
Extended Proxy-tester

Laura Brandán Briones∗ and Agnes Madalinski†
∗CONICET and Fa.M.A.F., Universidad Nacional de Córdoba, Argentina, Email: lbrandan@famaf.unc.edu.ar

†Chair of Software Engineering, Otto-von-Guericke-University Magdeburg, Germany, Email: amadalin@gmail.com

Abstract—We present a proxy-tester, which is an engine
for ioco-passive testing. We show characteristics of sound-
ness and completeness of our approach with respect to the
ioco-testing relation. Later, we present a novel framework
that combines our ioco-passive tester with the check of
possible attacks from malicious users.

I. INTRODUCTION

Today, we are facing a smart world where embedded
devices with electronic and software functions, making
them more and more complex. Many of these systems are
critical and require the highest dependability standards
because a system failure might cause injuries or even
deaths. A real challenge is to ensure that a system
operates, during its functioning, properly i.e. according
to its specification. To identify any dysfunction due to
an error occurrence is a demanding task. Therefore,
early detection of errors is the key to support system
performances, ensuring system safety, and increasing
system life.

Testing is a well known practice in industry as well
as in research. Testing’s aim is to execute an implemen-
tations of a system to find failures, i.e. discrepancies
between its real behavior and the intended behavior
described by a specification. In particular, the model-
based testing approach formally describes the system
to be tested with a specification model that express its
correct behavior. Two advantages are achieved with this
practice: first formal techniques can be applied to the
model and second the testing process can be automa-
tized. Particularly, our research is based on model-based
testing (MBT), i.e. the research area that comprises the
usage of models to automate test activities and generate
test from the model [1].

There are two complementary approaches to test im-
plementations: a) active testing: where test cases are
derived from the specification and then executed trigging
its implementation checking if the implementation con-
forms to (w.r.t. a given relation) the specification; and b)
passive testing: where a monitor passively observes the

implementation without disturbing it and checks if the
sequences of observed events conform to (again, w.r.t. a
given relation) the specification. These two approaches
are usually applied to different states of the implemen-
tation process. Normally active testing is done before
the implementation is delivered, in order to realize if
some changes should be done in it; meanwhile passive
testing is done when the implementation is already in
use, because testing infinitely is impossible or because
the system is already in use.

Accordingly, passive testing methods aim to detect
faults by passively observing the implementation in-
put/output events, without interrupting its normal be-
havior. Commonly, the tester corresponds to a kind
of sniffer, which can catch the inputs that go to the
implementation and the outputs that the implementation
gives to the environment, where it is running. Then,
this information is used to check if the implementation
behavior corresponds or not to the desired specification
behavior.

In this paper we initially present a passive testing
approach based on the notion of a Proxy-tester similar as
the one presented in [2]. The idea is to make an inter-
mediate (the Proxy-tester) between the implementation
and the user. This Proxy-tester receives inputs from the
environment and forwards them to the implementation
and does the opposite with outputs, meanwhile it checks
for the ioco conformance testing relation.

There are two important notions here. First, we recall
that complete test suites are infinite, and thus, not practi-
cally executable. Our contribution gives another instance
of testing to aid in the naturally incomplete testing phase,
but it does not try to overcome the testing phase. Second,
because of the previous point more than checking for
conformance our approach checks for non-conformance,
meaning that more than validating implementations we
find out ioco-incorrect implementations.

It is known that ioco testing theory has the assumption
that implementations are input enabled, i.e. that they can
never refuse an input that the environment gives to it. If

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 101

'
&

$
%Client

�
�
�
�System S

?

�
�

�
�

Imp(M(S))
+

Ext-proxy(M(S))'

&

$

%

Company �
�
�
�M(S) ��

�
��
�*

-
HHH

HHHj

�
�
�
�derive

Ext-proxy(M(S))
�
�
�
�
��

�
�
�
�build

Imp(M(S)) PPPq�
�
�
�derive set of

tests M(S)
��
�*

�
�
�
�testing

Imp(M(S))

PP
PPi Not

6

Yes

Fig. 1: Motivation

it is known that an implementation was checked with
ioco testing then the input enabled requirement could
allow malicious users to trigger the implementation with
a malicious purpose. Thus, using the advantage that our
Proxy-tester receives events from the environment and it
passes them trough to the implementation we can also
be aware of the non specified inputs to rise an alarm,
etc. This is the other contribution of this paper.

Therefore, we present a novel framework that inte-
grates passive testing identifying failures with respect
to the ioco model-based testing theory and at the same
time informs if a malicious user is trying to provoke
the implementation with a non specified input of the
specification. Hence, the possibly incorrect implemen-
tations that are not discovered by the testing performed
before delivering, these failures, when they occur, can
be detected by the Extended-Proxy engine. This gives
an extensive inside of the erroneous behavior of the
monitored system. Moreover, we show that the set of
failures that ioco testing framework caught is still being
caught, proving that our approach is safe with respect to
that theory.

The idea behind our proposed framework is illustrated
in Figure ??. Suppose a client orders a system to a com-
pany. Then, the company builds such as system from the
given specification and performs all the tests that it can.
Note that if necessary the implementation is modified to
satisfy the testing relation. Naturally, this phase has to
be finite so even an infinite test could be derived only
a finite number of them can be executed. Meanwhile,
an Extended-Proxy (the passive Testing engine and the
malicious-user checker) is derived. Finally, after testing
is successfully performed the implemented system and

the Extended-Proxy are delivered to the client. So, with
the Extended-Proxy the client is able to perform test
failures from an incorrect implementation (which had
not been caught in the inherently incomplete testing) and
to, at the same time, controls for the possible attacks of
malicious-users.

The paper is organized as follows. First, in Section III
a theoretical background is presented introducing input-
output transition system (IOTS) and some notions related
to our approach. In Section IV we make a short introduc-
tion to the ioco model-based testing theory. Second, in
Section V our Proxy-tester is defined, and we prove some
properties. Third, in Section VI we extend the Proxy-
tester and finally in Section VII conclusions are drawn
and future works are presented. Throughout the paper
we illustrate the presented notions with examples.

II. RELATED WORK

The theory of testing has become a strong subject of
research, in particular, the application of formal methods
in the area of model-driven testing has led to a better
understanding of the conformance notion between im-
plementations and specifications. Automate generation
methods of test suites from specifications [3], [4], [5],
[1] where developed, which have led to a new generation
of powerful test generation and execution tools such as
SpecExplorer [6], TorX [7] and TGV [8].

A clear advantage of a testing formal approach is the
provable soundness of the generated test suites, i.e. the
property that each generated test suite will only reject
implementations that do not conform to the given spec-
ification. In many cases also an exhaustiveness result is
obtained, i.e. the property that for each non-conforming

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 102

implementation a test case can be generated that will
expose all errors (cf. [3]). In practice, the above notion of
exhaustiveness is usually problematic, since exhaustive
test suites will contain infinitely many tests. This raises
the question on test selection, i.e. the selection of well
chosen, finite test suites that can be generated (and
executed) within the available resources [9]. Commonly,
it is clear that some tests will not be executed before
product delivery (maybe the longer ones or the non
common ones, etc.).

On the other hand passive testing offers a continues
monitoring for systems under test while they are in op-
eration without disturbing them. The ioco passive testing
has been introduced in [2], where traces are extracted by
means of a Proxy-tester which represents an intermediary
between client applications and the implementation (i.e.
without running in the same environment as the imple-
mentation). Later, a combination of ioco passive testing
and runtime verification has been presented in [10].

Other works on passive testing are related to networks
[11], protocols [12] and Web services [2]. They rely
on sniffer-based tool as a central point to extract all the
client requests and implementation reactions (messages,
packets, etc.). A restricted access to the implementation
environment is considered in [13], where a Proxy-tester
has been presented. Such a Proxy-tester represents an
intermediary between client applications and the imple-
mentation, which is able to receive the client traffic and
to forward it to the implementation and vice versa.

In Section VI we consider the possibility that a
malicious-user is trying to use the system in a manner
that was not specified by the specification, so our proxy
can inform us about this unexpected behavior from the
user. This analysis can also be related with aspect-
oriented programming where to increase modularity a
separation of concerns is done, namely a cross-cutting
concerns (security, profiling, etc.) [14], [15]. Where ad-
ditional behavior is added to the code without modifying
the code itself, similarly as our proxy. We plant to
investigate further this relation to establish similarities.

III. PRELIMINARIES

We use standard definitions for labeled transition
systems. Let Σ be any set of events. Then, with Σ∗ and
Σω we denote the set of all finite and infinite sequences
over Σ. With σ v ρ we denote that σ is a prefix of ρ.

An input-output transition system is an IOTS with the
set of observable events, Σ, subdivided into input events
ΣI and output events ΣO. Formally:

Definition 1 (IOTS) A input-output transition system,
denoted IOTS, is a tuple L = 〈Q, q0,ΣI,O,T〉, where
• Q is a finite set of states;
• q0 ∈ Q is an initial state;
• T ⊆ Q × Στ × Q is a finite branching transition

relation;
• Σ is a finite set of events partitioned into: a set

of input events ΣI and output events ΣO (i.e. Σ =
ΣI ∪ΣO & ΣI ∩ΣO = ∅); and Στ = Σ∪{τ} where
τ denote unobservable events.

As normally we use ‘?’ to denote input events (a? ∈
ΣI) and ‘!’ to denote outputs events (a! ∈ ΣO).

Figure 2 depicts an example of a IOTS, which will be
used throughout this paper as a running example.

c!

c?

a?
a?

5
b!

2

1 3

c!
8

c!

a?
76

4

τ a?

c?

c!

Fig. 2: input-output transition system

Definition 2 Let L = 〈Q, q0,ΣI,O,T〉 be a IOTS, then
• A path in L is a sequence ρ = q0a0q1 . . . such that

for all i we have (qi, ai, qi+1) ∈ T. We denote by
paths(q) the set of paths starting in q. The set of
cycle(L) is the set of paths starting and ending in
the same state for all states in L. The trace σ of a
path ρ, is the sequence σ = a0a1 . . . of events in
Στ occurring in ρ, so σ ∈ Σ∗τ ;

• We use q a→ q′ in case that there exists an event a
such that (q, a, q′) ∈ T, we use q a→ to denote that
there exists a state q′ such that q a→ q′, and we use
q → to denote that there exists an event a and a
state q′ such that q a→ q′;

• We write q ε⇒q′ in case that q = q′ or there exist
states q1, · · · , qn such that q τ→ q2, · · · , qn

τ→ q′.
Moreover, for a given event a ∈ Σ we write q a⇒q′ if
there exist q1, q2 such that q ε⇒q1, q1

a−→q2, q2
ε⇒q′;

• In the case σ is finite, with |σ | we denote the length
of the trace σ;

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 103

• The observable trace of a trace σ, denoted obs(σ),
is the sequence a0a1 . . . of events in Σ occurring in
σ;

• Given a trace σ ∈ traces(L), we write L after σ
to denote all the states that we can arrive after the
observable events of σ, i.e. L after σ = {q ⊆ Q |
q0

σ⇒q}
• Given a set of states Q′⊆Q, we write out(Q′) to the

set of output events that are allowed in all states of
the set Q′, i.e. out(Q′) = {a∈ΣO |∃ q∈Q′ : q a⇒}.

For example, in Figure 2, π1 = q1a?q2a?q5b!q2 is a
path, π2 = q2a?q5b!q2 is a cycle, trace(π1) = a?a?b!
and |trace(π1)|= 3. Moreover, if σ = a?a?c!τa?c! then
its observable trace is obs(σ) = a?a?c!a?c!.

We restrict our work to convergent and live IOTS,
meaning that for all L ∈ IOTS that we work with, each
cycle path has at least one observable event

∀π ∈ cycle(L) : ∃ a ∈ Σ : a ∈ π (1)

and for all states there exists a transition initiated in
that state, i.e.

∀ q ∈ Q : q→ (2)

IV. TESTING

Testing is the process of executing a system trying
to realize if a failure occurred. Testing should produce
observable, unambiguous and consistent results. If a
failure occurred it is supposed that there exists a fault
that produced that failure. Following these ideas, we treat
faults as unobservable and failures as observations that
tell us that an unobservable fault occurred.

Model based testing relies on models of the system
under test and its specification to automate test case
derivation, test decision, etc. The idea is that the testing
process tries to find a discrepancy between the specifi-
cation model and the implementation.

A. ioco model-based testing theory

We recall the basic theory about test derivation from
input-output transition systems similarly as it was ini-
tially defined in [3], where it is possible to find a more
detailed exposition. Although, our approach followed the
ioco testing theory, we believed that it can be applied to
any testing relation with finites tree shape tests.

As in ioco model-based testing faults are not con-
sidered to be modeled but only to exists, we simply
treat faults as unobservable events. On the other hand,
as normally is done in testing we consider failures as
observable discrepancy between behaviors, the one from

the implementation with respect to the one from the
specification.

An important contribution of the ioco testing theory
is the quiescence concept (i.e. the absence of outputs),
given that trace inclusion with the quiescence concept
is more powerful than simple trace inclusion. Thus,
we incorporate quiescence in specification, by adding a
self loop q δ−→q labeled with a special label δ to each
quiescent state q, i.e. ∀ q ∈ Q with ∀ a ∈ ΣO : q a

6→ and
considering δ as an output event.

As normally is done in model-based testing, we re-
strict our work to input-enabling IOTS implementations,
meaning that for all P implementation that we work with,
all inputs are accepted in all states, i.e.,

∀ q ∈ QP : ∀ a? ∈ ΣP
I : q a?⇒ (3)

So, we formally recall the definition of the ioco
testing relation to relate an input-enabled implementation
with a specification modeled as IOTS, where for all
specification traces the implementation outputs should
be a subset of the allowed specification outputs.

Definition 3 Given a specification S ∈ IOTS and an
input-enabled implementation P ∈ IOTS then:

P ioco S if and only if ∀σ ∈ traces(S) :
out(P after σ) ⊆ out(S after σ)

As an example consider S = 〈{q0, q1, q2}, q0, {a?,
b!}, {(q0, a?, q1), (q1, b!, q1), (q0, τ, q2), (q2, b!, q2)}〉 a
specification system and P = 〈{q0, q1}, q0, {a?, b!},
{(q0, a?, q1)〉. It is clear that P is not ioco correct to S.
Because the trace σ = δ is a trace in the specification,
i.e. σ ∈ traces(S) and the set of outputs from the
implementation after σ is: out(P after δ) = {δ} and
the set of outputs from the specification is: out(S after
δ) = {b!}.

As follows we present how ioco tests are derived in
the canonical way to be able to understand how we will
construct our passive ioco tester. The ioco test cases are
adaptive, that is, the next event to be performed (observe
the system, stimulate the system or stop the test) may
depend on the test history, i.e. the trace observed so
far. If, after a trace σ, the Tester decides to stimulate
the system with an input a?, then the new test history
becomes σa?; in case of an observation, the test accounts
for all possible continuations σb! with b! ∈ ΣO an
output event (also, the quiescent events are considered as
outputs in this step). Figure 3 shows three different tests
of the specifications presented in Figure 2. The failures
state are represented as an octagon with a cross meaning

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 104

that the system is in a failure if it arrives to that state,
we call them error-states.

δ

pass

c!b!
δ

c!b!

δ b!
c!

δ b! c!

c!b!δ

pass

c?
δ

a?

c!
b!

a?

pass pass

c!
b!

δ

Fig. 3: Tests

The ioco theory requires that tests are fail fast, i.e.
stop after the discovery of the first failure, and never fail
immediately after an input. Formally, a test case consists
of the set of all possible test histories obtained in this
way.

Definition 4 Given a specification S ∈ IOTS then,
• A test case (or test) t is a finite, prefix-closed subset

of Σ∗ such that
– if σa? ∈ t, then σb /∈ t for any b ∈ Σ with

a? 6= b;
– if σa! ∈ t, then σb! ∈ t for all b! ∈ ΣO;
– if σ /∈ traces(L), then no proper suffix of σ is

contained in t.
• The length |t| of test t is the length of the longest

trace in t, i.e. |t|= maxσ∈t |σ |.

Because ioco-testing is proven [3] to be exhaustive
we know that all failures can be exposed by its tests.
Following the ideas from [9], it is possible to see the
set of all tests derived from a given specification S as
a big tree where we combine inputs and outputs. The
merging of all tests from a given specification is called
Mother Tree of Tests (MTT), where from the initial state
we do all specification input event and we consider all
output events (including quiescent). Figure 4 shows a
graphic representation of a Mother Tree of our running
example S, where the infinite following of the drawing
is represented by dots in the bottom.

The MTT has some important characteristics:
• commonly it has infinite length;
• it has only failures as leafs; and
• it is deterministic.
We lift all concepts and notations (e.g. traces, etc.)

that have been defined for IOTSs to MTTs. In a sense,
our MTT is a representation of all tests such that each
state that is not an error stats means that we could stop
testing or we can follow.

V. PROXY FOR PASSIVE IOCO TESTING

The idea of our Proxy-tester is to passively check for
ioco conformance relation to overcome with the inheri-
table incomplete testing phase, generating a monitoring
systems with all the MTT information from a given
specification.

The Proxy-tester of a given specification is a deter-
ministic IOTS extended with an error-state that tells us
that a not specified output happened. The advantage of
our method is that we extend the testing time towards
infinite time, that is the finite time of the execution of
some derived test during the testing phase is extended
by the additional on-line testing by the Proxy-tester ioco
testing.

Definition 5 (proxy-tester) Given a IOTS specification
S = 〈QS, qS

0,Σ
S
I,O,T

S〉, then its Proxy-tester Y =
〈QY , qY

0 ,Σ
Y
I,O,T

Y〉 is constructed as follows
• QY ⊆ P(QS) ∪ error-state;
• qY

0 = (qS
0);

• ΣY
I,O = ΣS

I,O;
• TY = {(q, e, q′) | e ∈ ΣS

I,O : ∃ q1, q′1 ∈QS : ∃ q1 ∈
q : ∀ q′1 ∈ q′ : q1

e⇒q′1 ∈ QS} ∪ {(q, a, error-state) |
∀ a ∈ ΣS

O : ∀ q ∈ QY : ∀ q1 ∈ QS : q1 ∈ q ∧ q1
a
6→} ∪

{(q, δ, error-state) | ∀ q ∈ QY : ∀ q′ ∈ QS : q′ ∈
q ∧ q′ δ6→} ∪ {(q, δ, q) | ∀ q ∈ QY : ∀ q′ ∈ QS : q′ ∈
q ∧ q′ δ→ q′}

Figure 5 shows the Proxy-tester for our specifications
presented in Figure 2. We can see that this proxy has
for all states the possibility to do inputs that are allowed
by the specification and it tells us where to go for all
outputs, including quiescence.

Since we propose to do passive testing in a proxy
style, we do not interfere with the normal behavior of
the system and we require to only log the observable
information about the behavior of the system to be able
to conclude if an unexpected failure occurred, i.e. if an
unspecified output occurred.

Note, from the definition of our Proxy-tester it is
possible to note that the only events that permit to
arrive to the error-state are outputs events. Moreover,
this outputs are not permitted in the specification. Those
results are presented in the next property.

Property 1 Given S ∈ IOTS a specification, YS =
〈QY , qY

0 ,Σ
Y
I,O,T

Y〉 its Proxy-tester, then ∀ q ∈ QY:
• if (q, a, error − state) ∈ TY then:

– a ∈ ΣO(S)

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 105

b!

......

c! a?b! c?

...
δ

δ

δ c!δ b!
a? δ δ

......

c! a?

b! c!

b!
c?

c! a?
c?

b! c! b! a?c! δ b! c! δ b! c!

c!b!δ
a?δ

...

Fig. 4: The Mother Tree of Tests of S, MTT(S)

b!c!

c!δ
b!δ

b!c!

b!δ b!δ

b!c!

b!c! δ δ

δ
δ δ

H

A

c!
I

CB

D E
a?

b!

F G

c!
a?

b!

error

c!

c!

c?
a?

a?

Fig. 5: Proxy-tester

– ∀ q′ ∈ Q(S) : q′ ∈ q : ∀ σ ∈ traces(S) : a 6∈
out(S after σ)

• ∀ a ∈ ΣO(S) : q a→

Using some of this properties, as follows, we can
prove Lemma 1.

Lemma 1 Given S ∈ IOTS a specification, its Proxy-
tester YS = 〈QY , qY

0 ,Σ
Y
I,O,T

Y〉 and P ∈ IOTS an input-
enabled implementation, then: P i6oco S if and only if

∀ σ ∈ traces(P) : out(P after σ) 6∈ out(S after σ)
then error − state = (Y after σ)

Proof Suppose σ ∈ traces(P) is one of the trace that
because P i 6oco S then out(P after σ) 6∈ out(S after
σ). So we can suppose that exists σ′ ∈ traces(P) with
σ′ ∈ traces(S)∧σ′ ∈ traces(Y) and that exists a output
a ∈ ΣS

O ∪ {δ} so that σ′a = σ. Now, because σ′ ∈
traces(S) and σ′a 6∈ traces(S) we know that for all state
q ∈ Q(S) : q ∈ (S after σ′) then q a

6→. So by Definition 5,
we know that ∃ q′ ∈ Q(Y) and q′ = (S after σ′) ∧

(q′, a, error − state) ∈ TY . Then we can conclude that
error − state = (Y after σ).

Following some ideas from passive testing of [13], we
observe the system to be checked without any interaction
with it. Our Proxy-tester differs from [13] so that we do
not communicate the Proxy-tester with the implementa-
tion though inputs and outputs but we considers them as
events that synchronize between them. Hence, we present
as follows, our composition between the implementation
and the Proxy-tester.

A. Composition

The integration of our implementation and our Proxy-
tester can be modeled algebraically by putting the com-
ponents in parallel while synchronizing their common
events. Note that here we do not relate inputs with
outputs and we do not make them outputs as normally it
is done in the literature. Instead we relate the same events
and they keep been what they are, inputs or outputs.

This is done in that way so that the existence of this
proxy does not interrupt the normal behavior of our
system. The synchronization between an implementation
P and a Proxy-tester Y is denoted by P || Y .

Definition 6 (composition) Given P an IOTS im-
plementation P = 〈QP, qP

0 ,Σ
P
I,O,T

P〉 and Y =
〈QY , qY

0 ,Σ
Y
I,O,T

Y〉 a Proxy-tester, then their composition
P || Y = 〈QP||Y , qP||Y

0 ,Σ
P||Y
I,O ,TP||Y〉 is constructed as

follows

• QP||Y = {q1 || q2 : q1 ∈ QP ∧ q2 ∈ QY};
• Σ

P||Y
I,O = ΣP

I,O = ΣY
I,O;

• TP||Y is the minimal set satisfying the following
inference rules (a ∈ Σ

P||Y
I,O,τ):

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 106

q1
a→ q′1, a 6∈ ΣY

I,O ` q1 || q2
a→ q′1 || q2

q2
a→ q′2, a 6∈ ΣP

I,O ` q1 || q2
a→ q1 || q′2

q1
a→ q′1, q2

a→ q′2, a 6= τ ` q1 || q2
a→ q′1 || q′2

q1
a→ q′1, q2

a→ q′2, a 6= τ ` q1 || q2
a→ q′1 || q′2

Note that, because our Proxy-tester does not have
internal transitions, i.e. τ , is output enabled (Prop-
erty 1) and the implementation is input-enabled then
(q2

a→ q′2, a 6∈ ΣP
I,O) do not happen. Nevertheless, for

completeness we defined it.

Lemma 2 Given S ∈ IOTS a specification, YS =
〈QY , qY

0 ,Σ
Y
I,O,T

Y〉 its Proxy-tester and P ∈ IOTS an
input-enabled implementation, then:

∀ σ ∈ traces(Y) : σ ∈ traces(P || Y)

Proof We prove it by induction in the length of a
trace. First for the empty trace it is trivial. So, we
suppose for all traces σ of length n, i.e. | σ |= n,
then if σ ∈ traces(Y) then σ ∈ traces(P || Y).
Now, for all trace σ′ = σa with σ′ ∈ traces(Y) by
definition of traces(Y) we know that σ′ ∈ traces(S).
So, I) if a ∈ ΣI(S), because P is input-enabled we can
conclude that σ ∈ traces(P || Y), II) if a ∈ ΣO(S)
then: a) if a ∈ (P after σ) then we can conclude that
σ ∈ traces(P || Y), or b) if a 6∈ (P after σ) then using
the second rule of TP||Y in Definition 6 we can conclude
that σ ∈ traces(P || Y).

The soundness of our approach is proven in the
following Theorem.

Theorem 7 Given S ∈ IOTS a specification, YS =
〈QY , qY

0 ,Σ
Y
I,O,T

Y〉 its Proxy-tester, then ∀ P ∈ IOTS an
input-enabled implementation, then:

P i 6oco S : ∃σ ∈ traces(S) : P || Y σ→ P′ || error− state

Proof This prove is directly using Lemma 1 and
Lemma 2.

This theorem tells us that our Proxy-tester is really
a sniffer that does not modify the behavior of the
implementation and in the same time it can conclude,
when it arrives to the error state, when an implementation
does not ioco conforms with respect to the specification.

VI. EXTENDED-PROXY TESTER

Our Proxy-tester is a deterministic model of the sys-
tem and augmented with the information about where to
go (to an error-state) when a non-expected output comes.
Now, we propose to improve it with a new state that

informs us if a malicious user of the implementation
is trying to trigger it with input events that where not
specified. To do so, we present the Extended-Proxy.

Definition 8 (Extended-Proxy) Given a Proxy-tester
Y = 〈QY , qY

0 ,Σ
Y
I,O,T

Y〉 of a specification system
S = 〈QS, qS

0,Σ
S
I,O,T

S〉, the Extended-Proxy E =
〈Q, q0,ΣI,O,T〉 is constructed as follows:
• Q = QY ∪ malicious-state;
• q0 = qY

0 ;
• ΣI = ΣY

I and ΣO = ΣY
O;

• T = TY ∪{(q, a,malicious-state) | ∀ q ∈ QY : ∀ a ∈
ΣS

I : ∀ q′ ∈ QS : q′ ∈ q ∧ q′ a
6→}

Figure 6 shows the Extended-Proxy for our running
example. The idea of considering this inputs enabledness
becomes interesting when we think that the implemen-
tation can interact with a malicious user, that is trying
to take advantage of the implementation input-enabled
property. Finally, we can prove that all traces of our
Proxy-tester behave in the same manner in our Extended-
Proxy.

Lemma 3 Given S ∈ IOTS a specification,
YS = 〈QY , qY

0 ,Σ
Y
I,O,T

Y〉 its Proxy-tester and
E = 〈Q, q0,ΣI,O,T〉 its Extended-Proxy, then:

∀ σ ∈ traces(Y) : σ ∈ traces(E)

Proof Direct by Definition 8.

VII. CONCLUSIONS

The testing process tries to detect failures as discrep-
ancies between the actual behavior of an implementation
and the intended one described by the specification. In
this paper we realize that specifications not only give
us information about how an implementation should
behave but also about how the environment should
supposedly trigger that implementation. Thus, we use
this information and combine them in a monitoring
engine: the Extended-Proxy tester. Our engine, at the
same time, makes checking of the ioco testing relation
in a passive way and informs us if a malicious user is
trying to provoke the implementation with an input that
was not specified by the specification. Basically, we are
simultaneously identifying ioco failures and are aware of
malicious intended users.

The approach presented in this paper does not suppose
to replace the testing phase in the common development
of a software system. Instead, our proposed proxy-tester
tries to extend the testing phase as much as possible.

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 107

b!c!

c!δ
b!δ

b!c!

b!δ b!δ

b!c!

b!c! δ δ

δ
δ δ

H

A

c!
I

CB

D E
a?

b!

F G

c!
a?

b!

c?

a?c?a?c?

a?c?

a?c?

c?

a?c?

error

c!

c!

c?
a?

mali−
cious

a?

c?

Fig. 6: Proxy-tester + malicious-tester = Extended-Proxy

Also, as it is not normally done in ioco passive testing,
our extended-proxy would consider the possible mali-
cious users behaviors, i.e. it will analyze inputs that
where not specified.

As future works we have several issues that we
would like to address. First, if we consider specification
augmented with weight information that tell us about the
severity of a failure, then we can immediately enrich our
Extended-Proxy and be aware of this information. Sec-
ond, we would like to analyze communication protocols
to study how these ideas can be implemented there in a
security environment. Third, we would like to implement
the proxy-tester and try it on industrial cases to analyze
how good our theories apply to real industry.

REFERENCES

[1] R. D. Nicola and M. C. B. Hennessy, “Testing equivalences for
processes,” Theoretical Computer Science, pp. 83–133, 1984.

[2] S. Salva and I. Rabhi, “Stateful web service robustness,” ICIW
’10: Proceedings of the 2010 Fifth International Conference on
Internet and Web Applications and Services, vol. 14:424–437,
2010.

[3] J. Tretmans, “Test generation with inputs, outputs and repetitive
quiescence,” Enschede, the Netherlands, 1996.

[4] J. Tretmans and E. Brinksma, “Torx: Automated model-based
testing,” in First European Conference on Model-Driven Soft-
ware Engineering, A. Hartman and K. Dussa-Ziegler, Eds.,
December 2003, pp. 31–43.

[5] L. Brandán Briones and E. Brinksma, “A test generation
framework for quiescent real-time systems,” in IN FATES’04.
Springer-Verlag GmbH, 2004, pp. 64–78.

[6] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Till-
mann, and L. Nachmanson, Model-Based Testing of Object-
Oriented Reactive Systems with Spec Explorer, ser. Lecture

Notes in Computer Science. Springer Verlag, 2008, vol. 4949,
pp. 39–76, the attached file is a preliminary version.

[7] A. Belinfante, L. Frantzen, and C. Schallhart, “Tools for test
case generation,” In Model-Based Testing of Reactive Systems,
p. 391–438, 2004.

[8] J. Claude and J. Thierry, “Tgv: Theory, principles and algo-
rithms: A tool for the automatic synthesis of conformance test
cases for non-deterministic reactive systems,” Int. J. Softw. Tools
Technol. Transf., vol. 7, no. 4, pp. 297–315, Aug. 2005.

[9] L. Brandán Briones, E. Brinksma, and M. Stoelinga, “A se-
mantic framework for test coverage,” in Automated Technology
for Verification and Analysis, ser. Lecture Notes in Computer
Science 4218, 2006, pp. 399–414.

[10] S. Sébastien and T.-D. Cao, “A model-based testing approach
combining passive testing and runtime verification. application
to web service composition testing in clouds,” in Software
Engineering Research, Management and Applications, 2014,
pp. 99–116.

[11] R. H. R. E. M. J. W. David Lee, Dongluo Chen and X. Yin,
“Network protocol system monitoring: a formal approach with
passive testing,” IEEE/ACM Trans. Netw., vol. 14:424–437,
2006.

[12] S. M. Tao Lin and J. Park, “A framework for wireless ad hoc
routing protocols,” WCNC 2003, New Orleans, LA, USA, IEEE
society press, 2006.

[13] S. Salva, “Passive Testing with Proxy-testers,” in International
Journal of Software Engineering and Its Applications, 2011.

[14] M. Katara and S. Katz, “A concern architecture view for aspect-
oriented software design,” Software and Systems Modelling
Journal (SoSyM), vol. 6, pp. 247–265, 2007.

[15] T. Aaltonen, J. Helin, M. Katara, P. Kellom’́aki, and T. Mikko-
nen, “Coordinating aspects and objects,” Electronic Notes in
Theoretical Computer Science, vol. 68, no. 3, pp. 248–267,
2003, foclasa 2002, Foundations of Coordination Languages
and Software Architectures (Satellite Workshop of CONCUR
2002).

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 108

