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Abstract. Reactive and concurrent embedded systems execute restricted algo-
rithms depending on the requirements. It is possible to implement one of these 
hardware-software systems by using a Petri Net Processor. If logic and policy 
are decoupled from the system actions, then we can improve maintainability 
and system validation. To achieve this, the Petri Processor is integrated with 
other traditional processors, forming a heterogeneous multi-core processor, 
which allows to verify the system using Petri Net mathematical formalisms. In 
this article, a Modular Petri Processor Architecture is exposed, as well as the 
inclusion of programmable queues that enhance maintainability, module re-
usage and semantic extension. 

Keywords: Petri Processor, Petri Net, FPGA, IP Core, Heterogeneous multi-
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1 Introduction 

Heterogeneous multi-core processors include specific capabilities that are not availa-
ble in homogeneous multi-core processors. Reactive and concurrent embedded sys-
tems need to comply with specific non-functional requirements[1]. These systems 
interact with their environment, from which they receive input events and to where 
they generate output reactions. The environment is the one imposing the rate at which 
the system needs to generate the reactions. During this interaction, the system should 
react as quickly as possible to satisfy the timing restrictions. This response time de-
pends not only on the algorithm used, but also on the platform capabilities, which 
make them essential for estimating the overall response time of the final system [2]. 

The system proposed in this article is a heterogeneous system, with a Petri Proces-
sor (PP) and a General-Purpose Processor (GPP). The PP receives events, process 
them to calculate the next system state, while the GPP calculates and executes actions, 
thus decoupling logic from the actions of the system [3]. 

The proposed architecture implements an innovative way to relate hardware and 
system logic by using a synchronization monitor. Because of this, the software pre-
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scind from taking care of the critical sections of the code, and the synchronization 
functions, since the PP is the one performing those tasks. Furthermore, there is a uni-
vocal relationship between the program that the PP executes and the Petri Net model 
used, which guarantees the same properties that the model verifies. 

 The requirements for Concurrent and Reactive Embedded Systems [4] are: preci-
sion, reliability and structural flexibility. To reach those requirements, the PP is pro-
grammed using the model directly, resolving the execution of the events, and the state 
of the system. The PP, then, processes and orders events based on the restrictions of 
the system.  

Applications of this processor are not only tied to reactive embedded systems, 
since it can be used to solve parallel systems. Many problems have been  solved by 
using Petri Nets [5, 6]. 

The architecture of previously implemented PP was monolithic [3, 4]. In the cur-
rent article we propose and develop a modular PP that preserves the same advantages 
of the previous PP, while adding new features to it. Certain situations were taken into 
consideration, like the use of naming conventions when implementing internal circuit-
ry as well as external interfaces, which helped to standardize the components. 

1.1 Objectives 

General Objective 
Modularize each PP function to optimize system maintainability and add pro-

grammable event queues. 
The first implementation is aimed at generating reusable and standardized hard-

ware components. This allows to add, remove or replace components in an easy way, 
so the PP can be adjusted to fit small embedded systems by only instantiating the 
necessary modules for a given application. 

The ability to program the event queues allows the PP to execute different non-
autonomous Petri nets, which increases the semantic capabilities of the system. 

2 Petri Nets 

2.1 Ordinary Petri Nets (PN) 

An Ordinary Petri Net (PN) [7]  is a quintuple defined by PN = (P, T, I-, I+, M0) 
where: 

     *          +  is a finite non-empty set of places. 
      *           +  is a finite non-empty set of transitions. 
 Given that P and T form a bipartite graph, the following is true: 

     * +     * + 
 I-, I+ are the incidence relationships between the places inputs and outputs, which 

relate Places and Transitions (I-) or relate Transitions and Places (I+).  The Inci-
dence Matrix is defined as: I = I+- I-   



    ,  (  )    (  )    (  )-  is the initial marking vector of the PN, which 
represents the number of Tokens that each Place contains. 

Taking the Incidence Matrix definition into account, a PN is then defined as a quad-
ruple:                    . 

2.2 Synchronized Petri Nets or Non-autonomous Petri Nets. 

This type of PN introduce events modelling to the equation and they are an enhance-
ment of the Ordinary PN [3, 8].  
Non-autonomous PNs are used for modelling 
systems where the external discrete events syn-
chronize the firing of the transitions. These 
events are tied to the transitions. In Fig. 1 the 
transition is synchronized with the event   , 
and the firing is produced when the following 
requirements are met: 

 The transition is enabled  
 The associated event occurs  
   

Changes outside of the system trigger the exter-
nal events (this includes changes in time) while 
internal events are changes within the system 
itself. Synchronized Petri Nets can be then de-
fined as a triple: 
PNsync = (PN, E, sync) where:  
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Fig. 1. Transition associated to an 
event. 

PN is a marked PN, E is a set of external events and sync is the function that relates 
Transitions T with   * +, where * + is the null event. All firings are atomic and 
instantaneous. 

2.3 Perennial and Non-perennial events. 

There are three types of events that can be associated with a Non-autonomous PN: 
perennial events, non-perennial events and automatic or null events [3]. 

Perennial events are those that, when they are triggered, they stay requesting a fir-
ing until the firing and synchronization conditions are met (the result will be the firing 
of the associated transition). These events are kept in the input queue until the associ-
ated Transition is fired. 

Non-perennial events will fire a Transition, only if the transition was enabled be-
fore the event arrives; if the transition is not enabled, the event is discarded. In the PP 
implementation, there is a period of tolerance of two clock cycles for the Transitions 
to be enabled until the event is discarded. 

Null or Automatic events {e} are associated with the automatic Transitions. These 
special types of Transitions are described in the next section. 



2.4 Automatic Transitions 

There is a type of internal event that is always generated and available, named 
* +  In a Synchronized PN, one or more transitions can be associated with the Auto-
matic Event {e}. This means that those Transitions can be fired automatically as soon 
as they are enabled  since the automatic event is “always happening”.  

2.5 Conflicts among transitions 

We can find conflicts among transitions in a synchronized PN when: 
 Two or more transitions are enabled 
 Their associated events occur simultaneously 
 If one of the enabled transitions is fired, then some of the other transitions 

become disabled 
Mathematically, the conflicts are defined as:  

 |*  +|      |* 
 +|     y        *  + 

Where: 

 *  + is a set of enabled transitions 
 *  + is a set of events associated to the transitions *  + 
         are transitions in conflict. They share at least an entry point with another 

place. If one of the transitions is fired, the other transition will be disabled. All the-
se conflicts can be solved by a priority policy [6]. 

2.6 Relationship between events and the Incidence Matrix 

If the semantics of a transition fire in a non-autonomous PN are analyzed, we find that 
the Incidence Matrix is the conjunctive evaluation of the columns (transitions) and the 
rows (places). This means that, if we have an Incidence Matrix of     dimension, 
  combinations of   logic variables are evaluated, so if we consider that every transi-
tion has an event associated, then we could write an expression like the following: 

   (⋀ ( (  )     )      
 

   

   
)   

Where     are the elements of the Matrix   and  (  ) is the marking value of the 
place    The result    holds the elements of the vector of enabled transitions. 

The PP executes this equation and is the foundation of its direct programmability 
since we can consider the Matrix and the Events, the equivalent of the program. This 
architecture executes an extended non-autonomous PN, and taking its semantic capa-
bility into account, gives us a Touring Machine [9, 10].  

3 Architecture of the PP 

The PP developed and presented in this article, reveals changes in the architecture 
implemented in [11]. The big difference resides in the programmable queues, the 
modularization of the hardware and the specific optimizations of each module.  



The main building blocks of the PP are: the core, the queues, the priority module 
and the interfaces to connect to external devices. 

3.1 Core 

The main responsibility of the core 
module is to keep the internal state 
of the PN that the processor exe-
cutes. Fig. 2 displays the overall 
architecture of the processor, where 
the modules that form the core are 
marked with (*).  

The core is composed of the fol-
lowing components: the Incidence 
Matrix, the Marking Vector and the 
Fire Requests Vector. 

The responsibilities of each com-
ponent are: 
 Incidence Matrix I: stores the 

Incidence Matrix of the PN. Its 
dimension is equal to |T|x|P|. All 
values stored are integers. 

 Marking Vector: Stores the 
vector M of the PN, that is, the 
state of the PN. All stored values 
are positive integers. 
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Fig. 2.   ‟s architecture 

 Input queues: their interfaces expose a vector to the PP, where each position rep-
resents the connection with each transition. Each position of the vector can be 
equal to 1 if there are events in the correspondent queue, or equal to 0 if there are 
no events queued. 

 Automatic Transitions Vector: each position of this vector represents each transi-
tion. If a transition is configured as automatic, then its correspondent position in 
this vector will be equal to 1. 

 Possible Next States Matrix: corresponds to the sum of each column of the Ma-
trix I with the Marking Vector. Each i-th column of this matrix has the state that 
would be reached if the i-th transition were triggered. 

 Signs detector: it is a vector where each position corresponds to a column of the 
Possible Next States Matrix. If any of the values in a column is negative, then the 
position in its vector will be equal to 1, meaning that the firing of this column 
would reach an unreachable marking (negative values mean that we would try to 
fire a disabled transition). 

 Enabled Transitions Vector: it is the negated output of the signs vector.  



 Possible Firings Vector: stores the possible firings of the PN, which is calculated 
from the Enabled Transitions Vector and the Requested Firings Vector (Input 
queues    Automatic transitions). 

3.2  Processor Operation 

As well as the previous PP [3], this new version of the PP also executes a PN in two 
clock cycles. Single server semantics has been adopted for this implementation.  
Cycle 1 – Calculations. In this cycle, the PP calculates the transition that will be fired. 
To achieve this, the marking vector is added to every column in the incidence matrix, 
so we can obtain the signs of the possible next state that would be reached with every 
possible firing. This is stored in a new matrix where the column   holds the signs of 
the next markings. 
The output of the Possible Next States Signs Matrix is the input of the Sign detector 
module.  his module performs an „or’ operation with all values stored in each col-
umn. If any of those values are negative, it means that the next state will not be reach-
able (the correspondent transition is not enabled). 
The enabled transitions vector stores a value of 1 in those positions where the col-
umns of the Possible Next States Matrix did not have negative values. 
To calculate the transitions that can be fired, the information of two other vectors is 
needed: The requested firing vector (the output of the input queues) and the automatic 
transitions vector. The first one represents which transitions were requested to be fired 
by sending specific instructions to the processor (external event). The second one 
represents those transitions that do not require explicit firing events, because they are 
associated with the null event {e}. 
Finally, to determine which transition the processor will fire, the Possible Firings 
Vector is inputted to the Priority Module. The output of this module is the id of the 
enabled and requested transition with the highest priority. The vector will hold a sin-
gle value of 1 in the position that corresponds to the selected transition. This transition 
will be fired in the next cycle.  
Cycle 2 – Update. In this cycle the firing is performed and the marking vector is up-
dated. To achieve this, the selected transition vector works as a column selector. The 
adder (which can be found at the top of Fig. 2) carries on the sum of the marking vec-
tor with the selected column of the Matrix I. The result of the sum is stored back into 
the marking vector. 
Besides, if applicable, the queues are updated; the correspondent output queue counter 
is incremented and the correspondent input queue counter is decremented. 

3.3 Queues 

Both the input and output queues of the PP have been redesigned to make them con-
figurable.  

There is one instance of an input queue and one instance of an output queue for 
every transition that the PP has. Each of those instances contains a saturated counter 



(only positive integers). Each counter is equipped with a max detector (for the over-
flow signal) and a zero detector (this is used for marking the queue as empty). 

Input queue 
The input queue stores the firing requests for the configured PN transitions. In Fig. 3 
(a), the external interfaces are shown. There are three modes of operation. 
 

 

 
(a) (b) 

Fig. 3. (a) Input queue, (b) Output queue 

 
Mode 1 – Normal Mode (Perennial event, default mode): The binary counter is 

incremented whenever a new firing request is issued (this is achieved via a specific 
instruction to the PP), and it is decremented on each fire performed on cycle 2. Since 
this is counting perennial events, the counter will keep its count until the increment or 
decrement signals of the module modifies it. In this case, the events queued are kept 
until the associated transition is fired. This is the only mode previous PP queues had. 

Mode 2 – Automatic transition: In this operation mode the signal not_empty is 
kept high, see Fig. 3 (a). This can be interpreted as a transition that is always request-
ed to be fired, that is, an automatic transition. 

Mode 3 – Non-perennial event: All events that are counted are non-perennial. Af-
ter a certain amount of time (two clock cycles of the PP), the counter will be reset, 
and thus the associated transition could not be fired after that time. 

Output queue 
As seen on Fig. 3 (b), output queues store the amount of firings performed. If a 

transition is fired, the output queue associated with it will increment its counter. When 
the queue is read (with a specific instruction) the counter will be decremented. The 
output queues have two different operation modes. 

 
Mode 1 – Reporting mode: In this mode, the internal counter is incremented when 

the associated transition is fired and decremented when the counter is read (to check if 
a transition was fired). If the interruptions are enabled in the GPP, an interruption will 
be generated when the counter is different than zero. 

Mode 2 – Non reporting mode: In this mode, the internal counter is not used and 
the signal not_empty is always equal to zero. 



Priorities and conflicts among transitions 
The PP cannot detect a conflicting state, so it treats transitions as if they were all in 

conflict. The Possible firing vector of the PP represents all those transitions.  
The PP fires only one transition per execution cycle (single server model). This 

solves the conflicts issue and makes the system deterministic; the priority module 
makes the decision about which transition to fire. This is implemented as a binary 
matrix that establishes the necessary relationships to determine the highest priority 
transition. This module is also configurable during execution time. 

Microblaze MCS Interface 
Given that the PP is associated with a GPP [3], it is necessary to connect both pro-

cessors in order for the system to perform the required system actions. The GPP that 
was chosen for this integration is the softcore Microblaze MCS [12], because  of its 
low impact on the system resources and because it is well supported by the develop-
ment tools from Xilinx. 
The software architecture is very simple and it is made of one main program and two 
drivers. The first driver exposes a communication interface that we use for connecting 
to the PP (pp_driver) and the second one (external_comm) initializes and controls 
the UART module to send instructions and info through a serial connection.  

4 Results 

Several application cases were executed to evaluate the PP performance. It has 
been used successfully for controlling production lines, like the ones presented by  
Naiqi Wu y MengChu Zhou in [13]. The comparisons have been conducted by taking 
into consideration the results obtained in [3], which were very similar. 

4.1 FPGA resources 

To determine the amount of resources used and to compare them with other im-
plementations, a PP was instantiated multiple times, varying the number of elements 
of the vectors and matrices. Multiple synthesis of the core were performed as well, 
and data lengths of 4 and 8 bits were used. 
Fig. 4 shows the amount of FPGA resources used for each synthesized configuration. 
Registers are related to the number of flip-flops consumed, while LUTs, are directly 
related to the hardware architecture of the FPGA Atlys, which was the platform we 
used for implementing the PP. 
In Fig. 4 an exponential use of resources is shown a long as we increase the number 
of elements in the vectors and matrices.  



A very important discovery was 
that 4 bit configurations use ap-
proximately the same amount of 
registers than 8 bit configurations, 
even when an 8 bit configuration 
has fewer elements in the vectors 
and matrices (and in some cases, 
the number of registers decrease). 
For example, configuration 
32x32x4 consumes fewer resources 
than configuration 24x24x8.  
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Fig. 4. Graph of resource consumption 

This means that we can process bigger PNs, if we can restrict the data length for a 
given application. 
Due to the optimization of the IP Core, the resources impact of using Microblaze, is 
considered constant (12.72% of all LUTs available and 21.09% of registers). These 
resources are the same for all the PP architectures. 

4.2 Frequency analysis 

To perform a frequency analysis, we followed the same approach as explained in 
the previous section. This shows the maximum frequency that each implementation 
could reach. The data length has a negligible effect in the max frequency reached. For 
example, if we compare configurations 8x8x4 and 8x8x8, the difference in frequency 
is just 2 MHz (80.073 MHz and 78.422 MHz respectively). However, if we increase 
the number of elements of the matrices and vectors, that is, if we increase the size of 
the PN, then the frequency is significantly lower. For example, between configura-
tions 8x8x8 and 16x16x8 there is approximately a 23 MHz difference (78.422 MHz 
and 55.32 MHz respectively). The boundaries of frequency are mostly due to the 
model of FPGA used.  

5 Conclusions  

In the current project, the PP was extended, modularized so it is an enhanced ver-
sion of the one presented in [3]. An interconnected system was achieved, in replace of 
the monolithic version of previous implementations. The module design and the in-
clusion of programmable queues did not impact negatively on the resources required. 
The programmability of the queues, which now support different modes of operation 
and types of events, is a huge step forward.  Besides, the maintainability of the PP has 
been simplified, so it is easier to add new features in the future, like the possibility of 
executing Hierarchical PNs, temporal PNs, etc. The control stage of the processor is 
the only module that needs to be modified for that. 



The results obtained from the optimizations implemented in the hardware level show 
that the PP is suitable for Embedded Systems that require up to 32 conditions (transi-
tions), 32 logic variables (places) and 32 simultaneous events. 
The addition of a serial communication module allowed to have a testable, program-
mable and configurable PP. All these can be now performed from any PC terminal. 
The modular implementation of the PP implies a step forward for maintainability, 
scalability and the future auto-configuration of the PP. Furthermore, the programma-
ble queues have increased its semantic capability. 
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