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Abstract—There are different algebraic structures that one
can use to model notions of computation. The most well-known
are monads, but lately, applicative functors have been gaining
popularity. These two structures can be understood as instances
of the unifying notion of monoid in a monoidal category. When
dealing with non-determinism, it is usual to extend monads
and applicative functors with additional structure. However,
depending on the desired non-determinism, there are different
options of interaction between the existing and the additional
structure. This article studies one of those options, which is
captured algebraically by dioids. We generalise dioids to dioid
categories and show how dioids in such a category model non-
determinism in monads and applicative functors. Moreover, we
study the construction of free dioids in a programming context.

I. INTRODUCTION

Algebraic structures have been central to the modelling
of computational effects. For example, monads [1], [2], [3],
[4] have been used to model many computational effects
such as global state, exceptions, environments, input/output,
and continuations. More recently, applicative functors [5] are
becoming popular in diverse applications such as modelling
parsers [6], characterising traversals [7], [8], and in combina-
tion with monads to obtain concurrent queries [9].

While monads and applicative functors are two different
algebraic structures, they have a unified framework. Rivas and
Jaskelioff [10] have shown that both of them can be seen as
instances of a same unifying concept: monoids in a monoidal
category [11]. This unification of concepts is extremely useful,
as it allows us to translate concepts, properties, and techniques
from one structure to the other. For example, through the
unified framework, an old optimisation technique for lists [12]
is shown to be essentially the same as a newer one for
monads [13], and led to the discovery of a new one for
applicative functors [10] by means of a simple translation.

In many applications of monads and applicative functors one
has to deal with non-determinism. There are different flavours
of non-determinism [14], but in functional programming the
most common are deep backtracking and shallow backtrack-
ing [15]. When modelling deep backtracking, the algebraic
structure that arises is near-semirings. This insight lead to a
unified framework for deep-backtracking non-determinism in
monads and applicative functors [16]. If, on the other hand,

one wants to model shallow backtracking, then one arrives at
the algebraic structure of dioids [17].

This article studies the shallow-backtracking variant of
non-determinism by studying the categories that support the
definition of dioids, namely dioid categories. Working at this
level of abstraction allows us to obtain a unified model of
shallow-backtracking non-determinism for both monads and
applicative functors. Moreover, we study the construction of
free dioids. Intuitively, free dioids can be thought of as the
programs that can be written when only the dioid interface
is exposed, and therefore provide a canonical representa-
tion for programs structured as a computation with shallow-
backtracking non-determinism.

The article is structured as follows: In Section II we
introduce monoids and monoidal categories, and show how
they provide a unified framework to study the notions of
monads and applicative functors. In Section III, we introduce
dioids and dioid categories. Moreover, we show how these
categories provide a unified framework to study shallow non-
determinism in monads and applicative functors. In Section IV,
we turn to the construction of free dioids. We provide a
formula that allows to construct dioids on Set (the category of
sets and functions) and to construct the free dioid applicative.
Unfortunately, it does not allow us to express the free dioid
monad. Finally, in Section V, we conclude.

In the rest of this article, unless we explicitly say oth-
erwise, when we write non-determinism we mean shallow-
backtracking non-determinism.

II. MONOIDS

We start by studying monoids and its generalisation:
monoids in monoidal categories. In order to keep the ideas
close to programming practice, we express the different con-
crete constructions in an idealised functional programming
language with syntax inspired by Haskell.

A. Monoids in Programming

In functional languages, such as Haskell, algebraic struc-
tures may be implemented using type classes. For example,
for monoids we may declare:
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classMonoid m where
u ∶∶ () →m
(⊗) ∶∶m ×m →m

which means that a type m is a monoid whenever it is
equipped with a chosen binary operation ⊗ (the multiplication)
and a nullary operation u (the unit). Instances of this class are
expected to satisfy the monoid laws

a ⊗(u ()) = a (1)
(u ())⊗a = a (2)
a ⊗(b ⊗ c) = (a ⊗ b)⊗ c (3)

which state that ⊗ is associative, and that u is a right and
left unit for it. For example, we may declare that the type
Integer of arbitrary-precision integers is a monoid of addition
and zero:

instanceMonoid Integer where
u () = 0
x ⊗ y = x + y

Another important example is the monoid of endofunctions
over a type a . Without mathematical jargon, they are just
functions from a to a with composition as multiplication and
the identity function as unit.

data Endo a where
Endo ∶∶ (a → a) → Endo a

instanceMonoid (Endo a) where
u () = Endo id
(Endo f )⊗(Endo g) = Endo (f ○ g)

When studying an algebraic structure, an important concept
is that of homomorphism: structure-preserving maps between
instances of the algebraic structure. In the case of monoids,
they are defined as follows: let M1 and M2 be instances of
Monoid. A monoid homomorphism is a function f ∶∶M1 →M2

such that the monoid instances are preserved:

f (u ()) = u ()
f (a ⊗ b) = f a ⊗ f b

The type of f determines that the operations u and ⊗ on the
left-hand side come from the Monoid instance of M1, while
those on the right-hand side come from the Monoid instance
of M2.

For example, the following is a monoid homomorphism
from Integer to Endo Integer.

rep ∶∶ Integer → Endo Integer
rep x = Endo (λy → x + y)

We want to program with algebraic structures such as
Monoid above, but we may also want to generalise from types
to types constructors, and from the Cartesian product × to
other ways of putting two things together. The appropriate
generalisation is the notion of monoid in a monoidal category.

B. Categorification

Monoidal categories generalise the notion of monoids to
categories C.

Definition II.1. A monoidal category is a sextuple
(C,⊗, I, α, λ, ρ), where:
● C is a category;
● ⊗ ∶ C × C → C is a bifunctor;
● I is an object of C;

The bifunctor ⊗ and I generalise × and () in the code
above.

● α, λ, and ρ are natural isomorphisms:

α ∶ A⊗ (B ⊗C) ≅ (A⊗B) ⊗C
λ ∶ I ⊗A ≅ A
ρ ∶ A⊗ I ≅ A

All these natural transformations should obey coherence
laws [11].

Given a monoidal category, we can define the notion of a
monoid in it.

Definition II.2. A monoid in a monoidal category is an object
M , together with operations e ∶ I →M and m ∶M ⊗M →M ,
for which the following laws hold:

m ○ (e⊗ id) = λ (4)
m ○ (id⊗ e) = ρ (5)
m ○ (id⊗m) =m ○ (m⊗ id) ○ α (6)

The laws for monoids in monoidal categories are the cor-
responding generalisations of equations (1), (2), and (3).

For example, the category Set of sets and functions is a
monoidal category with the Cartesian product as its tensor,
and singleton sets as unit object, and monoids in this monoidal
category reduce to ordinary monoids.

C. Functors

In this article we are mainly interested in the category of
endofunctors and natural transformations. Endofunctors are
type constructors that can map a function on the underlying
type. For example, lists are functors since

1) given a type, say Integer, they construct a type of list
of Integers;

2) given a function, say from Integers to Booleans, they
can apply the function to every Integer to obtain a list
of Booleans.

More precisely, a functor is an instance of the following
class

class Functor f where
fmap ∶∶ (a → b) → f a → f b

where the laws fmap id = id, and fmap (f ○ g) = fmap f ○
fmap g hold.

For example, the identity type constructor is a functor.



data Identity where
Id ∶∶ a → Identity a

instance Functor Identity where
fmap f (Id a) = Id (f a)

Furthermore, the composition of two functors is a functor.

data (f ○ g) a where
Comp ∶∶ f (g a) → (f ○ g) a

instance (Functor f ,Functor g) ⇒ Functor (f ○ g) where
fmap f (Comp x) = Comp (fmap (fmap f ) x)

In this instance, to the left of the ⇒ symbol, we note the
requirement that f and g must be functors.

Natural transformations are functions between functors
which are polymorphic on the underlying type [18].

type (f ⋅⋅⋅→ g) = ∀x . f x → g x

As a last functor example, we consider the Maybe data type
constructor. This functor is commonly used to represent either
a value or a failure, and it is sometimes known as Option.

dataMaybe a where
Nothing ∶∶Maybe a
Just ∶∶ a →Maybe a

The functor instance simply maps a function if we have a
value, or it does nothing otherwise.

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

D. Monads

The category of endofunctors and natural transformations
can be given a monoidal structure by choosing the tensor ⊗
to be the composition of functors ○, and the object I to be
the identity functor Identity. This monoidal category is strict,
which means that the three natural transformations λ, ρ, and
α, which complete the monoidal category, are identities.

The monoids in this monoidal category are functors m with
operations e and m of type Identity

⋅⋅⋅→ m , and m ○m
⋅⋅⋅→ m

respectively. Expanding the definitions of natural transforma-
tion, identity functor, and functor composition, and renaming
e to η and m to µ, we arrive at the following type class:

class Functor m ⇒ Triple m where
η ∶∶ a →m a
µ ∶∶m (m a) →m a

and the general monoid laws (4), (5), and (6) become:

µ ○ η = id
µ ○ fmap η = id
µ ○ fmap µ = µ ○ µ

A monoid in the monoidal category with functor composi-
tion as tensor is none other than a monad. Monads have other
presentations. For example, in Haskell, monads are defined as:

classMonad m where
return ∶∶ a →m a
(>>=) ∶∶m a → (a →m b) →m b

subject to some laws which correspond to the laws above under
the following equivalence. The classes Triple and Monad can
be seen to be equivalent by noting that η = return, that µ can
be defined as µ x = (x >>= id), and that (>>=) can be defined as
(x>>=k) = µ (fmap k x). Notice that Monad m does not require
the type constructor m to be a functor: the fmap operation is
derivable from the Monad instance by defining fmap f v =
(v >>= return ○ f ).

Remark II.3 (Currying). The function (>>=) in the Monad
class does not take two arguments; instead it takes only one
argument and returns a function which takes the other argu-
ment and finally delivers the result. Writing functions in this
style is equivalent to writing functions with two arguments, as
the following conversion functions show:

curry ∶∶ (a × b → c) → (a → b → c)
curry f a b = f (a, b)
uncurry ∶∶ (a → b → c) → (a × b → c)
uncurry f (a, b) = f a b

In the rest of the presentation we use two argument functions
or their curried form indistinctly.

Both lists and Maybe are functors which are also Monad
instances. We provide the instance for Maybe, which will be
one of our main examples.

instanceMonad Maybe where
return x = Just x
Nothing >>= f = Nothing
(Just x) >>= f = f x

The category of endofunctors can be given other monoidal
structures, and therefore monads are not the only monoids
in the category of endofunctors. Another important class are
applicative functors, introduced by McBride and Paterson [5]
as a way to capture certain effectful computations that do not
fit well in the monadic framework.

E. Applicative functors

Applicative functors are based on a category of endo-
functors, but with different tensor than monads: the Day
convolution [19]. The Day convolution may be implemented
as follows:

data (⋆) f g a where
Day ∶∶ f (b → a) × (g b) → (f ⋆ g) a

instance (Functor f ,Functor g) ⇒ Functor (f ⋆ g) where
fmap h (Day ff gx) = Day (fmap (λf → h ○ f ) ff ) gx

Just like for composition of functors (○), the I object for
Day convolution is the identity functor. However, in this case
the monoidal category is not strict. The isomorphisms λ, ρ
and α for this monoidal category are as follows (we give only
one direction of each isomorphism).



λ ∶∶ Functor f ⇒ (Identity ⋆ f ) a → f a
λ (Day (Identity f ) x) = fmap f x

ρ ∶∶ Functor f ⇒ (f ⋆ Identity) a → f a
ρ (Day f (Identity b)) = fmap (λh → h b) f

α ∶∶ (Functor f ,Functor g) ⇒
(f ⋆ (g ⋆ h)) a → ((f ⋆ g) ⋆ h) a

α (Day f (Day g z)) = Day (Day (fmap (○) f ) g) z

The monoids in this monoidal category are functors f with
operations e and m of type Identity

⋅⋅⋅→ f , and f ⋆ f
⋅⋅⋅→ f

respectively. Expanding the definitions of natural transforma-
tion, identity functor, and Day convolution, and renaming e to
pure and m to ⊛, we arrive at the following type class:

class Functor f ⇒ Applicative f where
pure ∶∶ a → f a
(⊛) ∶∶ f (b → a) × f b → f a

Instantiating the general monoid laws (4), (5), and (6) to
this monoidal category, we obtain the applicative laws:

pure f ⊛ u = fmap f u

u ⊛ pure x = fmap (λh → h x) u

(fmap (○) u ⊛ v) ⊛w = u ⊛ (v ⊛w)

By generalising monoids to monoids in monoidal categories,
we were able to show that two different structures used in
programming are instances of the same abstract construction.

Remark II.4. Monad and Applicative type classes are not
totally independent: every instance of the former is an instance
of the latter, as it is reflected in the next code.

instanceMonad m ⇒ Applicative m where
pure x = return x
u ⊛ v = u >>= λf → v >>= λx → return (f x)

Therefore every Monad determines an Applicative, but not the
other way. As an example of an Applicative which is not a
Monad, consider the constant functor on a monoid:

data K x a where
MK ∶∶ x → K x a

instance Functor (K x) where
fmap f (MK x) =MK x

instanceMonoid x ⇒ Applicative (K x) where
pure a =MK u
(MK x) ⊛ (MK y) =MK (x ⊗ y)

III. DIOIDS

We extend the notion of monoids in order to account for
non-determinism. More precisely, we introduce dioids, which
extend monoids with additional monoid operations, which
we denote with ⊕ and z. Whereas the multiplicative monoid
gives a model of sequencing, the ⊕ operation models a non-
deterministic choice, and models z the absence of choice. What
makes this structure a good model for shallow-backtracking
non-determinism, and what differentiates it from other models,
is its interaction with the existing monoid structure.

A. Set dioids

Dioids are an algebraic structure, so we might declare them
as a type class, just like we did with monoids:

class Dioid d where
z ∶∶ () → d
u ∶∶ () → d
(⊕) ∶∶ d × d → d
(⊗) ∶∶ d × d → d

This time, we expect the following laws to be satisfied:

a ⊗(u ()) = a (7)
(u ())⊗a = a (8)
a ⊗(b ⊗ c) = (a ⊗ b)⊗ c (9)
a ⊕(z ()) = a (10)
(z ())⊕a = a (11)

a ⊕(b ⊕ c) = (a ⊕ b)⊕ c (12)
(z ())⊗a = z () (13)
(u ())⊕a = u () (14)

The laws 7 to 12 express that d is a monoid with respect
to (⊗,u) and (⊕, z). Laws 13 and 14 relate these (otherwise
independent) monoid structures, by saying that the unit of one
is left absorbent of the other. Because of this left-bias, we
might call these left dioids instead of just dioids.

Every bounded distributive lattice is a dioid for which (⊗)
commutes, perhaps the most classical example is Bool. The
following is an instance in which (⊗) does not commute:

type BinFun a = a × a → a

instance Dioid (BinFun a) where
z = λ(a, b) → a
u = λ(a, b) → b
f ⊕ g = λ(a, b) → f (g (a, b), b)
f ⊗ g = λ(a, b) → f (a, g (a, b))

In models of deep-backtracking non-determinism, law 14 is
replaced by a distribution.

(a ⊕ b)⊗ c = (a ⊗ c)⊕(b ⊗ c)

This makes the structure a near-semiring. See the work of
Rivas, Jaskelioff and Schrijvers [16] for details. In this case it
is possible to explore different results, whereas in the shallow
case, we explore possible results in order only until one is
found.

Let D1 and D2 be instances of Dioid. A dioid homomor-
phism is a function f ∶∶D1 → D2 such that the dioid instances
are preserved:

f (u ()) = u ()
f (z ()) = z ()

f (a ⊗ b) = f a ⊗ f b

f (a ⊕ b) = f a ⊕ f b

The type of f determines that the operations u, z, ⊗, and
⊕ on the left-hand side come from the Dioid instance of



D1, while those on the right-hand side come from the Dioid
instance of D2.

B. Categorification

Just as monoidal categories provide the right setting to
express the notion of monoid in full generality, we now look
for the analogous categorical structure to express the notion
of dioid.

Definition III.1. A dioid category is a tuple
(C,⊗, I, α⊗, λ⊗, ρ⊗,⊕, Z,α⊕, λ⊕, ρ⊕, κ⊗, κ⊕) where:
● C is a category;
● ⊗ ∶ C × C → C and ⊕ ∶ C × C → C are bifunctors;
● I and Z are objects of C;
● α⊗, λ⊗, ρ⊗, α⊕, λ⊕, and ρ⊕ are natural isomorphisms:

α⊗ ∶ A⊗ (B ⊗C) ≅ (A⊗B) ⊗C
λ⊗ ∶ I ⊗A ≅ A
ρ⊗ ∶ A⊗ I ≅ A
α⊕ ∶ A⊕ (B ⊕C) ≅ (A⊕B) ⊕C
λ⊕ ∶ Z ⊕A ≅ A
ρ⊕ ∶ A⊕Z ≅ A

● κ⊗ and κ⊕ are natural transformations:

κ⊗ ∶ Z ⊗A→ Z

κ⊕ ∶ I ⊕A→ I

Again, we expect these natural transformations to obey some
coherence laws, which include those of (C,⊗, I, α⊗, λ⊗, ρ⊗)
and (C,⊕, Z,α⊕, λ⊕, ρ⊕) being monoidal categories.

Given a dioid category, we can define what a dioid is.

Definition III.2. A dioid in a dioid category is an object D,
together with operations z ∶ Z →D, e ∶ I →D, s ∶D⊕D →D
and m ∶D ⊗D →D for which the following laws hold:

m ○ (e⊗ id) = λ⊗ (15)
m ○ (id⊗ e) = ρ⊗ (16)
m ○ (id⊗m) =m ○ (m⊗ id) ○ α⊗ (17)
s ○ (z ⊕ id) = λ⊕ (18)
s ○ (id⊕ z) = ρ⊕ (19)
s ○ (id⊕ s) = s ○ (s⊕ id) ○ α⊕ (20)
m ○ (z ⊗ id) = z ○ κ⊗ (21)
s ○ (e⊕ id) = e ○ κ⊕ (22)

The laws for dioids in dioid categories are the corresponding
generalisations of equations for dioids.

To recover ordinary dioids, we take the category of sets and
functions Set with Z = I = {∗} and ⊕ = ⊗ = ×. Notice that
κ⊗ = κ⊕ = π1 ∶ {∗} ×A → {∗} is not a natural isomorphism,
but only a natural transformation.

Lemma III.3. In general, from a monoidal category
(C,⊗, I, α, λ, ρ) with Cartesian structure (terminal ob-
ject and binary products), we obtain a dioid category

(C,⊗, I, α, λ, ρ,×,1, α×, π2, π1, κ⊗, π1), where:

α× = ⟨⟨π1, π1 ○ π2⟩, π2 ○ π2⟩ ∶ A × (B ×C) → (A ×B) ×C
κ⊗ = !1⊗A ∶ 1⊗A→ 1

We close our discussion on categorification of dioids by
giving the generalisation of dioid homomorphism, which is a
direct generalisation of that for ordinary dioids.

Definition III.4 (Dioid homomorphism). A dioid homo-
morphism from a dioid (D1, z1, e1, s1,m1) to a dioid
(D2, z2, e2, s2,m2) is a morphism f ∶ D1 → D2 such that
the following equations hold:

f ○ e1 = e2
f ○ z1 = z2
f ○m1 =m2 ○ (f ⊗ f)
f ○ s1 = s2 ○ (f ⊕ f)

C. Cartesian structure for functors

We can use Lemma III.3 to extend the monoidal categories
of endofunctors discussed in Sections II-D and II-E to dioid
categories. We need to establish that the category of endofunc-
tors on a category C has terminal object and binary products.
If the base category C has terminal object, then the constant
functor to the terminal object is the terminal object on the
category of endofunctors.

data K1 a where
K1 ∶∶ () → K1

instance Functor K1 where
fmap f (K1 ()) = K1 ()

Here, the unit type () represents the terminal object. Similarly,
a product of endofunctors is defined in terms of product for
objects in the base category, in a point-wise fashion:

data (f ××× g) a where
Pair ∶∶ f a × g a → (f ××× g) a

instance (Functor f ,Functor g) ⇒ Functor (f ××× g) where
fmap h (Pair (fa, ga)) = Pair (fmap h fa, fmap h ga)

Thus, the endofunctors form a monoidal category with the
Cartesian structure, and the monoidal categories supporting
monads and applicative functors can be extended to dioid
categories.

D. Non-determinism Monads

By Lemma III.3 and the Cartesian structure introduced
above, we know that the category of endofunctors forms a
dioid category by choosing tensor ⊗ to be composition of
functors ○, tensor ⊕ to be the binary product of functors ×××,
the object I to be the identity functor Identity and the object
Z to be the constant terminal functor K1.

The dioids in this dioid category are functors d with
operations ζ, η, σ and µ of type K1

⋅⋅⋅→ d , Identity
⋅⋅⋅→ d ,

d ××× d
⋅⋅⋅→ d and d ○ d

⋅⋅⋅→ d respectively. If we expand the
definitions, we can present this information in a type class:



class DioidM d where
ζ ∶∶ () → d a
η ∶∶ a → d a
σ ∶∶ d a × d a → d a
µ ∶∶ d (d a) → d a

subject to the laws:

µ ○ η = id
µ ○ fmap η = id
µ ○ fmap µ = µ ○ µ

σ ○ pair id zero = fst
σ ○ pair zero id = snd
σ ○ pair id σ = σ ○ pair σ id ○ α

µ ○ ζ = ζ
σ ○ pair η id = η ○ fst

where pair f g (x , y) = (f x , g y) and α (x , (y , z)) =
((x , y), z). The operations η and µ form an instance of Triple.
In this way, a dioid might be seen as an extended monad. This
justifies the equivalent type class

classMonad m ⇒MonadPlus m where
mzero ∶∶m a
mplus ∶∶m a →m a →m a

subject to the following laws

mplus mzero u = u

mplus u mzero = u

mplus u (mplus v w) = mplus (mplus u v) w

mzero >>= f = mzero

mplus (return x) u = return x

in addition to those of monads.
Perhaps the most representative instance of MonadPlus

subject to these axioms is Maybe.

instanceMonadPlus Maybe where
mzero = Nothing
mplus Nothing v = v
mplus (Just x) v = Just x

An important non-example of MonadPlus subject to these
axioms are lists. While the empty list and list concatenation
would give an implementation for mzero and mplus, such im-
plementation would not satisfy the law mplus (return x) u =
return x . (In fact, lists are the canonical example of deep-
backtracking non-determinism.)

E. Non-determinism Applicative Functors

We turn again to Lemma III.3 to obtain a dioid category
of endofunctors, but this time with the Day convolution as a
tensor instead of functor composition.

The dioids in this dioid category are functors d with
operations empty, pure, (⟨∣⟩) and (⊛) of type K1

⋅⋅⋅→ d ,
Identity

⋅⋅⋅→ d , d ××× d
⋅⋅⋅→ d and d ⋆ d

⋅⋅⋅→ d respectively. If

we expand the definitions, we can present this information in
a type class:

class DioidF d where
empty ∶∶ () → d a
pure ∶∶ a → d a
(⟨∣⟩) ∶∶ d a × d a → d a
(⊛) ∶∶ d (b → a) × d b → d a

As we did with monads, we separate the applicative functor
contained in this type class, and create a class that extends
applicative functors with the additional information:

class Applicative f ⇒ Alternative f where
empty ∶∶ f a
(⟨∣⟩) ∶∶ f a → f a → f a

By instantiating the laws for dioids, we obtain the following
laws for Alternative, which are additional to those of the
underlying Applicative instance.

empty ⟨∣⟩ u = u

u ⟨∣⟩ empty = u

u ⟨∣⟩ (v ⟨∣⟩w) = (u ⟨∣⟩ v) ⟨∣⟩w

empty ⊛ u = empty

pure x ⟨∣⟩ u = pure x

We can extend Remark II.4 to the type classes MonadPlus and
Alternative, and obtain the following result.

instanceMonadPlus m ⇒ Alternative m where
empty = mzero
u ⟨∣⟩ v = mplus u v

In fact, most Alternative instances found in programming
practice are actually MonadPlus instances. An example of an
Alternative which is not a MonadPlus is the constant functor
on a Dioid.

instance Dioid d ⇒ Alternative (K d) where
empty =MK z
(MK d1) ⟨∣⟩ (MK d2) =MK (d1⊕d2)

IV. FREE STRUCTURES

Free structures are a fundamental tool in universal algebra,
as in some sense they provide the most general models of an
algebraic structure, free of any additional equation over terms.
In computer science, this phenomenon is often referred to as
the no junk, no confusion principle [20]. In our setting, we
employ free structures as a device to work with those programs
that only use the structure under analysis.

A. Free monoids

The notion of free ordinary monoid is captured by a
universal property. Formally, we say that the type FreeMona
is the free monoid over a when:
● FreeMona is an instance of Monoid;
● there is a function ins ∶∶ a → FreeMona;



● for any Monoid instance m and function f ∶∶ a → m ,
there exists a unique monoid homomorphism univ f ∶∶
FreeMona →m such that univ f ○ ins = f .

While mathematically precise, this definition is not con-
structive: it does not provide a procedure to construct such
FreeMona from a given a . A possible technique to find
a concrete construction is to provide a unique form for
monoidal terms, such that two terms that are equal by the
monoid laws are represented by the same term. For example,
a ⊗(u ()⊗(b ⊗ c)) and (a ⊗ b)⊗(c⊗u ()) should have a
unique representation in the data type representing the free
monoid over a set which includes a , b and c. To see that two
monoid expressions are equivalent, we can apply the monoid
laws in a methodological way:
● every atom a is replaced by a ⊗u ();
● every expression associated to the left is re-associated to

the right;
● every expression u ()⊗ t is reduced to t .

Applying this method to the expressions above, we obtain the
term a ⊗(b ⊗(c⊗u ())) in both cases. After some thinking,
one can conclude that every term reduces to a list of atoms
ending in u (). This observation inspires the following data
type for representing canonical forms.

data FreeMon a where
Nil ∶∶ FreeMon a
Cons ∶∶ a × FreeMon a → FreeMon a

This data type is equivalent to a list of as, and therefore
has a monoid instance given by the empty list and list
concatenation:

instanceMonoid (FreeMon a) where
u () = Nil
Nil ⊗ bs = bs
(Cons a as)⊗ bs = Cons a (as ⊗ bs)

The insertion function represents an a atom by a singleton list.

ins ∶∶ a → FreeMon a
ins a = Cons a Nil

The function univ is written by recursion on FreeMon a:

univ ∶∶Monoid m ⇒ (a →m) → FreeMon a →m
univ f Nil = u ()
univ f (Cons a as) = f a ⊗univ f as

Using set theory, the free monoid over a set a , i.e. lists of a ,
can be seen as the least solution a∗ to the recursive equation:

a∗ = {∗} ⊍ a × a∗

where ⊍ represents the disjoint union of sets.
Generalising to monoidal categories the equation becomes

A∗ ≅ I +A⊗A∗ (23)

which gives a candidate for the free monoid in a monoidal
category. Before instantiating this formula to other cases, we

first review the general universal property for a free monoid
in a monoidal category (C,⊗, I).

Definition IV.1 (Free monoid). Let X be an object, the free
monoid over X is a monoid (F, eF ,mF ) together with a mor-
phism ins ∶ X → F such that for any monoid (M,eM ,mM)
and morphism f ∶ X → M there exists a unique monoid
homomorphism univ(f) ∶ F →M such that univ(f) ○ ins = f .
Diagrammatically, we have:

X
ins //

f
&&

F

univ(f)
��
M

The morphism ins is called the insertion morphism, and univ f
is known as the lifting of f .

As in the case of ordinary monoids, this definition provides
an abstract characterisation for the free monoid. To obtain a
concrete description, we instantiate formula 23 to the corre-
sponding monoidal category.

For obtaining the free Monad, we apply formula 23 to the
monoidal category of endofunctors with functor composition
as tensor, which yields the equation

f∗ ≅ Identity + f ○ f∗

that leads to the following data type:

data Free f a where
Nil○ ∶∶ a → Free f a
Cons○ ∶∶ f (Free f a) → Free f a

This is indeed the free monad on a functor f , with monad
instance:

instance Functor f ⇒Monad (Free f ) where
return x = Nil○ x
Nil○ x >>= f = f x
Cons○ v >>= f = Cons○ (fmap (>>=f ) v)

The insertion morphism and lifting are as follows:

ins ∶∶ Functor f ⇒ f
⋅⋅⋅→ Free f

ins v = Cons○ (fmap Nil○ v)
univ ∶∶ (Functor f ,Monad m) ⇒ (f ⋅⋅⋅→m) → (Free f

⋅⋅⋅→m)
univ f (Nil○ x) = return x
univ f (Cons○ v) = f (fmap (univ f ) v) >>= id

We now turn our focus to the monoidal category of
endofunctors with Day convolution as tensor. Instantiating
formula 23 to this monoidal category results in:

f∗ ≅ Identity + f ⋆ f∗

which leads to the following data type

data FreeA f a where
Nil⋆ ∶∶ a → FreeA f a
Cons⋆ ∶∶ f (b → a) × FreeA f b → FreeA f a



Again, we find the instantiation of the general formula yields
the free applicative functor on a functor f , with applicative
instance:

instance Functor f ⇒ Applicative (FreeA f ) where
pure x = Nil⋆ x
Nil⋆ h ⊛ x = fmap h x
Cons⋆ (h, x) ⊛ y = Cons⋆ (fmap uncurry h)

(fmap (, ) x ⊛ y)

where (, ) is the pair constructor. The insertion morphism and
lifting are implemented as follows.

ins ∶∶ Functor f ⇒ f
⋅⋅⋅→ FreeA f

ins v = Cons⋆ (fmap const v) (Nil⋆ ())
univ ∶∶ (Functor f ,Applicative g) ⇒ (f ⋅⋅⋅→ g) → (FreeA f

⋅⋅⋅→ g)
univ f (Nil⋆ x) = pure x
univ f (Cons⋆ v r) = f v ⊛ univ f r

Starting with the analysis of the free monoid, we have
generalised the solution to monoidal categories, and then we
have used this formula to obtain the free monad and the
free applicative. General conditions for the existence of free
monoids can be found in the work of Kelly [21]. The case of
free monads and free applicative functors is analysed in detail
by Rivas and Jaskelioff [10].

B. Free dioids

For constructing free dioids, it would be desirable to adapt
the methodology we followed to obtain free monoids. This is,
we expect to come up with a formula for ordinary free dioids,
and then generalise this formula to obtain a candidate for free
dioids in a dioid category.

Instead of introducing first the notion of free ordinary dioid
and then generalising it, we present directly free dioids in a
dioid category (C,⊗, I, α⊗, λ⊗, ρ⊗,⊕, Z,α⊕, λ⊕, ρ⊕, κ⊗, κ⊕),
and then obtain the ordinary notion for the dioid category Set
with binary products and terminal object as both additive and
multiplicative structures.

Definition IV.2 (Free dioid). Let X be an object, the
free dioid over X is a dioid (F, zF , eF , sF ,mF ) together
with a morphism ins ∶ X → F such that for any dioid
(D,zD, eD, sD,mG) and morphism f ∶ X → G there exists
a unique dioid homomorphism univ(f) ∶ F → G such that
univ(f) ○ ins = f .

As in the case of monoids, the presentation by universal
property does not give a concrete construction for free dioids.
To obtain a concrete presentation for the free ordinary dioid
over a set X , we need to come up with a canonical form for
dioid terms. We propose the least solution to the following
recursive equations of sets:

X∗= 0 ⊍ 1 ⊍ T (24)
T =X ⊍ (S ×⊕ 1) ⊍ (S ×⊕ T ) ⊍ (M×⊗ 0) ⊍ (M×⊗ T ) (25)
S =X ⊍ (M×⊗ 0) ⊍ (M×⊗ T ) (26)
M =X ⊍ (S ×⊕ 1) ⊍ (S ×⊕ T ) (27)

where 0 = 1 = {∗} and ×⊗ = ×⊕ = ×. Although these last
renamings are unnecessary at this point, they will become
useful when we generalise these equations to dioid categories.
Performing some simplifications, we can implement these
equations as a data type:

data Free a where
Zero ∶∶ Free a
Unit ∶∶ Free a
Term ∶∶Term a → Free a

data Term a where
LiftT ∶∶ a → Term a

SumT1 ∶∶ Sum a → Term a

SumT2 ∶∶ Sum a ×Term a → Term a

MultT1 ∶∶Mult a → Term a

MultT2 ∶∶Mult a ×Term a → Term a

data Sum a where
LiftS ∶∶ a → Sum a

MultS1 ∶∶Mult a → Sum a

MultS2 ∶∶Mult a ×Term a → Sum a

dataMult a where
LiftM ∶∶ a →Mult a

SumM1 ∶∶ Sum a →Mult a

SumM2 ∶∶ Sum a ×Term a →Mult a

The dioid operations for Free a are not difficult to write,
although their length can be intimidating. Two auxiliary func-
tions (⊕T ) and (⊗T ) are provided, as they help to structure
the multiplication and addition. We give the implementation
only for (⊗T ), as the implementation for (⊕T ) is dual.

(⊗T ) ∶∶Term a → Free a → Term a

LiftT x ⊗T Zero =MultT1 (LiftM x)
LiftT x ⊗T Unit = LiftT x

LiftT x ⊗T Term y =MultT2 (LiftM x , y)
SumT1 x ⊗T Zero =MultT1 (SumM1 x)
SumT1 x ⊗T Unit = SumT1 x

SumT1 x ⊗T Term y =MultT2 (SumM1 x , y)
SumT2 (x , y) ⊗T Zero =MultT1 (SumM2 (x , y))
SumT2 (x , y) ⊗T Unit = SumT2 (x , y)
SumT2 (x , y) ⊗T Term z =MultT2 (SumM2 (x , y), z)
MultT1 x ⊗T y =MultT1 x

MultT2 (x , y)⊗T z =MultT2 (x , y ⊗T z)

Using those functions, the Dioid instance for Free is the
following:

instance Dioid (Free a) where
z () = Zero
u () = Unit
Zero ⊕ x = x
Unit ⊕ v = Unit
Term x ⊕ y = Term (x ⊕T y)
Zero ⊗ v = Zero
Unit ⊗ x = x
Term x ⊗ y = Term (x ⊗T y)



The insertion morphism and lifting are as follows:

ins ∶∶ a → Free a
ins a = Term (LiftT a)
univ ∶∶Dioid d ⇒ (a → d) → Free a → d
univ f Zero = z ()
univ f Unit = u ()
univ f (Term v) = univT f v

univT ∶∶Dioid d ⇒ (a → d) → Term a → d
univT f (LiftT x) = f x

univT f (SumT1 s) = univM f s ⊕u ()
univT f (SumT2 (s, t)) = univM f s ⊕univT f t

univT f (MultT1 s) = univS f s ⊗ z ()
univT f (MultT2 (s, t)) = univS f s ⊗univT f t

where univM and univS are auxiliary functions that work as
expected.

The definition of the free dioid and its operations is not
complicated but is rather subtle. Therefore we have formally
verified that this is indeed the free dioid using Agda as a proof
assistant.

We now turn to the problem of generalising the equations
(24–27) to other dioid categories. For generalising the free
monoid construction, we replaced disjoint union ⊍ for coprod-
uct +, Cartesian product × for monoidal tensor ⊗, and the
singleton set {∗} for the unit object I of a monoidal category.
In the case of dioids, the system of recursive equations
presented only involve, in addition to disjoint union, Cartesian
product × and the singleton set {∗}. Nevertheless, a dioid
category has more structure: two objects Z and I , and two
bifunctors ⊕ and ⊗. That is the reason we introduced the
renamings ×⊗, ×⊕, 0, and 1: for keeping track of which
constructors correspond to the additive structure and which
to the multiplicative structure.

Replacing ⊍ for +, ×⊗ for ⊗, 1 for I , ×⊕ for ⊕, and 0 for Z
in the equations, we obtain the following system of equations
for the tentative free dioid over an object X:

X∗ = Z + I + T
T =X + (S ⊕ I) + (S ⊕ T ) + (M ⊗Z) + (M ⊗ T )
S =X + (M ⊗Z) + (M ⊗ T )
M =X + (S ⊕ I) + (S ⊕ T )

When considering the category of endofunctors with com-
position as multiplication and Cartesian product as addition,
we obtain data type constructors representing these formulas:

data Free○ f x where
Zero○ ∶∶K1 x → Free○ f x
Unit○ ∶∶ Identity x → Free○ f x
Term○ ∶∶Term○ f x → Free○ f x

data Term○ f x where
LiftT○ ∶∶ f x → Term○ f x

SumT1
○ ∶∶ Sum○ f x × Identity x → Term○ f x

SumT2
○ ∶∶ Sum○ f x ×Term○ f x → Term○ f x

MultT1
○ ∶∶Mult○ f (K1 x) → Term○ f x

MultT2
○ ∶∶Mult○ f (Term○ f x) → Term○ f x

data Sum○ f x where
LiftS○ ∶∶ f x → Sum○ f x

MultS1○ ∶∶Mult○ f (K1 x) → Sum○ f x

MultS2○ ∶∶Mult○ f (Term○ f x) → Sum○ f x

dataMult○ f x where
LiftM○ ∶∶ f x →Mult○ f x

SumM1
○ ∶∶ Sum○ f x × Identity x →Mult○ f x

SumM2
○ ∶∶ Sum○ f x ×Term○ f x →Mult○ f x

While at first sight this data type seemed to work, we
ran into problems when we tried to define the MonadPlus
instance. Specifically, we got stuck when writing the (>>=)
operator on Free○ f , as we needed to distribute coproducts on
the right of ○. Our conjecture is that the recursive equations
presented only work for tensors which distribute coproducts
on both parameters. Fortunately, Day convolution satisfies
such requirement, and we successfully applied the formulas to
obtain the free Alternative. The resulting data type constructor
is similar to that of monads, but we inlined the data type
constructors K1 and Identity to avoid some clutter:

data Free⋆ f x where
Zero⋆ ∶∶ Free⋆ f x
Unit⋆ ∶∶ x → Free⋆ f x
Term⋆ ∶∶Term⋆ f x → Free⋆ f x

data Term⋆ f x where
LiftT⋆ ∶∶ f x → Term⋆ f x

SumT1
⋆ ∶∶ Sum⋆ f x → x → Term⋆ f x

SumT2
⋆ ∶∶ Sum⋆ f x → Term⋆ f x → Term⋆ f x

MultT1
⋆ ∶∶Mult⋆ f (a → x) → Term⋆ f x

MultT2
⋆ ∶∶Mult⋆ f (a → x) → Term⋆ f a → Term⋆ f x

data Sum⋆ f x where
LiftS⋆ ∶∶ f x → Sum⋆ f x

MultS1⋆ ∶∶Mult⋆ f (a → x) → Sum⋆ f x

MultS2⋆ ∶∶Mult⋆ f (a → x) → Term⋆ f a → Sum⋆ f x

dataMult⋆ f x where
LiftM⋆ ∶∶ f x →Mult⋆ f x

SumM1
⋆ ∶∶ Sum⋆ f x → x →Mult⋆ f x

SumM2
⋆ ∶∶ Sum⋆ f x → Term⋆ f x →Mult⋆ f x

The instances of Functor, Applicative and Alternative are in-
volved, although they follow the same pattern of the operations
for free ordinary dioids. We present the Applicative instance,
as its multiplication is the most involved operation.

instance Functor f ⇒ Applicative (Free⋆ f ) where
pure x = Unit⋆ x
Zero⋆ ⊛ v = Zero⋆
Unit⋆ f ⊛ x = fmap f x
Term⋆ x ⊛ y = Term⋆ (x ⊛T y)

The function (⊛T ) is the equivalent to (⊗T ) for free ordinary
dioids, and it is defined as follows:

(⊛T ) ∶∶ Functor f ⇒
Term⋆ f (a → b) → Free⋆ f a → Term⋆ f b



LiftT⋆ x ⊛T Zero⋆ =MultT1
⋆ (LiftM⋆ x)

LiftT⋆ x ⊛T Unit⋆ y = LiftT⋆ (evalF x y)
LiftT⋆ x ⊛T Term⋆ y =MultT2

⋆ (LiftM⋆ x) y

SumT1
⋆ x y ⊛T Zero⋆ =MultT1

⋆ (SumM1
⋆ x y)

SumT1
⋆ x y ⊛T Unit⋆ v = SumT1

⋆ (evalF x v) (y v)
SumT1

⋆ x y ⊛T Term⋆ v =MultT2
⋆ (SumM1

⋆ x y) v

SumT2
⋆ x v ⊛T Zero⋆ =MultT1

⋆ (SumM2
⋆ x v)

SumT2
⋆ x v ⊛T Unit⋆ y = SumT2

⋆ (evalF x y) (evalF v y)
SumT2

⋆ x v ⊛T Term⋆ y =MultT2
⋆ (SumM2

⋆ x v) y

MultT1
⋆ x ⊛T v =MultT1

⋆ (fmap uncurry x)
MultT2

⋆ x v ⊛T w =MultT2
⋆ (fmap uncurry x)
(fmap (, ) v ⊛T w)

evalF ∶∶ Functor f ⇒ f (a → b) → a → f b
evalF v a = fmap (λf → f a) v

The lifting function is also involved, although we insist
again that it follows the pattern presented for ordinary dioids.
We close our discussion for free structures by presenting the
insertion function for Free⋆.

ins⋆ ∶∶ Functor f ⇒ f a → Free⋆ f a
ins⋆ v = Term⋆ (LiftT⋆ v)

The correctness for these definitions was also formally verified
using Agda.

V. CONCLUSION

This paper has introduced a generalised notion of dioids,
which was used to study computations with shallow-
backtracking non-determinism. By considering MonadPlus
and Alternative type classes as dioids in the category of
endofunctors, we have obtained a set of laws that those type
classes should obey.

We have shown a concrete description for the free ordinary
dioid, and then generalised the construction to dioid categories.
By instantiation, this resulted in the construction of the free
Alternative, but we were not able to do the same to obtain a
free MonadPlus.

As further work, it would be interesting to study the notion
of dioid in the dioid category of endoprofunctors, and see
whether the general formulation for free dioids presented can
be used in this setting to obtain a free arrow with a notion of
shallow-backtracking non-determinism.
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