
Modular Petri Net Processor for Embedded Systems

Orlando Micolini1, Emiliano N. Daniele, Luis O. Ventre

Laboratorio de Arquitectura de Computadoras (LAC) FCEFyN
Universidad Nacional de Córdoba

orlando.micolini@unc.edu.ar, endaniele@gmail.com,

luis.ventre@unc.edu.ar

Abstract. Reactive and concurrent embedded systems execute restricted algo-
rithms depending on the requirements. It is possible to implement one of these
hardware-software systems by using a Petri Net Processor. If logic and policy
are decoupled from the system actions, then we can improve maintainability
and system validation. To achieve this, the Petri Processor is integrated with
other traditional processors, forming a heterogeneous multi-core processor,
which allows to verify the system using Petri Net mathematical formalisms. In
this article, a Modular Petri Processor Architecture is exposed, as well as the
inclusion of programmable queues that enhance maintainability, module re-
usage and semantic extension.

Keywords: Petri Processor, Petri Net, FPGA, IP Core, Heterogeneous multi-
core processor

1 Introduction

Heterogeneous multi-core processors include specific capabilities that are not availa-
ble in homogeneous multi-core processors. Reactive and concurrent embedded sys-
tems need to comply with specific non-functional requirements[1]. These systems
interact with their environment, from which they receive input events and to where
they generate output reactions. The environment is the one imposing the rate at which
the system needs to generate the reactions. During this interaction, the system should
react as quickly as possible to satisfy the timing restrictions. This response time de-
pends not only on the algorithm used, but also on the platform capabilities, which
make them essential for estimating the overall response time of the final system [2].

The system proposed in this article is a heterogeneous system, with a Petri Proces-
sor (PP) and a General-Purpose Processor (GPP). The PP receives events, process
them to calculate the next system state, while the GPP calculates and executes actions,
thus decoupling logic from the actions of the system [3].

The proposed architecture implements an innovative way to relate hardware and
system logic by using a synchronization monitor. Because of this, the software pre-

1 Corresponding author

scind from taking care of the critical sections of the code, and the synchronization
functions, since the PP is the one performing those tasks. Furthermore, there is a uni-
vocal relationship between the program that the PP executes and the Petri Net model
used, which guarantees the same properties that the model verifies.

 The requirements for Concurrent and Reactive Embedded Systems [4] are: preci-
sion, reliability and structural flexibility. To reach those requirements, the PP is pro-
grammed using the model directly, resolving the execution of the events, and the state
of the system. The PP, then, processes and orders events based on the restrictions of
the system.

Applications of this processor are not only tied to reactive embedded systems,
since it can be used to solve parallel systems. Many problems have been solved by
using Petri Nets [5, 6].

The architecture of previously implemented PP was monolithic [3, 4]. In the cur-
rent article we propose and develop a modular PP that preserves the same advantages
of the previous PP, while adding new features to it. Certain situations were taken into
consideration, like the use of naming conventions when implementing internal circuit-
ry as well as external interfaces, which helped to standardize the components.

1.1 Objectives

General Objective
Modularize each PP function to optimize system maintainability and add pro-

grammable event queues.
The first implementation is aimed at generating reusable and standardized hard-

ware components. This allows to add, remove or replace components in an easy way,
so the PP can be adjusted to fit small embedded systems by only instantiating the
necessary modules for a given application.

The ability to program the event queues allows the PP to execute different non-
autonomous Petri nets, which increases the semantic capabilities of the system.

2 Petri Nets

2.1 Ordinary Petri Nets (PN)

An Ordinary Petri Net (PN) [7] is a quintuple defined by PN = (P, T, I-, I+, M0)
where:

 * + is a finite non-empty set of places.
 * + is a finite non-empty set of transitions.
 Given that P and T form a bipartite graph, the following is true:

 * + * +
 I-, I+ are the incidence relationships between the places inputs and outputs, which

relate Places and Transitions (I-) or relate Transitions and Places (I+). The Inci-
dence Matrix is defined as: I = I+- I-

 , () () ()- is the initial marking vector of the PN, which
represents the number of Tokens that each Place contains.

Taking the Incidence Matrix definition into account, a PN is then defined as a quad-
ruple: .

2.2 Synchronized Petri Nets or Non-autonomous Petri Nets.

This type of PN introduce events modelling to the equation and they are an enhance-
ment of the Ordinary PN [3, 8].
Non-autonomous PNs are used for modelling
systems where the external discrete events syn-
chronize the firing of the transitions. These
events are tied to the transitions. In Fig. 1 the
transition is synchronized with the event ,
and the firing is produced when the following
requirements are met:

 The transition is enabled
 The associated event occurs

Changes outside of the system trigger the exter-
nal events (this includes changes in time) while
internal events are changes within the system
itself. Synchronized Petri Nets can be then de-
fined as a triple:
PNsync = (PN, E, sync) where:

P1

P2

T1

Occurrence of
E3

Mark of
P1

Mark of
P2

E3

Fig. 1. Transition associated to an
event.

PN is a marked PN, E is a set of external events and sync is the function that relates
Transitions T with * +, where * + is the null event. All firings are atomic and
instantaneous.

2.3 Perennial and Non-perennial events.

There are three types of events that can be associated with a Non-autonomous PN:
perennial events, non-perennial events and automatic or null events [3].

Perennial events are those that, when they are triggered, they stay requesting a fir-
ing until the firing and synchronization conditions are met (the result will be the firing
of the associated transition). These events are kept in the input queue until the associ-
ated Transition is fired.

Non-perennial events will fire a Transition, only if the transition was enabled be-
fore the event arrives; if the transition is not enabled, the event is discarded. In the PP
implementation, there is a period of tolerance of two clock cycles for the Transitions
to be enabled until the event is discarded.

Null or Automatic events {e} are associated with the automatic Transitions. These
special types of Transitions are described in the next section.

2.4 Automatic Transitions

There is a type of internal event that is always generated and available, named
* + In a Synchronized PN, one or more transitions can be associated with the Auto-
matic Event {e}. This means that those Transitions can be fired automatically as soon
as they are enabled since the automatic event is “always happening”.

2.5 Conflicts among transitions

We can find conflicts among transitions in a synchronized PN when:
 Two or more transitions are enabled
 Their associated events occur simultaneously
 If one of the enabled transitions is fired, then some of the other transitions

become disabled
Mathematically, the conflicts are defined as:

 |* +| |*
 +| y * +

Where:

 * + is a set of enabled transitions
 * + is a set of events associated to the transitions * +
 are transitions in conflict. They share at least an entry point with another

place. If one of the transitions is fired, the other transition will be disabled. All the-
se conflicts can be solved by a priority policy [6].

2.6 Relationship between events and the Incidence Matrix

If the semantics of a transition fire in a non-autonomous PN are analyzed, we find that
the Incidence Matrix is the conjunctive evaluation of the columns (transitions) and the
rows (places). This means that, if we have an Incidence Matrix of dimension,
 combinations of logic variables are evaluated, so if we consider that every transi-
tion has an event associated, then we could write an expression like the following:

 (⋀ (())

)

Where are the elements of the Matrix and () is the marking value of the
place The result holds the elements of the vector of enabled transitions.

The PP executes this equation and is the foundation of its direct programmability
since we can consider the Matrix and the Events, the equivalent of the program. This
architecture executes an extended non-autonomous PN, and taking its semantic capa-
bility into account, gives us a Touring Machine [9, 10].

3 Architecture of the PP

The PP developed and presented in this article, reveals changes in the architecture
implemented in [11]. The big difference resides in the programmable queues, the
modularization of the hardware and the specific optimizations of each module.

The main building blocks of the PP are: the core, the queues, the priority module
and the interfaces to connect to external devices.

3.1 Core

The main responsibility of the core
module is to keep the internal state
of the PN that the processor exe-
cutes. Fig. 2 displays the overall
architecture of the processor, where
the modules that form the core are
marked with (*).

The core is composed of the fol-
lowing components: the Incidence
Matrix, the Marking Vector and the
Fire Requests Vector.

The responsibilities of each com-
ponent are:
 Incidence Matrix I: stores the

Incidence Matrix of the PN. Its
dimension is equal to |T|x|P|. All
values stored are integers.

 Marking Vector: Stores the
vector M of the PN, that is, the
state of the PN. All stored values
are positive integers.

Incidence Matrix I
(*)

Possible Next States
Matrix

Signs detector

+

+
+

+

+

Sum

Marking vector
(*)

Enabled Transitions
Vector

Input queues
Vector with firing requests

(*)

Automatic Transitions
Vector

Possible Firings Vector

ANDAND

OROR

|T|

|T|

|T|x|P|

Highest priority transition
Vector

Priority matrix module

Adder
(*)

|T|x|T|

|T|

|T|

|T|

|T|x|P
|

|T|

|P|

|T|

|T|

|T|

|T|

|T|

Fig. 2. ‟s architecture

 Input queues: their interfaces expose a vector to the PP, where each position rep-
resents the connection with each transition. Each position of the vector can be
equal to 1 if there are events in the correspondent queue, or equal to 0 if there are
no events queued.

 Automatic Transitions Vector: each position of this vector represents each transi-
tion. If a transition is configured as automatic, then its correspondent position in
this vector will be equal to 1.

 Possible Next States Matrix: corresponds to the sum of each column of the Ma-
trix I with the Marking Vector. Each i-th column of this matrix has the state that
would be reached if the i-th transition were triggered.

 Signs detector: it is a vector where each position corresponds to a column of the
Possible Next States Matrix. If any of the values in a column is negative, then the
position in its vector will be equal to 1, meaning that the firing of this column
would reach an unreachable marking (negative values mean that we would try to
fire a disabled transition).

 Enabled Transitions Vector: it is the negated output of the signs vector.

 Possible Firings Vector: stores the possible firings of the PN, which is calculated
from the Enabled Transitions Vector and the Requested Firings Vector (Input
queues Automatic transitions).

3.2 Processor Operation

As well as the previous PP [3], this new version of the PP also executes a PN in two
clock cycles. Single server semantics has been adopted for this implementation.
Cycle 1 – Calculations. In this cycle, the PP calculates the transition that will be fired.
To achieve this, the marking vector is added to every column in the incidence matrix,
so we can obtain the signs of the possible next state that would be reached with every
possible firing. This is stored in a new matrix where the column holds the signs of
the next markings.
The output of the Possible Next States Signs Matrix is the input of the Sign detector
module. his module performs an „or’ operation with all values stored in each col-
umn. If any of those values are negative, it means that the next state will not be reach-
able (the correspondent transition is not enabled).
The enabled transitions vector stores a value of 1 in those positions where the col-
umns of the Possible Next States Matrix did not have negative values.
To calculate the transitions that can be fired, the information of two other vectors is
needed: The requested firing vector (the output of the input queues) and the automatic
transitions vector. The first one represents which transitions were requested to be fired
by sending specific instructions to the processor (external event). The second one
represents those transitions that do not require explicit firing events, because they are
associated with the null event {e}.
Finally, to determine which transition the processor will fire, the Possible Firings
Vector is inputted to the Priority Module. The output of this module is the id of the
enabled and requested transition with the highest priority. The vector will hold a sin-
gle value of 1 in the position that corresponds to the selected transition. This transition
will be fired in the next cycle.
Cycle 2 – Update. In this cycle the firing is performed and the marking vector is up-
dated. To achieve this, the selected transition vector works as a column selector. The
adder (which can be found at the top of Fig. 2) carries on the sum of the marking vec-
tor with the selected column of the Matrix I. The result of the sum is stored back into
the marking vector.
Besides, if applicable, the queues are updated; the correspondent output queue counter
is incremented and the correspondent input queue counter is decremented.

3.3 Queues

Both the input and output queues of the PP have been redesigned to make them con-
figurable.

There is one instance of an input queue and one instance of an output queue for
every transition that the PP has. Each of those instances contains a saturated counter

(only positive integers). Each counter is equipped with a max detector (for the over-
flow signal) and a zero detector (this is used for marking the queue as empty).

Input queue
The input queue stores the firing requests for the configured PN transitions. In Fig. 3
(a), the external interfaces are shown. There are three modes of operation.

(a) (b)

Fig. 3. (a) Input queue, (b) Output queue

Mode 1 – Normal Mode (Perennial event, default mode): The binary counter is

incremented whenever a new firing request is issued (this is achieved via a specific
instruction to the PP), and it is decremented on each fire performed on cycle 2. Since
this is counting perennial events, the counter will keep its count until the increment or
decrement signals of the module modifies it. In this case, the events queued are kept
until the associated transition is fired. This is the only mode previous PP queues had.

Mode 2 – Automatic transition: In this operation mode the signal not_empty is
kept high, see Fig. 3 (a). This can be interpreted as a transition that is always request-
ed to be fired, that is, an automatic transition.

Mode 3 – Non-perennial event: All events that are counted are non-perennial. Af-
ter a certain amount of time (two clock cycles of the PP), the counter will be reset,
and thus the associated transition could not be fired after that time.

Output queue
As seen on Fig. 3 (b), output queues store the amount of firings performed. If a

transition is fired, the output queue associated with it will increment its counter. When
the queue is read (with a specific instruction) the counter will be decremented. The
output queues have two different operation modes.

Mode 1 – Reporting mode: In this mode, the internal counter is incremented when

the associated transition is fired and decremented when the counter is read (to check if
a transition was fired). If the interruptions are enabled in the GPP, an interruption will
be generated when the counter is different than zero.

Mode 2 – Non reporting mode: In this mode, the internal counter is not used and
the signal not_empty is always equal to zero.

Priorities and conflicts among transitions
The PP cannot detect a conflicting state, so it treats transitions as if they were all in

conflict. The Possible firing vector of the PP represents all those transitions.
The PP fires only one transition per execution cycle (single server model). This

solves the conflicts issue and makes the system deterministic; the priority module
makes the decision about which transition to fire. This is implemented as a binary
matrix that establishes the necessary relationships to determine the highest priority
transition. This module is also configurable during execution time.

Microblaze MCS Interface
Given that the PP is associated with a GPP [3], it is necessary to connect both pro-

cessors in order for the system to perform the required system actions. The GPP that
was chosen for this integration is the softcore Microblaze MCS [12], because of its
low impact on the system resources and because it is well supported by the develop-
ment tools from Xilinx.
The software architecture is very simple and it is made of one main program and two
drivers. The first driver exposes a communication interface that we use for connecting
to the PP (pp_driver) and the second one (external_comm) initializes and controls
the UART module to send instructions and info through a serial connection.

4 Results

Several application cases were executed to evaluate the PP performance. It has
been used successfully for controlling production lines, like the ones presented by
Naiqi Wu y MengChu Zhou in [13]. The comparisons have been conducted by taking
into consideration the results obtained in [3], which were very similar.

4.1 FPGA resources

To determine the amount of resources used and to compare them with other im-
plementations, a PP was instantiated multiple times, varying the number of elements
of the vectors and matrices. Multiple synthesis of the core were performed as well,
and data lengths of 4 and 8 bits were used.
Fig. 4 shows the amount of FPGA resources used for each synthesized configuration.
Registers are related to the number of flip-flops consumed, while LUTs, are directly
related to the hardware architecture of the FPGA Atlys, which was the platform we
used for implementing the PP.
In Fig. 4 an exponential use of resources is shown a long as we increase the number
of elements in the vectors and matrices.

A very important discovery was
that 4 bit configurations use ap-
proximately the same amount of
registers than 8 bit configurations,
even when an 8 bit configuration
has fewer elements in the vectors
and matrices (and in some cases,
the number of registers decrease).
For example, configuration
32x32x4 consumes fewer resources
than configuration 24x24x8.

40000

30000

20000

10000

8x8
x4

8x8
x8

16x1
6x4

16x1
6x8

24x2
4x4

24x2
4x8

32x3
2x4

32x3
2x8

Registers

0

LUTs

Fig. 4. Graph of resource consumption

This means that we can process bigger PNs, if we can restrict the data length for a
given application.
Due to the optimization of the IP Core, the resources impact of using Microblaze, is
considered constant (12.72% of all LUTs available and 21.09% of registers). These
resources are the same for all the PP architectures.

4.2 Frequency analysis

To perform a frequency analysis, we followed the same approach as explained in
the previous section. This shows the maximum frequency that each implementation
could reach. The data length has a negligible effect in the max frequency reached. For
example, if we compare configurations 8x8x4 and 8x8x8, the difference in frequency
is just 2 MHz (80.073 MHz and 78.422 MHz respectively). However, if we increase
the number of elements of the matrices and vectors, that is, if we increase the size of
the PN, then the frequency is significantly lower. For example, between configura-
tions 8x8x8 and 16x16x8 there is approximately a 23 MHz difference (78.422 MHz
and 55.32 MHz respectively). The boundaries of frequency are mostly due to the
model of FPGA used.

5 Conclusions

In the current project, the PP was extended, modularized so it is an enhanced ver-
sion of the one presented in [3]. An interconnected system was achieved, in replace of
the monolithic version of previous implementations. The module design and the in-
clusion of programmable queues did not impact negatively on the resources required.
The programmability of the queues, which now support different modes of operation
and types of events, is a huge step forward. Besides, the maintainability of the PP has
been simplified, so it is easier to add new features in the future, like the possibility of
executing Hierarchical PNs, temporal PNs, etc. The control stage of the processor is
the only module that needs to be modified for that.

The results obtained from the optimizations implemented in the hardware level show
that the PP is suitable for Embedded Systems that require up to 32 conditions (transi-
tions), 32 logic variables (places) and 32 simultaneous events.
The addition of a serial communication module allowed to have a testable, program-
mable and configurable PP. All these can be now performed from any PC terminal.
The modular implementation of the PP implies a step forward for maintainability,
scalability and the future auto-configuration of the PP. Furthermore, the programma-
ble queues have increased its semantic capability.

References

1. Munir, A., A. Gordon-Ross, and S. Ranka, Modeling and Optimization of

Parallel and Distributed Embedded Systems, ed. W.-I. Press2016.

2. Gamatié, A., Designing embedded systems with the Signal programming

language: synchronous, reactive specification2009: Springer Science &

Business Media.

3. Micolini, O., PhD thesis Arquitectura asimétrica multicore con procesador

de Petri, 2015, Facultad de Informática: La Plata, Argentina.

4. Bainomugisha, E., et al., A survey on reactive programming. ACM

Computing Surveys (CSUR), 2013. 45(4): p. 52.

5. Moutinho, F. and L. Gomes, Distributed Embedded Controller Development

with Petri Nets: Application to Globally-Asynchronous Locally-Synchronous

Systems. Vol. 150. 2015: pp.43-67 Springer.

6. Haustermann, M. Applications of Petri Nets. 2017 [cited 2017; Available

from: https://www.informatik.uni-hamburg.de/TGI/PetriNets/applications/.

7. Diaz, M., Petri Nets Fundamental Models, Verification and

Applications2009, NJ USA: John Wiley & Sons, Inc.

8. David, R. and H. Alla, Discrete, continuous, and hybrid Petri nets2010,

Springer Science & Business Media.

9. Hopcroft, J., R. Motwani, and J. Ullman, Introduction to Automata Theory,

Languages, and Computation Prentice Hall, 2006.

10. Popova-Zeugmann, L., Time and Petri Nets. Springer, 2013.

11. Micolini, O., et al. Procesador de Petri para la Sincronización de Sistemas

Multi-Core Homogéneos. in CASECongreso Argentino de Sistemas

Embebidos. 2012.

12. Xilinx, I., Microblaze processor reference guide. reference manual, 2011.

23.

13. Naiqi Wu, M.Z., System Modeling and Control with Resource-Oriented Petri

Nets, ed. C. Press2010, Boca Raton, FL.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/applications/

