
On the Computational Complexity of Information Hiding

Andrés Rojas Paredes
Instituto de Ciencias, Universidad Nacional de General Sarmiento,

J. M. Gutiérrez 1150 (B1613GSX) Los Polvorines, Provincia de Buenos Aires, Argentina.
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,

Pabellón I, Ciudad Universitaria, CABA (C1428EGA), Argentina.
Email: arojas@ungs.edu.ar

Abstract—In this work we study the intrinsic complexity of
elimination algorithms in effective algebraic geometry and we
focus our attention to elimination algorithms produced within
the object–oriented paradigm. To this end, we describe a new
computation model called quiz game (introduced in [1]) which
models the notions of information hiding (due to Parnas,
see [2]) and non–functional requirements (e.g. robustness)
among other important concepts in software engineering. This
characteristic distinguish our model from classical computation
models such as the Turing machine or algebraic models.

We illustrate our computation model with a non–trivial
complexity lower bound for the identity function of polyno-
mials. We show that any object–oriented (and robust) imple-
mentation of the identity function of polynomials is necessarily
inefficient compared with a trivial implementation of this func-
tion. This result shows an existing synergy between Software
Engineering and Algebraic Complexity Theory.

Index Terms—Abstract data type, abstraction function, data
structure, information hiding, lower complexity bound, non–
functional requirement, quantifier elimination, quiz game, ro-
bustness, scientific computing.

1. Introduction

1.1. The Problem to be Solved

The first–order theory of algebraically closed fields with
constants in the complex numbers C (elementary theory
of C), admits quantifier elimination, i.e., for every ex-
istentially quantified formula Φ, there exists a logically
equivalent formula Ψ which is free of quantifiers. For
example, let X1, . . . , Xn be indeterminates over C, let
X := (X1, . . . , Xn), let M be an n × n matrix, and let
us denote the determinant of a matrix with the word ‘det’;
the quantified formula

Φ := ((∃X)(M ∗X = 0 ∧X 6= 0))

describes the existence of a non–trivial solution for a given
system of linear equations, and is logically equivalent to the
following quantifiers free formula

Ψ := (det(M) = 0).

A fundamental open problem in Algebraic Complexity
Theory asks for the intrinsic complexity of eliminating a
single existential quantifier block in the elementary theory
of C. We study this problem by means of non–trivial lower
complexity bounds which are based on basic notions in
Software Engineering.

Observe that formulas Φ and Ψ show that, in the ele-
mentary theory of C, the formulas involved in a quantifier
elimination problem are typically composed by polynomial
equations. Thus, quantifier elimination is in a more general
context a problem of polynomial equation solving which is
an important subject in scientific computing. Our complexity
questions will focus on the adequacy of the software design
behind polynomial equation solvers.

1.2. Motivation

An approach to deal with the complexity of polynomial
equation solving was to improve the algorithms and the
data structures inside the algorithms. This factor affected
considerably the evolution of elimination algorithms com-
plexity, for example, first elimination algorithms (around
1980) using polynomials given by coefficients (dense and
sparse representation) were not efficient, its complexity was
doubly exponential, say

sO(1)dn
O(n)

(1)

where d is the degree of the system, s is the number of
polynomials defining it, and n is the number of variables
to be eliminated (see [3] for a survey on first elimination
algorithms). This complexity was later reduced to the simply
exponential sO(1)dO(n2) by means of the Effective Null-
stellensatz (see [4] and [5]). In 1992, a new data structure
produced considerable progress, polynomials were imple-
mented by means of arithmetic circuits evaluating them, this
new data structure reduced the complexity to

sO(1)dO(n). (2)

Definition 1 (arithmetic circuit). An arithmetic circuit is a
directed acyclic graph which is labelled by arithmetic
operations addition, subtraction or multiplication.

978-1-5386-3057-0/17/$31.00 c©2017 IEEE

First elimination algorithms using arithmetic circuits
were probabilistic and hybrid, i.e., outputs were in arithmetic
circuit representation, whereas inputs were still in coefficient
representation. The first algorithm for the resolution of
polynomial equation systems over algebraically closed fields
which fully implements polynomials in terms of arithmetic
circuits is the Kronecker algorithm1 (see e.g. [6]). It was
implemented in a Magma package of identical name by
Grégoire Lecerf. This solver reduced the complexity (2) to
the pseudo-polynomial

δ2(snd)O(1) (3)

where δ is a discrete semantic parameter which in worst
case may become dn (see [6]).

The last implementation of the Kronecker algorithm
is called geomsolvex, and solves systems of polynomial
equations over C. This package is implemented in the high
level language Mathemagix, which is imperative, strongly
typed with polymorphism and parametrized types. It allows
the compiler to generate extremely fast code (comparable
to the speed of C or C++). We want to know whether
the current complexity of the Kronecker algorithm may be
improved. This practical aim may be seen as an specific
instance of a more general concern in Software Engineering
which consists on the evaluation of a software design with
respect to a complexity requirement.

Kronecker is a circuit–based elimination algorithm
which implements polynomials in terms of arithmetic cir-
cuits. Thus, we may suppose that circuit–based elimina-
tion algorithms work with a class Polynomial and a class
Arithmetic Circuit, such that the class diagram in Figure 1
illustrates the basic design behind this kind of algorithms.

Polynomial

Arithmetic Circuit

Figure 1: Basic design behind elimination algorithms

Our practical aim is to provide a mathematical tool
which allows us to answer the question whether software
design in Figure 1 can be used to improve the complexity of
the Kronecker algorithm for the computation task of quan-
tifier elimination. If this is not the case, we may look for an
alternative design, namely, a more suitable implementation
of the mathematical concept of polynomials. Thus we may
replace circuits by another data structure. In this scenario,
the new data structure may provide a different interface
such that circuit–based algorithms would become useless.
To avoid such a situation, a standard strategy hides the
representation and works with object-oriented elimination

1. In honour of Leopold Kronecker (1823–1891) pioneer in elimination
algorithms.

algorithms (see e.g. [7]). To capture such algorithms we are
going to define a computation model which captures the
notion of information hiding.

In the following we shall explore this example.

2. Related and Prior Work

2.1. A Mathematical Model for a Basic Design

We define first in a general context the basic components
of a mathematical model for design in Figure 1 above. Let
(Xn)n∈N be a sequence of indeterminates over C and let

R :=
⋃
n∈N

C[X1, . . . , Xn]

where C[X1, . . . , Xn] denotes the polynomial ring in
X1, . . . , Xn over C.

Our mathematical model works with the notions of
constructible subset and constructible map:
Definition 2 (constructible subset). Let X1, . . . , Xn be

indeterminates over C and let X := (X1, . . . , Xn). Let
C[X] := C[X1, . . . , Xn] be the ring of polynomials in
the variables X with coefficients in C. LetM be a subset
of some affine space Cn. We call the subset M con-
structible if M is definable by a Boolean combination
of polynomial equations from C[X].

Definition 3 (constructible map). A map Φ : Cn → Cm
is a constructible map if the graph of Φ is definable by
a Boolean combination of polynomial equations from
C[X].

In this context, class Polynomial will be a framed ab-
stract data type carrier of polynomials.
Definition 4 (framed abstract data type carrier). A framed

abstract data type carrier of polynomials is a con-
structible subset of a finite dimensional C-vector space
contained in R.

On the other hand, our model for class Arithmetic Cir-
cuit will be a framed data structure.
Definition 5 (framed data structure). A framed data struc-

ture is a constructible subset of a suitable affine ambient
space over C.

For a framed data structure N , the size of N is the
dimension of its ambient space. This value will be a lower
bound for the size of the objects belonging to the class
Arithmetic Circuit.

Another element we have to take into account is that we
are interested in implementations which are robust, namely,
implementations with the ability to react appropriately to
abnormal events which occur during the execution of the
system. We are going to model mathematically the notion
of robustness by the precise notion of a geometrically robust
map:
Definition 6 (geometrically robust map). Let M be a

constructible subset of Cn and let Φ : M → Cm be a
constructible total map. Then Φ is geometrically robust if

Φ is continuous with respect to the Euclidean topologies
of M and Cn (see [8, Theorem 4]).

The notion of geometrical robustness was explicitly stud-
ied as a software quality attribute in [9]. In the following,
the functions and maps we consider should be geometrically
robust in order to model and capture the non-functional
requirement of robustness.

A framed abstract data type carrier O of polynomials
depends on a framed data structure M of parameters (see
example in Section 3.2 below). The connection between
a parameter in M and a polynomial in O is given by a
geometrically robust constructible map θ which has the role
of an abstraction function. Additionally, the polynomials in
O can always (not necessarily efficiently) be implemented
by an arithmetic circuit which we model with a suitable
framed data structure N . The coefficientwise description of
the elements of O defines a polynomial map ω : N → O.
On the other hand, we need to parametrize N by M using
a geometrically robust constructible map µ : M → N
(see [8] and [1]). The situation is depicted by the following
commutative diagram.

O } polynomials

N

ω

OO

} arithmetic circuits

M

µ

OO
abstraction function { θ

GG

} parameters

Figure 2: Mathematical model for design in Figure 1

2.2. A Model for Circuit–Based Elimination

Let be given two abstraction functions θ : M → O,
θ′ : M → O′ as before, associated with geometrically
robust constructible maps µ : M → N , µ′ : M → N ′,
and polynomial maps ω : N → O, ω′ : N ′ → O′, namely
θ = ω ◦ µ and θ′ = ω′ ◦ µ′. Suppose that there exists a
geometrically robust constructible map τ : O → O′ which
models the computation task of quantifier elimination in
terms of framed abstract data type carriers O and O′. An
implementation of the computation task τ is given by a map
µ′ such that the following diagram of geometrically robust
constructible maps commutes.

We understand the framed data structure N ′ as a math-
ematical model for the output domain of robust and circuit–
based elimination algorithms (see design in Figure 1). This
model is based on [10], [11] and [8] and allows to obtain
exponential lower bounds for the size of N ′. Thus, it is
not likely to improve the complexity of circuit–based elim-
ination algorithms. In the following we are going to extend
this model in order to capture the complexity of information
hiding.

O τ ////// O′

N

ω

OO

N ′
ω′

OO

M

µ

OOθ

FF

µ′

KK

θ′

VV

Figure 3: Our model for circuit–based elimination

3. Proposed Approach

Previous conclusion suggests that we should discard
design in Figure 1 and look for alternative designs if we
want to improve the complexity of the Kronecker algo-
rithm. Thus, we should consider the case where arithmetic
circuits become replaced with another data structure. The
problem of this option is that the Kronecker algorithm and
any circuit–based elimination algorithm is highly coupled
with the current design of polynomials given by arithmetic
circuits. Thus, any change in the design produces a cascade
of modifications along the algorithm. A strategy to avoid this
situation is to hide the representation of polynomials, and
to produce algorithms which only work with the interface
of polynomials.

3.1. Quiz Games: a Model for Information Hiding

In this section we are going to follow the terminology
introduced in Section 2. We are interested in implementa-
tions of computation task τ which are independent of the
representation. In order to describe and capture such imple-
mentations we are going to model the notion of information
hiding given by [2] and [7]. To this end, we shall define
a two–party protocol called quiz game which models the
notion of information hiding. The model we are going to
describe is the same as in [1]. However, in this work we
focus on the main aspects of software engineering without
renouncing on mathematical precision.

The agents in the quiz game protocol are called quizmas-
ter and player. The player models the programmer and the
quizmaster models the object–oriented paradigm where the
programmer works. The player (programmer) has unlimited
computational power (we do not restrict his creativity) but
he is only restricted to use the interface provided by the class
Polynomial (observers and constructors). This restriction on
the tools available to the player in combination with its
unlimited power to combine such tools models an object–
oriented algorithm.

On the other hand, the quizmaster, who models the
computation problem to solve, hides the internal repre-
sentation of polynomials and only provides observers and
constructors to work with polynomials. Direct access to the
representation is denied and the player do not know whether
the polynomials are given by coefficients, arithmetic circuits,

or other data structure. Thus, the quizmaster also models the
notion of information hiding.

What is specific of the object–oriented paradigm in this
analysis of information hiding? the restriction to only use
observers and constructors and hide the internal represen-
tation. Therefore, our model capture the elimination algo-
rithms produced by any language which supports abstract
data types.

The Protocol of the Quiz Game. The following points
describe the protocol for an instance of the game.

• In a first step, the quizmaster chooses a parameter
u in M which by means of abstraction function θ
represents an input polynomial of the framed ab-
stract data type carrier O, namely θ(u). This polyno-
mial θ(u) determines an output polynomial τ(θ(u))
which is the result of the elimination task τ . The
player is required to compute this output polynomial
by means of operations applied to polynomial θ(u).
The quizmaster hides the representation u and only
provides queries, creators and commands (observers
and constructors) to operate with polynomial θ(u).

• In a second step, the player asks the quizmaster
questions about the input polynomial θ(u). These
questions are limited to query functions (observers).
Consequently, quizmaster’s answers σ(θ(u)) consti-
tute a vector of complex values which depend only
on the input polynomial θ(u) and are independent
of the hidden representation u.

• In a third step, the player applies creators and
commands (constructors) to quizmaster’s answers
σ(θ(u)) to compute the required output polynomial
τ(θ(u)).

• Finally, the player sends to the quizmaster his
computation µ∗(σ(θ(u))) which is a representa-
tion for the output polynomial. Then, the quiz-
master tests whether player’s representation v∗ :=
µ∗(σ(θ(u))) represents the required output polyno-
mial τ(θ(u)). To this end, the quizmaster checks
whether ω∗(v∗) = τ(θ(u)), in such a case the player
wins the instance of the game given by u. Observe
that this last test is carried–out by the quizmaster
within efficient complexity bounds since θ′ and θ∗

belong to a compatible collection of abstraction
functions. Thus, this step has no influence in the
complexity of the whole process.

The whole situation becomes depicted by the commuta-
tive diagram in Figure 4.

We say that the player has a winning strategy if he wins
the game for any u ∈M.

A winning strategy is called efficient if the size of N ∗
is polynomial in the size of N . Otherwise it is called
inefficient. Observe that σ̃ and θ∗ = ω∗ ◦ µ∗ define a

O∗ M∗

µ∗||

θ∗oooooo O τ //σ̃oooooo O′

N ∗
ω∗

OO

N

ω

OO

N ′
ω′

OO

M

σ

__

µ

OOθ

FF

µ′

KK

θ′

VV

Figure 4: Our model for object–oriented elimination

winning strategy for the quiz game protocol if and only
if θ′ = ω∗ ◦ µ∗ ◦ σ̃ ◦ θ = ω∗ ◦ µ∗ ◦ σ = θ∗ ◦ σ holds. In this
case we have O′ = O∗.

3.2. Example: an alternative identity function

We are going to finish this section with an example of
our quiz game protocol: the identity function of polynomi-
als. We are going to show that information hiding imposes
an intrinsic and non-trivial complexity lower bound to this
simple function.

Let D ∈ N and

FD(U,X) :=(UD+1 − 1)
∑

0≤k≤D

UkXk ∈ C[U,X],

OD := {FD(u,X);u ∈ C}, MD := C and
θD : MD → OD, θD(u) := FD(u,X), u ∈ C. The set of
univariate polynomials OD is a framed abstract data type.
Let MD and ND := MD be framed data structures and
θD an abstraction function associated with the polynomial
maps µD := idMD

and ωD := θD. In this scenario, the
computation task τD is the identity function of OD. A
trivial implementation should be the identity function of the
representation, namely µ′D = idMD

. Unfortunately, this im-
plementation accesses to the representation of polynomials.
We are going to play a quiz game in order to model an
implementation of τD = idOD

which does not have access to
the representation. Figure 5 illustrates the identity function
and its implementation.

OD
τD:=idOD////// O′D

ND

ωD

OO

N ′D

ω′D

OO

MD

µD

OO
θD

GG

µ′D

JJ

θ′D

TT

Figure 5: Identity function of polynomials

Observe that there are ten natural (random) numbers
ξ

(D)
1 , . . . , ξ

(D)
10 such that the image M∗D of the polynomial

map σ̃D : OD →M∗D is a subset of C10, and, for u ∈MD,

σ̃D(F (u,X)) := (FD(u, ξ
(D)
1), . . . , FD(u, ξ

(D)
10))

models mathematically a computation in terms of the inter-
face of polynomials, more precisely, σ̃D models a kind of
method of the class Polynomial called observer (observers
and constructors of a class are a modern name for the
routines described in [7]).

Let us consider a quiz game adapted to the situation.
The player disposes over an abstraction function θ∗D with
N ∗D a framed data structure and µ∗D a geometrically robust
constructible and ω∗D a polynomial map. Observe that θ∗D
interpolates the polynomials FD(u,X) ∈ OD from the
data σ̃D(F (u,X)) ∈ M∗D, u ∈ MD. Thus, θ∗D models
mathematically a constructor of the class Polynomial.

The quizmaster chooses a parameter u ∈MD and hides
it to the player. The player asks to the player the values
contained in the vector

σ̃D(θD(u)) = (F (u, ξD1), . . . , F (u, ξD10)) ∈M∗D
and computes from them the vector v∗ = µ∗(σ̃D(θD(u))).
Finally the quizmaster checks whether F (u,X) = ω∗D(v∗)
holds. If the player has a winning strategy we obtain the
following commutative diagram

O∗D M∗D ⊆ C10

µ∗Dyy

θ∗Doooooo OD
τD=idOD//

σ̃Doooooo O′D

N ∗D

ω∗D

OO

ND

ωD

OO

N ′D

ω′D

OO

MD

σD

aa

µD

OO
θD

GG

µ′D

JJ

θ′D

TT

Figure 6: An alternative identity function

Any polynomial in OD can be represented by an arith-
metic circuit of logarithmic size. On the other hand, observe
that the player computes a polynomial whose representation
v∗ belongs to N ∗D. With our method we are able to prove
that the size of N ∗D is at least D + 1. This exponential
complexity blow up between a trivial implementation of the
identity function (namely, return the representation) and an
implementation which does not have access to the repre-
sentation (σ̃D ◦ θ∗D) is due to the fact that we imposed the
conditions of geometrical robustness and information hiding.

4. Applications

4.1. Lower Complexity Bounds

For details and proofs in this section we refer to [1].
Let L, n ∈ N with 2

L
4 ≥ n and let OL,n be the abstract

data type of all polynomials of C[X1, . . . , Xn] which can

be evaluated using at most L essential multiplications (C–
linear operations are free). We think the polynomials inOL,n
represented by arithmetic circuits and let us suppose that
this representation is hidden behind the interface of class
Polynomial (see Figure 1).

Theorem 7. Consider the task of replacing the given hidden
representation of the elements of OL,n by a known one
using a quiz game with winning strategy. Then any such
quiz game is inefficient requiring a representation of size
at least 2Ω(Ln).

In particular, Theorem 7 generalizes our example in
Section 3.2 and says that there exist polynomials which
are easy to evaluate, but difficult to interpolate. This inter-
polation result shows that our quiz game model allows us
to obtain not only results concerning elimination but also
other problems in scientific computing, for example, we
have results in neural networks (see e.g. [1] Section 4.2).

We can generalize Theorem 7 in the following theorem.

Theorem 8. Let n be a discrete parameter. There exists
an existential first order formula of size O(n3) of the
elementary language of C which possesses a canonical
equivalent quantifier free formula containing a robustly
parametrized univariate polynomial such that any rep-
resentation of this polynomial (obtained by means of
robust and object–oriented algorithms) is of size 2n.

In other words, Theorem 8 formalizes a common intu-
ition which states that the use of abstraction, information
hiding and interfaces introduces also a certain limit to the
efficiency of the underlying algorithms and programs.

4.2. Software Design

In this section we highlight some practical implications
of previous results. According to SEMAT2 (the initiative to
reshape software engineering to qualify as a rigorous disci-
pline) the three main activities in software construction are
specification, design and implementation. Our computation
model can be used in the design activity when a software
design should satisfy a certain complexity requirement. The
following paragraph illustrates this application.

Let us recall that elimination algorithms are usually
implemented according to design in Figure 1, namely poly-
nomials implemented in terms of arithmetic circuits. An
example of this kind of algorithms is the Kronecker algo-
rithm whose complexity status was proved to be optimal (see
e.g. [8]). Therefore, we may conclude that a circuit–based
implementation of polynomials cannot be used in order to
improve the current complexity of circuit–based elimina-
tion algorithms and we should discard design in Figure 1
and think in alternative designs. Which implementation of
polynomials should we use? Figure below illustrates this
question.

2. SEMAT (Software Engineering Method and Theory) was launched in
December 2009 by Ivar Jacobson, Bertrand Meyer, and Richard Soley.

Polynomial

?

Figure 7: Our model evaluates a design for elimination

According to Section 3, an alternative to deal with
unknown data structures is to use object–oriented program-
ming and information hiding. Thus, we hide the representa-
tion of polynomials and we define our algorithms in terms
of suitable methods of the class Polynomial (observers and
constructors). Notice that we do not fix in advance the
software design, but we fix the tools available for the pro-
grammer, namely, the methods interface. Our computation
model based in quiz games captures these restrictions and
allows us to give Theorem 8 which says that it is not possible
to improve the complexity of elimination algorithms using
the object–oriented approach (and considering robust imple-
mentations). In this sense, our computation model allows us
to discard an interface. Moreover, Theorem 8 suggests that
there is no interface divided into observers and constructors
of polynomials which may be used to solve elimination in an
efficient way. Such a conclusion suggests an intrinsic limit
for the software designer of modules, class interfaces, and
abstract data types of polynomials. This conclusion is very
similar to a computability result but a little more specific
because it refers to the ability to make an efficient software.

5. Open Questions and Future Work

We described a computation model which is inspired in
the notion of information hiding. This computation model
allows us to prove non–trivial and exponential lower com-
plexity bounds for fundamental problems in computational
mathematics, although we exhibited a simple case study,
namely the identity function of polynomials. This applica-
tion of our model may be summarized as follows: on one
hand we have an algorithm produced by software engineer-
ing criteria (information hiding and non–functional require-
ments) on the other hand we have a mathematical model
which captures this kind of algorithms. This mathematical
model (the quiz game we introduce in Section 3) allows
us the application of mathematical tools in order to obtain
conclusions which must be translated back to the original
computer science context. Figure 8 below illustrates this
idea.

Figure 8 shows an existing synergy between Software
Engineering and Algebraic Complexity Theory. This syn-
ergy allows formal mathematical conclusions which are new
in the current state of the art in Computational Complexity
Theory ([1]) and may be useful tools to understand im-
portant and still informal Software Engineering concepts,
e.g. information hiding. This application may be a step

algorithm produced by
Software Engineering Mathematical computation model

modeling Software Engineering →

← traducing mathematical results

Figure 8: Algorithms and its model.

towards the goal of the SEMAT kernel which wants to
make Software Engineering become a rigorous discipline.
However, our results are limited to examples of a very
specific field of mathematics, namely algebraic geometry.
An open question asks for the generalization of our model
to other problems, for example, an application of our quiz
game model can be found in the subject of neural networks
in machine learning (see [1]).

Acknowledgements

The author is grateful to Joos Heintz for his advice
and guidance during the writing of this work, to Sebastián
Uchitel and Diego Garvervetsky for helpful comments con-
cerning software engineering, and to the referees for their
valuable comments which helped to improve the manuscript.

References

[1] B. Bank, J. Heintz, G. Matera, J. L. Montaña, L. M. Pardo, and
A. Rojas Paredes, “Quiz games as a model for information hiding,”
Journal of Complexity, vol. 34, pp. 1 – 29, 2016.

[2] D. L. Parnas, “On the criteria to be used in decomposing systems
into modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec.
1972.

[3] S. I. Puddu, “Un algoritmo efectivo para la eliminación de cuantifi-
cadores,” Ph.D. dissertation, Universidad de Buenos Aires, Argentina,
1995.

[4] J. Kollar, “Sharp effective nullstellensatz,” Journal of the American
Mathematical Society, vol. 1, no. 4, pp. 963–975, 1988.

[5] M. Sombra, “A sparse effective nullstellensatz,” Adv. Appl. Math.,
vol. 22, no. 2, pp. 271–295, Feb. 1999. [Online]. Available:
http://dx.doi.org/10.1006/aama.1998.0633

[6] M. Giusti, G. Lecerf, and B. Salvy, “A Gröbner Free
Alternative for Polynomial System Solving,” Journal of
Complexity, vol. 17, no. 1, pp. 154 – 211, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0885064X00905715

[7] B. Meyer, Object–oriented software construction, 2nd ed. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1997.

[8] J. Heintz, B. Kuijpers, and A. Rojas Paredes, “Software engineering
and complexity in effective algebraic geometry,” Journal of Complex-
ity, vol. 29, no. 1, pp. 92–138, 2013.

[9] A. Rojas Paredes, “Complexity as quality attribute in software de-
sign,” Master’s thesis, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, 2011.

[10] J. Heintz and J. Morgenstern, “On the intrinsic complexity of elim-
ination theory,” Journal of Complexity, vol. 9, no. 4, pp. 471–498,
Dec. 1993.

[11] N. Giménez, J. Heintz, G. Matera, and P. Solernó, “Lower complexity
bounds for interpolation algorithms,” Journal of Complexity, vol. 27,
no. 2, pp. 151 – 187, 2011.

