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Abstract—We study synchronization games on planar au-
tomata. We prove that recognizing the planar games that can
be won by the synchronizer is a co-NP hard problem. We prove
some additional results indicating that planar games are as
hard as nonplanar games. Those results amount to show that
planar automata are representative of the intricacies of automata
synchronization.
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I. INTRODUCTION

This work is related to the synchronization of deterministic
finite state automata (DFAs, for short). We study synchroniza-
tion games (see [2]) that are played on planar automata.

Recall that a DFA is a triple M = (QM,ΣM,δM) such
that:

• QM is a finite set, the set of internal states of
automaton M.

• ΣM is a finite alphabet, the input alphabet of M.
• δM is the transition function of M, which is a function

from ΣM ×QM to QM.

Let M = (QM,ΣM,δM) be a DFA. We use the symbol
Σ∗

M to denote the set of finite strings over the alphabet ΣM.
The function δ̂M : Σ∗

M × QM → QM, defined by the
equation:

δ̂M (w1...wn, q) = δM

(
wn, δ̂M (w1...wn−1, q)

)
,

determines the state that is reached when automaton M scans
the string w1...wn, beginning in the state q.

We say that an automaton M is synchronizing, if and only
if, there exists a synchronizing string w ∈ Σ∗

M, such that for
all p, q ∈ QM, the equality

δ̂M (w, p) = δ̂M (w, q)

holds.
There are many works related to the above notion (see

[6] for an account). Most of those works are focused on the
study of short synchronizing strings.
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Let M be a n-state synchronizing automaton, and let w
be a shortest synchronizing string for M, it is easy to prove
that |w| ∈ O

(
n3

)
, where |w| denotes the length of w. Černy

conjectured that |w| ≤ (n− 1)
2, it is the famous Černy’s

Conjecture.(see [6]).

A related notion is the notion of subset synchronization.
Given an automaton M, and given q1, ..., qk ∈ QM, a
synchronizing string for those k states, is a string w, such
that for all i, j ≤ k, the equality

δ̂M (w, qi) = δ̂M (w, qj)

holds.

We are specially interested in subset synchronization.
Therefore, we decided to investigate the novel concept of
subset synchronization games, focussing on planar automata.

Organization of the work, contributions and relations
to previous work. This work is organized into three
sections. In section 1 we introduce the synchronization
games that we want to study, and we show that some other
games that were previously studied in the literature, as for
example accessibility games (see [3]), are special cases of
synchronization. In section 2 we study the length of optimal
playing strategies, focussing on pair synchronization games.
We prove a quadratic upper bound, and we prove that this
quadratic bound is optimal. To achieve the later result we
exhibit a sequence of pair-synchronization games which
cannot be won by the synchronizer faster than the given
bound. We observe that the constructed sequence is planar,
and then we ask if planar automata are the complexity core
of synchronization games. In section 3 we investigate subset
synchronization games played on planar non-synchronizing
automata. We prove that it is co-NP hard to recognize the
planar games for which the synchronizer has a winning
strategy, and we also prove that the longest possible games
are played on planar automata.

This work is related to the investigations on Černy’s
Conjecture (see [6] and the references therein). We have
chosen to investigate the novel notion of synchronization
games introduced in [2]. There are some previous works
that study synchronization of automata from the point of
view of game theory: The aforementioned work of Fominykh
et al [2] define a new class of accessibility games related
to synchronization, while Gonze and Jungers use game



theoretical techniques to study the synchronizing time of
automata [3]. We generalize the notion of synchronization
games, and this generalization allow us to study accessibility
games (see [3]) as a special case of our games. Then, we
focus on synchronization games played on planar automata.
We decided to focus on the later type of automata given that
we have showed before that this special class of automata is
representative of the intricacies of synchronization [4]

II. SYNCHRONIZATION GAMES

Volkov et al [2] introduced a class of combinatorial games
on automata that is related to synchronization.

Definition 1: A synchronization game is given by a triple
(M, Sc, Sp), such that:

1) M is a synchronizing automaton, say M =
(Q,Σ, δ) .

2) Sc, Sp ⊆ Σ.

The game is played by two contenders, the synchronizer
and the spoiler. The rules of the game estate that at odd rounds
the synchronizer must choose a character from Sc, while at
even rounds the spoiler must choose a character from Sp. The
goal of the synchronizer is to produce (in despite of the spoiler
choices) a synchronizing string for M. The aim of the spoiler
is to avoid synchronization.

We say that game (M, Sc, Sp) is standard, if and only if,
the equalities Sc = Sp = Σ hold. We say that M is winnable,
if and only if, the synchronizer has a winning strategy for the
standard game (M,Σ,Σ) . Volkov et al showed that there exist
synchronizing automata that are not winnable [2]. Examples of
the later type of automata are Černy automata [?]. It is natural
to ask: Which are the winnable automata?

Definition 2: A subset synchronization game is given by a
4-tuple (M, Sc, Sp,A), such that:

1) M = (Q,Σ, δ) is a synchronizing automaton.
2) Sc, Sp ⊆ Σ.
3) A ⊂ Q.

The goal of the synchronizer is to synchronize the set A.

Volkov et al [2] proved that an automaton M is winnable,
if and only if, the synchronizer has winning strategies for the
synchronization games in the set

{(M,Σ,Σ, {p, q}) : p, q ∈ Q} .

Therefore, we say that reduction to pairs holds true for
synchronization games1. It can also be proved (see below)
that the synchronizer has a winning strategy for the game
(M, Sc, Sp), if and only if, he has a winning strategy for
each one of the games in the set

{(M, Sc, Sp, {p, q}) : p, q ∈ Q} ,

and it means that reduction to pairs also holds for non-standard
games. We use the term pair-synchronization games to refer
the games of the form (M, Sc, Sp, {p, q}) .

1Recall that an automaton M is synchronizing, if and only if, all its pairs
can be synchronized. It implies, among other things, that if one wants to
synchronize the states of M, he can choose to synchronize the pairs one by
one in a sequential fashion.

Reduction to pairs yields a polynomial time algorithm for
the recognition of the games that are won by the synchronizer,
as well as a cubic upperbound on the length of his optimal
strategies. The later upperbound follows from the fact that op-
timal strategies for pair synchronization games have quadratic
length. (see below).

It is important to remark that the investigation on synchro-
nization games can have important applications. We would
like to notice that many different combinatorial games can
be represented as special cases of synchronization games. It is
the case with the accessibility games studied by Gurevich et al
[3]. An accessibility game is given by a triple (G, v,A), where
G is a finite digraph, v is a node of G and A is a set of nodes.
The game is played by two contenders that we call Alice and
Bob. At the beginning of the game a token is placed on node v.
Alice chooses an outgoing edge, say (v, u) ∈ E (G) , and the
token is moved along this edge to be placed on node u. Then,
Bob chooses an edge going out from u, and moves the token
consistently. The game continues in this way, Alice playing at
odd rounds and Bob playing at even rounds. The goal of Alice
is to place the token on a node included in the set A.

Suppose that G is a regular digraph of degree k, that is:
Suppose that the outdegree of the nodes of G is equal to k.
Given v ∈ G, one can randomly choose a linear ordering
of the edges going out from v. Doing so is the same as
labelling those outgoing edges with the letters {1, ..., k} .
It can be done simultaneously for all the nodes of G. We
observe that if one labels all the edges of G according to
the later procedure, he gets an automaton MG. Suppose we
have constructed such an automaton. Then, we can add a
new node s. Given an edge (v, a) such that a ∈ A, we
replace this edge by a new edge (v, s), and we attach to
(v, s) the label that was attached to (v, a) . Moreover, given
i ≤ k, we add a loop (s, s) with label k. We notice that
winning the game (G, v,A) is the same as winning the
standard game (NG, {1, ..., k} , {1, ..., k} , {v, s}) . Thus, the
accessibility game (G, v,A) is correctly represented by the
later pair synchronization game.

Now suppose that G is not regular, and let k be the
maximum outdegree of the nodes of G. Given v ∈ G, if
deg+ (v) < k, we add a node sv and we add k − deg+ (v)
edges directed from v to sv. Moreover, we attach k loops
to node sv . If we do the later for all the nodes of G, we
get a regular digraph H. We observe that the game (G, v,A)
is the same as the game (H, v,A). Thus, we can conclude
that accessibility games are suitably represented by standard
synchronization games.

Notice that standard synchronization games can be repre-
sented by accessibility games. Let (M,Σ,Σ, A) be a standard
subset synchronization game, and let k = |A| . The k-tuple
automaton M(k) = (Qk,Σ, δk) is the automaton given by:

• Suppose that Q is the set of states of M, then Qk =
{C ⊆ Q : |C| ≤ k} .

• The input alphabet of M(k) is the same as the input
alphabet of M.

• Function δk is defined by

δk (C, b) = {δ (q, b) : q ∈ C} .



Let S be the set {C ∈ Qk : |C| = 1}, and let G be the
underlying digraph of M(k). It is easy to check that the
synchronization game (M,Σ,Σ, A) is the same as the ac-
cessibility game (G,A, S) . Thus, we can conclude that the
important class of accessibility games studied by Gurevich et al
[3] is the same as the class of standard subset synchronization
games.

Remark 3: It seems that subset synchronization games can
be used to represent a wide variety of games, and it also seems
that the claimed versatility of those games comes from the
possibility of playing nonstandard games.

III. ON THE LENGTH OF OPTIMAL PLAYING STRATEGIES

Notation 4: Given A ⊆ Q, we use the symbol δ (A,w) to
denote the set

{
p ∈ Q : ∃a ∈ A

(
δ̂ (a, w) = p

)}
.

Consider a game (M, Sc, Sp). The synchronizer can
choose to play in the following way:

• He picks a pair p, q ∈ Q, and he plays the game
(M, Sc, Sp, {p, q}).

• Suppose the synchronizer wins the game
(M, Sc, Sp, {p, q}), and suppose that w1...wm

is the ordered sequence of characters that were
chosen by the two contenders along this game. Then,
the synchronizer picks r, s ∈ δ (Q,w), and he plays
the game (M, Sc, Sp, {r, s}) . He continues playing
in this way until all the states get synchronized.

It follows that if the synchronizer has a winning strategy
for all the pair-synchronization games, then he has a winning
strategy for the game (M, Sc, Sp) . Moreover, if m is an
upperbound on the length of the optimal strategies for all the
pair-synchronization games that can be played on M, then
m · (|Q| − 1) is an upperbound on the length of an optimal
strategy for the game (M, Sc, Sp) . Then, if m ∈ O

(
|Q|2

)

we get that optimal playing strategies have cubic length.

Theorem 5: Let M be a n-state synchronizing automaton,
if the synchronizer has a winning strategy for the game
(M, Sc, Sp, {p, q}), then he has a winning strategy whose

length is upperbounded by 2 ·

(
n
2

)
.

Proof: Suppose that the synchronizer has a winning
strategy for the game (M, Sc, Sp, {p, q}), and suppose that
he plays optimally. Let

A = C1, ..., CM

be the sequence of unordered pairs (configurations) that are

visited along the game, and suppose that M > 2 ·

(
n
2

)
.

Then, there exists two odd integers i < j such that Ci = Cj

and |Ci| = 2. If the synchronizer is playing optimally, and in
despite of this he produces a loop, then the spoiler is forcing
this loop. The spoiler can force this loop infinite many times,
and the synchronizer has not a winning strategy (contradic-
tion). The later contradiction indicates that the synchronizer

wins the game in less than 2 ·

(
n
2

)
+ 1 steps provided he

plays optimally.

It is natural to ask if the quadratic bound 2 ·

(
n
2

)
is

optimal. We prove that it is the case, we construct a sequence
of pair synchronization games such that the synchronizer has
a winning strategy for those games, but such that the length of
an optimal playing strategy for the n-th game in the sequence

is equal to 2 ·

(
n
2

)
− 1.

Theorem 6: The upperbound 2 ·

(
n
2

)
is optimal.

Proof: We construct a sequence
{(Cn, Scn, Spn, {pn, qn})}n≥2 of pair-synchronization
games. The synchronizer has a winning strategy for all the

games in the sequence, but he requires time 2 ·

(
n
2

)
to

win the game (Cn, Scn, Spn, {pn, qn}) . First, we define the
automata in the set {Cn : n ≥ 2} . Let n be a fixed positive
integer.

• Automaton Cn = (Qn, {a, b, c} , δn) .

• Qn = {0, 1, ..., n− 1} .

• The transition function δn is defined by:
Letter a labels a directed cycle 0 → 1 → · · · →
n− 1 → 0. Letter b labels the set of edges

{(i, i) : i 6= 0} ∪ {(0, 1)} ,

while letter c labels the set of loops

{(i, i) : i = 0, 1, ..., n− 1} .

The graphic below corresponds to the transition digraph of
automaton Cn.

We observe that if we restrict the alphabet to the set {a, b},
automaton Cn becomes equal to the n-th Černy automaton.
Recall that all the Černy automata are synchronizing, and
take into account that Černy automata are not winnable. The
later fact indicates that we cannot choose Sc = Sp = Σ. We
want to make the work of the synchronizer becomes as easy
as possible, then we set Sp = {c} , and Sc = {a, b} . Thus,
the spoiler is restricted to play the neutral character c, and
it means that he cannot stop the synchronizing work that is
being done by the synchronizer.

We set pn = 1 and qn = ⌈n
2 ⌉. If the Synchronizer wants to

play optimally he must choose a minimal synchronizing string
for the pair

{
1, ⌈n

2 ⌉
}

and play according to it. Let w1...wm

be a minimal synchronizing string, it is known that

m =

(
n
2

)
(see [5]). Then, an optimal play has the form

w1cw2c...wn−1cwn−2.

And its length is equal to 2 ·

(
n
2

)
− 1.

It is important to remark that the sequence constructed in
the above proof is planar, it means that all those games are



being played on planar automata (automata whose transition
digraph is planar, see [4]).

We ask: What is the role played by planar automata? Are
those automata representative of the intricacies of synchroniza-
tion games?

IV. SYNCHRONIZATION GAMES AND
NON-SYNCHRONIZING PLANAR AUTOMATA

We have constructed a sequence of games that exhibits a
certain type of extremal behavior: Winning those games is as
hard as possible. It is interesting to observe that the constructed
sequence is a sequence of planar games. It is not a surprise,
given our previous investigations on the synchronization of
planar automata [4], from which we could conclude that planar
automata are representative of the intricacies of synchroniza-
tion. The aforementioned construction suggests that planar
automata are also representative of the complex behavior of
synchronization games (the hardest games are planar games).

We study in this section some facts that are related to
subset synchronization games. On one hand, we restrict the
scope of our investigations by focussing on planar automata.
On the other hand, we expand this scope by considering non-
synchronizing automata.

Subset synchronization games played on non-
synchronizing automata exhibit some features that are
not present in Černy’s scenario. First at all, it can be showed
that reduction to pairs is not longer valid. To this end, it is
sufficient to exhibit an automaton M = (Q,Σ, δ) , and a set
A ⊂ Q, such that the synchronizer has a wining strategy for
all the pairs included in A, but such that he does not have
a winning strategy for the set A. Consider the automaton
M = (Q,Σ, δ) that is defined by:

1) Q = {1, 2, 3, 4, 5} .
2) Σ = {a, b, c} .

3) The transition function δ is defined by the following
equations:

δ (i, x) = i, if i = 4, 5 and x = a, b, c,

δ (1, a) = δ (2, a) = 4 and δ (3, a) = 5,

δ (1, b) = δ (3, b) = 5 and δ (2, b) = 4,

δ (2, c) = δ (3, c) = 5 and δ (1, c) = 4.

The graphic below is the transition digraph of automaton M.

Notice that the set {1, 2, 3} cannot be synchronized,
but notice also that the synchronizer counts with a
winning strategy for the standard games encoded by the
pairs {1, 2} , {1, 3} and {2, 3}: He plays a in the game
(M, {a, b, c} , {a, b, c} , {1, 2}) , he plays b in the game
(M, {a, b, c} , {a, b, c} , {1, 3}), and he plays c in the game
(M, {a, b, c} , {a, b, c} , {2, 3}) .
Now, that reduction to pairs is lost, it is not clear if there
exists a polynomial time algorithm for the recognition of the
set

S = {(M,Σ,Σ, A)} ,

where the synchronizer wins the standard game (M,Σ,Σ, A) .

Theorem 7: The set S is co-NP hard.

Proof: We prove that TAUT is ptime reducible to S.
Recall that TAUT is the problem:

• Input: α, where α is a formula in conjunctive normal
form.

• Problem: Decide if α is a tautology.

Our reduction is similar to Eppstein’s reduction (see ref-
erence [?]). Let α =

∧
i≤m

Ci (X2, X4,..., X2n) be a boolean



formula over the variables X2, ..., X2n. We can write the
clause Ci (X1, ..., X2n) as Y i

1 ∨· · ·∨Y i
2n, where for all i ≤ m

and for all j ≤ 2n it happens that Y i
j ∈ {Xj ,∼ Xj , o (Xj)} .

The symbol o (Xj) is interpreted as: Variable Xj does not
occur in the given clause. Notice that we have chosen to write
the formula in such a way that for all i ≤ m and for all j ≤ n
the equality Y i

2j−1 = o (X2j−1) holds.

Given α, we construct an automaton Mα. The input
alphabet of Mαis equal to {0, 1} . The set of nodes of G (Mα)
is equal to A1⊔· · ·⊔Am⊔{c} (the symbol ⊔ denotes disjoint
union), where:

• Ai = {i1, ..., i2n, i2n+1} .

The transitions are defined in the following way:

First we suppose that k ≤ 2n.

δ (ik, a) =





ik+1, if a = 1 and Y i
k =∼ Xk, o (Xk) ,

c, if a = 1 and Y i
k = Xk,

ik+1, if a = 0 and Y i
k = Xk, o (Xk) ,

c, if a = 0 and Y i
k =∼ Xk.

If k = 2n+ 1 we have that

δ (i2n+1, a) = i2n+1.

Moreover, we have that

δ (c, a) = c.

Set Aα = {11, ...,m1} . We observe that α is a tau-
tology, if and only if, the set Aα is synchronized by all
the strings u ∈ {0, 1}2n. Then, if α is a tautology the
synchronizer has a very simple winning strategy for the game
(Mα, {0, 1} , {0, 1} , Aα): It suffices to play at random. Now
suppose that α is not a tautology, there exists v2v4 · · · v2n ∈
{0, 1}n such that for all x1x3 · · ·x2n−1 ∈ {0, 1}n it happens
that x1v2x3 · · ·x2n−1v2n does not satisfy the formula α.
Notice that the spoiler chooses the values of X2, ..., X2n.
Then, if the spoiler chooses to play according to the string
v2v4 · · · v2n he wins: String v2v4 · · · v2n sends one of the
tokens, say the k-th token, to the state k2n+1. Notice that
if the k-th token visits the node k2n+1, then synchronization
becomes impossible. Thus, we have that α is a tautology, if
and only if, the synchronizer has a winning strategy for the
game (Mα, {0, 1} , {0, 1} , Aα) .

It is important to remark that for all α the constructed
automaton Mα is planar. Thus, we have that the restriction
of S to planar automata is also co-NP hard. This later result
amounts to show that planar automata are the hardness core
of synchronization problems (see reference [4]).

Thus, if one does not fix an upperbound on the sizes of the
sets to be synchronized, the corresponding algorithmic problem
becomes hard. It is natural to ask: What could it happens if
we fix such an upperbound? Let k ≥ 1 and let Sk be the set

{(M,Σ,Σ, A) ∈ S : |A| ≤ k} .

Theorem 8: For all k ≥ 1, the set Sk can be recognized in
polynomial time.

Proof: Let (M,Σ,Σ, A) be an instance of Sk . Given M,
we can construct in polynomial time the k-tuple automaton
M(k) = (Qk,Σ, δk) . Let G be the transition digraph of M(k)

and let s
(
M(k)

)
be equal to the set

{A ∈ Q : |A| = 1} ,

we have that (M,Σ,Σ, A) ∈ Sk, if and only if, the triple(
G,A, s

(
M(k)

))
belongs to the set

{(G, v,D) : Alice wins the game (G, v,D)} .

The above set can be easily recognized in polynomial time
(see [3]). Thus, we have a ptime reduction of Sk into a problem
that belongs to the class P (polynomial time), and it implies
that Sk can also be recognized in polynomial time.

We have proven that Sk can be recognized in polynomial
time, we can also prove that a polynomial upperbound O

(
nk

)
holds for the length of the optimal winning strategies of k-
subset synchronization games. The proof of this later fact is
very similar to the proof of theorem 5.

Theorem 9: Suppose that the synchronizer has a winning
strategy for the game (M, Sc, Sp,A) ∈ Sk, then the synchro-
nizer can win in at most O

(
nk

)
steps.

It is natural to ask: Is the above upperbound optimal?

Theorem 10: There exists a sequence
{(Mi, Sci, Spi, Ai)}i≥ 1 of winnable k-subset
synchronization games such that the synchronizer requires
time Ω

(
nk

)
to win the game (Mn, Scn, Spn, An) .

Proof: Let n be a large integer, and let p1, ..., pk be prime
numbers such that n

2k
≤ p1 < ... < pk ≤ n. We set Mn =

(Qn,Σn, δn), where:

1) Qn is the disjoint union of the sets B1 ∪B2 ∪ · · · ∪
Bk ∪ {x} . Moreover we have that for all i ≤ k, the
set Bi is equal to

{
q1i , ..., q

pi

i , k1i , ..., k
pi−1
i

}
.

2) Σn = {a, b} .
3) The function δn is defined by the following equations:

δ (qri , a) = q
r+1modpi

i , for all i ≤ k and r ≤ pi,

δ (qri , b) = kri , for all i ≤ k and for all r 6= pi,

δ (qpi

i , b) = x, for all i ≤ k,

δ (kri , c) = kri , for all i ≤ k, and for c = a, b,

δ (x, c) = x, for c = 0, 1.

We set An =
{
q11 , ...., q

1
k

}
, Scn = {0, 1} and Spn = {0} .

Notice that if the synchronizer wants to win this game, he must
place simultaneously the k tokens on nodes q

p1−1
1 , ...., q

pk−1
k

The last task can be accomplished no matter the way the spoiler
plays (the spoiler is constrained to choose 0 all the time), but
the time required to achieve this goal is Ω (p1 · · · · · pk) =
Ω
(
nk

)
.

We observe, once again, that the sequence {(Mi)}i≥1 is
planar. Thus, we have, once again, that extremal behavior is
achieved by sequences of planar automata.

The following graphic is the transition digraph of Mn.

The results consigned in this section amount to show that:



Planar automata are representative of the intricacies of
subset synchronization and subset synchronization games. We
believe that we have provided further evidence concerning
the conjectured universality of planar automata (see [4]).

V. CONCLUDING REMARKS

We are convinced that almost all the questions about slowly
synchronizing automata can be investigated through the lenses
of planar automata. We have provided some evidence for
this conjecture in a previous work [4]. The present paper
continues with this line of research. We showed that a similar
phenomenon seems to occur when one consider the broader
framework of subset synchronization games. We consider
that the main question is the following one: Does Černy’s
conjecture holds true provided that it holds true for planar
automata? A positive answer to the later question could be a
major step towards the solution of the long-standing Černy’s
conjecture.
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