
Process Variability: concepts, approaches and its
application on a model of Cloud BPM

Jose Martinez Garro1, Patricia Bazan1, Javier Diaz1

1 LINTI, Facultad de Informática, UNLP,
La Plata, Argentina

{josemartinezgarro, pbaz, jdiaz}@info.unlp.edu.ar

Abstract. Business Process Management as a discipline has suffered several
changes during the implementation of the execution and monitoring phases in
the cloud model. Different strategies have been seen in terms of the
implementation needed in order to gather information from the different nodes
during process execution, and finally show the results seamlessly without the
notion of a partitioned business process. Another aspect to introduce in this
context is Process Variability, in terms of the changes suffered by a process
model during its lifecycle, and how these changes affect the actual instances in
execution. In terms of a cloud BPM implementation, Process Variability adds
even more complexity during execution considering the different process
portions, as well as during the gathering and monitoring phases. The main
purpose of this work is to establish how the different aspects of a cloud BPM
implementation with decomposed processes are affected by introducing
concepts of Process Variability, both in execution as well as in the monitoring
phase. To achieve this goal an analysis of some current bibliography and the
main aspects of process variability management is accomplished.

Keywords: BPM, Cloud, Execution, Monitoring, Process Variability.

1 Introduction

BPM (Business Process Management) has presented a pronounced growth during
the last years, provoking an exploration over different related technologies, such as
the cloud model in terms of execution, or CEP (Complex Event Processing) for
process monitoring. Another aspect that must be considered during process execution
and monitoring is Process Variability. Most of the non-open source products have
features to support process variability, but in terms of a single BPM node. Since the
cloud orientation is nowadays a trend in mostly every software paradigm, including
BPM, it is necessary to consider how the management of process variations could
affect the process decomposition and execution in the cloud. Process variability refers
essentially to the different variations that a process model could suffer during its
lifecycle, and how these changes could affect the instances in execution, and in
consequence the monitoring of them. In chapter 2 an analysis of the current status of
process variability and formal verification is accomplished. After that, in chapter 3 a
brief revision of the mechanisms needed for process variant handling are evaluated. In
chapter 4 the requirements for a formal specification are presented, and the different

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

772

policies and actions in declarative and imperative variability are detailed. Finally in
chapter 5 it is addressed the way on how all these previous concepts affect a concrete
implementation of Cloud BPM presented in some previous works by the same authors
of this work [22] [23][29].

2 State of the art: variability and formal verification

There are several related works ([1], [2], [3]) addressing these two concepts,
especially when it comes to process models and version management. In terms of
definition, a formal verification mechanism implies proving or disproving the
correctness of a system model according to a formal specification using some formal
methods of mathematics. When employing formal verification, a system model –
often represented by a labeled transition system – is verified against a formal
specification using logic enunciations. One approach towards formal verification is
model checking. When this task is performed, a system model is automatically,
systematically, and exhaustively explored while each state is verified for compliance
with the formal specification. In this way, Business Process Verification is the act of
determining whether a business process model complies with a set of formal
correctness properties [1] [2] [3] [29].

2.1 Soundness

Business process correctness verification entails the verification of a set of basic
properties such as reachability and termination. Reachability applied to a business
activity requires an execution path from the starting activity to every other activity in
the model. The termination property requires that all possible execution traces reach a
final state. Business process soundness, a property originally proposed in the area of
Petri Net verification, is known as the combination of these two properties adding a
third one: the absence of related running activities at process termination (i.e., proper
completion) [2] [4] [5] [6].

2.2 Compliance

Business process compliance aims to confirm that a business process adheres to a
set of rules imposed on that process. Rules can, for example, be imposed upon a
process by international regulations, national law, or internal business rules. Whereas
soundness verification aims at the verification of a limited set of requirements like
reachability, termination, and possibly proper completion – compliance verification
requires the verification of a broad set of specifications [1] [3] [7] [8] [24].

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

773

2.3 Variability

BPM is evolving rapidly due to emerging mass customization and personalization
trends, the need for adaptation to varying business and execution contexts, and a
wider availability of service-based infrastructures. Variability is an abstraction and
management method that addresses a number of related issues, especially in a cloud
environment where different models are deployed constantly over different nodes of
the architecture. Variability can be introduced to the BPM area by using imperative or
declarative approaches. Whereas imperative approaches exactly specify possible
changes, declarative approaches constrain the process behavior, allowing any change
within those constraints. In addition, since imperative approaches exactly specify all
possible changes, they require all of them to be known in advance. Conversely,
declarative approaches do not require such knowledge [9] [10] [21] [22].

3 Dealing with process variants

There are different ways to think solutions for managing variants in existing BPM
tools according to the current bibliography, and they can be divided into two
approaches: the multi-model and the single-model approach. In this section some
concepts evaluated in a few related works are presented according to how they
address all this terms in traditional BPM.

3.1 Multi-model approach

In existing BPM tools, process variants often have to be defined and kept in separate
process models. Typically, this results in highly redundant model data as the variant
models are identical or similar for most parts. Furthermore, the variants cannot be
strongly related to each other; i.e., their models are only loosely coupled (e.g., based
on naming conventions). As a conclusion, generally, modeling all process variants in
separate models does not constitute an adequate solution for variant management [2]
[3] [11].

3.2 Single model approach

Another approach, frequently applied in practice, is to capture multiple variants in one
single model using conditional branchings (i.e., XOR-/OR-Splits). Each execution
path in the model represents a particular variant. Therefore, branching conditions
indicate which path belongs to which variant. Generally, specifying all variants in one
process model could result in a large model, which is difficult to comprehend and
expensive to maintain. Neither the use of separate models for capturing process
variants nor their definitions in a model based on conditional branching constitute an
adequate method. Both approaches do not treat variants as first class objects; i.e., the
variant-specific parts of a process are maintained and hidden either in separate models

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

774

(multi-model approach) or in control flow logic modules (single-model approach) [1]
[3] [12] [13].

3.3 Lifecycle

In terms of Process Variants, the standard process lifecycle consists of three phases
(Fig. 1), namely the design and modeling of the process, the creation of a particular
process variant, and the deployment of this variant in a runtime environment
(according to the selected approach).

Modeling: the efforts for modeling process variants should be kept as minimal as
possible, so in this direction, reusing variant models (or parts of them) has to be
supported. In particular, it should be possible to create new variants by taking over
properties from existing ones, but without creating redundant or inconsistent model
data.

Variant configuration: the configuration of a process variant (what essentially
means its derivation from a given master or base process) should be done
automatically if possible.

Execution: to execute a process variant, its model has to be interpreted by a workflow
engine, so in this context, it is important to keep information about the configured
process variant and its relation to a master or base process (and to other variants) in
the runtime system.

Maintenance and optimization: in order to reduce maintenance efforts and cost of
change, fundamental updates affecting multiple process variants should be conducted
only once [2] [3] [14] [15].

4. Applying verification in Process Variability. The challenge in
Requirements Specification

In terms of process verification, as we have seen previously in Section 2, there are
three main aspects to be considered as well: soundness, compliance and variability.
This last one builds upon the concept of compliance. In the context of BPM,
variability indicates that parts of a business process remain variable, or not fully
defined, in order to support different versions of the same process depending on the

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

775

intended use or execution context. Imperative variability employs the use of variation
points to provide different options at certain locations inside the process. Declarative
variability uses specifications like those of compliance to specify how each version of
a process should behave and absorb the new requirements [1] [21] [22] [29].

4.1 Imperative Variability

Imperative structural adaptation consists of atomic operations which, when executed
in a specific predefined sequence, rearrange a business process to form a specific
variant. Table 1 shows some mechanisms commonly known as Atomic Structural
Adaptations.

Continuing with this idea, it also should be able to express the following self-
explanatory atomic resource adaptations to the business process. These features are
commonly named as Atomic Resource Adaptation. A variability management
framework should at the same time allow the process designer to express the above
imperative structural adaptation requirements, which are commonly named as
Variation Relations [1] [3] [16] [17].

4.2 Declarative Variability

Declarative specifications consist of a set of rules expressing variations by
acknowledging the borders which limit the possible process modifications. They are
useful in order to set boundaries at the time of modifying a process model. Unlike
atomic structural changes which indicate imperatively what can vary, a declarative
specification limits the borders of changes explicitly [2] [18] [19] [20].

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

776

5 Applying Process Variability policies to Cloud BPM

As it was presented previously, there are different approaches and mechanisms to
handle process variants in BPM. In our case, it is important to perceive that managing
variability in a cloud environment amplifies every issue presented for single-tenant
scenarios. In case of applying this approach to process monitoring, during the
gathering phase, it is important for each instance to feed the monitoring server (i.e.
using complex events in CEP or BAM), no matter the version of the process they
belong to [1] [2] [22] [24].

In practice, process variants are often created by cloning and adjusting an existing
process model of a particular type according to the given context. Generally, every
process model can be derived out from another one by adjusting it accordingly, i.e.,
by applying a set of change operations and change patterns, respectively, to it. There
are different implementations of process variability, and each framework applies
policies according to its own particularities. One of these frameworks present in
current bibliography is Provop ([2], implemented for single tenant BPM servers).
Starting from this observation, Provop provides an operational approach for managing
process variants based on a single process model. In particular, process variants can
be configured by applying a set of high-level change operations to a given process
model. The latter one is denoted as the base process [25].

5.1 Modeling

In the modeling phase, first of all, a base process, from which the different process
variants can be derived through configuration, has to be defined. Following this, some
high-level change operations, which can be applied to this base process, are specified.
There is a thing that results fundamental for configuring a process variant: the base
process. This serves as reference for the high-level change operations. Basically, the
approach (e.g. Provop) should support policies that consider the standard process, the
most frequently used process, the minimal average distance between a model and its
variants, the superset of all process variants and the intersection of all process
variants. This framework should also consider change operations, grouping change
operations into options, constraint-based use of options and the context model [1] [3].

5.1.1 Policies application in a Cloud environment

As it was previously presented in [29], in a cloud based decomposed solution there
are several process partitions that together conform the original process model. In this
scenario, it is necessary to coordinate different models that in combination compose
the original base process. In case of adding to this some process variability features, it
could be necessary to apply a particular policy during defining the base process (or
even more than one) in a particular portion of it, and the other ones could be not
affected by the change [2] [21] [22] [23] [29].

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

777

5.2 Variant Configuration

In the configuration phase, the base process, the options defined for it and the context
model are used to configure the models of the different variants. More precisely, a
particular variant is configured by applying a sequence of options and their
corresponding change operations to the base process. The sequence of steps is given
as (1) select the relevant options, (2) evaluate relations between selected options, (3)
determine the order in which options shall be applied, (4) apply options and their
change operations and checking consistency [1] [2] [26].

5.2.1 Configuration in a cloud based environment

Once again following the same line as in [29], in a cloud based model the complexity
of each step application gets amplified because of the existence of several
decomposed models forming the original base model. In summary, option constraints
are considered to ensure semantic correctness and consistency of the selected set of
options at configuration time. This follows from the above described policies for
defining the base process, assuming, for example, a base decomposed process being
defined as an intersection of its variants [2] [22] [23] [29].

5.3 Deployment and Execution

After the configuration phase, the resulting variant model needs to be translated into
an executable workflow model. Common tasks emerging in this context are to assign
graphical user interfaces, to subdivide workflow activities into human and automated
tasks, or to choose the right level of granularity for the workflow model [2] [26].

5.3.1 Deployment in a cloud based environment

According to the scenario previously presented in [22] and [29], and using the same
architecture that integrates several nodes with Bonita in a private cloud, to apply all
these concepts in the execution and deployment of decomposed process could result a
very intricate task. As it was seen in previous works, each part of the process is in
charge of invoking the next one with the goal of maintaining the original process
flow, and for this invocation some vital information is needed: server direction,
version of the process model, user and password to connect with the API [2] [29].

5.4 Maintenance and Optimization

When evolving base processes (e.g., due to organizational optimization efforts or
changes in the business rules), all related process variants (i.e., their models) must be
reconfigured automatically. Thus, maintenance efforts can be significantly reduced
[27] [28].

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

778

5.4.1 Maintenance in a cloud based environment

Evolving and optimizing the base process may affect existing options, for example,
when the referred adjustment points are moved to a new position or are even deleted.
These actions cause that processes loose reference points and then certain actions are
more complicated, for example checking whether the definitions of existing options
are affected by the adaptations of the base process model.

As we have seen previously in [29], there are methods like BAM (Business Activity
Monitoring) or even CEP (Complex Event Processing) used in a distributed
environment in order to obtain relevant information about the process in execution.
Table 2 shows how the different policies and actions could be added to a cloud
decomposed model in order to handle process variant management during the whole
lifecycle [1] [2] [29].

Table 2: Policies and actions to apply in cloud BPM

6. Conclusions

BPM since the beginning was conceived as a methodology capable of reducing the
gap between the market and the final implementation of the business processes that
interact with it. The conditions affecting a process may change any time, so the rules
within the organization, causing in fact that every process definition should be
adapted according to some new specifications.
When a BPMS is already inserted in the organization and each process has instances
in execution, to generate a process variant is not a simple task: the process analyst
should decide how to apply the changes in the base model, how to promulgate them in
the existing instances, if every instance is going to be affected by the changes or not,
and finally being capable of manage the different versions of the process in parallel. If
this does not seem simple even in a single tenant environment, neither it is in a cloud

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

779

decomposed one where each process runs separately, in different servers united by an
execution chain provided by an API in the BPMS. There are several frameworks in
the current bibliography for process variant handling (like Provop as it was named
repeatedly in previous sections), tending to implement different policies in order to
apply changes in process instances and automate different tasks that enhance process
variant management and maintenance. A possible line for future works is to
implement a concrete version of a framework (such as Provop) that implements the
automation of process variants promulgation in a cloud environment considering
decomposed processes that need to be chained during execution and monitoring.

References

1. M Reichert, A Hallerbach, T Bauer. “Lifecycle Management for Business Process Variants”. University
of Ulm, Daimler TSS GmbH, Neu-Ulm University of Applied Science, Neu-Ulm, Germany. March
2015

2. G, Heerko. “Business Process Variability: A Study into Process Management and Verification”.
Rijksuniversiteit Groningen. 2016

3. B Estrada-Torres, A del Río-Ortega, M Resinas and A Ruiz-Cortes. “Identifying Variability in Process
Performance Indicators”. Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla,
Seville, Spain. March 2017

4. SM Reza Beheshti, B Sherif Sakr, D Grigori, H Nezhad, M Ahmed Gater, S Hwan Ryu. “Process
Analytics: Concepts and Techniques for Querying and Analyzing Process Data”. Springer International
Publishing. Switzerland 2016.

5. G Castro Barbosa Costa, C M.L. Werner and R Braga. “Software Process Performance Improvement
Using Data Provenance and Ontology”. Systems Engineering and Computer Science Department,
Federal University of Rio de Janeiro COPPE, Rio de Janeiro, RJ, Brazil. August 2016.

6. V Ferme, A Ivanchikj and C Pautasso. “Estimating the Cost for Executing Business Processes in the
Cloud”. Faculty of Informatics, USI Lugano, Lugano, Switzerland. August 2016

7. M Hewelt and M Weske. “A Hybrid Approach for Flexible Case Modeling and Execution”. Hasso
Plattner Institute Potsdam, Potsdam, Germany. August 2016

8. D Sanchez-Charles, V Muntes-Mulero, J Carmona, and M Sole. “Process Model Comparison Based on
Cophenetic Distance”. CA Strategic Research Labs, CA Technologies, Barcelona, Spain. August 2016

9. T Lehto, M Hinkka and J Hollmen. “Focusing Business Improvements Using Process Mining Based
Influence Analysis”. QPR Software Plc, Helsinki, Finland. August 2016

10. A Mos and M Cortes-Cornax. “Business Matter Experts do Matter: A Model-Driven Approach for
Domain Specific Process Design and Monitoring”. Xerox Research Center, 6 Chemin de Maupertuis,
Meylan, France. August 2016

11. B Karim, Q Tan, I El Emary, B A. Alyoubi, R Soler Costa. “A proposed novel enterprise cloud
development application model”. Springer-Verlag Berlin Heidelberg 2016

12. O Skarlat, M Borkowski and S Schulte. “Towards a Methodology and Instrumentation Toolset for
Cloud Manufacturing”. Distributed Systems Group, TU Wien. April 2016

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

780

13. E Hachicha, N Assy, W Gaaloul and J Mendling. “A Configurable Resource Allocation for Multi-
Tenant Process Development in the Cloud”. Telecom SudParis, UMR 5157 Samovar, Universite Paris-
Saclay, France. December 2015

14. G Rosinosky, S Youcef, F Charoy. “An Eficient Approach for Multi-tenant Elastic Business Processes
Management in Cloud Computing environment”. 2016 hal-01300188

15. A Gunka, H Kuehn and S Seycek. “BPM in the Cloud: The BOC Case”. BOC Information
Technologies Consulting GmbH, Vienna, Austria. 2017

16. G Rosinosky, S Youcef, F Charoy. “A Framework for BPMS Performance and Cost Evaluation on the
Cloud”. Workshop "Business Process Monitoring and Performance Analysis in the Cloud", Dec 2016,
Luxembourg, Luxembourg.

17. N. Herzberg, A. Meyer, M. Weske. “An Event Processing Platform for Business Process Management”.
Business Process Technology Group, Hasso Plattner Institute at the University of Potsdam. Potsdam,
Germany. June 2013.

18. S. Bulow, M. Backmann, N. Herzberg, T. Hille, A. Meyer, B. Ulm, T. Y. Wong, M. Weske.
“Monitoring of Business Processes with Complex Event Processing”. Business Process Technology
Group, Hasso Plattner Institute at the University of Potsdam. Potsdam, Germany. July 2013

19. C. Zeginis, K. Kritikos, P. Garefalakis, K. Konsolaki, K. Magoutis and D Plexousakis. “Towards Cross-
Layer Monitoring of Multi-Cloud Service-Based Applications”. Institute of Computer Science
Foundation for Research & Technology – Hellas. Grece. August 2013.

20. M. Goetz. “Integration of Business Process Management and Complex Event Processing”. iTransparent
GmbH, IT Consulting, Bergstraße 5, 90403 Nuremberg, Germany. November 2010.

21. J Martinez Garro, P Bazán. “Monitoreo de procesos en el cloud. Una propuesta arquitectónica”. JCC
2013. Universidad de Temuco. Chile. November 2013.

22. J Martinez Garro, P Bazán. “Constructing and monitoring processes in BPM using hybrid
architectures”. IJACSA Journal. Londres. Febrero 2014.

23. J Martinez Garro, P Bazán, J Diaz. “Decomposed processes in Cloud BPM: techniques for monitoring
and the use of OLC”. WORLD COMP 2014. Las Vegas, USA, July 2014.

24. J Martinez Garro, P Bazán, J Diaz. “OLC y Monitoreo de procesos en el cloud: un caso de estudio”.
JCC 2014. Chile. November 2014.

25. R Confortia, M La Rosaa, G Fortinoc, A H. M. ter Hofstedea, J Reckera, M Adamsa. “Real-Time Risk
Monitoring in Business Processes: A Sensor-based Approach”. Queensland University of Technology,
Brisbane, Australia. May 2013.

26. E Mulo, U Zdun, S Dustdar. “Domain-Specific Language for Eventbased Compliance Monitoring in
Process-driven SOAs”. Distributed Systems Group Institute of Information Systems Vienna University
of Technology, Vienna, Austria. April 2013.

27. P Szwed, W Chmiel, S Jedruzik, P Kadluczka, “Business Process in a Distributed Surveillance System
integrated through workflow”. Automatika. Vol 17. No 1. November 2013.

28. V Stavrou, M Kandias, G Karoulas, D Gritzalis. “Business Process Modeling for Insider Threat
Monitoring and Handling”. Information Security & Critical Infrastructure Protection Laboratory Dept.
of Informatics, Athens University of Economics & Business. Greece. May 2014.

29. J Martinez Garro, P Bazan, J Diaz. “Using BAM and CEP for Process Monitoring in Cloud BPM”.
JCST Cloud Journal. April 2016

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

781

