
Magnetic Field Mitigation Techniques for different electrical installations

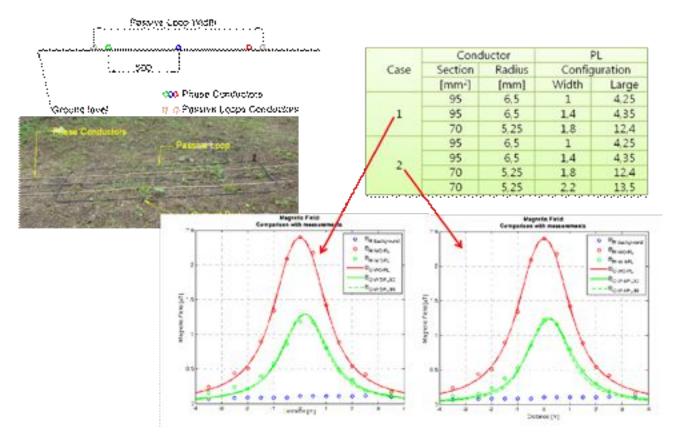
Name | Carlos Wall/Patricia Arnera/Beatriz Barbieri Company | ITREE-LAT-FI-UNLP

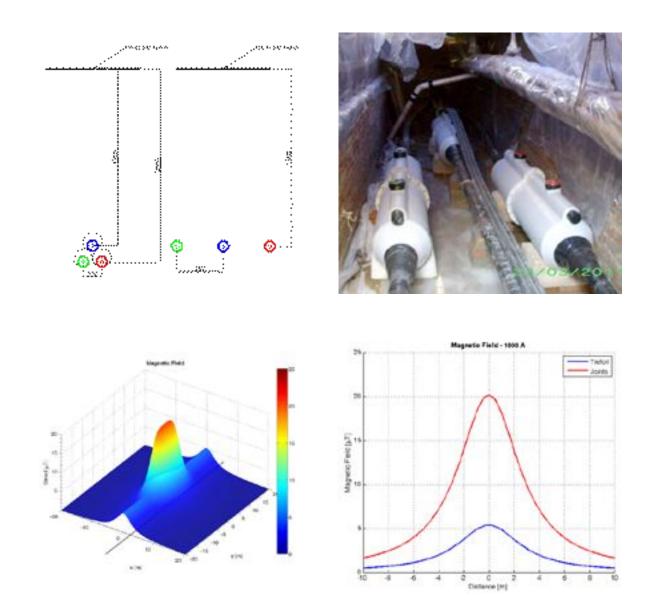
Magnetic Field Limit

Electrical installations in Argentina that are under the jurisdiction of the National Regulatory Authority for Electricity (ENRE) must comply with the emission peak MF of $25 \,\mu$ T, considering values as low as reasonably achievable.

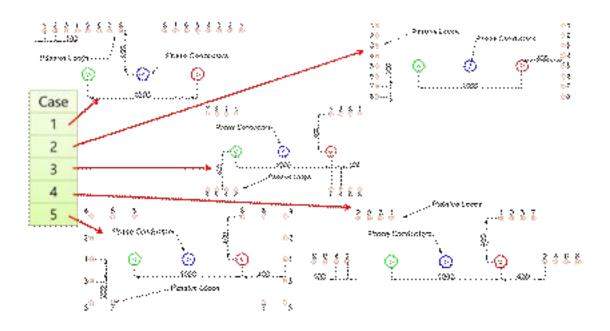
Mitigation Techniques

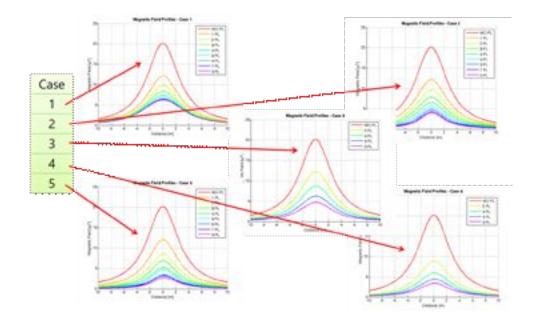
Compaction OHL-MV/LV Substations

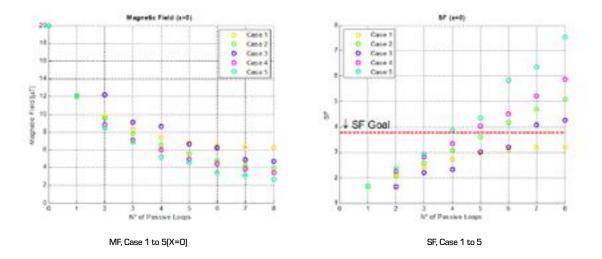

Passive Shields Transsition HV OHL/Cables

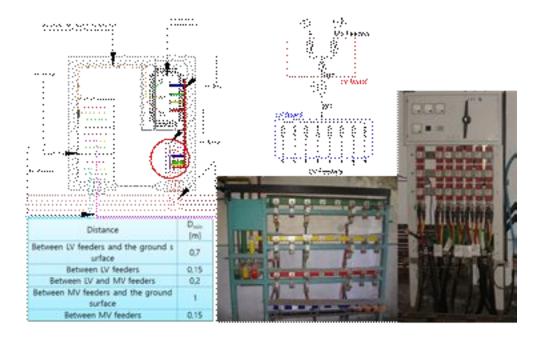

Shielding Factor

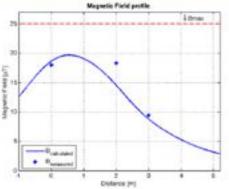
$$SF = \frac{B_{g}(P)}{B_{g}(P)}$$

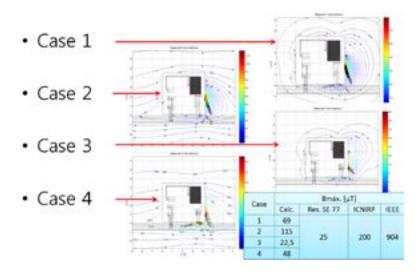

 B_{σ} value of magnetic field without the use of mitigation at point P B_{σ} value of the magnetic field with the use of mitigation at point P

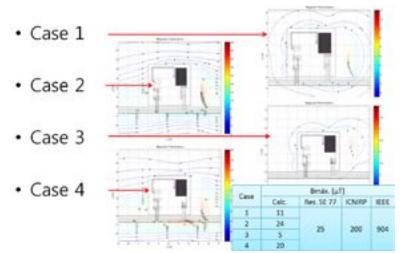

Passive loops




- Case 1: PL are arranged in a plane above the phase conductors.
- Case 5, PL are considered distributed on the perimeter of the phase conductors.
- For all cases, PL conductors are considered of: Section: 630 mm², radius: 15 mm and resistance 0.0407 ¥Ø/km.
- A considered variable is the number of loops to be used. The number was increased up to a maximum of 8.
- For the different cases, magnetic field transversal profiles are drawn, considering a current of 1000 A per phase conductors.
- In all cases, it is considered a minimum distance of 400 mm between the phase conductors and the nearest PL conductor.

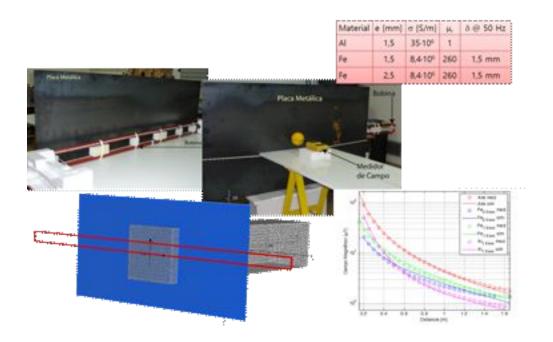


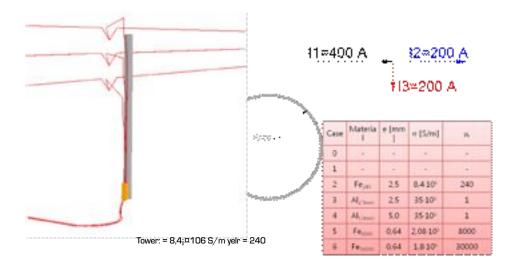

- In Case 1, with the conductors arranged in a plane located over the phase conductors, SF values are bigger than 3 butless than 3.7, which is considered the goal.
- With the configuration of Case 2, the goal is reached using 6 PL. SF values greater than 5 are achieved using 8 PL.
- In Case 3 using 7 PL, SF values greater than 4 are obtained.
- In case 4, the goal of SF greater than 4 is reached using 5 PL. With the use of 8 PL values close to 6 are achieved.
- Case 5, when the PL located on the perimeter, presents the best performance. The goal is reached using 4 PL. With 8PL, the SF exceeds 7.
- Evaluating the different options, it appears that not all configurations represent a solution.
- In Case 1, with the use of 8 PL the goal is not reached. In Case 3 the object is achieved by using 7 PL. In Case 2 the objective is achieved by using 6 PL. Case 4 meets the goal with 5 PL. Case 5 shows a solution using 4 PL. In addition, the Case 5 achieves the highest values of SF, using 8 PL.



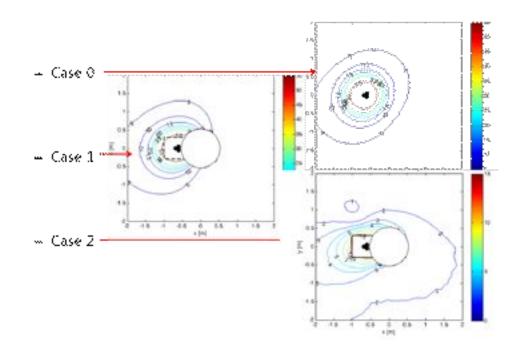
Case	Currents [A]							
	IBTr	IBTs	IBTt	IBTn	IMTR	IMTS	IMTT	
В	490 e ⁱ⁻³⁰	490 e ^{j-150}	490 e ⁹⁰	0 e ^o	14,9 e ⁱ⁰	14,9 e ⁻¹²⁰	14,9 e ¹²⁰	
U	500 e ^p	490 e ⁱ⁻¹²⁵	555 e ⁽¹²⁰	100 e ¹²⁶	14,6 e ⁽²⁷	14,7 e ^{j-90}	15,2 e ¹⁴⁸	

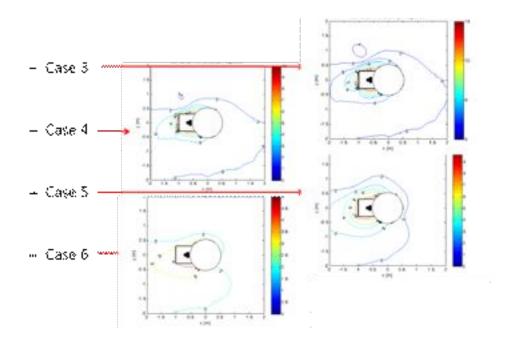
Cases	LV Board	Load	Ineutral [A]
1	Conventio	Balanced	0
2	Conventio nal	Unbalance d	100
3		Balanced	0
4	Compact	Unbalance d	100

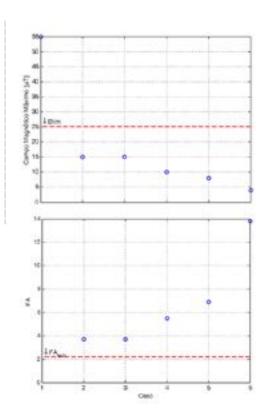



- Analyzing the results, it can be said that the implemented models allow calculations who represent a good approximation to the values generated by the existing facilities.
- This is evident when a comparison is made with measurements.
- The calculation tools allow us to know the impact of installing new substations or modifying existing ones. Considering different designs influence on magnetic field levels.
- When considering new facilities, it is possible to decide what is the best solution for each case, from the point of view of the distribution of magnetic field.
- In addition, is possible to check if the values exceed the magnetic field limit, indicated by current regulations. To which one must consider the different load cases.
- Considering an existing installation, is possible to register the load curve of a substation, recording values of phase and neutral LV current, in module and phase. From this estimate what the magnetic field levels that are generated, for a full load or greater neutral current value.

Passive Shields


- Evaluate the efficiency of magnetic field mitigation caused by transition OHL/Cables.
- Use passive and open shields made with metallic plates.
- Considered the effect produced by the presence of metallic towers.
- The problem is analyzed from numerical simulations(MEF).
- Thickness, electrical conductivity and magnetic permeability are considered.


Measurements


Results

Resume

Case	Β [μΤ]	FA
1	55	1
2	15	3,7
3	15	3,7
4	10	5,5
5	8	6,9
6	4	13,8

- If the structure is metallic, it will influence the magnetic field distribution. It is very important to know its electrical characteristics.
- The use of metal plates commonly used in mechanical cable guards represents a viable technical-economic solution and is simple to implement.
- If higher values of mitigation are required, without modifying the dimensions, it is possible to resort to other solutions, such as the use of Aluminum (Cases 3 and 4). The use of thicker plates gave better results.
- In addition it is possible to contemplate other materials with high value of µr(Cases 5 and 6).
- Materials of high permeability value are usually much more expensive than conventional sheet or aluminum. In addition, these materials are sensitive to deterioration due to corrosion.
- It also highlights the use of simulation tools, validated by measurements.
- It is possible to ensure that the limit values of 25 µT (Res. SE 77 Argentina) are confined within the mechanical protections of this installation using the appropriate materials and dimensions.