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Abstract—Patterns of mobile phone communications, coupled
with the information of the social network graph and financial
behavior, allow us to make inferences of users’ socio-economic
attributes such as their income level. We present here several
methods to extract features from mobile phone usage (calls and
messages), and compare different combinations of supervised
machine learning techniques and sets of features used as input
for the inference of users’ income. Our experimental results show
that the Bayesian method based on the communication graph
outperforms standard machine learning algorithms using node-
based features.

I. INTRODUCTION

Mobile phone datasets present a rich view into social
interactions and physical movements of large segments of
the population. The voice calls and text messages exchanged
between people, together with the locations of these communi-
cations, allow us to construct a rich social graph which provides
insights on the users social fabric.

There is a strong homophily in the population’s communi-
cations graph respect to economic variables such as the user’s
income [1], which results largely from social stratification
between populations of different purchasing power [2] or
purchasing patterns [3]. Additionally, and in part resulting from
this stratification, there are different patterns of communication
between users of distinct socioeconomic level [4].

Finding the best way to parse Call Detail Records (CDRs)
to generate user features and construct their communications
graph is still a subject of research. After describing our data
sources, we present several methods of feature extraction
from the raw CDR data, and describe the supervised machine
learning algorithms used to predict the socioeconomic level
of users, given a ground truth for a relatively small subset of
the population. In particular we tested the Bayesian approach
for income inference presented in [1]. Finally, we present
our experimental results, comparing the performance obtained
according to the feature set and the algorithms used.

II. DATA SOURCES

The data used in this study contains a set P of Call Detail
Records (CDRs), composed of voice calls, and another set S
containing text messages, from a telecommunication company
(telco) in a Latin American country for a period of 3 consecutive
months. Using this data we create the social graph G = 〈V,E〉
where each v ∈ V is a user of the telco, and E contains calls
between those users. Each element e ∈ E contains information

about the Origin and Destination users, in addition to the
amount of Calls, the total call Time, and the amount of SMS
exchanged.

Additionally, we have access to information about a set B
of bank accounts, for which we calculate the monthly income
for each user ps. In this paper we separate the users into two
groups of equal size: Low Income and High Income.
B contains information about the users’ telephone number,

which is anonymized in the same way as the telco data.
Therefore, we can match the data in these two datasets in order
to construct the Ground Truth T ⊆ V , where each element of
T contains its income category, along with the Inner Graph
G′ = 〈V ′, E′〉 where E’ contains edges where at least one
endpoint is in T , and V ′ is the set of endpoints of all elements
in E′.

III. ACCUMULATED GRAPH FEATURES

This section presents several ways of transforming data
from the graph G = 〈V,E〉 into individual features for each
user v ∈ V . The aggregations are classified into levels named
according to the transformation done to G, and they are merged
with levels containing less information. The total amount of
columns in each featureset is presented in Table II.

A. User Data — Level Ring1
The first accumulated features consist of accumulating the

three quantifiable features, Calls, Time and SMS, for every
node, separated on whether those features are incoming or
outgoing.

B. Higher Order User Data — Level Ringn>1

The ego network of the node v is defined as the graph
consisting of v and its neighbors. A simple way to get more
features about that node is to accumulate the calls and SMS
information about the edges which are not part of the ego
network, but contain one endpoint on the border of the ego
network.

Similarly, we define the user data of order n, for any natural
number n, as the accumulation of calls and SMS information
for the nodes which are part of the ego network of order n,
which is the set of nodes which are at distance at most n of v,
and are not part of the ego network of order n− 1, which we
denote as Ringn. The level Ring1 contains the information of
the regular user data, while the user data from the ego network
of order n is assigned to Ringn for n > 1.
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Inner Graph
Model Level Accuracy Precision Recall AUC F1-score F4-score Fit Time Predict Time

Random Selection 0.499 0.499 0.500 0.499 0.500 0.500 — 0.005 s
Majority Voting 0.681 0.640 0.826 0.681 0.721 0.712 — 0.059 s
Bayesian Algorithm 0.693 0.665 0.792 0.746 0.723 0.783 — 33.155 s

LR

Ring1 0.536 0.531 0.625 0.536 0.574 0.619 0.145 s 0.002 s
Ring2 0.535 0.525 0.730 0.535 0.611 0.714 0.141 s 0.011 s
Ring3 0.568 0.578 0.525 0.569 0.550 0.528 0.119 s 0.003 s
Cat1 0.686 0.655 0.785 0.686 0.714 0.776 0.167 s 0.005 s
Cat2 0.693 0.665 0.780 0.693 0.718 0.772 1.588 s 0.011 s
Cat3 0.693 0.670 0.764 0.692 0.714 0.758 0.956 s 0.009 s

RF

Ring1 0.548 0.548 0.550 0.548 0.549 0.550 5.986 s 0.588 s
Ring2 0.582 0.583 0.577 0.582 0.580 0.577 56.548 s 0.483 s
Ring3 0.576 0.577 0.580 0.576 0.579 0.580 50.197 s 0.253 s
Cat1 0.671 0.665 0.690 0.671 0.677 0.688 6.346 s 0.539 s
Cat2 0.714 0.713 0.716 0.714 0.714 0.716 96.005 s 0.460 s
Cat3 0.709 0.710 0.711 0.709 0.711 0.711 81.528 s 0.242 s

TABLE I: Resulting metrics of different methods used in Section V tested on the Inner Graph, which contains only nodes
which have at least one neighbour with socioeconomic information. LR corresponds to Logistic Regression models, and RF
to Random Forest models with the level described in Section III. Bolded items represent the highest value for the metrics
Accuracy, AUC, F1-score and F4-score.

Level Features

Ring1 8
Ring2 16
Ring3 24
Cat1 24
Cat2 48
Cat3 72

TABLE II: Amount of total features per level.

C. Categorical User Data — Level Catn
Another approach to building features is to do an approach

similar to the user data presented in Section III-A, but further
discriminating each feature which corresponds to each node
v ∈ V and each edge e ∈ E: when t ∈ T is the other endpoint
of the link e, we discriminate whether t corresponds to a user
with high or low income. The resulting new features are of
the form represented by the set in Equation (1). This way we
create the datasets Cat1 . . .Cat3 by using the growing ego
networks Ring1 . . .Ring3.

{
in
out

}
×


calls
time
sms

contacts

×
{
low
high

}
(1)

To prevent overfitting, the set T is partitioned into two
disjoint sets, G and H , where G contains roughly 75% of the
nodes in T is used to calculate the features, while H contains
the other 25% and is used to train the models.

IV. INFERENCE METHODOLOGY

The Inner Graph is defined so that a node h ∈ H is part
of it if and only if there is an edge 〈h, x〉 ∈ E or 〈x, h〉 ∈ E
such that x ∈ H . This later definition becomes important when
doing inferences on features using the Categorical User Data
dataset.

The inferences were performed using Logistic Regression and
Random Forest classifiers, both of which are solid classifiers
commonly used for cases like this [6], and since they tend to
have different variance in their results [8], noise from different
sources should affect differently each predictor.

The features used were the ones presented in Section III,
where each level is merged with all the previous levels with
the data on G. Table II shows the amount of features in each
level after merging the data. The feature sets Ring1 . . .Ring3
and Cat1 . . .Cat3 are strictly increasing.

The classifiers are trained using those features and the labels
in H doing a Grid Search on different hyperparameters of the
predictors with 5-fold cross-validation to prevent overfitting. In
addition to the accuracy, we computed several metrics for the
comparison. In our real-life use cases, we are more interested
in having high recall than high precision (that is, finding more
high income users than being accurate), therefore we also
measured the F4-score of each prediction.

In addition, these methods based on features aggregated by
node are compared against three other methods based solely
on the communication graph structure:

• Random Selection which chooses a random category.
• Majority Voting which chooses the most populated

category in a user’s ego network (or randomly in case of
a tie).

• Bayesian Method which uses the method presented in [1]
to infer the category of each user, taking into account the
uncertainty on the available information.

V. RESULTS AND CONCLUSION

The predictors were run in a computer with a single core
of 2.00 GHz Intel Xeon CPU using sklearn 0.18 under
Python 2.7, and 64 GB of RAM (enough to avoid caching
calculations). The results of the inference can be found in
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Full Graph
Model Level Accuracy Precision Recall AUC F1-score F4-score Fit Time Predict Time

Random Selection 0.499 0.499 0.500 0.499 0.500 0.500 — 0.005 s
Majority Voting 0.565 0.747 0.197 0.565 0.312 0.206 — 0.204 s

LR

Ring1 0.534 0.586 0.234 0.534 0.335 0.243 0.937 s 0.016 s
Ring2 0.547 0.617 0.250 0.547 0.356 0.260 1.347 s 0.035 s
Ring3 0.563 0.586 0.430 0.563 0.496 0.437 1.055 s 0.023 s
Cat1 0.565 0.746 0.198 0.565 0.313 0.207 1.871 s 0.041 s
Cat2 0.577 0.727 0.247 0.577 0.368 0.257 9.816 s 0.077 s
Cat3 0.589 0.636 0.415 0.589 0.503 0.424 9.456 s 0.065 s

RF

Ring1 0.543 0.544 0.529 0.543 0.536 0.530 25.789 s 4.878 s
Ring2 0.578 0.585 0.537 0.578 0.560 0.540 102.961 s 5.608 s
Ring3 0.583 0.590 0.541 0.583 0.564 0.543 70.447 s 3.148 s
Cat1 0.568 0.573 0.536 0.568 0.554 0.538 32.981 s 5.371 s
Cat2 0.613 0.634 0.533 0.613 0.579 0.538 44.911 s 6.002 s
Cat3 0.614 0.635 0.534 0.614 0.580 0.539 50.589 s 3.484 s

TABLE III: Resulting metrics of different methods used in Section V tested on both the Full Graph, which includes all the
nodes of the graph. LR corresponds to Logistic Regression models, and RF to Random Forest ones with the level described in
Section III. Bolded items represent the highest value for the metrics Accuracy, AUC, F1-score and F4-score.

Table I for the Inner Graph and in Table III for the Full
Graph.

Both tables show various metrics which result from applying
the methods described in Section IV with the hyperparameters
that result in the highest accuracy according to the Grid Search.
We use the AUC (Area under the ROC curve) to compare the
different approaches.

We observe that methods based on Random Forests tend
to perform better in this real-world scenario than the ones
based on Logistic Regression. This may be due to the fact that
Random Forests are more versatile with non-linear data [7],
and is consistent with similar findings in [5].

Interestingly, increasing the breadth of the Ego Network by
one level, from Ring1 to Ring2 improves the performance
when using Random Forest learning, however it does not
improve by going one level further to Ring3 in the case of
the Inner Graph, despite the fact that this dataset is a strict
superset of the previous Ring2. This is due to the fallibility of
common bagging methods like Random Forest, where having
some noisy or non-informative data to choose from makes it
less probable that informative features will be chosen.

Adding categorical information greatly improves the predic-
tion when using either method, particularly on Random Forest,
and, like it was noted before, adding neighbouring data of
the ego network of distance 2 (Cat2) also results in a better
predictor. However, raising further the maximum distance to
Cat3 within the ego network in the case of the Inner Graph
does not result in further improvements.

We can conclude that, within the machine learning methods
presented, the best in terms of AUC is predicting the category
using a Random Forest with the ego network of distance 2
data (Cat2) in the case of the Inner Graph. In the Full Graph,
using Cat3 data results in slightly better results, however the
difference with Cat2 is very small.

Finally, in the Inner Graph the best method is the Bayesian
Method presented in [1], which only uses the number of High
Income and Low Income users in the egonetwork, but makes

a “smarter” prediction than the machine learning methods LR
and RF using the models Cat1, Cat2, and Cat3, which also
contain this data.

Additionally, while its AUC is not higher than the best
machine learning methods, the F1-score of the Majority Voting
predictor is higher than all the machine learning methods.

We can reach the conclusion that, in this particular case,
smaller is better. The machine learning methods which use
many features (despite these features being informative) are not
better at predicting the socioeconomic level of a user than the
simple Majority Voting or the more complex Bayesian Method
which use only 2 simple features of the communication graph.
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