenol, 2-methyl-5-(1-methylethyl)-	000499-75-2	1215.8
229* Piperonal 000120-57-0 1240.7 230* Propanedioic acid, diethyl ester 000105-53-3 1001.6 231 Propanethioic acid, S-(2-furanylmethyl) ester 059020-85-8 1310.7 232 Propanoic acid, 2-methyl- 000079-31-2 681.9 233^ Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 000103-59-3 1558.5 235 Propanoic acid, 2-methyl-, 4-formyl-2- 020665-85-4 1588.7 236 Propanoic acid, 2-methyl-, ethyl ester 000097-62-1 771.5	228*	Phenylethyl Alcohol	000060-12-8	1130.5
230* Propanedioic acid, diethyl ester 000105–53–3 1001.6 231 Propanethioic acid, S–(2–furanylmethyl) ester 059020–85–8 1310.3 232 Propanoic acid, 2–methyl– 000079–31–2 681.9 233^ Propanoic acid, 2–methyl–, 2–phenylethyl ester 000103–48–0 1451.6 234* Propanoic acid, 2–methyl–, 3–phenyl–2–propenyl ester 000103–59–3 1558.9 235 Propanoic acid, 2–methyl–, 4–formyl–2– 020665–85–4 1588.7 236 Propanoic acid, 2–methyl–, ethyl ester 000097–62–1 771.5	229*	Piperonal	000120-57-0	1240.1
231 Propanethioic acid, S-(2-furanylmethyl) ester 059020-85-8 1310.3 232 Propanoic acid, 2-methyl- 000079-31-2 681.9 233^ Propanoic acid, 2-methyl-, 2-phenylethyl ester 000103-48-0 1451.6 234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 000103-59-3 1558.9 235 Propanoic acid, 2-methyl-, 4-formyl-2- 020665-85-4 1588.7 236 Propanoic acid, 2-methyl-, ethyl ester 000097-62-1 771.5	230*	Propanedioic acid, diethyl ester	000105–53–3	1001.6
232 Propanoic acid, 2–methyl– 000079–31–2 681.9 233^ Propanoic acid, 2–methyl–, 2–phenylethyl ester 000103–48–0 1451.6 234* Propanoic acid, 2–methyl–, 3–phenyl–2–propenyl ester 000103–59–3 1558.6 235 Propanoic acid, 2–methyl–, 4–formyl–2– 020665–85–4 1588.7 236 Propanoic acid, 2–methyl–, ethyl ester 000097–62–1 771.5	231	Propanethioic acid, S–(2–furanylmethyl) ester	059020-85-8	1310.3
233^ Propanoic acid, 2–methyl–, 2–phenylethyl ester 000103–48–0 1451.6 234* Propanoic acid, 2–methyl–, 3–phenyl–2–propenyl ester 000103–59–3 1558.6 235 Propanoic acid, 2–methyl–, 4–formyl–2– methyl–, 4–formyl–2– 020665–85–4 1588.7 236 Propanoic acid, 2–methyl–, ethyl ester 000097–62–1 771.5	232	Propanoic acid, 2–methyl–	000079-31-2	681.9
234* Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester 000103-59-3 1558.9 235 Propanoic acid, 2-methyl-, 4-formyl-2- methoxyphenyl ester 020665-85-4 1588.7 236 Propanoic acid, 2-methyl-, ethyl ester 000097-62-1 771.5	233^	Propanoic acid, 2-methyl-, 2-phenylethyl ester	000103-48-0	1451.6
235Propanoicacid,2-methyl-,4-formyl-2-020665-85-41588.7236Propanoic acid, 2-methyl-, ethyl ester000097-62-1771.5	234*	Propanoic acid, 2-methyl-, 3-phenyl-2-propenyl ester	000103–59–3	1558.9
236 Propanoic acid, 2–methyl–, ethyl ester 000097–62–1 771.5	235	Propanoic acid, 2–methyl–, 4–formyl–2– methoxyphenyl ester	020665-85-4	1588.1
	236	Propanoic acid, 2-methyl-, ethyl ester	000097–62–1	771.5

237^	Propanoic acid, 2-methyl-, octyl ester	000109-15-9	1386.8
238^	Propanoic acid, 2-methyl-, phenylmethyl ester	000103–28–6	1376.8
239	Pyrazine, 2,3-diethyl-5-methyl-	018138–04–0	1203.3
240	Pyrazine, 2,3–dimethyl–	005910-89-4	912.6
241*	Pyrazine, 2-ethyl-3,5-dimethyl-	013925–07–0	1074.4
242	Pyrazine, 2-ethyl-3-methyl-	015707–23–0	1014.9
243*	Pyrazine, 2-methoxy-3-(2-methylpropyl)-	024683-00-9	1210.6
244*	Pyrazine, 2-methyl-3-(methylthio)-	002882–20–4	1111.9
245^	Pyrazine, 2-methyl-6-(methylthio)-	002884-13-1	1107.2
246^	Pyrazine, 3-ethyl-2,5-dimethyl-	013360–65–1	1107.5
247*	Pyrazine, ethyl–	013925–00–3	948.7
248	Pyrazine, tetramethyl–	001124-11-4	1054.3
249*	Pyrazine, trimethyl–	014667–55–1	983.3
250^	Tetradecanoic acid, ethyl ester	000124–06–1	1785.1
251	Thiazole, 5-ethenyl-4-methyl-	001759–28–0	1030.9
252^	trans-Isoeugenol	005932–68–3	1328.8
253	Triacetin	000102-76-1	1327.7
254	Triethyl citrate	000077–93–0	1722.6
255^	Undecanal	000112-44-7	1297.6
256^	α–lonone	000127-41-3	1345.2
257*	α–Irone	000079–69–6	1435.1
258	α-Phellandrene	000099-83-2	1089.8
259	β–Myrcene	000123–35–3	1025.3
260^	β–Phenylethyl butyrate	000103–52–6	1475.5
261	β–Pinene	000127–91–3	1112.4
262*	δ–Nonalactone	003301–94–8	1215.2

* validación, ^ predicción

No.	Nombre	CAS	1
1	Ethanol	64–17–5	250
2	Acetone	67–64–1	259
3	Dimethyl sulfide	75–18–3	308
4*	Hexane	110–54–3	600
5	Butanal	123–72–8	602
6	Acetic acid	64–19–7	622
7^	3–Methyl–butanal	590-86-3	652
8*	2–Methyl–butanal	96–17–3	660
9	Heptane	142–82–5	700
10*	Pentanal	110–62–3	701
11	Methyl butanoate	623–42–7	710
12	3–Methyl–butanol	123–51–3	730
13^	2–Methyl–butanol	137–32–6	730
14	Dimethyl disulfide	624–92–0	741
15	Pyridine	110–86–1	763
16*	3-Hexanone	589–38–8	744
17^	1–Pentanol	71–41–0	761
18^	Toluene	108–88–3	764
19*	2,4–Pentandione	123–54–6	778
20	2,3–Butandiol	513–85–9	788
21*	1,3–Butandiol	107–88–0	791
22*	Octane	111–65–9	800
23	Hexanal	66–25–1	800
24*	Methyl pentanoate	624–24–8	821
25*	Ethenyl cyclohexane	100–40–3	832
26	Butanoic acid	107–92–6	638
27^	(E)–2–Hexenal	6728–26–3	850
28*	(Z)–3–hexenal	6789–80–6	853
29	Ethyl benzene	100–41–4	858
30*	1–Hexanol	111–27–3	865
31^	1,4–Dimethyl benzene	106–42–3	868
32^	Pentanoic acid	109–52–4	879
33	2,2,4–Trimethylheptane	14720–74–2	878.5
34^	2–Heptanone	110–43–0	888
35	2–Butylfuran	4466–24–4	890
36^	Styrene	100–42–5	892
37*	1,2-dimethylbenzene	94–47–6	893
38^	Nonane	111–84–2	900

Tabla 6A. Nombres químicos, número de registro CAS e índices de retención experimentales de 137 compuestos volátiles de arroz medidos en SPME/GC/MS

39	Heptanal	111–71–7	902
40^	2–Butoxyethanol	111–76–2	905
41*	2,3,6–Trimethylheptane	4032–93–3	913
42	2–Acetyl–1–pyrroline	85213–22–05	920
43	Methyl hexanoate	106–70–7	922
44	alpha–Pinene	80–56–8	932
45^	1–Butoxy–2–propanol	5131–66–8	938
46*	(E)–2–Heptenal	57266-86-1	956
47^	1–Ethyl, 4–methylbenzene	611–14–3	959
48	Benzaldehyde	100–52–7	962
49^	1–Heptanol	111–70–6	969
50	Dimethyl trisulfide	3658–80–8	970
51^	Hexanoic acid	142–62–1	983
52^	6–Methyl–5–hepten–2–one	110–93–0	983
53*	2-Pentylfuran	3777–69–3	990
54	2,3,6–Trimethylpyridine	1462–84–6	989
55*	1,2,4–Trimethylbenzene	95–63–6	994
56*	Ethyl hexanoate	123–66–0	998
57	Decane	124–18–5	1000
58^	Octanal	124–13–0	1004
59^	2-Ethyl-1-hexanol	104–76–7	1029
60*	Limonene	138–86–3	1030
61	Indane	496–11–7	1035
62*	Benzyl alcohol	100–51–6	1036
63*	(E)-3-Octen-2-one	18402–82–9	1038
64^	Benzeneacetaldehyde	122–78–1	1045
65*	5–Ethyldihydro–2(3H)–furanone	695–06–7	1049
66^	2–Octenal	2548-87-0	1058
67*	1–Octanol	111–87–5	1071
68*	2–Methyl –1–propenyl benzene	768–49–0	1082
69	1–Methyl,2–(1–methylethyl)–benzene	527-84-4	1084
70*	Undecane	1120–21–4	1100
71^	Nonanal	124–19–6	1106
72^	1,2,3,4-Tetramethylbenzene	488–23–3	1123
73	Methyl octanoate	111–11–5	1128
74*	5–Ethyl–6–methyl–(E)3–hepten–2–one	57283–79–1	1147
75*	3–Methyl–2–heptyl acetate	72218–58–7	1151
76^	5–Propyldihydro–2(3H)–furanone	105–21–5	1156
77*	Beta-Terpineol	138–87–4	1157
78	(E)–2–nonenal	18829–56–6	1166
79^	Nonanol	143–08–8	1176
80*	Naphthalene	91–20–3	1190

81^	Ethyl octanoate	106–32–1	1196
82^	Alpha–Terpineol	98–55–5	1198
83^	Dodecane	112–40–3	1200
84	Gamma-terpineol	586–81–2	1203
85	Decanal	112–31–2	1207
86^	(E,E)–2,4–Nonadienal	5910–87–2	1218
87	Benzothiazole	85–16–9	1234
88*	2–Hexyl–1–octanol	19780–79–1	1254
89	5–Butyldihydro–2(3H)–furanone	104–50–7	1259
90^	(E)–2–Decenal	3913–81–3	1267
91^	1-Tridecene	2437–56–1	1293
92*	3–(t–Butyl)–phenol	585–34–2	1295
93^	Ethyl nonanoate	123–29–5	1296
94^	2–Undecanone	112–12–9	1300
95*	Indole	120–72–9	1300
96	Tridecane	629–50–5	1300
97*	Undecanal	112–44–7	1310
98*	Methyl decanoate	110–42–9	1325
99*	5–Pentyldihydro–2(3H)–furanone	104–61–0	1368
100^	2-Butyl-2-octenal	13019–16–4	1375
101*	Tetradec-1-ene	1120–36–1	1392
102	Ethyl decanoate	110–38–3	1394
103^	Tetradecane	629–59–4	1400
104	Isolongifolene	1135–66–6	1408
105	trans-caryophyllene	87–44–5	1433
106	Bis-(1-methylethyl)-hexadecanoate	6938–94–9	1448
107^	(E)–6,10–dimethyl–5,9–undecadien–2–one	3879–26–3	1450
108*	2,6-Bis-(t-butyl)-2,5-cyclohexadien-1,4-dione	719–22–2	1471
109*	1-Hexadecene	629–73–2	1492
110^	Pentadecane	629–62–9	1500
111	BHT	128–37–0	1510
112^	Methyl dodecanoate	111–82–0	1523
113	1–S, cis–calamenene	483–77–2	1534
114*	Ionol 2	4130–42–1	1561
115*	Ethyl dodecanoate	106–33–2	1592
116	Hexadecane	544–76–3	1600
117^	2,6-bis-(t-butyl)-2,5-cyclohexadien-1-one	6378–27–8	1637
118^	2,5,10–Trimethylpentadecane	3892–00–0	1646
119^	Heptadecane	629–78–7	1700
120	2,5,10,14–Tretramethylpentadecane	1921–70–6	1703
121^	Methyl tetradecanoate	124–10–7	1724
122	Indene, 2,3–dihydro–1,1,3–trimethyl–3–phenyl	3910–35–8	1731

123*	2,6–Diisopropylnaphthalene	24157–81–1	1744
124*	2-Methyl-2,4-diphenylpentane	31516–55–9	1762
125	Ethyl tetradecanoate	124–06–1	1793
126*	Octadecane	593–45–3	1800
127*	2,6,10,14–Tetramethylhexadecane	638–36–8	1807
128*	6,10,14–Trimethyl–2–pentadecanone	502–69–2	1844
129	Nonadecane	629–92–5	1900
130*	Methyl hexadecanoate	112–39–0	1925
131^	Ethyl hexadecanoate	628–97–7	1993
132^	Hexadecanoic acid	57–10–3	1995
133^	Eicosane	112–95–8	2000
134*	Methyl linoleate	2566–97–4	2051
135	Methyl oleate	112–62–9	2052
136^	Ethyl linoleate	544-35-4	2081
137	Ethyl oleate	111–62–6	2086

* validación, ^ predicción

No.	Nombre	log(RS)
1	Sucrose	0.000
2	Sucralose	2.778
3	Alitame	3.301
4^	Aspartame	2.255
5	Tagatose	-0.046
6^	Maltitol	-0.046
7	Isomaltulose	-0.319
8^	Trehalose	-0.347
9	Neohesperidine dihydrochalcone	3.255
10	Neotame	3.903
11	Lactitol	-0.398
12	Isomalt	-0.260
13	Sorbitol	-0.222
14^	Mannitol	-0.155
15	Erythritol	-0.155
16	Xylitol	0.000
17	Stevioside	2.477
18	Steviolbioside	2.051
19	Rebaudioside A	2.544
20	Rebaudioside B	2.512
21^	Rebaudioside C	1.929
22	Rebaudioside D	2.512
23	Rebaudioside E	2.352
24^	Dulcoside A	1.929
25	Glycyrrhizin	1.875
26	Hernandulcin	3.000
27	Fructose	0.057
28	Glucose	-0.161
29	Galactose	-0.201
30^	Mannose	-0.229
31^	Xylose	-0.174
32	Maltose	-0.337
33^	Lactose	-0.398
34^	Lactulose	-0.222
35^	Lactosucrose	-0.347
36^	Galactitol	-0.387
37	Raffinose	-0.658

Tabla 7A. Nombres químicos y dulzor relativo experimental de 233compuestos dulcificantes

38^	Rhamnose	-0.481
39	Glycerol	-0.097
40	2-amino-4-nitro-propoxybenzene	3.602
41	Dulcin	2.301
42^	Dihydroquercetin 3-acetate 4'-(methylether)	2.602
43^	1,3-benzodioxane	3.477
44	1,4-benzodioxane	2.653
45	Isoflavan	2.477
46	2-(3-hydroxy-4-methoxyphenyl)-1,3-benzodioxole	2.176
47^	Bibenzyl derivative	2.477
48^	Flavan	2.544
49^	Compound 5	2.544
50^	2–(3–Hydroxy–4–methoxyphenyl)–4H–1,3–benzoxathiine	2.699
51	2-(3-Hydroxy-4-methoxyphenyl)-4H-1,3-benzodithiole	2.301
52^	2-(3-Hydroxy-4-methoxyphenyl)-1,3-benzoxathiole	2.477
53^	2–(3–Hydroxy–4–methoxyphenyl)–2,3–dihydro–1,4–	2.398
54	2–(3–Hydroxy–4–methoxyphenyl)–2,3–dihydro–1,4– benzodithiine	2.699
55^	2–(3–Hydroxy–4–methoxyphenyl)–2,3–dihydro–1,4– benzoxathiin–6–ol	2.699
56	2–(3–Hydroxy–4–methoxyphenyl)–3,4–dihydro–2H–1– benzothiopyran	2.301
57	2-(3-Mercapto-4-methoxyphenyl)-4H-3,1-benzoxathiine	1.699
58	2–(3–Hydroxy–4–methoxyphenyl)–2,3–dihydro–1,4– benzoxathiine S,S–Dioxide	1.699
59^	Haematoxylin	2.079
60	9-Methoxy-7,11b-dihydrobenz[b]indeno[1,2-d]pyran-6a,10-diol	1.699
61^	Compound 8	1.699
62	Compound 18	2.079
63	Compound 20	2.778
64^	Compound 21	3.041
65	2–(4–methoxybenzoyl) benzoic acid	2.176
66	2–(3,4–Dihydroxybenzoyl) benzoic acid	2.000
67	2–(3–Hydroxy–4–methoxybenzoyl) benzoic acid	2.398
68	2–(4–Methoxyphenylthio) benzoic acid S–Oxide	1.699
69^	Phthalic Acid Mono(4–methoxyphenyl) Ester	1.000
70	Compound 9	2.301
71	3-Methoxy-1,3,5-estratrien-4-ol	1.699
72	Spiro[(4–H–1,3–benzodithian)–2,1'–(5'–methoxy–6'hydroxy– [1H]–2',3'–dihydroindene)]	1.699
73^	Compound 14	4.255
74	Compound 15	4.301

75	Phyllodulcin	2.903
76^	Compound 4	4.301
77	Compound 6	3.176
78	Compound 9	2.176
79	Compound 10	2.000
80^	3',4'-dihydroxyphenyl-3,1-benzoxathiane	2.301
81	2–[3–(4–nitrophenoxycarboxy)phenyl]–3,1–benzoxathiane	2.477
82	2–[3–(4–nitrophenylcarbonylmethoxy)–4–methoxyphenyl]–3,1– benzoxathiane	2.477
83	2–[3–(4–nitrophenylcarbamoyloxy–4–methoxy)phenyl]–3,1– benzodioxane	2.176
84	3–(3–Hydroxy–4–methoxyphenyl)–1–(3–carboxyphenyl)propan– 1–one	1.903
85	2–(3–hydroxy–4–methoxyphenoxymethyl)benzoic acid	1.000
86^	Compound 32	2.823
87	Compound 42	1.699
88^	Dihydroquercetin 4'–(methyl ether)	1.602
89	Compound V	1.875
90	Compound VII	2.000
91	Compound XIV	1.000
92^	Compound XXI	2.477
93	Compound XXII	2.176
94	Compound XXIII	2.176
95	Compound XXIV	2.398
96^	Compound XXVII	1.000
97^	Compound XXX	2.079
98	Compound XXXI	1.477
99	Compound XXXII	1.477
100	Compound XL	2.477
101^	Compound XLI	2.176
102^	Compound XLII	2.097
103	Compound XLIII	1.000
104^	Compound XLVII	1.000
105^	Compound XLIX	1.000
106^	Compound LIV	1.000
107	Compound LIX	1.477
108^	Compound LXV	1.000
109^	Compound LXVI	1.000
110	Compound LXXVIII	2.000
111	Compound LXXIX	2.398
112	Compound LXXX	1.000
113	Compound LXXXV	1.875

114^	Compound LXXXIX	2.544
115	Compound XC	2.176
116^	Compound XCI	1.778
117	Compound XCV	2.000
118^	Compound XCVI	1.000
119	Glycol	0.114
120^	Arabitol	0.000
121	Stachyose	-1.000
122^	6–O–Methyl sucrose	0.000
123	6,6'-di-O-Methyl sucrose	0.000
124	6–Chloro–6–deoxy–D–fructofuranose	0.000
125^	1,6-dichloro-1,6-deoxy-D-fructofuranose	0.000
126	Methyl α–D–glucopyranoside	-0.602
127	4–Chloro–galactosucrose	0.699
128	6'Chlorosucrose	1.301
129	1'-Chloro-sucrose	1.301
130^	1',6'-Dichloro-sucrose	1.845
131	1',4–Dichloro–galactosucrose	2.079
132	1,6-Di-S-1,6-dithio-D-fructofuranose	1.301
133	Alanine	-0.005
134	Arginine	0.624
135	Asparagine	0.301
136	glutamine	0.322
137	Glycine	-0.182
138	Histidine	0.746
139	Isoleucine	-0.104
140	Leucine	0.599
141	Methionine	0.294
142	Norvaline	0.230
143	Phenylalanine	0.689
144	Proline	-0.268
145	Hydroxy proline	0.262
146	Serine	-0.210
147	Threonine	-0.569
148	Triptophane	1.556
149^	Tyrosine	0.740
150	Aspartyaminomalonic acid diester 1	2.778
151	Aspartyaminomalonic acid diester 2	2.944
152	Aspartyaminomalonic acid diester 3	4.521
153	N–(L–aspartyl)–1,1–diaminoalkane 1	2.000

154 N-(L-asparty)-1,1-diaminoalkane 2 2.845 155 N-(L-asparty)-1,1-diaminoalkane 3 2.000 156 N-(L-asparty)-1,1-diaminoalkane 5 4.643 157 N-(L-asparty))-1,1-diaminoalkane 5 4.643 158 N-(L-asparty))-1,1-diaminoalkane 6 1.875 159^ N-(L-asparty))-1,1-diaminoalkane 7 2.301 160 N-(L-asparty))-1,1-diaminoalkane 8 2.000 161 N-(L-asparty))-1,1-diaminoalkane 9 1.176 162^ Super aspartame 3.903 163 Sucrononic acid 5.301 164 Cyanoarylurea aspartame 3.892 165 Aspartic acid fenchyl ester 4.699 166 Glycine analog of cyanosuosan 3.845 167 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 174 Butoxy-nitroaniline 3.047 171* Butoxy-nitroaniline 2.903 175 Iodo-nitroaniline 2.901 174 Bromo-nitroaniline 3.001 177* Saccharine derivative 13 2.653			
155 N-(L-aspartyl)-1,1-diaminoalkane 3 2.000 156 N-(L-aspartyl)-1,1-diaminoalkane 4 3.000 157 N-(L-aspartyl)-1,1-diaminoalkane 5 4.643 158 N-(L-aspartyl)-1,1-diaminoalkane 6 1.875 159* N-(L-aspartyl)-1,1-diaminoalkane 7 2.301 160 N-(L-aspartyl)-1,1-diaminoalkane 7 2.301 160 N-(L-aspartyl)-1,1-diaminoalkane 8 2.000 161 N-(L-aspartyl)-1,1-diaminoalkane 9 1.176 162^ Super aspartame 3.903 163 Sucrononic acid 5.301 164 Cyanoarylurea aspartame 3.892 165 Aspartic acid fenchyl ester 4.699 166 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxy-nitroaniline 3.007 171 Butoxy-nitroaniline 3.007 172 Fluoro-nitroaniline 2.602 174 Bromo-nitroaniline 2.903 175^<	154	N–(L–aspartyl)–1,1–diaminoalkane 2	2.845
156 N-(L-asparty))-1,1-diaminoalkane 4 3.000 157 N-(L-asparty))-1,1-diaminoalkane 5 4.643 158 N-(L-asparty))-1,1-diaminoalkane 6 1.875 159^ N-(L-asparty))-1,1-diaminoalkane 7 2.301 160 N-(L-asparty))-1,1-diaminoalkane 8 2.000 161 N-(L-asparty))-1,1-diaminoalkane 9 1.176 162^ Super aspartame 3.903 163 Sucrononic acid 5.301 164 Cyanoarylurea aspartame 3.892 165 Aspartic acid fenchyl ester 4.699 166 Glycine analog of cyanosuosan 3.845 167 Bitroaniline (2-amino-4-nitrobenzene) 1.602 168 Nitroaniline 3.047 1717 Butoxy-nitroaniline 3.047 1717 Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 3.001 174 Butoxy-nitroaniline 3.097 175^< lodo-nitroaniline	155	N–(L–aspartyl)–1,1–diaminoalkane 3	2.000
157 N-(L-aspartyl)-1,1-diaminoalkane 5 4.643 158 N-(L-aspartyl)-1,1-diaminoalkane 6 1.875 159 ^A N-(L-aspartyl)-1,1-diaminoalkane 7 2.301 160 N-(L-aspartyl)-1,1-diaminoalkane 8 2.000 161 N-(L-aspartyl)-1,1-diaminoalkane 9 1.176 162 ^A Super aspartame 3.903 163 Sucrononic acid 5.301 164 Cyanoarylurea aspartame 3.892 165 ^A Aspartic acid fenchyl ester 4.699 166 Glycine analog of cyanosuosan 3.845 167 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 170 Ethoxy-nitroaniline 3.047 171 ^A Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 3.000 172 Fluoro-nitroaniline 3.007 176 Alylo axy-nitroaniline 3.097 1774 Butoxy-nitroaniline 3.007 1775 Ido-nitroaniline 2.014 1779 Saccharine derivative 13 2.653 180	156	N–(L–aspartyl)–1,1–diaminoalkane 4	3.000
158 N-(L-aspartyl)-1,1-diaminoalkane 6 1.875 159^A N-(L-aspartyl)-1,1-diaminoalkane 7 2.301 160 N-(L-aspartyl)-1,1-diaminoalkane 8 2.000 161 N-(L-aspartyl)-1,1-diaminoalkane 9 1.176 162^A Super aspartame 3.903 163 Sucrononic acid 5.301 164 Cyanoarylurea aspartame 3.892 165^A Aspartic acid fenchyl ester 4.699 166 Glycine analog of cyanosuosan 3.845 167 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxy-nitroaniline 3.047 171^ Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 2.602 174 Butoxy-nitroaniline 2.602 175^<	157	N–(L–aspartyl)–1,1–diaminoalkane 5	4.643
159^ N-(L-aspartyl)-1,1-diaminoalkane 7 2.301 160 N-(L-aspartyl)-1,1-diaminoalkane 8 2.000 161 N-(L-aspartyl)-1,1-diaminoalkane 9 1.176 162^ Super aspartame 3.903 163 Sucrononic acid 5.301 164 Cyanoarylurea aspartame 3.892 165 ^A Aspartic acid fenchyl ester 4.699 166 Glycine analog of cyanosuosan 3.845 167 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxy-nitroaniline 3.047 171 Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 2.602 173 Chloro-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.001 177^* iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 3.301 177 So Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182* Suo	158	N–(L–aspartyl)–1,1–diaminoalkane 6	1.875
160 N-(L-aspartyl)-1,1-diaminoalkane 8 2.000 161 N-(L-aspartyl)-1,1-diaminoalkane 9 1.176 162^ Super aspartame 3.903 163 Sucrononic acid 5.301 164 Cyanoarylurea aspartame 3.892 165^ Aspartic acid fenchyl ester 4.699 166 Glycine analog of cyanosuosan 3.845 167 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxynitroaniline 2.418 170 Ethoxynitroaniline 3.047 171^ Butoxy-nitroaniline 2.602 174 Bromo-nitroaniline 2.602 174 Bromo-nitroaniline 2.602 175^ Iodo-nitroaniline 2.903 175^ Iodo-nitroaniline 2.602 174 Bromo-nitroaniline 2.778 176 Allyl oxy-nitroaniline 2.653 180 Saccharine derivative 13 2.653 180 Saccharine derivative 23 </td <td>159^</td> <td>N–(L–aspartyl)–1,1–diaminoalkane 7</td> <td>2.301</td>	159^	N–(L–aspartyl)–1,1–diaminoalkane 7	2.301
161 N-(L-aspartyl)-1,1-diaminoalkane 9 1.176 162^ Super aspartame 3.903 163 Sucrononic acid 5.301 164 Cyanoarylurea aspartame 3.892 165^ Aspartic acid fenchyl ester 4.699 166 Glycine analog of cyanosuosan 3.845 167 Glycine analog of cyanosuosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxy-nitroaniline 2.418 170 Ethoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 2.602 174 Butoxy-nitroaniline 2.602 175 Iodo-nitroaniline 2.903 175^A Iodo-nitroaniline 2.903 176 Allyl oxy-nitroaniline 2.602 174 Bromo-nitroaniline 2.602 175 Iodo-nitroaniline 2.602 176 Allyl oxy-nitroaniline 2.602 177 Allyl oxy-nitroaniline 2.602 1774 Bromo-nitroaniline 2.613 178 Hydroxy-nitroaniline 2.653 <	160	N–(L–aspartyl)–1,1–diaminoalkane 8	2.000
162^ Super aspartame 3.903 163 Sucrononic acid 5.301 164 Cyanoarylurea aspartame 3.892 165^ Aspartic acid fenchyl ester 4.699 166 Glycine analog of cyanosuosan 3.845 167 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxy-nitroaniline 2.418 170 Ethoxy-nitroaniline 3.047 171^ Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 2.602 173 Chloro-nitroaniline 2.602 174 Bromo-nitroaniline 2.903 175^ Iodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 2.041 179 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 11 3.380 184 Suosan derivative 13 1.301	161	N–(L–aspartyl)–1,1–diaminoalkane 9	1.176
163 Sucrononic acid 5.301 164 Cyanoarylurea aspartame 3.892 165^ Aspartic acid fenchyl ester 4.699 166 Glycine analog of cyanosuosan 3.845 167 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxy-nitroaniline 2.418 170 Ethoxy-nitroaniline 3.001 171 Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 2.602 173 Chloro-nitroaniline 2.903 175^h Iodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 2.003 177* iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.653 180 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^* Suosan derivative 1 <td< td=""><td>162^</td><td>Super aspartame</td><td>3.903</td></td<>	162^	Super aspartame	3.903
164 Cyanoarylurea aspartame 3.892 165^ Aspartic acid fenchyl ester 4.699 166 Glycine analog of cyanosuosan 3.845 167 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxy-nitroaniline 2.418 170 Ethoxy-nitroaniline 3.047 171^ Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 1.602 173 Chloro-nitroaniline 2.602 174 Bromo-nitroaniline 2.903 175^ Iodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 2.903 177* iso Propoxynitroaniline 2.778 178 Hydroxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.653 180 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182* Suosan derivative 1	163	Sucrononic acid	5.301
165 ^A Aspartic acid fenchyl ester 4.699 166 Glycine analog of cyanosuosan 3.845 167 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxy-nitroaniline 2.418 170 Ethoxy-nitroaniline 3.047 171 ^A Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 1.602 173 Chloro-nitroaniline 2.602 174 Bromo-nitroaniline 2.903 175 ^A Iodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.097 177 iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.653 180 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesacharine 3.000 182 ^A Suosan derivative 1 3.380 184 Suosan derivative 1 3.380 184 Suosan derivative 1 2.114 185 Suosan derivative 1 2.114	164	Cyanoarylurea aspartame	3.892
166 Glycine analog of cyanosuosan 3.845 167 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxy-nitroaniline 2.418 170 Ethoxy-nitroaniline 3.047 171^ Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 1.602 173 Chloro-nitroaniline 2.602 174 Bromo-nitroaniline 2.903 175^ Iodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.011 177^ iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.653 180 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 1 3.380 184 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 2	165^	Aspartic acid fenchyl ester	4.699
167 Glycine analog of suosan 1.000 168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxy-nitroaniline 2.418 170 Ethoxy-nitroaniline 3.047 171^ Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 1.602 173 Chloro-nitroaniline 2.602 174 Bromo-nitroaniline 2.903 175^ Iodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.011 177^ iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.653 180 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 1 3.380 184 Suosan derivative 16 2.653 185 Suosan derivative 1 2.114 187 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 4 2.398 <td>166</td> <td>Glycine analog of cyanosuosan</td> <td>3.845</td>	166	Glycine analog of cyanosuosan	3.845
168 Nitroaniline (2-amino-4-nitrobenzene) 1.602 169 Methoxy-nitroaniline 2.418 170 Ethoxy-nitroaniline 3.047 1711 Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 1.602 173 Chloro-nitroaniline 2.602 174 Bromo-nitroaniline 2.903 175^ Iodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.01 177^ iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.204 179 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^A Suosan derivative 1 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 5	167	Glycine analog of suosan	1.000
169 Methoxy-nitroaniline 2.418 170 Ethoxy-nitroaniline 3.047 1711 ^A Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 1.602 173 Chloro-nitroaniline 2.602 174 Bromo-nitroaniline 2.903 175 ^A Iodo-nitroaniline 2.903 176 Allyl oxy-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.01 177 ^A iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.204 179 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182 ^A Suosan derivative 1 2.845 183 Suosan derivative 1 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 4 2.398 190 ^A Oxathiazinon dioxide derivative 5 2.	168	Nitroaniline (2-amino-4-nitrobenzene)	1.602
170 Ethoxy-nitroaniline 3.047 171^ Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 1.602 173 Chloro-nitroaniline 2.602 174 Bromo-nitroaniline 2.903 175^ Iodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.031 177^ iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.653 180 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 1 3.380 184 Suosan derivative 1 2.653 185 Suosan derivative 1 2.114 186 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 5 2.114 190 Oxathiazinon dioxide derivative 5 2.114 191 Oxathiazinon dioxide derivative 6	169	Methoxy-nitroaniline	2.418
171^ Butoxy-nitroaniline 3.000 172 Fluoro-nitroaniline 1.602 173 Chloro-nitroaniline 2.602 174 Bromo-nitroaniline 2.903 175^ Iodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.301 177^ iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.653 180 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 1 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 5 2.114 190 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose 2	170	Ethoxy-nitroaniline	3.047
172 Fluoro-nitroaniline 1.602 173 Chloro-nitroaniline 2.602 174 Bromo-nitroaniline 2.903 175^ lodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.301 177^ iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.204 179 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 1 3.380 184 Suosan derivative 1 3.380 184 Suosan derivative 1 2.653 186 Oxathiazinon dioxide derivative 1 2.114 187 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 4 2.398 190^ Oxathiazinon dioxide derivative 5 2.114 191 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose	171^	Butoxy-nitroaniline	3.000
173 Chloro-nitroaniline 2.602 174 Bromo-nitroaniline 3.097 175^ lodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.301 177^ iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.204 179 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 1 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 1 2.114 187 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 5 2.114 190^ Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose 2.000	172	Fluoro-nitroaniline	1.602
174 Bromo-nitroaniline 2.903 175^ Iodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.301 177^ iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.204 179 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 13 3.301 184 Suosan derivative 13 1.301 185 Suosan derivative 13 2.653 186 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 1 2.114 187 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 4 2.398 190^ Oxathiazinon dioxide derivative 5 2.114 191 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose 2.000	173	Chloro-nitroaniline	2.602
175^ Iodo-nitroaniline 3.097 176 Allyl oxy-nitroaniline 3.301 177^ iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.204 179 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 13 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 4 2.398 190^ Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose 2.000	174	Bromo-nitroaniline	2.903
176 Allyl oxy-nitroaniline 3.301 177^ iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.204 179 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 11 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 4 2.398 190^ Oxathiazinon dioxide derivative 5 2.114 191 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3CI-sucrose 2.000	175^	lodonitroaniline	3.097
177^ iso Propoxy-nitroaniline 2.778 178 Hydroxy-nitroaniline 2.204 179 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 11 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 2 2.114 187 Oxathiazinon dioxide derivative 3 2.114 188 Oxathiazinon dioxide derivative 4 2.398 190^ Oxathiazinon dioxide derivative 5 2.114 189 Oxathiazinon dioxide derivative 6 1.301 191 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3CI-sucrose 2.000	176	Allyl oxy–nitroaniline	3.301
178 Hydroxy-nitroaniline 2.204 179 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 11 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 2 2.114 187 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 5 2.114 190^ Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3CI-sucrose 2.000	177^	iso Propoxy–nitroaniline	2.778
179 Saccharine derivative 13 2.653 180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 11 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 1 2.114 187 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 4 2.398 190^ Oxathiazinon dioxide derivative 5 2.114 191 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose 2.000	178	Hydroxy–nitroaniline	2.204
180 Saccharine derivative 23 2.352 181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 11 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 2 2.114 187 Oxathiazinon dioxide derivative 3 2.114 188 Oxathiazinon dioxide derivative 4 2.398 190^ Oxathiazinon dioxide derivative 5 2.114 191 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose 2.000	179	Saccharine derivative 13	2.653
181 Thiophenesaccharine 3.000 182^ Suosan derivative 1 2.845 183 Suosan derivative 11 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 1 2.114 187 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 4 2.398 190^ Oxathiazinon dioxide derivative 5 2.114 191 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3CI-sucrose 2.000	180	Saccharine derivative 23	2.352
182^ Suosan derivative 1 2.845 183 Suosan derivative 11 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 1 2.114 187 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 4 2.398 190^ Oxathiazinon dioxide derivative 5 2.114 191 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose 2.000	181	Thiophenesaccharine	3.000
183 Suosan derivative 11 3.380 184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 1 2.114 187 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 4 2.398 190^ Oxathiazinon dioxide derivative 5 2.114 191 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose 2.000	182^	Suosan derivative 1	2.845
184 Suosan derivative 13 1.301 185 Suosan derivative 16 2.653 186 Oxathiazinon dioxide derivative 1 2.114 187 Oxathiazinon dioxide derivative 2 2.176 188 Oxathiazinon dioxide derivative 3 2.114 189 Oxathiazinon dioxide derivative 4 2.398 190^ Oxathiazinon dioxide derivative 5 2.114 191 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose 2.000	183	Suosan derivative 11	3.380
185Suosan derivative 162.653186Oxathiazinon dioxide derivative 12.114187Oxathiazinon dioxide derivative 22.176188Oxathiazinon dioxide derivative 32.114189Oxathiazinon dioxide derivative 42.398190^Oxathiazinon dioxide derivative 52.114191Oxathiazinon dioxide derivative 61.3011922-aminobenzoic acid2.079193^1',4',6'-3Cl-sucrose2.000	184	Suosan derivative 13	1.301
186Oxathiazinon dioxide derivative 12.114187Oxathiazinon dioxide derivative 22.176188Oxathiazinon dioxide derivative 32.114189Oxathiazinon dioxide derivative 42.398190^Oxathiazinon dioxide derivative 52.114191Oxathiazinon dioxide derivative 61.3011922-aminobenzoic acid2.079193^1',4',6'-3Cl-sucrose2.000	185	Suosan derivative 16	2.653
187Oxathiazinon dioxide derivative 22.176188Oxathiazinon dioxide derivative 32.114189Oxathiazinon dioxide derivative 42.398190^Oxathiazinon dioxide derivative 52.114191Oxathiazinon dioxide derivative 61.3011922-aminobenzoic acid2.079193^1',4',6'-3Cl-sucrose2.000	186	Oxathiazinon dioxide derivative 1	2.114
188Oxathiazinon dioxide derivative 32.114189Oxathiazinon dioxide derivative 42.398190^Oxathiazinon dioxide derivative 52.114191Oxathiazinon dioxide derivative 61.3011922-aminobenzoic acid2.079193^1',4',6'-3Cl-sucrose2.000	187	Oxathiazinon dioxide derivative 2	2.176
189Oxathiazinon dioxide derivative 42.398190^Oxathiazinon dioxide derivative 52.114191Oxathiazinon dioxide derivative 61.3011922-aminobenzoic acid2.079193^1',4',6'-3Cl-sucrose2.000	188	Oxathiazinon dioxide derivative 3	2.114
190^Oxathiazinon dioxide derivative 52.114191Oxathiazinon dioxide derivative 61.3011922-aminobenzoic acid2.079193^1',4',6'-3Cl-sucrose2.000	189	Oxathiazinon dioxide derivative 4	2.398
191 Oxathiazinon dioxide derivative 6 1.301 192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose 2.000	190^	Oxathiazinon dioxide derivative 5	2.114
192 2-aminobenzoic acid 2.079 193^ 1',4',6'-3Cl-sucrose 2.000	191	Oxathiazinon dioxide derivative 6	1.301
193^ 1',4',6'-3Cl-sucrose 2.000	192	2-aminobenzoic acid	2.079
	193^	1',4',6'–3CI–sucrose	2.000

194^	1',4'-2CI-sucrose	1.477
195	4'-F-4,1',6'-3CI-sucrose	3.000
196^	4,1',4',6'-4CI-sucrose	3.322
197	4,1',4'-3Cl-sucrose	2.342
198	4,1',6'–3Br–sucrose	2.903
199^	4,1',6'-3Cl-sucrose (trichlorosucrose)	2.813
200	4,1',6'–3F–sucrose	1.602
201^	4,4',6'-3Cl-sucrose	2.204
202	4,6,1',6'-4Cl-sucrose	2.301
203	4-F-1',4',6'-3Cl-sucrose	2.778
204	4–Hydroxy glycosides DHC	2.000
205	6,1',6'-3Cl-sucrose	1.398
206^	Psicose	-0.155
207	Ribose	-0.155
208	DHQ-3-SIFA	1.903
209^	Hesperidin–7–glucose DHC	2.000
210	Sorbose	0.000
211	Arabinose	-0.161
212	Fucose	-0.161
213	Liquiritin	2.398
214^	Naringin DHC	2.000
215	Periandrin I	1.929
216	Periandrin II	2.000
217^	Periandrin III	2.000
218	Periandrin IV	2.000
219	Perillartine	3.301
220	Polypodosides A	2.778
221	Rubusoside	2.057
222	Siamenoside I	2.748
223	Yang Li glycosides DHC	1.602
224^	Acesulfame potassium_CH3CH2_H	1.301
225	Acesulfame potassium_H_H	1.000
226	Baiyunoside	2.699
227^	Mogroside II	1.924
228	Mogroside IV	2.097
229	Mogroside V	2.477
230^	Osladin	3.477
231	Rebaudioside F	2.051
232^	Saccharin	2.653
233	Xylobiose	-0.398

^ predicción

No.	Nombre	Clase
1	Sucrose	Dulce
2	Sucralose	Dulce
3	Alitame	Dulce
4	Aspartame	Dulce
5	Tagatose	Dulce
6	Maltitol	Dulce
7	Isomaltulose (Palatinose)	Dulce
8	Trehalose	Dulce
9	Neohesperidine dihydrochalcone	Dulce
10	Neotame	Dulce
11	Isomalt (Palatinit)	Dulce
12	Sorbitol	Dulce
13^	Erythritol	Dulce
14^	Xylitol	Dulce
15	Stevioside	Dulce
16	Steviolbioside	Dulce
17^	Rebaudioside A	Dulce
18	Rebaudioside B	Dulce
19^	Rebaudioside C	Dulce
20	Rebaudioside D	Dulce
21	Rebaudioside E	Dulce
22	Dulcoside A	Dulce
23	Glycyrrhizin	Dulce
24	Hernandulcin	Dulce
25	Fructose	Dulce
26^	Glucose	Dulce
27	Xylose	Dulce
28	Maltose	Dulce
29	Lactulose	Dulce
30	Lactosucrose	Dulce
31^	Raffinose	Dulce
32	Rhamnose	Dulce
33	Naringin	Amargo
34^	Gentioblose	Amargo
35		Amargo
30		Amargo
3/*	Callelle	Amargo
38	Poncinin	Amargo
39	Quining	Amargo
40 111		Amargo
41^		Amargo
42 12	Dicrocrocin	Amargo
43	Clycerol	Dulco
44 45	Saccharin derivative 1	Duice
46^	Saccharin derivative 2	Duice
.0		Duioc

Tabla 8A. Nombres químicos y respuesta experimental de los 508compuestos dulces y amargos

47^	2-amino-4-nitro-propoxybenzene	Dulce
48	2,4-dinitro-propoxybenzene	Amargo
49^	Dulcin (p–ethoxyphenylurea)	Dulce
50	4–Ethoxyphenylthiourea	Amargo
51	Anti–Anisaldehyde Oxime	Dulce
52	Dihydroquercetin 3-acetate 4'-(methylether)	Dulce
53	Flavan	Dulce
54	Compound 5	Dulce
55^	1,3-benzodioxane	Dulce
56^	1,4-benzodioxane	Dulce
57	Bibenzyl derivative	Dulce
58	Isoflavan or 3–(3–Hydroxy–4–methoxyphenyl)–3,4–dihydro–2H– 1benzopyran	Dulce
59^	2–(3–hvdroxv–4–methoxvphenvl)–1.3–benzodioxole	Dulce
60	2-(3-Hvdroxv-4-methoxvphenvl)-4-H-1.3-benzodithiine	Dulce
61^	2–(3–Hydroxy–4–methoxyphenyl)–4H–1.3–benzoxathiine	Dulce
62	2-(3-Hydroxy-4-methoxyphenyl)-4H-1.3-benzodithiole	Dulce
63	2-(3-Hydroxy-4-methoxyphenyl)-1.3-benzoxathiole	Dulce
00	2-(3-Hydroxy-4-methoxyphenyl)-2.3-dihydro-1.4-	Bulco
64^	benzoxathiine	Dulce
65	2–(3–Hydroxy–4–methoxyphenyl)–2,3–dihydro–1,4–	Dulco
05	benzodithiine	Duice
66	2–(3–Hydroxy–4–methoxyphenyl)–2,3–dihydro–1,4– benzoxathiin–6–ol	Dulce
67	2–(3–Hydroxy–4–methoxyphenyl)–3,4–dihydro–2H–1–	Dulce
00	benzothiopyran	Dulas
68	2–(3–Mercapto–4–metnoxypnenyl)–4H–3,1–benzoxatniine	Duice
69		Duice
70^	Haematoxylin	Duice
71	9-Methoxy-7,11b-ainydrobenz[b]indeno[1,2-a]pyran-6a,10-aio	Duice
72~		Amargo
73^	Compound 8	Duice
74		Duice
75	Compound 20	Duice
76	Compound 21	Duice
//	Compound 26	Dulce
78^	2–(4–methoxybenzoyl) benzoic acid	Duice
79	Compound 3	Duice
80		Duice
81		Duice
82	Compound 9	Duice
83^	2–(4–Nitrobenzoyl)benzoic Acid	Amargo
84	Compound 12	Dulce
85	2–(3,4–Dihydroxybenzoyl)benzoic Acid	Duice
86	2–(3–Hydroxy–4–methoxybenzoyl)benzoic Acid	Dulce
87	2–(2,4–Dimethoxybenzoyl)benzoic Acid	Amargo
88^	2–(4–Methoxyphenylthio) benzoic Acid S–Oxide	Dulce
89^	Phthalic Acid Mono(4–methoxyphenyl) Ester	Dulce
90	3-Methoxy-1,3,5-estratrien-4-ol	Dulce
91^	Spiro[(4–H–1,3–benzodithian)–2,1'–(5'–methoxy–6'hydroxy– [1H]–2',3'–dihydroindene)]	Dulce

92	Compound 14	Dulce
93	Compound 15	Dulce
94	Phyllodulcin	Dulce
95^	Compound 6	Dulce
96	Compound 9	Dulce
97^	3',4'-dihydroxyphenyl-3,1-benzoxathiane	Dulce
98	2-[3-(4-nitrophenoxycarboxy)phenyl]-3,1-benzoxathiane	Dulce
99	2-[3-(4-nitrophenylcarbonylmethoxy)-4-methoxyphenyl]-3,1-	Dulce
	benzoxathiane	
100^	2-[3-(4-nitropnenyicarbamoyioxy-4-metnoxy)pnenyi]-3,1-	Dulce
101^	Compound 32	Dulce
100	3–(3–Hydroxy–4–methoxyphenyl)–1–(3–carboxyphenyl)propan–	Dulaa
102	1-one	Duice
103	Compound 34	Dulce
104	2–(3–hydroxy–4–methoxyphenoxymethyl)benzoic acid	Dulce
105^	Compound 42	Dulce
106	Dihydroquercetin 4'–(methyl ether)	Dulce
107^	Compound III	Amargo
108	Compound V	Dulce
109	Compound VII	Dulce
110	Compound XIV	Dulce
111	Compound XVIII	Amargo
112	Compound XIX	Amargo
113	Compound XX	Amargo
114	Compound XXI	Dulce
115^	Compound XXII	Dulce
116	Compound XXIII	Dulce
117^	Compound XXIV	Dulce
118^	Compound XXVII	Dulce
119	Compound XXIX	Amargo
120^	Compound XXX	Dulce
121	Compound XXXI	Dulce
122	Compound XXXII	Dulce
123^	Compound XL	Dulce
124^	Compound XLI	Dulce
125	Compound XLII	Dulce
126	Compound XLIII	Dulce
127^	Compound XLIV	Amargo
128	Compound XLVII	Dulce
129	Compound XLIX	Dulce
130	Compound LIV	Dulce
131	Compound LIX	Dulce
132	Compound LXV	Dulce
133^	Compound LXVI	Dulce
134	Compound LXXII	Amargo
135^	Compound LXXIII	Amargo
136^	Compound LXXIV	Amargo
137	Compound LXXV	Amargo
138	Compound LXXVI	Amargo

139^	Compound LXXVIII	Dulce
140^	Compound LXXIX	Dulce
141	Compound LXXX	Dulce
142	Compound LXXXV	Dulce
143	Compound LXXXIX	Dulce
144	Compound XC	Dulce
145	Compound XCI	Dulce
146	Compound XCV	Dulce
147	Compound XCVI	Dulce
148^	Compound XCVII	Amargo
149	Nitrobenzene	Dulce
150	m–Nitrobenzene	Amargo
151	Phenylthiourea	Amargo
152	Dimethyl urea	Dulce
153^	Urea	Amargo
154	Resorcinol	Dulce
155	Phloroglucinol	Dulce
156	Glycol	Dulce
157	1,4–Anhydro–ribitol	Dulce
158^	1,4–Anhydro–mannitol	Dulce
159	1,5–Anhydro–mannitol	Dulce
160^	Viboquercitol	Dulce
161	Allo–inositol	Dulce
162^	Dihydroxyacetone	Dulce
163	Monohydroxyacetone	Dulce
164^	Methyl dihydroxyacetone	Dulce
165	Stachyose	Dulce
166	4–O–Methyl sucrose	Dulce
167	6–O–Methyl sucrose	Dulce
168^	6,6'-di-O-Methyl sucrose	Dulce
169	4,6'-di-O-Methyl sucrose	Dulce
170	4,6-di-O-Methyl sucrose	Dulce
171	1',6'-di-O-Methyl sucrose	Dulce
172	Methyl 2–deoxy– α –D–gluco–pyranoside	Dulce
173	Methyl 3–deoxy– α –D–gluco–pyranoside	Dulce
174^	Methyl 4–deoxy– α –D–gluco–pyranoside	Dulce
175^	Methyl 6-deoxy- α -D-gluco-pyranoside	Dulce
176	Methyl- α -D-2,6-dideoxy-gluco-pyranoside	Amargo
177	Methyl- α -D-3,6-dideoxy-gluco-pyranoside	Amargo
178^	Methyl- α -D-4.6-dideoxy-gluco-pyranoside	Amargo
179	6-Chloro-6-deoxy-D-fructofuranose	Dulce
180	1.6-dichloro-1.6-deoxy-D-fructofuranose	Dulce
181	Methyl glucopyranoside	Dulce
182	4–Chloro–galactosucrose	Dulce
183	6'-Chloro-sucrose	Dulce
184^	1'-Chloro-sucrose	Dulce
185	1'.6'-Dichloro-sucrose	Dulce
186	1'.4–Dichloro–galactosucrose	Dulce
187	1.6–Di–S–1.6–dithio–D–fructofuranose	Dulce
188	Alanine	Dulce

	189	Asparagine	Dulce
	190	glutamine	Dulce
1	191^	Glycine	Dulce
1	192^	Histidine	Dulce
	193	Methionine	Dulce
	194	Hydroxy proline	Dulce
	195	Serine	Dulce
1	196^	Threonine	Dulce
	197	L-Aspartyl-aminomalonic acid diester 1	Dulce
	198	L-Aspartyl-aminomalonic acid diester 2	Dulce
	199	L-Aspartyl-aminomalonic acid diester 3	Dulce
	200	N–(L–aspartyl)–1,1–diaminoalkane 1	Dulce
2	201^	N–(L–aspartyl)–1,1–diaminoalkane 2	Dulce
	202	N–(L–aspartyl)–1,1–diaminoalkane 3	Dulce
2	203^	N–(L–aspartyl)–1,1–diaminoalkane 4	Dulce
	204	N–(L–aspartyl)–1,1–diaminoalkane 5	Dulce
2	205^	N–(L–aspartyl)–1,1–diaminoalkane 6	Dulce
	206	N–(L–aspartyl)–1,1–diaminoalkane 7	Dulce
	207	N–(L–aspartyl)–1,1–diaminoalkane 8	Dulce
	208	N–(L–aspartyl)–1,1–diaminoalkane 9	Dulce
2	209^	Super aspartame	Dulce
	210	Sucrononic acid	Dulce
	211	Cyanoarylurea aspartame	Dulce
2	212^	Aspartic acid fenchyl ester	Dulce
	213	Glycine analog of cyanosuosan	Dulce
	214	Glycine analog of suosan	Dulce
	215	Nitroaniline (2-amino-4-nitrobenzene)	Dulce
2	216^	Methoxy-nitroaniline	Dulce
	217	Ethoxy-nitroaniline	Dulce
2	218^	Butoxy-nitroaniline	Dulce
2	219^	Fluoro-nitroaniline	Dulce
	220	Chloro-nitroaniline	Dulce
2	221^	Bromo-nitroaniline	Dulce
2	222^	lodo-nitroaniline	Dulce
	223	Methyl-nitroaniline	Dulce
	224	Allyl oxy-nitroaniline	Dulce
2	225^	iso Propoxy-nitroaniline	Dulce
	226	Hydroxy–nitroaniline	Dulce
2	227^	Saccharine derivative 1	Amargo
	228	Saccharine derivative 2	Amargo
	229	Saccharine derivative 3	Amargo
	230	Saccharine derivative 4	Amargo
	231	Saccharine derivative 5	Dulce
2	232^	Saccharine derivative 13	Dulce
	233	Saccharine derivative 14	Amargo
	234	Saccharine derivative 15	Dulce
2	235^	Saccharine derivative 16	Dulce
2	236^	Saccharine derivative 20	Amargo
	237	Saccharine derivative 22	Amargo
	238	Saccharine derivative 23	Dulce

239	Saccharine derivative 25	Dulce
240	Saccharine derivative 27	Amargo
241	Thiophenesaccharine	Dulce
242	anti–Furfuraldehyde oxime	Dulce
243	5–Benzyl–2–Furfuraldehyde oxime	Dulce
244	1–Cycloheptene–1–carboxaldehyde oxime	Amargo
245^	anti–Cyclohexane carboxaldehyde	Amargo
246^	Dihydroquercetin 3-acetate	Dulce
247	Hesperitin	Dulce
248	Neoastilbin	Dulce
249^	meta-Tolylurea	Amargo
250^	para-Tolylurea	Dulce
251	4–Propoxyphenyl urea	Dulce
252	Suosan derivative 1 (suosan)	Dulce
253^	Suosan derivative 11	Dulce
254	Suosan derivative 12	Amargo
255^	Suosan derivative 13	Dulce
256^	Suosan derivative 16	Dulce
257	Pyrrolidine	Amargo
258	Pyrrole	Amargo
259	Imidazole	Amargo
260	Pyrazole	Amargo
261^	Piperidine	Amargo
262	Piperazine	Amargo
263	Purine	Amargo
264^	Pyridazine	Amargo
265	Pyrazine	Amargo
266	Pyridine	Amargo
267^	Pyrimidine	Amargo
268	Strichnine	Amargo
269	Brucine	Amargo
270^	Solanine	Amargo
271	Diterpene derivative 1	Amargo
272	Diterpene derivative 2	Amargo
273	Diterpene derivative 3	Amargo
274	Diterpene derivative 4	Amargo
275	Denatonium chloride	Amargo
276	Denatonium chloride derivative 1	Amargo
277	Denatonium chloride derivative 2	Amargo
278	Denatonium chloride derivative 3	Amargo
279	Denatonium chloride derivative 4	Amargo
280	Denatonium chloride derivative 5	Amargo
281	Denatonium chloride derivative 6	Amargo
282	Denatonium chloride derivative 7	Amargo
283	Denatonium chloride derivative 8	Amargo
284	Denatonium chloride derivative 9	Amargo
285^	Denatonium chloride derivative 10	Amargo
286	Denatonium chloride derivative 11	Amargo
287^	Denatonium chloride derivative 12	Amargo
288^	Denatonium chloride derivative 13	Amargo

289	Methyl–β–D–Fructopyranose	Dulce
290^	5-deoxy-D-threo-Hexulose	Dulce
291	Oxathiazinon dioxide derivative 1	Dulce
292^	Oxathiazinon dioxide derivative 2	Dulce
293	Oxathiazinon dioxide derivative 3	Dulce
294	Oxathiazinon dioxide derivative 4	Dulce
295^	Oxathiazinon dioxide derivative 5	Dulce
296^	Oxathiazinon dioxide derivative 6	Dulce
297	3-amino-4-chlorobenzoic acid	Amargo
298^	2–aminobenzoic acid	Dulce
299^	2-nitroaniline	Amargo
300	Germacrolide	Amargo
301	3-anilino-2-styryl-3H-naphthol[I, 2-d]imidazole-5-sulfonate	Dulce
302	Perillartine	Dulce
303^	1' 4' 6'-3Cl-sucrose	Dulce
304^	1'.4'-2Cl-sucrose	Dulce
305	4'-Br-4.1'.6'-3Cl-sucrose	Dulce
306^	4'-F-4 1' 6'-3Cl-sucrose	Dulce
307	4.1'.4'.6'-4Br-sucrose	Dulce
308	4.1'.4'.6'-4Cl-sucrose	Dulce
309^	4.1'.4'-3Cl-sucrose	Dulce
310	4.1'.6'-3Br-sucrose	Dulce
311	4.1'.6'-3F-sucrose	Dulce
312	4 1' 6'-3I-sucrose	Dulce
313	4 4' 6'-3Cl-sucrose	Dulce
314	4 6 1' 6'-4Cl-sucrose	Dulce
315^	4-F-1' 4' 6'-3Br-succose	Dulce
316^	4-F-1' 4' 6'-3Cl-sucrose	Dulce
317	4–O–n–propyl alycosides DHC	Dulce
0.4.0	4β , 10α – dimethyl – 1, 2, 3, 4, 5, 10 – hexahydrofluorene – 4α , 6α –	
318	dicarboxylic acid	Duice
319	6,1',6'-3Cl-sucrose	Dulce
320	6–chloro–tryptophan	Dulce
321	Liquiritin	Dulce
322	N–Acetyl–D–glucosamine	Dulce
323	Periandrin I	Dulce
324	Periandrin II	Dulce
325	Periandrin III	Dulce
326	Periandrin IV	Dulce
327	Abrusoside B	Dulce
328^	Abrusoside C	Dulce
329^	Abrusoside D	Dulce
330	Acesulfame potassium_CH3CH2CH2 CH3	Dulce
331	Acesulfame potassium_CH3CH2_H	Dulce
332^	Acesulfame potassium_H_H	Dulce
333	Albiziasaponin B	Dulce
334	Arabinose	Dulce
335	Asp 1	Dulce
336^	Asp 2	Dulce

337	Asp 3	Dulce
338	Asp 4	Dulce
339^	Asp 5	Dulce
340	Asp 6	Dulce
341	Asp 7	Dulce
342^	Asp 8	Dulce
343	Asp 9	Dulce
344	Asp 10	Dulce
345^	Asp 11	Dulce
346	Asp 14	Dulce
347^	Asp 15	Dulce
348^	Asp 16	Dulce
349^	Asp 17	Dulce
350	Asp 18	Dulce
351	Asp 20	Dulce
352	Asp 21	Dulce
353	Asp 22	Dulce
354	Asn 23	Dulce
355	Asn 24	Dulce
356	Asn 52	Dulce
357^	Asn 53	Dulce
358	Asn 55	Dulce
3594	Asn 56	Dulce
360	Asp 58	Dulce
361^	Asp 60	Dulce
362	Asp 60	Dulce
3634	Asp 01 Asp 62	Duice
364	Asp 62	Dulce
365	Asp 60 Asp 64	Dulce
366	Asp 65	Duice
367	Asp 66	Duice
369	Asp 67	Duice
360	Asp 07	Duice
270	Asp 00	Duice
37U 271A	Asp 09	Duice
3711	Asp 70	Duice
3720	Asp 72	Duice
373	Asp 72	Duice
374	Asp 75	Duice
375	Asp 74	Duice
370	Asp 75	Duice
3//	Asp 76	Duice
3/8 270	Asp 79	Duice
319	Asp 70	Duice
3801	Asp /9	Duice
381		Duice
382	Asp 81	Duice
383	Asp 82	Duice
384	Asp 83	Dulce
385^	Asp 84	Dulce
386^	Asp 85	Dulce

,			
	387^	Asp 86	Dulce
	388	Asp 87	Dulce
	389^	Asp 88	Dulce
	390^	Asp 89	Dulce
	391	Asp 90	Dulce
	392	Asp 91	Dulce
	393^	Asp 92	Dulce
	394	Asp 93	Dulce
	395	Asp 94	Dulce
	396	Asp 95	Dulce
	397	Asp 96	Dulce
	398	Asp 97	Dulce
	399^	Asp 98	Dulce
	400	Asp 99	Dulce
	401	Asp 100	Dulce
	402	Asp 101	Dulce
	403	Asp 102	Dulce
	404	Asp 103	Dulce
	405	Asp 104	Dulce
	406	Asp 105	Dulce
	407	Asp 106	Dulce
	408	Asp 107	Dulce
	409	Asp 108	Dulce
	410	Asp 109	Dulce
	411	Asp 110	Dulce
	412	Asp 112	Dulce
	413^	Asp 122	Dulce
	414^	Asp 123	Dulce
	415^	Asp 124	Dulce
	416	Asp 125	Dulce
	417	Asp 126	Dulce
	418	Asp 128	Dulce
	419	Asp 129	Dulce
	420	Asp 130	Dulce
	421^	Asp 131	Dulce
	422	Asp 132	Dulce
	423^	Asp 134	Dulce
	424^	Asp 135	Dulce
	425^	Asp 136	Dulce
	426	Asp 137	Dulce
	427	Asp 138	Dulce
	428^	Asp 139	Dulce
	429	Asp 140	Dulce
	430	Asp 141	Dulce
	431^	Asp 142	Dulce
	432	Asp 143	Dulce
	433	Asp 153	Dulce
	434^	Asp 154	Dulce
	435	Asp 155	Dulce
	436^	ASD 156	Dulce

437	Asp 157	Dulce
438	Asp 159	Dulce
439	Asp 160	Dulce
440	Asp 161	Dulce
441	Asp 163	Dulce
442^	Asp 164	Dulce
443	Asp 165	Dulce
444	Asp 166	Dulce
445	Asp 167	Dulce
446	Asp 168	Dulce
447	Asp 169	Dulce
448^	Asp 170	Dulce
449	Asp 171	Dulce
450	Asp 172	Dulce
451	Asp 173	Dulce
452	Asp 181	Dulce
453	Asp 182	Dulce
454	Asp 183	Dulce
455	Asp 184	Dulce
456^	Asp 185	Dulce
457	Asp 186	Dulce
458	Asp 187	Dulce
459^	Asp 188	Dulce
460^	Asp 189	Dulce
461	Asp 190	Dulce
462^	Asp 191	Dulce
463	Asp 192	Dulce
464	Asp 193	Dulce
465	Asp 194	Dulce
466	Asp 197	Dulce
467^	Asp 198	Dulce
468^	Asp 204	Dulce
469	Asp 207	Dulce
470	Asp 208	Dulce
471^	Asp 211	Dulce
472	Asp 212	Dulce
473	Asp 213	Dulce
474	Asp 214	Dulce
475	Asp 215	Dulce
476^	Baiyunoside	Dulce
477	Benzenepropanoic acid	Dulce
478^	Bernardame	Dulce
479	cyclamate	Dulce
480	Cyclocarioside A	Dulce
481	Gaudichaudioside A	Dulce
482^	Hesperinin glucoside DHC	Dulce
483	Homoeohesperidin DHC	Dulce
484	Isovanillic 18	Dulce
485	Isovanillic 24	Dulce
486	isovanillic 25	Dulce

Duice Duice Duice Duice Duice Duice Duice Duice Duice Duice
Duice Duice Duice Duice Duice Duice Duice Duice Duice
Dulce Dulce Dulce Dulce Dulce Dulce Dulce Dulce
Dulce Dulce Dulce Dulce Dulce Dulce Dulce
Dulce Dulce Dulce Dulce Dulce Dulce
Dulce Dulce Dulce Dulce Dulce
Dulce Dulce Dulce Dulce
Dulce Dulce Dulce
Dulce Dulce
Dulce
Dulce

No.	Nombre	Clase
1	Sucrose	Dulce
2	Sucralose	Dulce
3^	Alitame	Dulce
4	Aspartame	Dulce
5	Tagatose	Dulce
6^	Maltitol	Dulce
7	Isomaltulose (Palatinose)	Dulce
8	Trehalose	Dulce
9	Neohesperidine dihydrochalcone	Dulce
10	Neotame	Dulce
11	Isomalt (Palatinit)	Dulce
12	Sorbitol	Dulce
13	Erythritol	Dulce
14^	Xylitol	Dulce
15^	Stevioside	Dulce
16^	Steviolbioside	Dulce
17	Rebaudioside A	Dulce
18	Rebaudioside B	Dulce
19	Rebaudioside C	Dulce
20^	Rebaudioside D	Dulce
21	Rebaudioside E	Dulce
22^	Dulcoside A	Dulce
23	Glycyrrhizin	Dulce
24^	Hernandulcin	Dulce
25	Fructose	Dulce
26	Glucose	Dulce
27	Xylose	Dulce
28	Maltose	Dulce
29	Lactulose	Dulce
30	Lactosucrose	Duice
31	Raffinose	Duice
32	Rhamnose	Duice
331	Giycelol	Duice
34^	Saccharin derivative 1	Duice
30 26	Sacchaillí derivative 2	Duice
30 27	2 pitro o toluidino	Insipido
201	2 nitro n toluidino	Insipido
30	3 - 11110 - p - 101010111e	Dulco
40	2 - a - a - a - a - a - a - a - a - a -	Insínido
40 //1/		Dulce
-+ I ⊿2	o_ethoxynhenylurea	Ineínido
<u></u> -1∠ ⊿2	Dihydroguercetin 3_acetate /!_(methylether)	Πιστριάο
43 44	Flavan	Duice
4 4 45	Compound 5	Duice
46	1,3-benzodioxane	Dulce

Tabla 9A. Nombres químicos y respuesta experimental de los 566compuestos dulces e insípidos

1,4-benzodioxane	Dulce
Bibenzyl derivative	Dulce
1,4-benzodioxin	Insípido
Isoflavan or 3–(3–Hydroxy–4–methoxyphenyl)–3,4–dihydro–2H– 1benzopyran	Dulce
2–(3–Hydroxy–4–methoxyphenyl)–4,5–dihydro–1,3– benzodioxepine	Insípido
3–(3Hydroxy–4–methoxyphenyl)–1,5–dihydro–2,4–	Insípido
2–(3–hvdroxv–4–methoxvphenvl)–1.3–benzodioxole	Dulce
Compound 23	Insípido
Compound 24	Insípido
Compound 25	Insípido
2–(3–Hvdroxv–4–methoxyphenyl)–4–H–1.3–benzodithijne	Dulce
2–(3–Hydroxy–4–methoxyphenyl)–4H–1.3–benzoxathiine	Dulce
2-(3-Hydroxy-4-methoxyphenyl)-4H-1.3-benzodithiole	Dulce
2-(3-Hydroxy-4-methoxyphenyl)-1.3-benzoxathiole	Dulce
7,8–Dimethyl–3–(3–hydroxy–4–methoxyphenyl)–1,5–dihydro–	Insípido
2,4–benzoaltniepine 2–(3–Hydroxy–4–methoxyphenyl)–2,3–dihydro–1,4–	Dulce
benzoxathiine	Duice
2–(3–Hydroxy–4–methoxyphenyl)–2,3–dihydro–1,4– benzodithiine	Dulce
2–(3–Hydroxy–4–methylthiophenyl)–2,3–dihydro–1,4–	Insípido
2–(3–Hydroxy–4–methoxyphenyl)–2,3–dihydro–1,4–	Dulce
benzoxathiin–6–ol 2–(3–Hydroxy–4–methylthiophenyl)–2.3–dihydro–1.4–	
benzovathin–6–ol	Insípido
2–(3–Hydroxy–4–methoxyphenyi)–3,4–dinydro–2H–1– benzothiopyran	Dulce
3–(3–Hydroxy–4–methoxyphenyl)–3,4–dihydro–2H–1– benzothiopyran	Insípido
2–(3–Mercapto–4–methoxyphenyl)–4H–3,1–benzoxathiine	Dulce
Sulfone	Dulce
Haematoxylin	Dulce
9–Methoxy–7,11b–dihydrobenz[b]indeno[1,2–d]pyran–6a,10–diol	Dulce
10-Methoxy-7,11b-dihydrobenz[b]indeno[1,2-d]pyran-6a,9-diol	Insípido
3,9,10–Trimethoxy–7,11b–dihydrobenz[b]indeno[1,2–d]pyran– 4 6a–diol	Insípido
4,9,10–Trimethoxy–7,11b–dihydrobenz[b]indeno[1,2–d]pyran–	Insípido
Compound 8	Dulce
Compound 17	Insínido
Compound 18	Dulce
Compound 19	Insípido
Compound 20	Dulce
Compound 21	Dulce
Compound 25	Insípido
Compound 26	Dulce
Compound 27	Insipido
	1,4-benzodioxane Bibenzyl derivative 1,4-benzodioxin Isoflavan or 3-(3-Hydroxy-4-methoxyphenyl)-3,4-dihydro-2H- 1benzopyran 2-(3-Hydroxy-4-methoxyphenyl)-1,5-dihydro-2,4- benzodioxepine 3-(3Hydroxy-4-methoxyphenyl)-1,5-dihydro-2,4- benzodioxepine 2-(3-hydroxy-4-methoxyphenyl)-1,3-benzodioxole Compound 23 Compound 24 Compound 25 2-(3-Hydroxy-4-methoxyphenyl)-4H-1,3-benzodithiine 2-(3-Hydroxy-4-methoxyphenyl)-4H-1,3-benzodithiole 2-(3-Hydroxy-4-methoxyphenyl)-4H-1,3-benzodithiole 2-(3-Hydroxy-4-methoxyphenyl)-1,3-benzoxathiine 2-(3-Hydroxy-4-methoxyphenyl)-1,3-benzoxathiole 7,8-Dimethyl-3-(3-hydroxy-4-methoxyphenyl)-1,5-dihydro- 2,4-benzodithiepine 2-(3-Hydroxy-4-methoxyphenyl)-2,3-dihydro-1,4- benzoxathiine 2-(3-Hydroxy-4-methoxyphenyl)-2,3-dihydro-1,4- benzoxathiine 2-(3-Hydroxy-4-methoxyphenyl)-2,3-dihydro-1,4- benzoxathiine 2-(3-Hydroxy-4-methoxyphenyl)-2,3-dihydro-1,4- benzoxathiine 2-(3-Hydroxy-4-methoxyphenyl)-2,3-dihydro-1,4- benzoxathiine 2-(3-Hydroxy-4-methoxyphenyl)-2,3-dihydro-1,4- benzoxathiine 2-(3-Hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1- benzoxathiine 2-(3-Hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1- benzothiopyran 3-(3-Hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1- benzothiopyran 3-(3-Hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1- benzothiopyran 3-(3-Hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1- benzothiopyran 3-(3-Hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1- benzothiopyran 3-(3-Hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1- benzothiopyran 3-(3-Hydroxy-7,11b-dihydrobenz[b]indeno[1,2-d]pyran-6a,9-diol 3,9,10-Trimethoxy-7,11b-dihydrobenz[b]indeno[1,2-d]pyran-6a,9-diol 3,9,10-Trimethoxy-7,11b-dihydrobenz[b]indeno[1,2-d]pyran- 3,6a-diol Compound 8 Compound 18 Compound 18 Compound 26 Compound 26

86	Compound 29	Insípido
87^	Compound 30	Insípido
88^	2–(4–methoxybenzoyl) benzoic acid	Dulce
89^	Compound 2	Insípido
90^	Compound 3	Dulce
91^	Compound 4	Dulce
92	Compound 5	Insípido
93	Compound 6	Insípido
94^	Compound 7	Dulce
95	Compound 8	Insípido
96	Compound 9	Dulce
97	Compound 11	Insípido
98	Compound 12	Dulce
99	Compound 13	Insípido
100^	2–(3,4–Dihydroxybenzoyl)benzoic Acid	Dulce
101	2–(3–Hydroxy–4–methoxybenzoyl)benzoic Acid	Dulce
102^	2–(4–Hydroxy–3–methoxybenzoyl)benzoic Acid	Insípido
103^	2–(3,4–Dimethoxybenzoyl)benzoic Acid	Insípido
104	2–(4–Hydroxy–2–methoxybenzoyl)benzoic Acid	Insípido
105	Compound 20	Insípido
106	Compound 21	Insípido
107	Compound 22	Insípido
108^	2–(4–Methoxyphenylthio) benzoic Acid S–Oxide	Dulce
109	Compound 24	Insípido
110	Compound 25	Insípido
111^	2–Hydroxymethylphenyl–4–methoxyphenylmethanol	Insípido
112^	Phthalic Acid Mono(4–methoxyphenyl) Ester	Dulce
113^	3–(4–Methoxyphenyl)benzo[2]furan–1–one	Insípido
114	Compound 29	Insípido
115	3–Methoxy–1,3,5–estratrien–4–ol	Dulce
116	Substituted pterocarpan	Insípido
117	Spiro[(4–H–1,3–benzodithian)–2,1'–(5'–methoxy–6'hydroxy– [1H]–2',3'–dihydroindene)]	Dulce
118	Spiro[(4–H–1,3–benzodithian)–2,1'–(5'–hydroxy–6'–methoxy– [1H]–2',3'–dihydroindene)]	Insípido
119^	Spiro[(4–H–1,3–benzodithian)–2,1'–(4'–hydroxy–5'–methoxy– [1H]–2',3'–dihydroindene)]	Insípido
120	2–Phenoxymethyl–2H–7,8–dihydrobenzopyran	Insípido
121^	2–Methyl–2–(3–hydroxy–4–methoxyphenyl)–1,4– dihydrobenzodioxane	Insípido
122^	Compound 4	Dulce
123	Compound 6	Dulce
124	Compound 9	Dulce
125	3',4'-dihydroxyphenyl-3,1-benzoxathiane	Dulce
126^	2-[3-(4-nitrophenoxycarboxy)phenyl]-3,1-benzoxathiane	Dulce
127^	2–[3–(4–nitrophenylcarbonylmethoxy)–4–methoxyphenyl]–3,1– benzoxathiane	Dulce
128^	2–[3–(4–nitrophenylcarbamoyloxy–4–methoxy)phenyl]–3,1– benzodioxane	Dulce
129	Compound 32	Dulce
130	3–(3–Hydroxy–4–methoxyphenyl)–1–(3–carboxyphenyl)propan–	Dulce

	1–one	
131	Compound 34	Dulce
132	2–(3–hydroxy–4–methoxyphenoxymethyl)benzoic acid	Dulce
133^	Compound 42	Dulce
134	Dihydroquercetin 4'–(methyl ether)	Dulce
135	Dihydroquercetin	Insípido
136	Compound II or Hydrangenol	Insípido
137^	Compound IV	Insípido
138	Compound V	Dulce
139^	Compound VI	Insípido
140	Compound VII	Dulce
141^	Compound VIII	Insípido
142	Compound IX	Insípido
143^	Compound X	Insípido
144	Compound XI	Insípido
145	Compound XII	Insípido
146	Compound XIV	Dulce
147	Compound XV	Insípido
148^	Compound XVI	Insípido
149	Compound XVII	Insípido
150	Compound XXI	Dulce
151	Compound XXII	Dulce
152	Compound XXIII	Dulce
153	Compound XXIV	Dulce
154^	Compound XXV	Insípido
155	Compound XXVI	Insípido
156	Compound XXVII	Dulce
157	Compound XXVIII	Insípido
158	Compound XXX	Dulce
159^	Compound XXXI	Dulce
160	Guaiacol	Insípido
161	Compound XXXII	Dulce
162	Compound XXXIII	Insípido
163^	Compound XXXIV	Insípido
164	Compound XXXV	Insípido
165	Compound XXXVII	Insípido
166^	Compound XXXVIII	Insípido
167	Compound XXXIX	Insípido
168	Compound XL	Dulce
169^	Compound XLI	Dulce
170	Compound XLII	Dulce
171	Compound XLIII	Dulce
172	Compound XLV	Insípido
173	Compound XLVI	Insípido
174	Compound XLVII	Dulce
175	Compound XLVIII	Insípido
176^	Compound XLIX	Dulce
177^	Compound L	Insípido
178	Compound LI	Insípido
179	Compound LII	Insípido

180	Compound LIII	Insípido
181	Compound LIV	Dulce
182^	Compound LV	Insípido
183	Compound LVI	Insípido
184	Compound LVII	Insípido
185	Compound LVIII	Insípido
186^	Compound LIX	Dulce
187	Compound LX	Insípido
188	Compound LXI	Insípido
189	Compound LXII	Insípido
190^	Compound LXIII	Insípido
191	Compound LXIV	Insípido
192	Compound LXV	Dulce
193	Compound LXVI	Dulce
194^	Compound LXVII	Insípido
195^	Compound LXVIII	Insípido
196	Compound LXIX	Insípido
197	Compound LXX	Insípido
198	Compound LXXI	Insípido
199	Compound LXXVII	Insípido
200^	Compound LXXVIII	Dulce
201	Compound LXXIX	Dulce
202^	Compound LXXX	Dulce
203^	Compound LXXXI	Insípido
204	Compound LXXXII	Insípido
205	Compound LXXXIII	Insípido
206	Compound LXXXIV	Insípido
207^	Compound LXXXV	Dulce
208	Compound LXXXVIII	Insípido
209^	Compound LXXXIX	Dulce
210^	Compound XC	Dulce
211^	Compound XCI	Dulce
212	Compound XCII	Insípido
213^	Compound XCIII	Insípido
214	Compound XCV	Dulce
215	Compound XCVI	Dulce
216	Compound XCVIII	Insípido
217^	Compound CX	Insípido
218	Compound C	Insípido
219	Compound CI	Insípido
220	Compound CII	Insípido
221	Nitrobenzene	Dulce
222	Dimethyl urea	Dulce
223^	Resorcinol	Dulce
224^	Phloroglucinol	Dulce
225	Glycol	Dulce
226	1,4–Anhydro–ribitol	Dulce
227^	1,4–Anhydro–mannitol	Dulce
228	1,5–Anhydro–mannitol	Dulce
229	Viboquercitol	Dulce
	•	

230	Allo-inositol	Dulce
231	Dihydroxyacetone	Dulce
232	Monohydroxyacetone	Dulce
233	Methyl dihydroxyacetone	Dulce
234	Stachyose	Dulce
235	4–O–Methyl sucrose	Dulce
236	6–O–Methyl sucrose	Dulce
237	6,6'-di-O-Methyl sucrose	Dulce
238^	4,6'-di-O-Methyl sucrose	Dulce
239	4,6-di-O-Methyl sucrose	Dulce
240	1',6'-di-O-Methyl sucrose	Dulce
241^	Methyl 2-deoxy-α-D-gluco-pyranoside	Dulce
242	Methyl 3-deoxy-α-D-gluco-pyranoside	Dulce
243	Methyl 4-deoxy-α-D-gluco-pyranoside	Dulce
244	Methyl 6-deoxy-α-D-gluco-pyranoside	Dulce
245^	6-Chloro-6-deoxy-D-galactose	Insípido
246	6–Chloro–6–deoxy–D–fructofuranose	Dulce
247	1.6-dichloro-1.6-deoxy-D-fructofuranose	Dulce
248	Methyl α–D–qlucopyranoside	Dulce
249	6'-Chloro-sucrose	Dulce
250^	1'-Chloro-sucrose	Dulce
251	1'.6'-Dichloro-sucrose	Dulce
252^	1.6–Di–S–1.6–dithio–D–fructofuranose	Dulce
253	Alanine	Dulce
254	Arginine	Dulce
255	Asparagine	Dulce
256^	Glutamine	Dulce
257^	Glycine	Dulce
258	Histidine	Dulce
259	Isoleucine	Dulce
260	Leucine	Dulce
261	Methionine	Dulce
262	Norvaline	Dulce
263	Phenylalanine	Dulce
264	Proline	Dulce
265	Serine	Dulce
265	Threonine	Dulce
260	Triptophane	Dulce
268	Tyrosine	Dulce
260^	Valine	Dulce
203	Δlanine tertiary butyl ester	Duice
270	AsnartyLaminomalonic acid diester 1	Dulce
271 272	Aspartyl_aminomalonic acid diester ?	Duice
212 272	Aspartyl_aminomalonic acid diester 3	Dulce
213	N (Lasparty) 1.1 diaminoalkano 1	Dulce
214 ^{**} 075	N = (L = aspartyl) = 1, I = ular i i i Uai karle IN (L = aspartyl) = 1, 1 = diaminoalkana 2	Dulce
210	N = (L = aspartyl) = 1, I = ular nin Uarkarte 2	Dulce
210 277	N (Laspartyl) 1.1 diaminoalkano 4	Dulce
211 2721	N = (L = aspartyl) = 1, I = ularininoalkano 5	Dulce
210''	N = (L = asparty) = 1, I = Ula IIIII Ualkarle 3	Duice
219	in-(L-asparty) - i, i-ula minoaikane o	Duice

280	N–(L–aspartyl)–1,1–diaminoalkane 7	Dulce
281	N–(L–aspartyl)–1,1–diaminoalkane 8	Dulce
282	N–(L–aspartyl)–1,1–diaminoalkane 9	Dulce
283	Super aspartame	Dulce
284	Sucrononic acid	Dulce
285^	Cvanoarvlurea aspartame	Dulce
286	Aspartic acid fenchyl ester	Dulce
287^	Glycine analog of cyanosuosan	Dulce
288	Glycine analog of suosan	Dulce
289	(R)–3–amino–3–phenylpropionic acid analog of N–(4– cyanophenyl)–N' carboxyethyl urea	Insípido
290	Nitroaniline (2-amino-4-nitrobenzene)	Dulce
291	Methoxy-nitroaniline	Dulce
292^	Ethoxy-nitroaniline	Dulce
293	Butoxy-nitroaniline	Dulce
294	Fluoro–nitroaniline	Dulce
295^	Chloro-nitroaniline	Dulce
296	Bromo-nitroaniline	Dulce
297^	lodo-nitroaniline	Dulce
298^	Methyl-nitroaniline	Dulce
299	Allyl oxy-nitroaniline	Dulce
300	iso Propoxy-nitroaniline	Dulce
301^	Hvdroxv–nitroaniline	Dulce
302	Saccharine derivative 5	Dulce
303^	Saccharine derivative 7	Insípido
304	Saccharine derivative 8	Insípido
305	Saccharine derivative 9	Insípido
306^	Saccharine derivative 10	Insípido
307^	Saccharine derivative 11	Insípido
308	Saccharine derivative 12	Insípido
309	Saccharine derivative 13	Dulce
310	Saccharine derivative 15	Dulce
311	Saccharine derivative 16	Dulce
312	Saccharine derivative 17	Insínido
313	Saccharine derivative 18	Insípido
314	Saccharine derivative 21	Insínido
315	Saccharine derivative 23	Dulce
316	Saccharine derivative 25	Dulce
317	Thiophenesaccharine	Dulce
318	DI = 4 - (2 - Chloro - 2 - propyl) - 1 - carboxaldebyde	Insínido
310^	Furfuraldehyde oxime	Dulce
320	syn-hydroxymethyl Eurfuraldehyde oxime	Insínido
321^	5_Benzyl=2_Furfuraldehyde oxime	Dulce
322	Dibydroguercetin 3_acetate	Duice
322	Hesperitin	Duice
323	Neoastilhin	
324	ortho_Tolylurea	Ineínido
320	nara Tolylurea	Dulco
020 207	para-ronyuntea 1. Propovyobenyl urec	Duice
021 2201	Herein and the second	Duice
3280	Subsali uchvalive i (SUDSali)	Duice

329	Suosan derivative 2	Insípido
330	Suosan derivative 3	Insípido
331^	Suosan derivative 4	Insípido
332	Suosan derivative 6	Insípido
333	Suosan derivative 7	Insípido
334	Suosan derivative 8	Insípido
335^	Suosan derivative 9	Insípido
336	Suosan derivative 10	Insípido
337^	Suosan derivative 11	Dulce
338^	Suosan derivative 13	Dulce
339^	Suosan derivative 14	Insípido
340	Suosan derivative 15	Insípido
341	Suosan derivative 16	Dulce
342^	Suosan derivative 17	Insípido
343	Suosan derivative 18	Insípido
344	Piperine	Insípido
345	Methyl–β–D–Fructopyranose	Dulce
346^	5–deoxy–D–threo–Hexulose	Dulce
347	Oxathiazinon dioxide derivative 1	Dulce
348	Oxathiazinon dioxide derivative 2	Dulce
349	Oxathiazinon dioxide derivative 3	Dulce
350^	Oxathiazinon dioxide derivative 4	Dulce
351	Oxathiazinon dioxide derivative 5	Dulce
352	Oxathiazinon dioxide derivative 6	Dulce
353^	2-aminobenzoic acid	Dulce
354	N–Carbamoyl derivative 1	Insípido
355	N–Carbamoyl derivative 2	Insípido
356	3-anilino-2-styryl-3H-naphthol[l, 2-d]imidazole-5-sulfonate (SSN)	Dulce
357	3–anilino–2–phenyl–3H–naphtho–[I, 2–d]imidazol–5–sulfonate (TSN)	Insípido
358	Perillartine	Dulce
359	1',4',6'–3Cl–sucrose	Dulce
360	1',4'-2CI-sucrose	Dulce
361	4'-Br-4,1',6'-3Cl-sucrose	Dulce
362^	4'-F-4,1',6'-3Cl-sucrose	Dulce
363^	4,1',4',6'–4Br–sucrose	Dulce
364	4,1',4',6'–4Cl–sucrose	Dulce
365	4,1',4'-3Cl-sucrose	Dulce
366	4,1',6'–3Br–sucrose	Dulce
367^	4,1',6'–3F–sucrose	Dulce
368	4,1',6'–3I–sucrose	Dulce
369	4,1'-2Cl-sucrose	Dulce
370^	4,4',6'-3Cl-sucrose	Dulce
371	4,6,1',6'–4Cl–sucrose	Dulce
372^	4–Cl–sucrose	Dulce
373	4-F-1',4',6'-3Br-sucrose	Dulce
374	4-F-1',4',6'-3Cl-sucrose	Dulce
375	4–O–n–propyl glycosides DHC	Dulce
376	4β , 10α -dimethyl-1, 2, 3, 4, 5, 10 -hexahydrofluorene- 4α , 6α -	Dulce

	dicarboxylic acid	
377	6,1',6'–3CI–sucrose	Dulce
378	6–chloro–tryptophan	Dulce
379^	Liquiritin	Dulce
380^	N–Acetyl–D–glucosamine	Dulce
381	Periandrin I	Dulce
382	Periandrin II	Dulce
383	Periandrin III	Dulce
384	Periandrin IV	Dulce
385^	Abrusoside B	Dulce
386	Abrusoside C	Dulce
387^	Abrusoside D	Dulce
388	Acesulfame potassium CH3CH2CH2 CH3	Dulce
389	Acesulfame potassium CH3CH2 H	Dulce
390	Acesulfame potassium H H	Dulce
391	Albiziasanonin B	Dulce
392	Arabinose	Dulce
393	Asn 1	Dulce
394^	Asn 2	Dulce
395	Asn 3	Dulce
396	Asp 0	Dulce
397	Asn 5	Dulce
308	Asp 6	Dulce
300	Asp 7	Dulce
400^	Asn 8	Dulce
401	Asp 0 Asp 0	Dulce
402	Asp 3 Asp 10	Dulce
402	Asp 10 Asp 11	Dulce
404	Asp 11 Asp 14	Dulce
405	Asp 14 Asp 15	Dulce
406	Asp 16	Dulce
4074	Asp 17	Dulce
408	Asn 18	Dulce
400	Asp 10	Duice
409	Asp 20	Duice
410	Asp 22	Dulce
410	Asp 22	Dulco
412	Asp 23	Duice
413	Asp 24	Dulce
414	Asp 52	Dulco
415	Asp 55	Dulce
410	Asp 56	Dulce
417	Asp 50	Dulce
410 /10	лэр 30 Лар 60	Dulco
413 ∕100	λομ ου Δομ 61	Duice
420 101	лэр 0 i Aen 62	Dulco
+∠ I ∕\00	Non 63	Dulce
422 199	App 64	Duice
420	лэр 0 4 Аса 65	Duice
424	App 66	Dulce
420		Duice

426	Asp 67	Dulce
427^	Asp 68	Dulce
428^	Asp 69	Dulce
429	Asp 70	Dulce
430	Asp 71	Dulce
431	Asp 72	Dulce
432^	Asp 73	Dulce
433	Asp 74	Dulce
434^	Asp 75	Dulce
435	Asp 76	Dulce
436^	Asp 77	Dulce
437	Asp 78	Dulce
438	Asp 79	Dulce
439^	Asp 80	Dulce
440	Asp 81	Dulce
441^	Asp 82	Dulce
442	Asp 83	Dulce
443	Asp 84	Dulce
444	Asp 85	Dulce
445	Asp 86	Dulce
446	Asp 87	Dulce
447	Asp 88	Dulce
448	Asp 89	Dulce
449	Asp 90	Dulce
450	Asp 91	Dulce
451	Asp 92	Dulce
452	Asp 93	Dulce
453	Asp 94	Dulce
454	Asp 95	Dulce
455^	Asp 96	Dulce
456	Asp 97	Dulce
457^	Asp 98	Dulce
458	Asp 99	Dulce
459^	Asp 100	Dulce
460^	Asp 101	Dulce
461^	Asp 102	Dulce
462^	Asp 103	Dulce
463	Asp 104	Dulce
464	Asp 105	Dulce
465^	Asp 106	Dulce
466	Asp 107	Dulce
467	Asp 108	Dulce
468	Asp 109	Dulce
469^	Asp 110	Dulce
470	Asp 112	Dulce
471^	Asp 122	Dulce
472	Asp 123	Dulce
473	Asp 124	Dulce
474	Asp 125	Dulce
475	Asp 126	Dulce

476	Asp 128	Dulce
477^	Asp 129	Dulce
478^	Asp 130	Dulce
479	Asp 131	Dulce
480^	Asp 132	Dulce
481	Asp 134	Dulce
482	Asp 135	Dulce
483	Asp 136	Dulce
484	Asp 137	Dulce
485	Asp 138	Dulce
486^	Asp 139	Dulce
487^	Asp 140	Dulce
488	Asp 141	Dulce
489	Asp 142	Dulce
490^	Asp 143	Dulce
491^	Asp 153	Dulce
492	Asp 154	Dulce
493^	Asp 155	Dulce
494	Asp 156	Dulce
495	Asp 157	Dulce
496	Asp 159	Dulce
497	Asp 160	Dulce
498^	Asp 161	Dulce
499	Asp 163	Dulce
500	Asp 164	Dulce
501^	Asp 165	Dulce
502	Asp 166	Dulce
503^	Asp 167	Dulce
504	Asp 168	Dulce
505	Asp 169	Dulce
506	Asp 170	Dulce
507	Asp 171	Dulce
508	Asp 172	Dulce
509	Asp 173	Dulce
510^	Asp 181	Dulce
511	Asp 182	Dulce
512	Asp 183	Dulce
513	Asp 184	Dulce
514	Asp 185	Dulce
515	Asp 186	Dulce
516	Asp 187	Dulce
517	Asp 188	Dulce
518	Asp 189	Dulce
519^	Asp 190	Dulce
520	Asp 191	Dulce
521	Asp 192	Dulce
522	Asp 193	Dulce
523	Asp 194	Dulce
524^	Asp 197	Dulce
525	Asp 198	Dulce

526^	Asp 204	Dulce
527	Asp 207	Dulce
528^	Asp 208	Dulce
529^	Asp 211	Dulce
530^	Asp 212	Dulce
531^	Asp 213	Dulce
532	Asp 214	Dulce
533	Asp 215	Dulce
534	Baiyunoside	Dulce
535	Benzenepropanoic acid	Dulce
536^	Bernardame	Dulce
537	cyclamate	Dulce
538^	Cyclocarioside A	Dulce
539	Gaudichaudioside A	Dulce
540	Hesperinin glucoside DHC	Dulce
541	Homoeohesperidin DHC	Dulce
542	Isovanillic 18	Dulce
543^	Isovanillic 24	Dulce
544	isovanillic 25	Dulce
545^	Leucrose	Dulce
546	Lugduname	Dulce
547	Mogroside II	Dulce
548^	Mogroside IV	Dulce
549^	Mogroside V	Dulce
550^	Naringin DHC	Dulce
551^	Neoeriocitrin DHC	Dulce
552	Osladin	Dulce
553	Polypodoside A	Dulce
554^	Prunin DHC	Dulce
555	Pterocaryoside A	Dulce
556	Pterocaryoside B	Dulce
557	Rebaudioside F	Dulce
558	Rubusoside	Dulce
559	Saccharin	Dulce
560	Selligueain A	Dulce
561	Siamenoside I	Dulce
562	Sorbose	Dulce
563	Telosmoside A	Dulce
564	trans-anethole	Dulce
565^	trans-cinnamaldehyde	Dulce
= ~ ~		Dulas

^ predicción
No.	Nombre	Clase
1	Sucrose	Dulce
2	Sucralose / 4,1',6'–Trichloro–galactosucrose	Dulce
3^	Alitame	Dulce
4	Aspartame/Aspartyl–phenylalanine methylester	Dulce
5	Tagatose	Dulce
6^	Maltitol	Dulce
7	Isomaltulose/Palatinose	Dulce
8	Trehalose	Dulce
9	Acesulfame potassium	Dulce
10	Sodium cyclamate	Dulce
11	Neohesperidine dihydrochalcone	Dulce
12	Neotame	Dulce
13	Sodium saccharin	Dulce
14^	Isomalt (Palatinit) / Isomaltitol	Dulce
15	Sorbitol	Dulce
16^	Erythritol	Dulce
17	Xylitol	Dulce
18	Stevioside	Dulce
19	Steviolbioside	Dulce
20	Rebaudioside A	Dulce
21^	Rebaudioside B	Dulce
22	Rebaudioside C	Dulce
23	Rebaudioside D	Dulce
24^	Rebaudioside E	Dulce
25	Dulcoside A	Dulce
26	Glycyrrhizin	Dulce
27	Hernandulcin	Dulce
28	Fructose	Dulce
29	Glucose	Dulce
30	Xylose	Dulce
31	Maltose	Dulce
32	Lactulose	Dulce
33	Lactosucrose	Dulce
34^	Raffinose	Dulce
35^	Rhamnose	Dulce
36	Naringin	Amargo
37^	Gentiobiose	Amargo
38	Limonin	Amargo
39^	Oleuropein	Amargo
40^	Caffeine	Amargo
41	Poncirin	Amargo
42	Neoeriocitrin	Amargo
43	Quinine	Amargo
44		Amargo
45	Iheobromine	Amargo
46	Picrocrocin	Amargo

 Tabla 10A.
 Nombres químicos y respuesta experimental de los 649 compuestos dulces y no dulces

47	Glycerol	Dulce
48^	Saccharin derivative 1	Dulce
49	Saccharin derivative 2	Dulce
50	Saccharin derivative 3	Insípido
51	3-nitro-o-toluidine	Insípido
52	3-nitro-p-toluidine	Insípido
53	2-amino-4-nitro-propoxybenzene	Dulce
54	2-nitro-4-amino-propoxybenzene	Insípido
55	2.4-dinitro-propoxybenzene	Amargo
56	Dulcin (p-ethoxyphenylurea)	Dulce
57	4–Ethoxyphenylthiourea	Amargo
58	o-ethoxyphenylurea	Insípido
59	Dihydroguercetin 3-acetate 4'-(methylether) (3)	Dulce
60	Flavan (4)	Dulce
61^	Compound 5	Dulce
62	1 3-benzodioxane (6)	Dulce
63	1,0 benzodioxane (0)	Dulce
64	Ribenzyl derivative (8)	Dulce
65	$1 A_{\text{benzodiovin}}(0)$	Insínido
05	Isoflavan or 3_(3_Hvdroxy_4_methoxyphenyl)_3.4_dibydro_2H_	Insipido
66^	1henzonyran (10)	Dulce
67^	2–(3–Hydroxy–4–methoxyphenyl)–4,5–dihydro–1,3–	Insípido
	benzodioxepine (11)	
68	3–(3Hydroxy–4–methoxyphenyi)–1,5–dinydro–2,4– benzodioxepine (12)	Insípido
69	2–(3–hydroxy–4–methoxyphenyl)–1,3–benzodioxole (13)	Dulce
70	Compound 23	Insípido
71	Compound 24	Insípido
72^	Compound 25	Insípido
73	2–(3–Hydroxy–4–methoxyphenyl)–4–H–1,3–benzodithiine (10a)	Dulce
74	2–(3–Hydroxy–4–methoxyphenyl)–4H–1,3–benzoxathiine (10c)	Dulce
75	2-(3-Hydroxy-4-methoxyphenyl)-4H-1,3-benzodithiole (10d)	Dulce
76^	2–(3–Hydroxy–4–methoxyphenyl)–1,3–benzoxathiole (10e)	Dulce
77	7,8–Dimethyl–3–(3–hydroxy–4–methoxyphenyl)–1,5–dihydro–	Insípido
	2,4-Delizouli ilepiile (101) 2 (3 Hydroxy 4 methoxychenyl) 2 3 dibydro 14	-
78	benzoxathiine (15a)	Dulce
79	2–(3–Hydroxy–4–methoxyphenyl)–2,3–dihydro–1,4–	Dulce
80^	2–(3–Hydroxy–4–methylthiophenyl)–2,3–dihydro–1,4–	Insínido
00	benzoxathiine (15c)	morpido
81	2–(3–Hydroxy–4–methoxyphenyl)–2,3–dihydro–1,4– benzoxathiin–6–ol (15d)	Dulce
82	2-(3-Hydroxy-4-methylthiophenyl)-2,3-dihydro-1,4-	Insípido
004	penzoxatrilin–6–01 (15e) 2–(3–Hydroxy–4–methoxyphenyl)–3,4–dihydro–2H–1–	, Dular
834	benzothiopyran (18)	Duice
84^	3–(3–Hydroxy–4–methoxyphenyl)–3,4–dihydro–2H–1– benzothiopyran (19)	Insípido
85^	2–(3–Mercapto–4–methoxynhenyl)–4H–3 1–benzoxathiine (23)	Dulce
86	Sulfone	Dulce
87	Haematoxylin	Dulce
	i aonatory ini	24.00

	9-Methoxy-7 11b-dibydrobenz[b]indeno[1 2-d]ovran-6a 10-diol	
88	(4)	Dulce
00	10–Methoxy–7,11b–dihydrobenz[b]indeno[1,2–d]pyran–6a,9–diol	la sísista
89	(5)	insipido
004	3,9,10-Trimethoxy-7,11b-dihydrobenz[b]indeno[1,2-d]pyran-	Incínido
90**	4,6a–diol (6)	insipido
91^	4,9,10-Trimethoxy-7,11b-dihydrobenz[b]indeno[1,2-d]pyran-	Insípido
	3,6a-diol (7)	·
92^	l etramethylhaematoxylin (8)	Amargo
93^	Compound 8	Dulce
94^	Compound 17	Insípido
95^	Compound 18	Dulce
96^	Compound 19	Insípido
97	Compound 20	Dulce
98	Compound 21	Dulce
99	Compound 25	Insípido
100	Compound 26	Dulce
101	Compound 27	Insípido
102	Compound 28	Insípido
103	Compound 29	Insípido
104^	Compound 30	Insípido
105^	2–(4–methoxybenzoyl) benzoic acid	Dulce
106	Compound 2	Insípido
107^	Compound 3	Dulce
108	Compound 4	Dulce
109	Compound 5	Insípido
110	Compound 6	Insípido
111^	Compound 7	Dulce
112	Compound 8	Insípido
113	Compound 9	Dulce
114^	2–(4–Nitrobenzoyl)benzoic Acid (10)	Amargo
115	Compound 11	Insípido
116^	Compound 12	Dulce
117	Compound 13	Insípido
118	2–(3,4–Dihydroxybenzoyl)benzoic Acid (14)	Dulce
119^	2–(3–Hydroxy–4–methoxybenzoyl)benzoic Acid (15)	Dulce
120^	2–(4–Hydroxy–3–methoxybenzoyl)benzoic Acid (16)	Insípido
121^	2–(3,4–Dimethoxybenzoyl)benzoic Acid (17)	Insípido
122^	2–(2,4–Dimethoxybenzoyl)benzoic Acid (18)	Amargo
123	2–(4–Hydroxy–2–methoxybenzoyl)benzoic Acid (19)	Insípido
124^	Compound 20	Insípido
125^	Compound 21	Insípido
126	Compound 22	Insípido
127	2–(4–Methoxyphenylthio) benzoic Acid S–Oxide (23)	Dulce
128	Compound 24	Insípido
129	Compound 25	Insípido
130	2–Hydroxymethylphenyl–4–methoxyphenylmethanol (26)	Insípido
131^	Phthalic Acid Mono(4–methoxyphenyl) Ester (27)	Dulce
132	3–(4–Methoxyphenyl)benzo[2]furan–1–one (28)	Insípido
133	Compound 29	Insípido

134 135	3–Methoxy–1,3,5–estratrien–4–ol (4) Substituted pterocarpan (5)	Dulce Insípido
136	Spiro[(4–H–1,3–benzodithian)–2,1'–(5'–methoxy–6'hydroxy–	Dulce
137	[1H]–2',3'–dihydroindene)] (6) Spiro[(4–H–1,3–benzodithian)–2,1'–(5'–hydroxy–6'–methoxy– [1H]–2' 3'–dihydroindene)] (7)	Insípido
138^	[11]=2,3=diffydroindene)] (7) Spiro[(4–H–1,3–benzodithian)=2,1'=(4'=hydroxy=5'=methoxy= [1H]=2',3'=dihydroindene)] (8)	Insípido
139	2–Phenoxymethyl–2H–7,8–dihydrobenzopyran (9)	Insípido
140^	2–Methyl–2–(3–hydroxy–4–methoxyphenyl)–1,4–	Insípido
141	Phyllodulcin	Dulce
142	Compound 4	Dulce
143	Compound 6	Dulce
144	Compound 9	Dulce
145^	3'.4'-dihydroxyphenyl-3.1-benzoxathiane (18)	Dulce
146	2–[3–(4–nitrophenoxycarboxy)phenyl]–3,1–benzoxathiane (25)	Dulce
147	2–[3–(4–nitrophenylcarbonylmethoxy)–4–methoxyphenyl]–3,1– benzoxathiane (26)	Dulce
148	2–[3–(4–nitrophenylcarbamoyloxy–4–methoxy)phenyl]–3,1– benzodioxane (27)	Dulce
149^	Compound 32	Dulce
150	3–(3–Hydroxy–4–methoxyphenyl)–1–(3–carboxyphenyl)propan– 1–one (33)	Dulce
151	Compound 34	Dulce
152	2–(3–hydroxy–4–methoxyphenoxymethyl)benzoic acid (40)	Dulce
153	Compound 42	Dulce
154	Dihydroquercetin 4'–(methyl ether)	Dulce
155	Dihydroguercetin	Insípido
156	Compound II or Hydrangenol	Insípido
157	Compound III	Amargo
158^	Compound IV	Insípido
159	Compound V	Dulce
160	Compound VI	Insípido
161	Compound VII	Dulce
162^	Compound VIII	Insípido
163	Compound IX	Insípido
164^	Compound X	Insípido
165	Compound XI	Insípido
166^	Compound XII	Insípido
167	Compound XIV	Dulce
168	Compound XV	Insípido
169^	Compound XVI	Insípido
170	Compound XVII	Insípido
171	Compound XVIII	Amargo
172	Compound XIX	Amargo
173^	Compound XX	Amargo
174	Compound XXI	Dulce
175	Compound XXII	Dulce
176	Compound XXIII	Dulce
177^	Compound XXIV	Dulce

178	Compound XXV	Insípido
179	Compound XXVI	Insípido
180	Compound XXVII	Dulce
181	Compound XXVIII	Insípido
182	Compound XXIX	Amargo
183^	Compound XXX	Dulce
184	Compound XXXI	Dulce
185	Guaiacol	Insípido
186	Compound XXXII	Dulce
187	Compound XXXIII	Insípido
188	Compound XXXIV	Insípido
189^	Compound XXXV	Insípido
190	Compound XXXVII	Insípido
191	Compound XXXVIII	Insípido
192^	Compound XXXIX	Insípido
193	Compound XL	Dulce
194	Compound XLI	Dulce
195	Compound XLII	Dulce
196	Compound XLIII	Dulce
197	Compound XLIV	Amargo
198	Compound XLV	Insípido
199	Compound XLVI	Insípido
200^	Compound XLVII	Dulce
201	Compound XLVIII	Insípido
202	Compound XLIX	Dulce
203	Compound L	Insípido
204^	Compound LI	Insípido
205	Compound LII	Insípido
206	Compound LIII	Insípido
207	Compound LIV	Dulce
208	Compound LV	Insípido
209^	Compound LVI	Insípido
210	Compound LVII	Insípido
211	Compound LVIII	Insípido
212^	Compound LIX	Dulce
213	Compound LX	Insípido
214	Compound LXI	Insípido
215^	Compound LXII	Insípido
216	Compound LXIII	Insípido
217	Compound LXIV	Insípido
218^	Compound LXV	Dulce
219^	Compound LXVI	Dulce
220	Compound LXVII	Insípido
221	Compound LXVIII	Insípido
222	Compound LXIX	Insípido
223	Compound LXX	Insípido
224	Compound LXXI	Insípido
225	Compound LXXII	Amargo
226	Compound LXXIII	Amargo
227^	Compound LXXIV	Amargo

	228	Compound LXXV	Amargo
	229	Compound LXXVI	Amargo
	230	Compound LXXVII	Insípido
2	231^	Compound LXXVIII	Dulce
	232	Compound LXXIX	Dulce
2	233^	Compound LXXX	Dulce
	234	Compound LXXXI	Insípido
	235	Compound LXXXII	Insípido
	236	Compound LXXXIII	Insípido
	237	Compound LXXXIV	Insípido
	238	Compound LXXXV	Dulce
	239	Compound LXXXVIII	Insípido
	240	Compound LXXXIX	Dulce
	241	Compound XC	Dulce
	242	Compound XCI	Dulce
	243	Compound XCII	Insípido
	244	Compound XCIII	Insípido
	245	Compound XCV	Dulce
2	246^	Compound XCVI	Dulce
	247	Compound XCVII	Amargo
	248	Compound XCVIII	Insípido
	249	Compound CX	Insípido
	250	Compound C	Insípido
	251	Compound Cl	Insípido
	252	Compound CII	Insípido
2	253^	Nitrobenzene	Dulce
2	254^	m–Nitrobenzene	Amargo
2	255^	Phenylthiourea	Amargo
	256	Dimethyl urea	Dulce
	257	Urea	Amargo
	258	Resorcinol	Dulce
2	259^	Phloroglucinol	Dulce
	260	Glycol	Dulce
	261	1,4–Anhydro–ribitol	Dulce
	262	1,4–Anhydro–mannitol	Dulce
	263	1,5–Anhydro–mannitol	Dulce
	264	Viboquercitol	Dulce
	265	Allo-inositol	Dulce
	266	Dihydroxyacetone	Dulce
	267	Monohydroxyacetone	Dulce
	268	Methyl dihydroxyacetone	Dulce
	269	Stachyose	Dulce
2	270^	4–O–Methyl sucrose	Dulce
	271	6–O–Methyl sucrose	Dulce
	272	6,6'-di-O-Methyl sucrose	Dulce
2	273^	4,6'-di-O-Methyl sucrose	Dulce
	274	4,6-di-O-Methyl sucrose	Dulce
	275	1',6'-di-O-Methyl sucrose	Dulce
	276	Methyl 2–deoxy–α–D–gluco–pyranoside	Dulce
	277	Methyl 3–deoxy–α–D–gluco–pyranoside	Dulce

Methyl 4–deoxy–α–D–gluco–pyranoside	Dulce
Methyl 6–deoxy–α–D–gluco–pyranoside	Dulce
Methyl–α–D–2,6–dideoxy–gluco–pyranoside	Amargo
Methyl–α–D–3,6–dideoxy–gluco–pyranoside	Amargo
Methyl–α–D–4,6–dideoxy–gluco–pyranoside	Amargo
6–Chloro–6–deoxy–D–galactose	Insípido
6–Chloro–6–deoxy–D–fructofuranose	Dulce
1,6-dichloro-1,6-deoxy-D-fructofuranose	Dulce
Methyl glucopyranoside	Dulce
6'-Chloro-sucrose	Dulce
1'-Chloro-sucrose	Dulce
1',6'-Dichloro-sucrose	Dulce
1,6-Di-S-1,6-dithio-D-fructofuranose	Dulce
Alanine	Dulce
Asparagine	Dulce
Glutamine	Dulce
Glycine	Dulce
Histidine	Dulce
Methionine	Dulce
Serine	Dulce
Threonine	Dulce
L-Aspartyl-aminomalonic acid diester 1	Dulce
L-Aspartyl-aminomalonic acid diester 2	Dulce
L-Aspartyl-aminomalonic acid diester 3	Dulce
N-(L-aspartvl)-1.1-diaminoalkane 1	Dulce
N–(L–aspartyl)–1.1–diaminoalkane 2	Dulce
N–(L–aspartyl)–1.1–diaminoalkane 3	Dulce
N–(L–aspartyl)–1.1–diaminoalkane 4	Dulce
N-(L-aspartvl)-1.1-diaminoalkane 5	Dulce
N–(L–aspartyl)–1.1–diaminoalkane 6	Dulce
N–(L–aspartyl)–1.1–diaminoalkane 7	Dulce
N–(L–aspartyl)–1.1–diaminoalkane 8	Dulce
N–(L–aspartyl)–1.1–diaminoalkane 9	Dulce
Super aspartame	Dulce
Sucrononic acid	Dulce
Cvanoarvlurea aspartame	Dulce
Aspartic acid fenchyl ester	Dulce
Glycine analog of cyanosuosan	Dulce
Glycine analog of suosan	Dulce
(R)-3-amino-3-phenylpropionic acid analog of N-(4-	
cyanophenyl)–N' carboxyethyl urea	Insipido
Nitroaniline (2-amino-4-nitrobenzene)	Dulce
Methoxy-nitroaniline	Dulce
Ethoxy-nitroaniline	Dulce
Butoxy–nitroaniline	Dulce
Fluoro-nitroaniline	Dulce
Chloro-nitroaniline	Dulce
Bromo–nitroaniline	Dulce
lodo-nitroaniline	Dulce
Methyl–nitroaniline	Dulce
	Methyl 4-deoxy- α -D-gluco-pyranoside Methyl 6-deoxy- α -D-gluco-pyranoside Methyl- α -D-3,6-dideoxy-gluco-pyranoside Methyl- α -D-4,6-dideoxy-gluco-pyranoside 6-Chloro-6-deoxy-D-galactose 6-Chloro-6-deoxy-D-galactose 6-Chloro-6-deoxy-D-fructofuranose 1,6-dichloro-1,6-deoxy-D-fructofuranose Methyl glucopyranoside 6'-Chloro-sucrose 1'-Chloro-sucrose 1',6'-Dichloro-sucrose 1,6-Di-S-1,6-dithio-D-fructofuranose Alanine Asparagine Glutamine Glycine Histidine Methionine Serine Threonine L-Aspartyl-aminomalonic acid diester 1 L-Aspartyl-aminomalonic acid diester 2 L-Aspartyl-aminomalonic acid diester 3 N-(L-aspartyl)-1,1-diaminoalkane 1 N-(L-aspartyl)-1,1-diaminoalkane 2 N-(L-aspartyl)-1,1-diaminoalkane 5 N-(L-aspartyl)-1,1-diaminoalkane 5 N-(L-aspartyl)-1,1-diaminoalkane 5 N-(L-aspartyl)-1,1-diaminoalkane 7 N-(L-aspartyl)-1,1-diaminoalkane 7 N-(L-aspartyl)-1,1-diaminoalkane 8 N-(L-aspartyl)-1,1-diaminoalkane 7 N-(L-aspartyl)-1,1-diaminoalkane 7 N-(L-aspartyl)-1,1-diaminoalkane 7 N-(L-aspartyl)-1,1-diaminoalkane 7 N-(L-aspartyl)-1,1-diaminoalkane 7 N-(L-aspartyl)-1,1-diaminoalkane 7 N-(L-aspartyl)-1,1-diaminoalkane 7 N-(L-aspartyl)-1,1-diaminoalkane 8 N-(L-aspartyl)-1,1-diaminoalkane 9 Suger aspartame Sucrononic acid Cyanoarylurea aspartame Aspartic acid fenchyl ester Glycine analog of suosan Glycine analog o

327	Allyl oxy–nitroaniline	Dulce
328	iso Propoxy–nitroaniline	Dulce
329	Hydroxy–nitroaniline	Dulce
330	Saccharine derivative 1	Amargo
331	Saccharine derivative 2	Amargo
332^	Saccharine derivative 3	Amargo
333	Saccharine derivative 4	Amargo
334	Saccharine derivative 5	Dulce
335	Saccharine derivative 7	Insípido
336^	Saccharine derivative 8	Insípido
337	Saccharine derivative 9	Insípido
338	Saccharine derivative 10	Insípido
339	Saccharine derivative 11	Insípido
340	Saccharine derivative 12	Insípido
341^	Saccharine derivative 13	Dulce
342	Saccharine derivative 14	Amargo
343	Saccharine derivative 15	Dulce
344^	Saccharine derivative 16	Dulce
345	Saccharine derivative 17	Insípido
346	Saccharine derivative 18	Insípido
347	Saccharine derivative 20	Amargo
348^	Saccharine derivative 21	Insípido
349	Saccharine derivative 22	Amargo
350^	Saccharine derivative 23	Dulce
351	Saccharine derivative 25	Dulce
352	Saccharine derivative 27	Amargo
353^	Thiophenesaccharine	Dulce
354	DL-4-(2-Chloro-2-propyl)-1-carboxaldehyde	Insípido
355	Furfuraldehyde oxime	Dulce
356^	syn-hydroxymethyl Furfuraldehyde oxime	Insípido
357	5–Benzvl–2–Furfuraldehvde oxime	Dulce
358	1–Cvcloheptene–1–carboxaldehvde oxime	Amargo
359	anti–Cvclohexane carboxaldehvde	Amargo
360	Dihvdroquercetin 3–acetate	Dulce
361	Hesperitin	Dulce
362	Neoastilbin	Dulce
363	ortho–Tolvlurea	Insípido
364^	meta-Tolylurea	Amargo
365	para-Tolylurea	Dulce
366	4–Propoxyphenyl urea	Dulce
367^	Suosan derivative 1 (suosan)	Dulce
368	Suosan derivative 2	Insípido
369	Sucsan derivative 3	Insípido
370^	Suosan derivative 4	Insípido
371^	Suosan derivative 6	Insípido
372^	Suosan derivative 7	Insínido
373	Suosan derivative 8	Insípido
374	Suosan derivative 9	Insípido
375	Suosan derivative 10	Insínido
376	Suosan derivative 11	Dulce
570		Duice

377	Suosan derivative 12	Amargo
378^	Suosan derivative 13	Dulce
379^	Suosan derivative 14	Insípido
380	Suosan derivative 15	Insípido
381	Suosan derivative 16	Dulce
382	Suosan derivative 17	Insípido
383	Suosan derivative 18	Insípido
384^	Pyrrolidine	Amargo
385	Pyrrole	Amargo
386	Imidazole	Amargo
387	Pyrazole	Amargo
388	Piperidine	Amargo
389	Piperazine	Amargo
390^	Purine	Amargo
391	Pyridazine	Amargo
392	Pyrazine	Amargo
393^	Pyridine	Amargo
394	Pyrimidine	Amargo
395	Strichnine	Amargo
396	Brucine	Amargo
397	Piperine	Insípido
398^	Solanine	Amargo
399^	Diterpene derivative 1	Amargo
400	Diterpene derivative 2	Amargo
401	Diterpene derivative 3	Amargo
402	Diterpene derivative 4	Amargo
403	Denatonium chloride	Amargo
404	Denatonium chloride derivative 1	Amargo
405^	Denatonium chloride derivative 2	Amargo
406	Denatonium chloride derivative 3	Amargo
407	Denatonium chloride derivative 4	Amargo
408	Denatonium chloride derivative 5	Amargo
409	Denatonium chloride derivative 6	Amargo
410	Denatonium chloride derivative 7	Amargo
411	Denatonium chloride derivative 8	Amargo
412	Denatonium chloride derivative 9	Amargo
413	Denatonium chloride derivative 10	Amargo
414	Denatonium chloride derivative 11	Amargo
415^	Denatonium chloride derivative 12	Amargo
416^	Denatonium chloride derivative 13	Amargo
417	Methvl–B–D–Fructopyranose	Dulce
418	5-deoxy-D-threo-Hexulose	Dulce
419	Oxathiazinon dioxide derivative 1	Dulce
420^	Oxathiazinon dioxide derivative 2	Dulce
421	Oxathiazinon dioxide derivative 3	Dulce
422^	Oxathiazinon dioxide derivative 4	Dulce
423	Oxathiazinon dioxide derivative 5	Dulce
424	Oxathiazinon dioxide derivative 6	Dulce
425	3-amino-4-chlorobenzoic acid	Amargo
426	2-aminobenzoic acid	Dulce
-		

427	2-nitroaniline	Amargo
428	N–Carbamoyl derivative 1	Insípido
429	N–Carbamoyl derivative 2	Insípido
430	Germacrolide	Amargo
431′	3-anilino-2-styryl-3H-naphthol[I, 2-d]imidazole-5-sulfonate (SSN)	Dulce
432	3–anilino–2–phenyl–3H–naphtho–[I, 2–d]imidazol–5–sulfonate (TSN)	Insípido
433	Perillartine	Dulce
434	1',4',6'–3Cl–sucrose	Dulce
435′	1',4'–2Cl–sucrose	Dulce
436	4'-Br-4,1',6'-3Cl-sucrose	Dulce
437	4'-F-4,1',6'-3Cl-sucrose	Dulce
438	4,1',4',6'–4Br–sucrose	Dulce
439	4,1',4',6'-4CI-sucrose	Dulce
440	4,1',4'-3Cl-sucrose	Dulce
441	4,1',6'-3Br-sucrose	Dulce
442	4,1',6'-3F-sucrose	Dulce
443	4,1',6'-3I-sucrose	Dulce
444	4,1'-2CI-sucrose	Dulce
445′	4,4',6'-3CI-sucrose	Dulce
446^	4,6,1',6'-4Cl-sucrose	Dulce
447	4–Cl–sucrose	Dulce
448	4-F-1',4',6'-3Br-sucrose	Dulce
449^	4-F-1',4',6'-3Cl-sucrose	Dulce
450	4–O–n–propyl glycosides DHC	Dulce
451	4β , 10α -dimethyl-1, 2, 3, 4, 5, 10-hexahydrofluorene-4 α , 6α -	Dulce
452	6.1'.6'-3CI-sucrose	Dulce
4531	6-chloro-tryptophan	Dulce
4541	Liquiritin	Dulce
455	N-AcetvI-D-alucosamine	Dulce
456	Periandrin I	Dulce
457	Periandrin II	Dulce
458	Periandrin III	Dulce
459	Periandrin IV	Dulce
460	Abrusoside B	Dulce
461	Abrusoside C	Dulce
4621	Abrusoside D	Dulce
4631	Acesulfame potassium CH3CH2CH2 CH3	Dulce
464	Acesulfame potassium CH3CH2 H	Dulce
465	Acesulfame potassium H H	Dulce
466	Albiziasaponin B	Dulce
467	Ammonium glycyrrhizinate	Dulce
468	Asp 1	Dulce
469	Asp 2	Dulce
470/	Asp 3	Dulce
471	Asp 4	Dulce
472	Asp 5	Dulce
473	Asp 6	Dulce
	•	

474	Asp 7	Dulce
475	Asp 8	Dulce
476	Asp 9	Dulce
477^	Asp 10	Dulce
478	Asp 11	Dulce
479	Asp 14	Dulce
480	Asp 15	Dulce
481	Asp 16	Dulce
482	Asp 17	Dulce
483^	Asp 18	Dulce
484	Asp 20	Dulce
485	Asp 21	Dulce
486	Asp 22	Dulce
487	Asp 23	Dulce
488	Asp 24	Dulce
489	Asp 52	Dulce
490^	Asp 53	Dulce
491	Asp 55	Dulce
492	Asp 56	Dulce
493	Asp 58	Dulce
494	Asp 60	Dulce
495	Asp 61	Dulce
496^	Asp 62	Dulce
497	Asp 63	Dulce
498	Asp 64	Dulce
499	Asp 65	Dulce
500^	Asp 66	Dulce
501	Asp 67	Dulce
502	Asp 68	Dulce
503	Asp 69	Dulce
504	Asp 70	Dulce
505	Asp 71	Dulce
506	Asp 72	Dulce
507	Asp 73	Dulce
508	Asp 74	Dulce
509	Asp 75	Dulce
510^	Asp 76	Dulce
511^	Asp 77	Dulce
512	Asp 78	Dulce
513	Asp 79	Dulce
514	Asp 80	Dulce
515^	Asp 81	Dulce
516	Asp 82	Dulce
517^	Asp 83	Dulce
518	Asp 84	Dulce
519^	Asp 85	Dulce
520	Asp 86	Dulce
521	Asp 87	Dulce
522^	Asp 88	Dulce
523	Asp 89	Dulce

524^	Asp 90	Dulce
525	Asp 91	Dulce
526	Asp 92	Dulce
527	Asp 93	Dulce
528	Asp 94	Dulce
529	Asp 95	Dulce
530	Asp 96	Dulce
531	Asp 97	Dulce
532	Asp 98	Dulce
533	Asp 99	Dulce
534	Asp 100	Dulce
535	Asp 101	Dulce
536	Asp 102	Dulce
537	Asp 103	Dulce
538	Asp 104	Dulce
539^	Asp 105	Dulce
540	Asp 106	Dulce
541^	Asp 107	Dulce
542^	Asp 108	Dulce
543^	Asp 109	Dulce
544^	Asp 110	Dulce
545^	Asp 112	Dulce
546	Asp 122	Dulce
547	Asp 123	Dulce
548^	Asp 124	Dulce
549	Asp 125	Dulce
550	Asp 126	Dulce
551	Asp 128	Dulce
552^	Asp 129	Dulce
553	Asp 130	Dulce
554^	Asp 131	Dulce
555	Asp 132	Dulce
556	Asp 134	Dulce
557	Asp 135	Dulce
558	Asp 136	Dulce
559	Asp 137	Dulce
560^	Asp 138	Dulce
561^	Asp 139	Dulce
562	Asp 140	Dulce
563^	Asp 141	Dulce
564	Asp 142	Dulce
565	Asp 143	Dulce
566	Asp 153	Dulce
567	Asp 154	Dulce
568	Asp 155	Dulce
569	Asp 156	Dulce
570^	Asp 157	Dulce
571^	Asp 159	Dulce
572	Asp 160	Dulce
573	Asp 161	Dulce

574^	Asp 163	Dulce
575^	Asp 164	Dulce
576	Asp 165	Dulce
577^	Asp 166	Dulce
578	Asp 167	Dulce
579	Asp 168	Dulce
580	Asp 169	Dulce
581^	Asp 170	Dulce
582	Asp 171	Dulce
583	Asp 172	Dulce
584	Asp 173	Dulce
585^	Asp 181	Dulce
586	Asp 182	Dulce
587	Asp 183	Dulce
588	Asp 184	Dulce
589	Asp 185	Dulce
590	Asp 186	Dulce
591	Asp 187	Dulce
592	Asp 188	Dulce
593^	Asp 189	Dulce
594	Asp 190	Dulce
595	Asp 191	Dulce
596	Asp 192	Dulce
597	Asp 193	Dulce
598	Asp 194	Dulce
599	Asp 197	Dulce
600	Asp 198	Dulce
601	Asp 204	Dulce
602	Asp 207	Dulce
603^	Asp 208	Dulce
604	Asp 211	Dulce
605	Asp 212	Dulce
606	Asp 213	Dulce
607	Asp 214	Dulce
608	Asp 215	Dulce
609^	Aspartame–acesulfame salt	Dulce
610	Baivunoside	Dulce
611	3–(3–carbamovl–2.4.6–tribromophehvl)–propionic acid	Dulce
612	Bernardame	Dulce
613^	Calcium cvclamate	Dulce
614^	Calcium saccharin	Dulce
615	cvclamate	Dulce
616	Cyclocarioside A	Dulce
617	Disodium glycyrrhizinate	Dulce
618	Gaudichaudioside A	Dulce
619	Hesperinin alucoside DHC	Dulce
620^	Homoeohesperidin DHC	Dulce
621	Isovanillic 18	Dulce
622^	Isovanillic 24	Dulce
623	isovanillic 25	Dulce
0-0		20.00

624	Leucrose	Dulce
625	Lugduname	Dulce
626	Mogroside II	Dulce
627	Mogroside IV	Dulce
628	Mogroside V	Dulce
629^	Naringin DHC	Dulce
630	Neoeriocitrin DHC	Dulce
631	Osladin	Dulce
632^	Polypodoside A	Dulce
633^	Potassium glycyrrhizinate	Dulce
634^	Potassium saccharin	Dulce
635	Prunin DHC	Dulce
636	Pterocaryoside A	Dulce
637^	Pterocaryoside B	Dulce
638	Rebaudioside F	Dulce
639	Ribose	Dulce
640	Rubusoside	Dulce
641	Saccharin	Dulce
642	Selligueain A	Dulce
643	Siamenoside I	Dulce
644	Sorbose	Dulce
645	Telosmoside A	Dulce
646	trans-anethole	Dulce
647	trans–cinnamaldehyde	Dulce
648^	Tripotassium glycyrrhizinate	Dulce
649	Xylobiose	Dulce
^ pro	edicción	