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Quantum phase diagram of a frustrated antiferromagnet on the bilayer honeycomb lattice
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We study the spin-1/2 Heisenberg antiferromagnet on a bilayer honeycomb lattice including interlayer
frustration. Using a set of complementary approaches, namely, Schwinger bosons, dimer series expansion,
bond operators, and exact diagonalization, we map out the quantum phase diagram. Analyzing ground-state
energies and elementary excitation spectra, we find four distinct phases, corresponding to three collinear magnetic
long-range ordered states, and one quantum disordered interlayer dimer phase. We detail that the latter phase
is adiabatically connected to an exact singlet product ground state of the bilayer, which exists along a line of
maximum interlayer frustration. The order within the remaining three phases will be clarified.
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I. INTRODUCTION

Disordered phases in frustrated two-dimensional spin sys-
tems are a very active field of research which thrives both, on
the synthesis of new materials as well as the development of
new theoretical concepts [1–4]. In this context, Heisenberg
antiferromagnets on the honeycomb lattice have attracted
considerable interest recently. Bi3Mn4O12(NO3), discovered
by Smirnova et al. [5] is among the materials to display this
structure, with Mn4+ ions with S = 3/2 forming an undistorted
honeycomb lattice. Two honeycomb layers are separated by
bismuth atoms, resulting in a bilayer arrangement, thereby
introducing the additional ingredient of a bilayer honeycomb
magnet.

Ab initio calculations, by Kandpal and van den Brink [6]
have suggested that in Bi3Mn4O12(NO3) the interlayer ex-
changes are the dominant couplings, followed by intralayer
nearest neighbor interactions. Compared to the latter two,
frustrating intralayer, second and third neighbors couplings
have been evaluated, to be approximately one order of mag-
nitude smaller. Particularly important however, (see Fig. 2(a)
of Ref. [6]), the interlayer exchange has been found to be
strongly frustrated. Disordered magnetic ground states, which
have been observed experimentally [7], have been suggested
to result from competing interactions. While theoretically,
substantial progress has been made regarding the effects of
intralayer frustration and quantum disordered phases in the
single-layer honeycomb magnet [8–23], less attention has been
given to the influence of an interlayer coupling in their impact
on disordered phases [13,24–26].

The aim of this work is to study the zero-temperature
phase diagram of a frustrated Heisenberg model on the
bilayer honeycomb lattice including interlayer frustration. At a
particular value of maximum interlayer frustration, we obtain
an exactly solvable model, with a dimerised ground state.
We focus on the S = 1/2 case, where quantum fluctuations
become more important, although some results remain valid
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for larger values of the spin, as we discuss in the following.
We explore the quantum phases of the model in the exchange
parameter space surrounding the exact dimer state, using
various complementary techniques, including bond operators
(BO), Schwinger boson mean-field theory (SB-MFT) and
series expansion (SE) based on the continuous unitary trans-
formation method. These studies will be complemented with
exact diagonalization (ED) using Lanczos on finite systems.
We provide results for ground-state energies, spin gaps, spin
correlation functions, the quantum phase diagram, and the
nature of the quantum phase transitions.

The outline of the paper is as follows. Section II introduces
the model and proves that a product of dimers is the exact
ground state of the system on a special line of the parameter
space. Section III sketches several qualitative aspects of the
quantum phase diagram. In Sec. IV, we analyze the interlayer
dimer phase, departing from the line of the exact dimer state.
In Sec. V, we characterize the magnetic phases, including
Néel-like and collinear states. In Sec. VI, we summarize
our quantitative findings on the quantum phase diagram. In
Sec. VII, we briefly discuss some consequences of adding in-
tralayer frustration by next nearest neighbor exchange. Finally,
in Sec. VIII, we present our conclusions and perspectives.
Several appendices are added for technical details regarding
the methods we use.

II. MODEL AND EXACT GROUND STATE

We study the Heisenberg Hamiltonian on the bilayer
honeycomb lattice

H =
X

Er,Er 0,α,β

Jα,β (Er,Er 0)ESα(Er) · ESβ(Er 0), (1)

where ESα(Er) is the spin operator on site α corresponding
to the unit cell Er . The index α takes the values α =
1,A; 2,A; 1,B; 2,B corresponding to the four sites on each
unit cell and the couplings Jα,β (Er,Er 0) are depicted in Fig. 1.
As stated in Sec. I, the inclusion of the frustrating interlayer
coupling Jx is motivated by ab initio calculations [6]. Jx may
be comparable to J1 and of relevant magnitude with respect
to the remaining exchange couplings. In Sec. VII, we also
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FIG. 1. Dominant exchange interactions in Bi3Mn4O12(NO3).
Colored areas correspond to the unit cells. Frustrating intralayer next
nearest-neighbors interactions are omitted in this figure for simplicity.

consider intralayer next-nearest neighbors frustrated coupling,
which will be labeled J2, but is not shown in Fig. 1 for
simplicity.

In this section, we focus on interlayer frustration only,
i.e., J2 = 0. Interestingly, in that case, the bilayer honeycomb
belongs to a class of Hamiltonians, which exhibits an exact
dimer-product ground state in a certain region of parameter
space, even for finite J1,x . This result is valid for arbitrary site
spin S. Hamiltonians with this property seem to have been
constructed first in Ref. [27], based on methods in Ref. [28],
and have been reconsidered in many subsequent studies
[29–35]. In particular, the bilayer square lattice model have
been investigated previously [33,34]. However, the relevant
point in our work is that we find a bilayer model with the same
geometry proposed for the material Bi3Mn4O12(NO3), which
presents an exact dimer product ground state in the region of
the parameter space where ab-initio calculations suggest the
material may exist.

Using Fig. 2, we start by writing the Hamiltonian Eq. (1)
as H = H0 + H1 + H2, with

Hi =
X

Er

·
J0

3
(ES1,A(Eri) · ES2,A(Eri) + ES1,B (Er) · ES2,B (Er))

+ J1(ES1,A(Eri) · ES1,B (Eri) + ES2,A(Eri) · ES2,B (Eri))

+ Jx(ES1,A(Eri) · ES2,B (Eri) + ES2,A(Eri) · ES1,B (Eri))

¸
, (2)

J0/3
J1

Jx

FIG. 2. Decomposition of the Heisenberg model on the frustrated
bilayer honeycomb lattice into three sets of four-spin plaquets.

in which i = 0,1,2 corresponds to Er(0,1,2) = Er + (E0,Ee1,Ee2),
being Ee1 and Ee2 the primitive vectors of the triangular lattice.
Introducing the bond spin operators

ELα = ES1,α + ES2,α
EKα = ES1,α − ES2,α (3)

with α = A,B, we can rewrite H0 as

H0 = −2J0NS(S + 1) +
X

Er

·
J0

2

¡EL2
A(Er) + EL2

B(Er)
¢

+
µ

J1 + Jx

2

¶
(ELA(Er) · ELB(Er))

+
µ

J1 − Jx

2

¶
( EKA(Er) · EKB(Er))

¸
, (4)

with similar expressions for H1 and H2.
The main point of this section is, that for J1 = Jx ,

the last term in the Hamiltonian vanishes, and therefore,
(i) each bond spin ELA(Er) is conserved and (ii) the total
bond spin

P
Er ELA(Er) is conserved. Therefore, at J1 = Jx ,

the eigenstates of H are multiplets of the total bond spin.
Among those is the product state of bond singlets, i.e.,
|ψi = NN

i=1 |sAiEri
|sBiEri

with ELα(Eri)|sαiEri
= 0, and |sαiEri

=PS
m=−S(−1)S−m|m,−mi/√2S + 1. Here, |m,−mi labels a

product of eigenstates of Sz
1;α(Eri) and Sz

2;α(Eri) on dimer α of
the unit cell located at Eri . The energy E0 of |ψi can be read
off from Eq. (4), namely, E0 = −J0NS(S + 1).

For any other multiplets of the total bond spin one has to
promote dimers into eigenstates of ELα(Er) different from zero.
This will increase any eigenstate’s energy proportional to J0,
due to the first term under sum in Eq. (4), but will also lead
to exchange-lowering of the energy proportional to J1 + Jx

from pairs of nearest neighbor dimers with nonzero bond spin
due to the second term under sum in Eq. (4). Therefore, for
any finite site spin S, and for J1 less than a critical coupling
0 < J1 < Jc

1 ,|ψi is indeed also the ground state at J1 = Jx .
While we emphasize, that the preceding is valid for any

site spin S, the nature of the state for J1 > Jc
1 at J1 = Jx

may depend on details. However, for S = 1/2 the situation
is definite. Since there are only two eigenstates of ELA(Er),
i.e., singlet and triplet, the ground state will either be |ψi
or stem from the sector of all ELα(Er) in triplet states |tμαiEri

,
where μ refers to the z component. By virtue of Eq. (4) the
latter sector is isomorphic to the spin-1 Heisenberg model
on the hexagonal lattice. In both of these sector nucleation
of inhomogeneous distributions of L = 0 and L = 1 are
energetically unfavorable, i.e., do not lead to ground states.
The exact dimer singlet product state serves as a convenient
starting point for several perturbative and mean-field methods,
which we will take advantage of starting with Sec. IV.

III. QUALITATIVE ASPECTS

In order to pave the way through the remainder of this
work, we provide a qualitative picture of the quantum phase
diagram to be expected for the bilayer without intralayer
frustration (J2 = 0) in this section. This is depicted in Fig. 3.
A quantitative justification will be given in the following
sections by analyzing various regions of this anticipated
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FIG. 3. Qualitative sketch of quantum phase diagram of Heisen-
berg model on the frustrated bilayer honeycomb lattice.

phase diagram, considering ground-state energies, low-energy
excitations, triplet gaps, order parameters and spin correlations
as extracted from complementary methods, specifically exact
diagonalization, Schwinger boson and bond operator mean-
field theories, series expansion and linear spin-wave theory.

Several comments apply to Fig. 3. First, the diagram is
symmetric respect to the J1 = Jx line. This is evident at the
Hamiltonian level. Indeed, from Fig. 1, we see that exchanging
J1 ↔ Jx , induces a site exchange 1,B ↔ 2,B, which in turn
results in KB ↔ −KB . This leaves the last term of H0 in
Eq. (4) invariant. The same is true for H1 and H2. In the
following, we normalize energies in units of J0 and introduce
the dimensionless couplings j0 = 1, j1 = J1/J0, j2 = J2/J0,
and jx = Jx/J0.

The bold dark-red section of the diagonal line of maximum
frustration, j1 = jx in Fig. 3, refers to the exact dimer
state. As discussed in Sec. II, this state terminates in a
first-order transition point into the ground state of an S = 1
AFM Heisenberg on the single-layer hexagonal lattice, which
extends over the solid black diagonal line shown in Fig. 3. We
will show, that this occurs at j1 = jx ' 0.5.

Departing off the line of maximum frustration the exact
dimer turns into a gaped interlayer dimer phase (IDP)
(see Fig. 3). This phase is quantum disordered, and shows
dispersive triplon excitations. The triplon gap will decrease
from 1 = 1 as distance increases from the diagonal line.

For sufficiently large j1 and/or jx , the system will favor
collinear order with a straightforward semiclassical interpre-
tation. Namely three possibilities exist to minimize two out of
the three exchange energies, leaving one of them frustrated.
The corresponding spin arrangements and phases are labeled
I, II, and III in Fig. 3, with the frustrated link marked by
red dashes. Phases I and III obey the j1 ↔ jx symmetry
already mentioned. While the classical states I, II, and III do
not represent exact eigenstates of the Hamiltonian, we detect
signals of these orderings in the quantum model, which justify
this identification.

We end this section by expressing some expectations, re-
garding the order of the phase transitions. Since the symmetry
of phases I, II, and III have no subgroup relations, we expect
the transitions I-II and II-III to be of first order, i.e., of
level-crossing type. On the other hand, the transition from the
IDP into the magnetic phases I and III will be signaled by the
closure of the IDP spin gap 1, which decreases symmetrically
from 1 to 0, off the red exact-dimer product line up to the
two corresponding critical lines. This gap closure signals a
second-order quantum phase transition.

Finally, as discussed in Sec. II, the transition from the tip of
the bold dark-red line in the IDP to phase II is first order. The
nature of the transition remains first order all along the IDP-II
transition up to the two tricritical points, separating IDP-I-II
and IDP-II-III phases.

IV. INTERLAYER DIMER PHASE

In this section, we analyze the interlayer dimer phase
(IDP) at j1,jx ¿ 1. In particular, we discuss our results for
the ground-state energy and the spin gap, as obtained from
dimer series expansion (D-SE), bond operator (BO) theory
using Holstein-Primakoff (HP) and mean-field theory (MFT),
as well as from exact diagonalization (ED). Both, D-SE and
BO-HP/MFT are natural approaches to treat the IDP, since
they are both exact in the fully decoupled dimer-product state,
along the line j1 = jx and treat deviations from the latter
perturbatively. While D-SE is exact order-by-order in j1 − jx ,
BO-HP/MFT is perturbatively proper only to leading order.
Since both approaches renormalize only the fully decoupled
dimer-product state, they are insensitive to level crossing,
which may occur within the ground state, as a function of
j1 − jx . In turn, these methods do not detect first order, but
only second-order quantum phase transitions accompanied
by the closure of a spin gap. Therefore, in order to probe
for first-order transitions, we resort to ED as an unbiased
technique. While finite size effects, render ED less effective to
detect gap closures, it allows to search for level crossings rather
effectively. In turn ED, BO, and D-SE are complementary to
determine the extent of IDP phase, as well as the nature of
the transitions also to the other phases present in the model.
Technical details about the implementation of the different
methods can be found in Appendices.

We begin by considering the ground-state energy. From
D-SE, we obtain the following O(4) expression for the ground-
state energy per spin evolving from the limit of decoupled
interlayer dimers

E(j1,jx) = − 3
8 + 9

512 (j1 − jx)2£−16 − 8(j1 + jx)

+ 3
¡
j 2

1 + j 2
x

¢ − 22j1jx

¤
. (5)

This explicitly satisfies E(j1,j1) = − 3
8 , corresponding the

exact dimer-product solution along jx = j1 and E(j1,jx) =
E(jx,j1) fulfilling the Hamiltonian invariance under j1 ↔ jx .
In Fig. 4, we compare the ground-state energy obtained from
the various methods for two different values of jx . Figure 4(a),
in part also contains BO-MFT solutions from Refs. [36,37]
and results from Ref. [26], where O(5) D-SE is available at
jx = 0, and ED for N = 24 sites. In both panels and for all
methods, the energy shows a maximum at j1 = jx , where the
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FIG. 4. Ground-state energy per spin E at j2 = 0 vs j1 from ED
(red with squares), D-SE (blue, blue dashed with circles), BO-HP
(black) and BO-MFT (green) for (a) jx = 0 with system size N = 24
and orders O(4) and O(5), see also Refs. [26,36,37] and (b) jx = 0.3
with system size N = 24 and order O(4).

ground state is a dimer-product state with energy per spin
equal to −3/8. Around the exact solution point, ED and D-SE
show excellent agreement up to |j1 − jx | ' 0.2, . . . ,0.3 in
both panels. Deviations between ED and D-SE beyond that
points are due to finite size effects of the ED and due the
finite order of the D-SE. The impact of the latter can be
assessed at jx = 0, where higher orders of the D-SE have been
reached [26]. From Fig. 4(a), clearly visible differences arise
between O(4) and O(5) D-SE for |j1 − jx | & 0.3. Turning to
the BO theory, two comments are in order. First, the HP spin
gap closes within the range of j1,jx values depicted. Therefore
the BO curves terminate. Second, both HP and MFT depend
on j1 and jx only via the difference j1 − jx . This is not an exact
property of the model beyond leading order, which is obvious,
e.g., from Eq. (5). In turn, BO results are identical for Figs. 4(a)
and 4(b) up to a shift of origin and have been plotted only for
positive j1 − jx . Moreover, agreement between ED, D-SE and
BO is expected to be best at either j1 = 0 or jx = 0, which is
consistent with this figure. In fact, the agreement between all
four methods is excellent for jx = 0 and for j1 . 0.3, while
ED and D-SE show some difference to BO theory at jx = 0.3.
In view of the significant changes from O(4) to O(5) D-SE,
a quantitative assessment of these differences is beyond this
work. In fact, Fig. 4(a) would suggest that O(5) D-SE agrees
better with BO theory than with ED for j1 & 0.3.

While the variations of results between the methods
discussed so far are quantitative only, we expect a qualitative
difference between ED and D-SE or BO theory in the vicinity
of the first-order transition from the IDP to the magnetic

FIG. 5. Ground-state energy per spin E vs j1, for different paths
parametrized by b = jx − j1, with b = 0, 0.1, 0.2, and 0.3 (top to
bottom). Line-connected blue (brown) dots: ED for S = 1/2 (S = 1)
bilayer (effective single layer). Solid red: D-SE. Green: LSWT for
S = 1 effective single layer.

phase II (Fig. 3). Therefore, in Fig. 5, we depict the ground-
state energy per spin versus jx along lines parametrized by
b = jx − j1, with b = 0, 0.1, 0.2, and 0.3 from top to bottom.
ED results are shown by line-connected blue dots, whereas
D-SE results are shown by solid red lines. First, the small,
albeit finite slope of E at small j1 in this figure, which
is increasing as b increases, demonstrates once more, that
properties of the system in the IDP are not only functions of
b = jx − j1. Therefore, in this figure, we do not consider BO
results. Second, we note that for b = 0 (j1 = jx) the upper
pair of curves representing ED and D-SE coincide exactly at
−3/8 up to a critical point of jc

1 ,j c
x ' 0.52. This corresponds

to the bold red line in Fig. 3. At the critical point, ED exhibits
a kink in the energy versus j1, signaling a first-order transition
into another type of ground state of the system. Clearly, D-SE
cannot detect this transition because it adiabatically evolves the
dimer state with j1, which discontinues to be the ground state
for j1 > jc

c . Qualitative differences between ED and D-SE
are also observed off the diagonal line, for j1 roughly larger
than jc

1 . Here again, a clear change of slope is detected by
ED in Fig. 5 for b = 0.1,0.2. This supports our claim that the
transition IDP-II is first order, as anticipated in the previous
section. At b = 0.3, ED shows no clear signature of a single
kink anymore, suggesting a succession of second and then
first-order transitions, close to one of the tricritical points of
Fig. 3.

Non-IDP phases will be analyzed in detail in the following
Sections. Here we elaborate further on the transition from
the IDP into the effective S = 1 AFM on the single-layer
hexagonal lattice anticipated already in Sec. II. We have
verified this scenario using two checks. First, we have
performed ED calculations on a single layer spin-1 cluster
comprising the same site geometry as that of the dimers in
the original cluster. The corresponding ground-state energy is
depicted by line-connected brown dots in Fig. 5. The excellent
agreement between both types of ED calculations verifies
our assertion. For a second check, we have considered linear
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spin wave theory (LSWT) for the ground-state energy of the
spin-1 Heisenberg antiferromagnet on the hexagonal lattice.
For details see Appendix D. The result, also shown in Fig. 5, is
quantitatively very similar to the ED results, with jc

1 ' 0.551.
Since LSWT for a collinear state with S = 1 should be rather
well defined, it would be interesting to analyze if the small
difference of the critical coupling 1jc

1 ≈ 0.03 between ED
and LSWT is dominated by O(1/S2) correction or by finite
size effects.

Perpendicular to the exact dimer line, the dispersion of
triplons will lead to a closure of the spin gap 1 at kc = (0,0)
for sufficiently large j1 − jx . From O(4) D-SE, we get

1(j1,jx) = 1 − 3
16 |j1 − jx ||−8 + (j1 − jx)2(j1 − jx)|

− 3
128 (j1 − jx)2

£−16 + 8(j1 − jx)

+ 55
¡
j 2

1 + j 2
x

¢ − 14j1jx

¤
. (6)

As for the ground-state energy, Eq. (5), this satisfies
1(j1,jx) = 1(jx,j1) and resembles the decoupled dimer state,
i.e., 1(j1,j1) = 1. In Fig. 6, we compare Eq. (6) with ED,
BO-HP and BO-MFT versus j1 for the same two values of jx

as in Fig. 4. As for the ground-state energy, the BO results
are identical for Figs. 6(a) and 6(b) up to a shift of origin
and have been plotted only for positive j1 − jx . As is clear
from the figure, ED, D-SE, and BO-MFT tend to keep the
spin gap open for a larger range of exchange couplings off the
exact dimer state, while the BO-HP gap closes more rapidly.
The agreement between ED, D-SE, and BO-MFT is very good
for |j1 − jx | . 0.3. It is obvious that finite size effects for
the spin gap in the ED are rather large, showing a minimum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
j1
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0.8

1

Δ

SE O(4)
ED N=24
MFT
HP

0 0.2 0.4 0.6 0.8 1
j1

0
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0.4

0.6

0.8
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Δ
SE O(4)
ED N=24
MFT
HP

jx=0

jx=0.3

(a)

(b)

FIG. 6. Spin gap 1 vs j1 from ED (red with squares), O(4) D-SE
(blue), BO-HP (black), and BO-MFT (green), for (a) at jx = 0 with
system size N = 24, see also Refs. [26,36,37] and (b) jx = 0.3 with
system size N = 24.

IDP

j1 = 0.3

jx

Δ

FIG. 7. Example of SB-MFT gap along vertical cut through the
phase diagram Fig. 3, at j1 = 0.3 for the IDP-III transition and
extrapolated to the thermodynamic limit.

of 1 of ∼0.35 at N = 24, versus ∼0.5 only for N = 24. A
proper finite-size scaling analysis of the spin gap from ED is
unfeasible, because of the large unit cell. Interestingly, while
BO-HP shows standard square root behavior of the gap at
the critical point, with a negative curvature, self-consistency
within the BO-MFT leads to a positive curvature of 1, with
no obvious power law at gap closure.

We close this section with two remarks on SB-MFT. Also
in this approach, quantum disordered phases are associated
with a gapped excitation spectrum. In turn, the IDP can
equally well be detected using SB-MFT. However, while in
the D-SE and BO theory, the elementary excitations in the IDP
actually correspond to the physical triplons, in SB-MFT they
are fractionalized bosonic spinons. The latter are unphysical
in the IDP. In order to obtain a proper spin spectrum and the
gap, the two-spinon propagator would have to be evaluated,
see, e.g., Ref. [38], however, including interactions beyond
Ref. [38], in order to confine the spinon into a sharp triplon
mode. We will not perform such calculations. Despite of this,
it is perfectly valid to use SB-MFT to extract transition points
from the IDP into the magnetic phases of the bilayer from a
closure of the spinon gap, since long range magnetic order is
characterized by a condensation of the bosons at some wave
vector leading to a gapless spectrum. In Fig. 7, we show a
representative example. As the second remark, let us note that
SB-MFT predicts a critical point jc

1 = 0.547 on the j1 = jx

line for the transition IDP-II, which agrees very well with the
LSWT prediction given by jc

1 = 0.551, and therefore is larger
than ED, similar to the latter.

V. MAGNETIC PHASES

In this section, we analyze quantum properties of the phases
I, II, and III of Fig. 3. These are gapless states with magnetic
long-range order (LRO) and a spin structure, which has been
explained on the classical level in Sec. III.

To investigate how the signatures of these orderings survive
under quantum fluctuations, we evaluate the static correlation
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FIG. 8. Static correlation function C(r) vs r along the green path
depicted in (a), obtained by means of ED on a finite cluster of 24
spins. (b) j1,x = 0.7,0.3, (c) j1,x = 0.7,0.7, and (d) j1,x = 0.3,0.7
clearly show a pattern consistent with the classical structure shown
in regions I, II, and III of Fig. 3.

functions C(r) = hSz
0S

z
r i. In panels (b)–(d) of Fig. 8, we show

C(r) versus r along the green path depicted in panel (a),
calculated by means of ED on a finite cluster of 24 spins.
We have selected three different points of parameters space to
illustrate the behavior of the correlations along the considered
path. In panel (b), we show C(r) for the point (j1 = 0.7,jx =
0.3), whereas in panel (d), we depict the correlation for the
symmetric point (jx = 0.7,j1 = 0.3). As it can be observed,
in both cases the sign alternation in C(r) is consistent with
the magnetically ordered phases I and III illustrated in the
insets of Fig. 3. The same occurs with panel (c), which shows
C(r)’s dependence on r for (jx = 0.7,j1 = 0.7). In this case,
the behavior of the correlation is consistent with the classical
spin pattern depicted in the inset of phase II in Fig. 3. Although
we can verify short-distance correlations consistent with the
ordered phases by means of ED, the finite cluster size imposes
severe constraints and does, for example, not permit to consider
the actual form of C(r) and to claim LRO in the sense of
C(r→∞)=const.

These aspects can be considered with complemen-
tary techniques, such as Schwinger bosons mean-field
theory (SB-MFT). This approach has been success-
fully used to study two-dimensional frustrated Heisenberg
antiferromagnets [12,21,26,39,40]. We refer to Appendix B
for details about this technique.

Figure 9 shows the spin-spin correlation calculated by
means SB-MFT between spins belonging to the same layer,
and traversing the layer along one of the “zigzag-chain” paths
of the hexagonal lattice, for a system of 10 000 sites at
j1 = 0.8,jx = 0.3 (phase I); j1 = 0.9, jx = 0.6 (phase II);
and j1 = 0.52,jx = 0.3 (IDP). The last case is depicted for
a contrast to the magnetic phases. Due to the mirror symmetry
of the phase diagram along the line j1 = jx , we confine the
figure to j1>jx . While AFM LRO is clearly visible in panels
(a) and (b) on each layer, the difference between (a) and (b) is
with the nearest-neighbor interlayer correlation (not depicted).
We find the latter to be AFM in phase I and FM in phase
II, in agreement with the Lanczos results. Panel (c) of Fig. 9
clearly shows that the IDP phase only has short range spin-spin
correlations, consistently with a finite gap.

j1 = 0.8 jx = 0.3

j1 = 0.9 jx = 0.6

j1 = 0.52 jx = 0.3

C(r)

C(r)

C(r)

r

FIG. 9. Spin-spin correlation between spins belonging to the
same layer in the zigzag direction obtained by SBMFT for a 10000
sites system. It is shown for the three different phases in the j1 > jx

side of the phase diagram (Fig. 3): (a) j1 = 0.8, jx = 0.3 (phase I),
(b) j1 = 0.9,jx = 0.6 (phase II), and (c) j1 = 0.52,jx = 0.3 (IDP).

To determine the location of the transitions between the
LRO phases, we may use that these phases have no subgroup
relations, and therefore any direct transitions between them is
of first order, i.e., they can be determined from a discontinuity
in the ground-state energy. This is true, both, for ED and
SB-MFT. In Fig. 10, a representative example obtained from
the latter is depicted for a vertical cut through Fig. 3. Similar
results are obtained from ED and will be summarized in the
next section.

Let us finally mention that we have not obtained any evi-
dence of the existence of intermediate phases (e.g., exhibiting
noncollinear structures like helical order) between I-II or II-III
phases. However, the limitations of the techniques employed,
especially the reduced sizes which ED achieves, as well as the
mean-field character of SB-MFT, does not allow completely
discard the existence of such phases.

VI. QUANTUM PHASE DIAGRAM

In this section, we compare the critical lines for the phase
transitions of the system obtained from all complementary
methods of this work. As a central result Fig. 11 compiles
our findings from SB-MFT, BO-HP, BO-MFT, D-SE, and ED.
This figure is the quantitative analog of the qualitative sketch
in Fig. 3. Several comments are in order.
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j1 = 0.9

jx

4E
N

FIG. 10. Energy per unit cell from SB-MFT along a vertical cut
through the phase diagram (Fig. 3) at j1 = 0.9 for the phase transition
I-II.

To begin, we note that for the first-order transitions,
i.e., I ↔ II, II ↔ III, and IDP ↔ II, there is a very good
quantitative agreement between SB-MFT and ED, showed by
line-connected magenta and green open circles, respectively
in Fig. 11. This is expected, since first-order transitions are de-
termined by ground-state energies. These are less susceptible
to errors of different approaches as, e.g., finite size effects or
mean-field approximations. We note that SB-MFT technique
is the only method employed in our work, which potentially
allows for an estimation of all critical lines, independently of
the character of the transition, i.e., first or second order.

In contrast to the first-order transitions, for the second-order
IDP ↔(I, III) transitions, the critical lines obtained from our
complementary methods will determine a range of potential
transition points at most, since the gap closure, i.e., the

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

j1

jx

SBMFT

ED

SE

HP

MFT

FIG. 11. Quantum phases and critical lines determined by the
different techniques considered.

behavior of the critical correlation length is sensitive to the
method used. Nevertheless, it is clearly visible from Fig. 11,
that the symmetric regions of both IDP ↔(I, III) transitions
are centered around the lines jx ∼ j1 ± 0.6(±0.2), where ±0.2
denotes an uncertainty set by the scatter between the various
approaches. Note that this scatter also implies an uncertainty
of the location of the two tricritical points separating phases
IDP-I-II and IDP-II-III.

Remarkably all techniques predict essentially straight crit-
ical lines for the IDP ↔(I, III) transitions with approximately
unit slope, at least on the scale of the plot. This is a direct
consequence of the last term in Eq. (4), perturbing the exact
dimer state. As a consequence, e.g., in both BO methods, and
by construction, the triplon hopping amplitude is a function
of the combination of exchanges |j1 − jx | only. Yet, D-SE at
O(4) (red open circles in Fig. 11) leads to a small curvature
of the transition lines. In BO-HP, it is possible to obtain an
analytical expression, namely, jx = j1 ± 1/3, for critical lines
(see Appendix A), depicted by blue open circles in Fig. 11.
For BO-MFT (orange open circles in Fig. 11), the offset
1/3 is replaced through numerical solution of the analytic
self-consistency equations by ≈0.76 [see Fig. 6(a)]. Note that
in all the cases (except SB-MFT) the second-order critical line
ends at the border of phase II, which is obviously an artifact
of the methods since, as we have previously mentioned, level
crossings are not detected by D-SE nor BO techniques.

VII. INTRALAYER FRUSTRATION

In this section, we analyze the effect of frustrating intralayer
J2 coupling on the model. The results are discussed in a way
to make contact with previous analysis of the Heisenberg
model on the frustrated bilayer [26] as well as the single-layer
honeycomb lattice [8,14,19–21,23].

To this end in Fig. 12, we present the phase diagram
in the plane J2/J1 − J0/J1, at Jx = 0, which enables to
incorporate the single layer (J0/J1 = 0) as a limiting case.

FIG. 12. Numerical results in the plane J2/J1 − J0/J1. The gray
shaded region corresponds to SB-MFT prediction of Néel order. Blue
solid line corresponds to SB-MFT critical line determined in Ref. [26].
Black and red lines correspond to BO-HP results. Black line segment
correspond to BO-HP results where the critical wave vector is kc =
(0,0), whereas the red line corresponds to different kc values. Blue
dots corresponds to D-SE results for the transition.
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Before considering our results, let us briefly comment on
some aspects previously investigated. Regarding the frustrated
single-layer model (along x axis of Fig. 12), Néel order
is present for J2/J1 . 0.2. For 0.2 . J2/J1 . 0.4, several
nonmagnetic phases have been proposed to exist, including
gapped spin liquids (GSL) and VBC plaquette and dimer
phases. However, their extension and the type of phase
transitions is still under debate [8,14,19–21,23]. Finally, for
larger values of frustration spiral order emerges, which (as
the Néel phase) is reminiscent of the classical version of the
model.

The Néel phase persists for finite values J0 and J2, as
illustrated by the gray shaded region in Fig. 12. The blue solid
line in this figure refers to the SB-MFT critical line, determined
in Ref. [26], where, as it can be observed, a re-entrant pocket
at small J0/J1 was predicted.

In order to relate the latter findings with those of the
previous sections, one has to note that the numerical location
of critical points depicted along y axis (J0/J1) in Fig. 12
are inversely related to those shown on x axis of Fig. 11
(J1/J0). Therefore, along y axis of Fig. 12, there is direct
second-order transition between the IDP, i.e., the green shaded
area in the figure, to the Néel phase, which therefore has to be
associated with phase I in the context of the previous sections.
This transition is signaled by the closure of the triplet IDP
gap.

Next, we discuss the evolution of the second-order transi-
tion into the IDP phase for finite J2 by analyzing the closure
of triplet gap obtained from BO-HP and D-SE techniques.
The technical aspects of this analysis are laid out in full
detail in Appendices A and C. Several comments are in order.
First, we focus on BO-HP versus SB-MFT. The corresponding
quantum critical line from the BO-HP can be dissected into
a black line segment, which terminates at the green point at
(J2/J1,J0/J1) = (1/6,2), and a red line segment. On the black
line segment, the critical wave vector is kc = (0,0). This is
consistent with a transition from the IDP phase into the Néel
state, which is also obtained from the SB-MFT approach below
the blue critical line. It is remarkable that with only a parallel
shift by ∼10% the critical lines from SB-MFT and BO-HP
can be brought to essentially coincide, from J2 = 0 up to the
green point. Beyond the latter, the critical wave vector kc of
the BO-HP starts to be inconsistent with a transition into a
Néel state and, accordingly, the critical lines from BO-HP and
SB-MFT separate.

As J2/J1 increases at fixed J0/J1, the interlayer exchange
gets less relevant, rendering the IDP phase unfavorable and
resulting in an upward curvature of the IDP critical line in
this region. In particular, nowhere the BO-HP does stays
gapped down to J0/J1 = 0. Outside of the Néel and IDP
phase this implies a region of unknown phases of the bilayer,
i.e., the violet region in Fig. 12. Since exactly on the line
J2/J1 at J0/J1 = 0 various GSL and VBC phases have been
proposed [8,14,19–21,23], it is very tempting to speculate, that
such phases are stable to a certain extent against finite inter-
layer exchange J0/J1. This may open the possibility of direct
transitions of such phases into the IDP phase. Additionally,
the violet region could also host states nonexistent on the line
J0/J1 = 0. The study of such transitions or states is not the
purpose of this paper and remains as open issue.

Regarding the transitions along the red BO-HP line, the
critical wave vector evolves from that for a Néel state on
the black line segment into that of the 120◦ order of the
triangular lattice antiferromagnet for J2/J1 À 1 - as to be
expected, but not visible on the scale of Fig. 12. Interestingly,
this evolution is accompanied by the appearance of line
degeneracies of the triplon dispersion at intermediate and large
J2/J1. From a technical point of view such degeneracies limit
the applicability of the BO-MFT treatment on the quadratic
level. In fact, power counting for Eq. (A13) shows that the
integral on the right-hand side diverges for such cases. In turn,
the MFT gap stays finite for all J2/J1 displaying line minima
of the dispersion. This is certainly an artifact, rendering the
BO-MFT at quadratic level insufficient for finite J2/J1.

Several routes beyond the purely quadratic level of
Eqs. (A4)–(A7) exist for BO theory, potentially lifting de-
generacies in the dispersion at finite J2/J1. However, these
routes lead to additional issues, which we will not touch
upon in the present work. Incorporating triplon interactions
either perturbatively, or at the self-consistent Hartree-Fock
level [41] is one option. Such approaches, however, do
not systematically improve the quadratic low-triplon density
approximation and remain uncontrolled. Treating the hard-
core constraint Eq. (A2) via infinite on-site triplon repulsion
in a T -matrix approximation [42] is another scheme, which
however is limited to small triplon density and, while providing
excellent results on unfrustrated lattices, has been found to be
unsuited for frustrated lattices [41]. Finally, a truly systematic
1/d-expansion has been proposed very recently [43,44]. Its
relevance for d = 2 needs further studies.

To close this section, D-SE results are shown with blue dots
in Fig. 12. As it can be observed, for small J2/J1 D-SE displays
the same tendency as SB-MFT and BO-HP, which is similar to
the conclusions drawn in the j1-jx plane in Fig. 11. Note that,
at least for J2 = 0, the location of the gap closure, as predicted
by D-SE quantitatively is in better agreement with precise
QMC determination of this transition at J0/J1 ≈ 1.645 [24]
than SB-MFT and BO-HP. In that sense SB-MFT and BO-HP
overestimate the extent of the Néel phase. In contrast to the
BO-HP, the spin gap in O(4) D-SE closes at the single point
kc = (0,0) in the range depicted in Fig. 12. For larger J2/J1,
deviations with respect to other techniques are occur and also
other kc emerge from D-SE. It would be necessary to go to
higher orders within the series, to clarify the k dependence of
gap closure in that regime.

VIII. CONCLUSIONS

We have studied the zero-temperature quantum phase
diagram of the frustrated antiferromagnet on the bilayer
honeycomb lattice. To characterize the different phases present
in the model, as well as their transitions, we have calculated a
variety of quantities, such as ground-state energies, low-energy
excitations, triplet gaps, and static spin-spin correlations. This
has been done, using several complementary techniques: bond
operator and Schwinger bosons mean-field theories, dimer
series expansion and exact diagonalization of finite systems.

The main results of our work are contained in the schematic
phase diagram of Fig. 3. This diagram is symmetric with re-
spect to j1 = jx . For j1 = jx 6 jc

x ≈ 0.55, the model exhibits
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an exact interlayer dimer-product state, whose ground state
and elementary triplet excitations are identical to the decoupled
dimer limit (j1 = jx = 0). Perpendicularly to the diagonal line
a dimerised phase evolves adiabatically from the exact ground
state and extends over a region around the diagonal line. This
gapped interlayer dimer phase (IDP) has been analyzed by
means of bond operator theory and dimer series expansion
(complemented with Lanczos diagonalization) since both
methods are exact for the singlet product state.

In contrast to the IDP phase, which is a gapped, magnet-
ically disordered, and of quantum origin, the other phases
present in the model are gapless, magnetically ordered,
and quasiclassical. In particular, we have determined three
magnetic phases, denoted by I, II, and III in Fig. 3. The phases
I and II are Néel-like, whereas III exhibits columnar order.
The magnetic structure of these phases has been clarified both,
by exact diagonalization on finite systems of N = 24 sites
and by Schwinger bosons mean-field theory on large lattices
of N = 10 000 sites, both with identical results. In particular,
phase II along the diagonal line, for j1 = jx > jc

x , is equivalent
to the ground state of an effective spin-1 Heisenberg model on
the single-layer honeycomb lattice, with an antiferromagnetic
coupling j1 = jx .

All the numerical techniques suggest that the nature of
the phase transitions are first order (level crossing) for the
transitions I ↔ II, II ↔ III, and IDP ↔ II, and second order
(gap closure) for the transitions IDP ↔ I and IDP ↔ III. A
quantitative analysis of the quantum phase diagram, obtained
from the combination of all methods has been presented. For all
first-order transitions, good agreement between Lanczos and
Schwinger bosons MFT has been obtained. For the second-
order transitions, qualitative agreement between the different
methods used has been shown.

Finally, we have briefly explored the effects of intralayer
frustration. We find, that both, the IDP and the LRO phase I
naturally extend into the j1-j2 plane, and are terminated by
sufficiently large intralayer frustration j2.
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APPENDIX A: BOND OPERATOR APPROACH

Quantum spin models comprising weakly coupled antifer-
romagnetic spin-1/2 dimers allow for a description in terms of
bosonic operators, so called bond operators (BO) [39,45,46],
which label the dimer’s singlet-triplet spectrum. BOs lead to a
treatment of dimerised phases similar to the linear spin wave
theory for magnetically ordered phases. Within BO theory the

two spins ESi=1,2 on each dimer are expressed as

Sα
1
2

= 1

2

⎛⎝±s†tα ± t†s −
X
β,γ

iεαβγ t
†
βtγ

⎞⎠, (A1)

where s(†)and t (†)
α destroy(create) the singlet and triplet states

of the dimer and Greek labels, α = 1,2,3, refer to the threefold
triplet multiplet. A hard-core constraint

s†s +
X

α

t†αtα = 1 (A2)

is implied, which renders the algebra of the right-hand side
(r.h.s) of Eq. (A1) identical to that of spins.

Inserting the BO representation into a spin model leads to an
interacting Bose gas. Two kinds of quadratic approximations
have become popular in the limit of weak dimer coupling,
namely the BO mean-field theory (BO-MFT) [39] and the BO
Holstein-Primakoff (BO-HP) approach [45,46]. In both cases,
terms only up to second order in the BOs are retained. In the
BO-MFT, singlets are condensed by s(†) → s ∈ Re and the
constraint Eq. (A2) is satisfied on the average with a global
Lagrange multiplier η [39]. In the BO-HP, the constraint is
used to eliminate all singlet operators using s = s† = (1 −P

α t†αtα)−1/2, followed by expanding the square root [45,46].
For both approaches, i.e., BO-MFT and BO-HP, the

Hamiltonian in units of J0 of our frustrated hexagonal bilayer
lattice reads

H = H0 + H1 + H2 + Hc, (A3)

H0 =
X
l,b

Ã
−3

4
s2 + 1

2

X
α

t
†
lbαtlbα

!
, (A4)

H1 =
X
l,em,α

s2ej1

2
(t†emAαtlBα + t

†emAαt
†
lBα + H.c.), (A5)

H2 =
X

l,el,α,b

s2j2

2
(t†elbα

tlbα + t
†elbα

t
†
lbα + H.c.), (A6)

Hc = −
X
l,b

η

Ã
s2 +

X
α

t
†
lbαtlbα − 1

!
, (A7)

where t
(†)
lbα labels triplets in unit cell l at basis site b = A,B

of the two interpenetrating triangular lattices comprising the
hexagonal lattice. The sites emA in Eq. (A5) refer to the three
nearest neighbors of the honeycomb basis around each of the
triangular lattice sites at lB and the el labels the three nearest
neighbors on each of the triangular lattices. ej1 = j1 − jx

and j2 are the dimensionless exchange couplings. s2 is the
singlet condensate, and η the global Lagrange multiplier for
constraint (A2).

This Hamiltonian can be diagonalized by standard Bogoli-
ubov transformation leading to an energy E per unit cell, i.e.,
per two dimers, of

E = −3

4
−3

2
s2−2ηs2+5η + 3

2N

X
k

(Ek++Ek−) (A8)
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with the triplon dispersion

Ek± = a

r
1 ± s2

a
e±(k), (A9)

where

e±(k) = ej1

s
3+2 cos(kx)+4 cos

µ
kx

2

¶
cos

µ√
3ky

2

¶

± 2j2

·
cos(kx)+2 cos

µ
kx

2

¶
cos

µ√
3ky

2

¶¸
(A10)

≡ ej1

p
3 + g(k) ± j2 g(k) (A11)

and a = 1/4 − η. Equations (A9)–(A11) display an important
symmetry for ej1 ↔ −ej1, namely for that e±(k) ↔ −e∓(k).
This implies, that on the quadratic level of the BO-HP and BO-
MFT all results of the theory will be symmetric with respect to
diagonal j1 = jx . From (A8)–(A11), the BO-HP is completed
by replacing the sum of the first four addends in Eq. (A8) with
to −9/2 and by setting a = 1,s = 1 in (A9) and (A10).

For the BO-MFT, the energy E has to be extremized,
implying two self-consistency equations ∂aE/∂a = 0 and
∂sE/∂s = 0. These can be combined into a single one for
the parameter d = s2/a, i.e.,

d = 5

2
− 3

4N

X
k,v=±

1√
1 + v d ev(k)

. (A12)

Knowing d, both mean-field parameters can be obtained from
substituting into either one of the mean-field equations, e.g.,
∂aE/∂a = 0:

2s2 = 5 − 3

2N

X
k,v=±

1 + 1
2 v d ev(k)√

1 + v d ev(k)
. (A13)

We mention in passing, that the trivial limit, i.e., ej1 = j2 = 0,
leads to d = 1,s = 1, and η = −3/4, and therefore to a singlet-
triplet gap of 1 = 1 and a ground-state energy of E = −3/2,
which is consistent with two saturated singlets per unit cell.

APPENDIX B: SCHWINGER BOSON MEAN-FIELD
APPROACH

In the Schwinger-boson representation, the Heisenberg
interaction can be written as a bi-quadratic form. The spin
operators are replaced by two species of bosons via the
relation [47–49]

ESα(Er) = 1
2
Eb†

α(Er) · Eσ · Ebα(Er), (B1)

where Ebα(Er)†= (b†
α,↑(Er),b†

α,↓(Er)) is a bosonic spinor corre-
sponding to the site α in the unit cell sitting at Er . Eσ is the vector
of Pauli matrices, and there is a boson-number restrictionP

σ b†
α,σ (Er)bα,σ (Er)=2S on each site.

In terms of boson operators, we define the SU (2) invariants

Aαβ(Ex,Ey) = 1

2

X
σ

σbα,σ (Ex)bβ,−σ (Ey), (B2)

Bαβ (Ex,Ey) = 1

2

X
σ

b†
α,σ (Ex)bβ,−σ (Ey). (B3)

The operator Aαβ(Ex,Ey) creates a spin singlet pair between
sites α and β corresponding to unit cells located at Ex and Ey,
respectively. The operator Bαβ(Ex,Ey) creates a ferromagnetic
bond, which implies the intersite coherent hopping of the
Schwinger bosons.

In this representation, the rotational invariant spin-spin
interaction can be written as

ESα(Ex) · ESβ(Ey) =: B†
αβ (Ex,Ey)Bαβ(Ex,Ey) : −A†

αβ (Ex,Ey)Aαβ(Ex,Ey),

where : O : denotes the normal ordering of the operator O. One
of the advantages of this rotational invariant decomposition is
that it enables to treat ferromagnetism and antiferromagnetism
on equal footing. This decomposition has been success-
fully used to describe quantum disordered phases in two-
dimensional frustrated antiferromagnets [12,15,21,38,40,50–
52].

In order to generate a mean-field theory, we perform the
Hartree-Fock decoupling

(ESα(Ex) · ESβ(Ey))MF = [B∗
αβ(Ex − Ey)Bαβ(Ex,Ey)

−A∗
αβ (Ex − Ey)Aαβ(Ex,Ey)]

−h(ESα(Ex) · ESβ(Ey))MFi, (B4)

where the mean-field parameters are given by

A∗
αβ(Ex − Ey) = hA†

αβ(Ex,Ey)i, (B5)

B∗
αβ(Ex − Ey) = hB†

αβ(Ex,Ey)i, (B6)

and the exchange at the mean-field level is

h(ESα(Ex) · ESβ(Ey))MFi = |Bαβ(Ex − Ey)|2 − |Aαβ(Ex − Ey)|2.
(B7)

The mean-field equations (B5) and (B6) must be solved in a
self-consistent way together with the following constraint for
the number of bosons in the system

Bαα( ER = E0) = 4NcS, (B8)

where Nc is the total number of unit cells and S is the spin
strength. Self-consistent solutions in the bilayer honeycomb
lattice involve finding the roots of coupled nonlinear equations
for the mean-field parameters and solving the constraints to
determine the values of the Lagrange multipliers λ(α), which
fix the number of bosons in the system. We perform the
calculations for large systems and extrapolate the results to the
thermodynamic limit. Details of the self-consistent calculation
can be found in Refs. [12,21].

APPENDIX C: SERIES EXPANSION

The D-SE calculations start from the limit of isolated
dimers. To this end, we decompose the Hamiltonian given
by Eq. (1) in units of J0 into

H = H0 + V (j1,jx,j2), (C1)

where H0 represents decoupled interlayer dimers and
V (j1,jx,j2) is the interaction part of Hamiltonian, connecting
dimers via j1,jx,j2 couplings.
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By construction, the levels structure of H0 is equidistant,
which allows to sort the spectrum of H0 in a block-diagonal
form, where each block is labeled by an energy quantum
number Q. Therefore Q = 0 represents the ground state
(vacuum), i.e., all dimers are in the singlet state. Q = 1 sector
is composed by states obtained by creating (from vacuum state)
one-elementary triplet excitation (particle) on a given dimer,
and so on. The cases in which Q > 2 will be of multiparticle
nature.

In general, the action of V (j1,jx,j2) mixes different Q sec-
tors, so that the block-diagonal form of H0 is not conserved in
H . However, because of the ladder structure of the unperturbed
spectrum, is possible to restore the block-diagonal form by
application of continuous unitary transformations, using the
flow equation method of Wegner [53]. This method can be
implemented perturbatively order by order, transforming H

onto an effective Hamiltonian Heff which is block-diagonal in
the quantum number Q, having the structure

Heff = H0 +
∞X

n,m,l

Cn,m,lj
n
1 jm

x j l
2, (C2)

where Cn,m,l are weighted products of terms in V (j1,jx,j2),
which conserve the Q number, with weights determined by
recursive differential equations, details of which can be found
in Ref. [54].

Due to Q-number conservation several observables can
be calculated directly from Heff in terms of a D-SE in
j1,jx,j2. For systems with coupled spin-plaquette continuous
unitary transformations, D-SE has been used for one [32], two
[55–58], and three [59] dimensions. For the present model, we
have performed O(4) D-SE in j1,jx,j2 for ground-state energy
(Q = 0) and for Q = 1 sectors, respectively. We refer for
technical details about the calculation to Ref. [60]. Note finally
that the contribution of perturbation in the case V (j1,j1,0) is
zero, reflecting the invariance of original Hamiltonian under
j1 ↔ jx exchange.

APPENDIX D: LINEAR SPIN WAVE THEORY AT j1 = jx

Here we briefly quote the equations necessary to determine
the critical coupling jc

1 for the first-order IDP ↔ II quantum
phase transition along the line j1 = jx from linear spin wave
theory. In the IDP along the latter line, the ground-state energy
is

Eall L=0 sector/J0 = − 3
2N4 , (D1)

where N4 is the number of triangular unit cells. The Hamilto-
nian of the “all L = 1 sector” on the other hand reads

Hall L=1 sector/J0 = 1

2
N4 + j1

X
hlmi

Ll · Lm , (D2)

where the sum refers to an S = 1 Heisenberg antiferromagnet
on the hexagonal lattice. The ground state of the latter is
known to be an Néel state with an energy per site to O(1/S) of
[61]

ELSWT = j1

½
−3S2

2
+ S

4π2
√

2

Z 2π

0

Z 2π

0
dx dy [3

− cos(x)− cos(y)− cos(x+y)]1/2−3S

2

¾
' j1

µ
−3S2

2
− 0.314763 S

¶
. (D3)

For S = 1, this yields the line

ELSWT ' −1.81476 j1, (D4)

which is plotted in Fig. 5. Together with ((D1), (D2)) and
keeping in mind that a “site” in (D3) refers to two spins on the
original bilayer, this implies that 1.81476 jc

1 = 1, i.e.,

jc
1 ' 0.551036.
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