
Exploring Architectural Model Checking with
Declarative Specifications �

Fernando Asteasuain1,3 and Francisco Tarulla2

1 Universidad Nacional de Avellaneda, Dpto Tecnoloǵıa y Administración,
Avellaneda, Argentina. fasteasuain@undav.edu.ar

2 Universidad de Buenos Aires, Dpto de Computación, Buenos Aires, Argentina.
ftarulla@dc.uba.ar

3 UAI-CAETI, Buenos Aires, Argentina.

Abstract. In this work we explore the FVS language in the context of
architectural behavior model checking. FVS holds desirable characteris-
tics for this particular domain. Its flexible notation enables the possibil-
ity of performing behavioral exploration when denoting the properties
to be satisfied. In addition, FVS expressive power capable of denoting
ω-regular properties is useful to denote behavior in a higher level of ab-
straction. These are two key activities when specifying and validating a
system architecture. Given that FVS specifications can be translated into
Büchi automata they can be used as input in a validation tool like model
checkers. In this sense, we conducted industrial relevant case studies to
apply our approach in concrete examples.

Keywords: Software Architecture, Model checking, Declarative Speci-
fications

1 Introduction

One of the most crucial concepts inherent to any Software Engineering activity is
the usage of models and abstraction to be able to reason, explore and specify the
expected behavior of the system to be built. In this sense, the design and analysis
of Software Architectures constitutes a challenging and significant corner stone
to achieve these objectives [8].

When specifying architectural behavior it is essential being able to explore
and reason about different alternatives since most of the requirements are still
yet to be discovered and defined. This is particulary true when trying to formally
validate the expected behavior by performing architectural model checking. A
model checker is given as input a model abstracting the system to be devel-
oped and a set of properties that the model should satisfy. The topic of formal
languages to describe architectural behavior has been tackled by a plethora of
approaches such as [13, 22, 17, 19]. However, it has been pinpointed by the com-
munity that writing the expected behavior in the form of properties is still one of

� This work was partially funded by UNDAVCYT 2014, PAE-PICT-2007-02278:(PAE
37279), PIP 112-200801-00955 and UBACyT X021, UAI-CAETI

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

732



the main challenges to be addressed [2, 20, 1, 3]. Some of the most relevant issues
included in this challenge are: the usage of formal languages such as tempo-
ral logics which may be hard to adopt, the usage of operational notations such
as Automata-based notations or ADL’s (Architecture Description Languages)
whose constructors and structure resembles source code that might lead to pre-
mature implementations decisions and a certain lack of flexibility and expressive
power in the notations used.

Given this context we explore in this work the Feather Weight Visual Scenar-
ios (FVS) language as a declarative language to denote and validate architectural
behavior. FVS is a declarative language based on graphical scenarios and fea-
tures a flexible and expressive notation with clear and solid language semantics.
FVS expressivity is a distinguished characteristic among declarative approaches
since it is able to denote ω-regular properties. This makes FVS, for example,
more expressive than LTL (Linear Temporal Logic). This fact enables the user
to predicate and express behavior in a higher lever of abstraction which is a key
factor in the architectural domain. FVS’s specifications can be translated into
Büchi automata enabling the possibility of realizing architectural model check-
ing. We explore this alternative by analyzing industrial relevant case studies.

1.1 Previous work and new contributions

In [5, 6] FVS was used in the software architectures domain, denoting variabil-
ity among the specification of product family architectures and expressing the
behavior of architectural connectors. We now build on the top of those works
introducing the following new aspects:

* Architectural behavior specifications include not only connectors, but also
components and other relevant architectural interactions.

* We take FVS’s specifications one step further by using them as input in a
known model checker: LTSA (Labeled Transition System Analyzer [14]).
In this sense, we present a tool denominated GTxFVS implementing FVS
features and enabling the interaction with the LTSA model checker.

* We exploit FVS expressive power to denote ω-regular properties to reason in a
higher level of abstraction. In particular, we use this FVS’s power to denote
behavior imposed by the layered architectural style.

* We introduce relevant case studies exhibiting FVS performance within the
context of architectural model checking.

The rest of this work is organized as follows. Section 2 introduces FVS’s main
features. Section 3 describes the analyzed case studies. Section 4 presents some
lessons learned when developing the case studies and summarizes conclusions of
the work. Finally, Section 5 briefly discuss related work and raises some points
regarding future work.

2 Feather weight Visual Scenarios

In this section we will informally describe the standing features of FVS [3, 4]. The
reader is referred to [4] for a formal characterization of the language. FVS is a

II

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

733



graphical language based on scenarios. Scenarios are partial order of events, con-
sisting of points, which are labeled with a logic formula expressing the possible
events occurring at that point, and arrows connecting them. An arrow between
two points indicates precedence of the source with respect to the destination: for
instance, in figure 1-(a) A-event precedes B -event. We use an abbreviation for a
frequent sub-pattern: a certain point represents the next occurrence of an event
after another. The abbreviation is a second (open) arrow near the destination
point. For example, in figure 1-b the scenario captures the very next B -event
following an A-event, and not any other B -event. Conversely, to represent the
previous occurrence of a (source) event, there is a symmetrical notation: an open
arrow near the source extreme. Events labeling an arrow are interpreted as for-
bidden events between both points. In figure 1-c A-event precedes B -event such
that C-event does not occur between them. Finally, FVS features aliasing be-
tween points. Scenario in 1-d indicates that a point labeled with A is also labeled
with A ∧ B. It is worth noticing that A-event is repeated on the labeling of the
second point just because of FVS formal syntaxis.

Fig. 1. Basic Elements in FVS

We now introduce the concept of FVS rules, a core concept in the language.
Roughly speaking, a rule is divided into two parts: a scenario playing the role
of an antecedent and at least one scenario playing the role of a consequent. The
intuition is that whenever a trace “matches” a given antecedent scenario, then
it must also match at least one of the consequents. In other words, rules take
the form of an implication: an antecedent scenario and one or more consequent
scenarios. Graphically, the antecedent is shown in black, and consequents in grey.
Since a rule can feature more than one consequent, elements which do not belong
to the antecedent scenario are numbered to identify the consequent they belong
to. An example is shown in figure 2. The rule describes the circumstances under
which writing in a pipe is valid. For every occurrence of a write event, then it must
be the case that either the pipe did not reach its maximum capacity since it was
ready to perform (Consequent 1) or the pipe did reach its capacity, but another
component performed a read over the pipe (making the pipe available again)
afterwards and the pipe capacity did not reach again its maximum (Consequent
2).

Ghosts Events and Translation into Büchi automata FVS is expressive
enough to denote ω-regular properties [4]. This is due to the introduction of

III

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

734



Fig. 2. An FVS rule example

abstraction, which is incorporated in our notation by introducing a new type
of events. By using these events, the specifier can abstract behavior and reason
about events that are not present in the system traces, but actually represent
a higher level of abstraction. We call these special events as “ghost” events, in
contrast with “actual” events, the set of events present in the system’s specifi-
cation. In order to verify that a certain trace of the system (which only contains
actual events) satisfies a rule containing ghosts events there is a internal proce-
dure based on morphisms that discards ghost events based on a classic process
of existential elimination [4]. Finally, there is a tableau procedure that translates
FVS rules into Büchi automata [4]. In this way FVS specifications can play the
role of input properties to be analyzed by a model checker.

FVS tool implementation: GTxFVS The tool GTxFVS basically imple-
ments the FVS language. It is based on the Meteor platform4 , an open source
platform for web, mobile, and desktop applications. GTxFVS also implements
the tableau algorithm which translates FVS rules into Büchi automata and it
allows the interaction with the LTSA model checker so that architectural model
checking can be performed.

3 Case Study

In this section we describe the case studies illustrating our approach. Section
3.1 shows the formal validation of a known Publish/Subscribe based application
whereas Section 3.2 exhibits FVS expressive power verifying properties in a
layered system.

3.1 Verifying SIENA’s architectural behavior

We applied our approach within the context of a known Publish/Subscribe event
notification service called SIENA [11] developed at University of Colorado. This
system was analyzed in [9, 10] were a model representing a minimal schema of
SIENA is given. In what follows we describe and verify the behavior of the

4 (https://www.meteor.com/)

IV

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

735



SIENA system based on this latter work. Two mains components highlight in
the Siena’s architecture specification: clients and event-service. The event-service
is composed by a number of servers which offers clients the publish/subscribe
interface. Clients are both publishers and subscribers. Subscribers express their
interest in events by supplying a filter. We described, specified and verified three
main properties of the SIENA model. It is worth to point out that these prop-
erties are presented in [10, 9] as essential to the behavior of the system. The
mentioned properties are:

– Property 1: If a component C0 subscribes a filter expressing interest in
component C1 publications’ and C1 publishes an event then C0 receives the
corresponding notifications unless C0 unsubscribes its filter.

– Property 2: Servers must process events in the same order they were received.
– Property 3: Events received by a component which are generated by the

same source maintain the publication order.

The FVS rule in Figure 3 specifies the behavior required by Property 1. The
following events are involved: Event ACT-FI (component C0 ’s filter is active in
the event-service structure), PUB-C1 (component C1 publishes an event), NOT-
C0 (component C0 receives an event notification) and UNS-C0 (component C0
unsubscribes the filter). The rule simply states that whenever C1 publishes an
event given that C0 ’s filter is active, then C0 receives its notification. The con-
dition in the rule scenarios (Not UNS-C0 ) checks that component C0 did not
unsubscribed the filter.

Fig. 3. All the publications must be received by the subscribers

Rule in Figure 4 shows the behavior denoted in Property 2. For this particular
case we exhibit the rule considering only messages for subscribing and activating
filters: the filters must be activated accordingly to the time their subscription
was received. Similar rules are defined for other kind of messages. The rule says
that when two filter subscriptions are received in a server (SUB-Filter0 first and
SUB-Filter1 afterwards) and the second one was activated (ACT-Filter1 ) then
it must be the case that the first filter was activated before (ACT-Filter1 ).

Finally, rule in Figure 5 illustrates the behavior imposed by Property 3. This
is a particular case of the previous property (Property 2 in Figure 4). In this
rules the following events are involved: SUB-C0 (component C0 subscribes a
filter), ACT-FC0 (the filter for component C0 is activated), PUBC1-E1 (com-
ponent C1 publishes event E1), PUB-C1E2 (component C1 publishes event E2 ),
NOT-C0E1 (component C0 receives the notification of event E1 ), NOT-C0E2
(component C0 receives the notification of event E1) and UNS-C0(component
C0 unsubscribes its filter). The rule demands that whenever two events are

V

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

736



Fig. 4. Messages orders must be preserved

published by the same source then if the interested subscriber received the no-
tification of the latter event and did not realize a unsubscription, then the sub-
scriber received the notification of the former event before the occurrence of the
notification of the latter.

Fig. 5. Events generated by the same source respect the publication order

It is worth mentioning that all the rules were satisfied when employing the
LTSA model checker to validate their behavior.

3.2 Verifying architectural conformance within Layered-based
Systems

Inspired by the case of study introduced in [15] we show next how using FVS’s
ghosts events we can specify rules that verify that a system is satisfying the
restrictions imposed by the layered pattern [8]. While services invocations are
regular events present in the system’s traces, the notion of layers lives in a higher
level of abstraction. Given this context we introduce ghost events to capture the
notion of layers. Events named Layer-1,Layer-2, ...,Layer-N represents the lay-
ers of the system. Once these events are defined, the user can predicate about
architectural behavior based on these events. For example, the user can intro-
duce rules that verify that services are only invoked from the immediate lower
layer. The FVS rules in Figure 6 tackle the ghost layered events definition. For
simplicity reasons, we show the definitions for a general schema with three ser-
vices: S-1, S-2 and S-3 and three layers:Layer-1,Layer-2 and Layer-3, where

VI

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

737



Fig. 6. Layered Ghost Events Definition

service S-i belongs to the layer Layer-i. In few words, each service invocation is
associated with the corresponding ghost event.

The FVS rules in Figure 7 reflect the behavior restrictions imposed by the
layered pattern: each service can only be invoked by services in the immediate
lower level. These rules are based only in the ghost layered events.

Fig. 7. Rules reflecting the behavior of a layered pattern

We applied this approach to a layered system based on the example intro-
duced in [15]. Roughly speaking, the system contains four layers that behave
in the following way: the Web client and the application client call the session
beans, the session beans invoke the entity beans, and the entity beans access the
database tables on the back end. We defined the corresponding ghosts events
and specified layered-restrictions with FVS rules (similar to the ones in Figures
6 and 7 instantiating the general schema to the concrete system), we obtained
a model of the system and checked whether its satisfied the given properties.
Similar to the results exhibited in [15] we found violations within the layered
structure, since sessions beans interacted directly with the database layer.

4 Lessons Learned and Conclusions

Based of the results obtained in the case studies we believe that the FVS language
is suitable for specifying and validating architectural behavior. The operational
flavour given by the translation of FVS rules into automata made possible the in-
tegration with model checkers, which in turn, enabled the possibility of realizing
architectural model checking.

The flexility and expressiveness of the language do have an important impact
when modeling and exploring architectural behavior. The properties specified
for the SIENA system were expressed in [10, 9] using temporal logic formu-
las although their approach uses another notation (a graphical language called

VII

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

738



Property Sequence Charts). In addition, when specifying the formulas some aux-
iliary predicates were defined in order to simplify the specification. This might
indicate that the comprehension of the formula may be a challenging task. This
could become even more difficult if the property needs to be modified to adapt
to a different context or compared against other possible formula describing an
alternative solution. These activities are crucial since exploration and reasoning
about behavior is fundamental when defining architectural behavior and inter-
actions between the components of the system.

Consider, for example, that a more relaxed version of the SIENA system is
considered, where messages can be processed by servers in any order, and not
necessarily respecting the time they were received. The architect would then need
to modify the requirements described in Section 3.1. For the FVS specification
described by rules in Figure 4 only one modification is needed: the elimination of
the precedence relationship between events ACT-FILTER0 and ACT-FILTER1,
which states that ACT-FILTER0 must precede ACT-FILTER1. If this relation-
ship is removed, then the rule simply state that both filters should be activated,
but it does not impose any order of occurrence. The new version of the rule is
shown in Figure 8. In the case of a temporal logic specification, the architect of
the system might be faced against a complex formula whose modification is far
from being trivial. The same analysis can be obtained when employing another
notations such as structured ADL’s or automata-based notations.

Fig. 8. A new rule modeling an architectural change in the system

The case study shown in Section 3.2 exhibits the benefits given by the expres-
sive power of FVS. The use of ghost events makes a FVS a powerful language
since ω-regular properties can be expressed, which is a distinguishable feature
among declarative notations. In this case, ghost events are introduced so that
the architect of the system can predicate in a higher level of abstraction and
indicate interactions restrictions imposed by the layered architectural style.

Although the positive observations described in the previous paragraphs some
threats to validity should be mentioned. First of all, a well designed experiment
is needed to conclude with more precision about the flexibility and expressive
power of our notation compared with other notations. FVS was compared against
oher notations regarding this issue in [4, 3] in the context of expressing properties
describing early behavior, showing that is more suitable for expressing behavior
and its validation. However, a new experiment is needed to validate this aspects
in the architectural domain. This experiment is beyond the scope of this paper

VIII

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

739



and is addressed as future work. The development of the case studies is another
threat to be considered. In all the cases we replicated experiments shown in the
literature, perhaps easing the specification and analyses process. Therefore, new
case studies from scratch are needed to further validate the obtained results.
This clearly represent a challenging issue regarding feature work.

5 Related and Future Work

The first step regarding future work is to validate the results presented in this
work with case studies with industrial relevance from scratch. This is a logi-
cal continuation of the experiments shown in this paper. We also would like
to interact with architectural conformance between a system’s implementation
with respect to its architecture specification. This would involve to combine our
approach with others techniques focused on extracting, either statically or dy-
namically, the architecture from the source code [21, 2]. Finally, we are interested
in performing an experiment to measure and compare flexibility and expressive-
ness of FVS with other notations. A good starting point could be considering
the comparison of formal architectural approaches made in [23].

Related work can be divided into approaches denoting graphical languages
and approaches employing ADLs (Architectural Description Languages) based
on operational or source-code flavoured notations. Among the first group, proba-
bly the most representative approach is Property Sequence Chart (PSC) [7]. PSC
is a graphical language inspired in UML 2.0 Interaction Sequence Diagrams that
has been applied in the software architecture domain [18, 10, 9]. In PSC, denoting
complex constraints between events may require textual annotations. In addi-
tion, properties in PCS are described as anti-scenarios and not as conditional or
triggered scenarios. PSC is less expressive than FVS since it can only describe a
subset of LTL, whereas FVS is more expressive than LTL. Work in [17] employs
a graphical notation based on UML together with a textual notation focusing
on a model driven approach. Our approach is focused on expressing behavioral
properties to be model checked. FVS features only graphical scenarios and a
more rich and flexible triggering mechanism, since for example, the antecedent
need not to precede the consequents in time. Work in [22] also employs an hy-
brid notation combining UML like scenarios with additional textual description
based on OCL constrains. This approach is mostly focused on modeling behavior
rather than its specification and validation.

Other approaches rely on different ADLs (Architectural Description Lan-
guages) [16, 19, 13] based on operational, textual or source-code flavoured nota-
tions. We believe the graphical and declarative notation of FVS might make it
more suitable for early behavior exploration [20]. Since FVS scenarios can be
translated into Büchi automata [4] it would be interesting to investigate if FVS
can be combined with others ADLs such as the mentioned ones or others.

IX

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

740



References

1. S. T. Albin. The art of software architecture: design methods and techniques,
volume 9. John Wiley & Sons, 2003.

2. J. Aldrich, C. Chambers, and D. Notkin. Archjava: connecting software architec-
ture to implementation. In ICSE 2002, pages 187–197. IEEE, 2002.

3. F. Asteasuain and V. Braberman. Specification patterns: formal and easy. IJSEKE,
25(04):669–700, 2015.

4. F. Asteasuain and V. Braberman. Declaratively building behavior by means of
scenario clauses. Requirements Engineering, pages Vol 22,239–274, 2017.

5. F. Asteasuain and F. Tarulla. Modelado de comportamiento de conectores de
software a travs de lenguajes declarativos. In CONAIISI, 2016.

6. F. Asteasuain and L. P. Vultaggio. Declarative and flexible modeling of software
product line architectures. IEEE Latin America Transactions, 14(2):885–892, 2016.

7. M. Autili, P. Inverardi, and P. Pelliccione. A scenario based notation for specifying
temporal properties. In SCESM ’06, pages 21–28. ACM, 2006.

8. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley Professional, 3rd edition, 2012.

9. M. Caporuscio, P. Inverardi, and P. Pelliccione. Compositional verification of
middleware-based software architecture descriptions. In ICSE 2004.

10. M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal analysis of architectural
patterns. In EWSA, pages 10–24. Springer, 2004.

11. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-
area event notification service. TOCS, 19(3):332–383, 2001.

12. P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little.
Documenting software architectures: views and beyond. Pearson Education, 2002.

13. J. L. Fiadeiro, A. Lopes, and L. Bocchi. A formal approach to service component
architecture. In WS-FM, volume 4184, pages 193–213. Springer, 2006.

14. J. Magee and J. Kramer. State models and java programs. Wiley, 1999.
15. P. Merson. Using aspect-oriented programming to enforce architecture, software

engineering institute. Technical report, CMU/SEI-2007-TN-019, 2007.
16. F. Oquendo, J. Leite, and T. Batista. Specifying architecture behavior with sysadl.

In WICSA 2016, pages 140–145. IEEE, 2016.
17. F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux, F. Gallo, H. Garavel, and

C. Occhipinti. Archware: Architecting evolvable software. In EWSA 2004.
18. P. Pelliccione, P. Inverardi, and H. Muccini. Charmy: A framework for designing

and verifying architectural specifications. IEEE TSE, 35(3):325–346, 2009.
19. T. K. Satyananda, D. Lee, and S. Kang. Formal verification of consistency between

feature model and software architecture in software product line. In ICSEA 2007.
20. A. Van Lamsweerde. From system goals to software architecture. Formal Methods

for Software Architectures, pages 25–43, 2003.
21. H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman. Discotect: A system

for discovering architectures from running systems. In ICSE, aosfpp 470-479, 2004.
22. U. Zdun and P. Avgeriou. Modeling architectural patterns using architectural

primitives. In ACM SIGPLAN Notices, volume 40, pages 133–146. ACM, 2005.
23. P. Zhang, H. Muccini, and B. Li. A classification and comparison of model checking

software architecture techniques. Journal of Systems and Software, 83(5):723–744,
2010.

X

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

741




