
Performance evaluation of a 3D engine for mobile devices

Federico Cristina, Sebastián Dapoto , Pablo Thomas, Patricia Pesado

Instituto de Investigación en Informática LIDI,

 Universidad Nacional de La Plata – Argentina

Centro Asociado Comisión de Investigaciones Científicas de la Provincia de Buenos Aires

{fcristina, sdapoto, pthomas,

ppesado}@lidi.info.unlp.edu.ar

Abstract. Currently there are several frameworks for the development of 3D mo-

bile applications, but all of them have a common issue: performance is a critical

aspect to consider, even more relevant than in desktop computers, which gener-

ally have a greater computing power. The profiling or performance analysis tools

that these frameworks have can help, to some extent, to determine the possible

existence of bottlenecks in the execution of applications. However, this type of

tool has certain limitations such as covering only a spectrum of the possible

causes of the problem or limiting the analysis to certain scenarios in particular.

This article proposes an evaluation and impact measurement of the key features

related with performance on 3D mobile applications.

Keywords: Unity engine, mobile devices, 3D applications, performance

1 Introduction

Nowadays, mobile devices are increasingly sophisticated and their technological evo-

lution allows them to execute complex applications with rigorous hardware require-

ments.

However, when these applications are visual and include three-dimensional

graphics, it is possible to notice some degradation in the flow of execution. This loss in

execution efficiency is due to the characteristics of the device in which the application

is executed, but also to the characteristics of the development tool and / or its imple-

mentation.

The number of frameworks for the development of interactive 3D mobile applica-

tions is constantly increasing. Each of these frameworks have different characteristics

that make them suitable for different types and magnitudes of project.

By choosing a particular framework it is possible to base itself on various criteria

such as: the existing community, the supported coding languages, the ease of use, the

quality of the resulting 3D graphics, among others. However, one of the main points of

interest is to obtain a good performance in terms of visualization and fluency.

In mobile devices, the limited processing capacity (for example, compared with that

of desktops) is more relevant. For this reason, it is important to know the capabilities

and limitations of the framework to be used in terms of visualization performance.

In order to achieve this objective, this paper proposes an evaluation that allows iso-

lating, analyzing and dimensioning the incidence of the main characteristics related to

the visual performance of 3D mobile applications.

This evaluation provides support to the software engineer of 3D mobile applications,

enabling the identification of factors that slow down the visual performance of these

applications, and allowing them to adjust the critical points until achieving the desired

fluidity.

The rest of the paper is organized as follows: section 2 describes the motivation of

the proposed analysis; section 3 presents the evaluation in detail; section 4 shows the

experimentation carried out and, finally, in section 5 the conclusions and the future

work are exposed.

2 Motivation

The gestation of the performance analysis proposed by this work begins during the de-

velopment process of two mobile applications: R-Info3D [1] and InfoUNLP3D [2]. The

first application is a 3D learning environment of basic algorithmia, while the second

one is a virtual 3D scenario of the Facultad de Informática - Universidad Nacional de

La Plata. Both projects resulted in immersive applications, which by their nature present

a high computational cost, mainly in terms of visualization [3].

Both in the implementation process and in its subsequent execution in different mo-

bile devices, limitations were found regarding the obtained performance. We proceeded

to recognize the critical points that affected visual fluidity and determined certain

thresholds that should not be overcome. This analysis led to modify the applications to

achieve better performance in different types of mobile devices.

Prior to the beginning of the development of the aforementioned tools, an analysis

of the main free-use engines for the development of 3D mobile applications was made.

The considered engines were: Unity [4], one of the most popular and simple to use;

Unreal Engine [5], which compared to other engines is somewhat more complex to use

and with higher hardware requirements; CryEngine [6], thought mainly for first person

3D developments, its installation and use are not trivial processes.

R-Info3D and InfoUNLP3D were developed with the Unity framework. Given that

there is no optimal framework in all possible aspects, the choice of Unity over the rest

of the 3D mobile development frameworks analyzed was based on a series of factors,

among which stand out:

 Tutorials: there are a lot of tutorials and examples that guide the new user in the

learning process of the use of the framework. These tutorials are categorized accord-

ing to the type of development, they are audiovisual and are provided with all the

necessary elements needed (objects, audios, images, scripts, etc).

 Documentation: the user manual [7] is comprehensive, easy to understand and

properly subdivided into different categories. It contains a lookup engine that facili-

tates the search of a particular topic or functionality.

 Software / hardware requirements: the system requirements are considerably lower

compared to other similar frameworks. This, accompanied by a simple and fast in-

stallation, encourages the user / developer to start quickly with the use of the frame-

work.

 Available components: it has a repository (Asset Store) where it is possible to find a

wide variety of components that can accelerate the development of applications. It

contains a component lookup engine that allows complex searches through different

types of filters.

 Ease of learning / use: the framework is versatile and allows working in two different

languages: C # and javascript. This, added to the documentation, the tutorials, the

repository and the existing community, generates an ideal scenario to quickly learn

to use the framework and solve any problem that may arise in the process.

 Community: the great popularity of Unity is a major factor when choosing it. It is

the most used 3D framework and its community is composed of more than two mil-

lion users [8]. It contains a forum subdivided into categories where it is possible to

raise the situations or problems that may arise during the application development

process.

There are different proposals for performance analysis of 3D engines for mobile appli-

cations. One of these proposals [9] evaluates the performance of the applications taking

into account the consumption of CPU and / or GPU that they generate. Other works

[10, 11] base their evaluation on an analysis of the main features and functionalities of

the frameworks, resulting in a comparative table or list.

None of these works adopt the approach proposed in the present paper, that is to give

some kind of guidance for the development of 3D mobile applications based on the

final achieved visualization performance.

3 Proposed evaluation

The main objective of the proposed evaluation is to isolate each of the main character-

istics covered by a 3D application; especially those that have a direct impact on the

performance, response time and flow of execution of the applications generated with

the engine [12].

Characteristics such as the number of polygons, lights and shadows, the use of tex-

tures and / or transparencies, the visualization of particle systems and the calculation of

the physics of objects that make up the scene are examples of the main items to be

evaluated.

Although the incidence of these characteristics on performance varies according to

the software and hardware on which the application is executed, the tests carried out

show that there is a common pattern of performance degradation in relation to the in-

crease in visual requirements.

Based on the previously mentioned set of characteristics, a series of independent

tests is defined to evaluate the performance. These tests are listed below:

1. Basic Mesh Rendering: simple objects without texture in motion are presented on

screen in a scene without lighting or shadows. Objects must rotate continuously at

constant speed. The number of objects on the screen will grow according to the time

elapsed. The number of frames per second (FPS) is accounted throughout the simu-

lation according to the number of objects.

2. Complex Mesh Rendering: it consists in visualizing a complex object in movement,

which must contain a high number of polygons. The rendering distance (clipping

plane) increases as the test progresses. The FPS is accounted throughout the simula-

tion depending on the rendering distance.

3. Lights & Shadows: a simulation similar to the basic mesh rendering is performed,

but in this case the scene contains lighting and objects with projection and reception

of shadows. The FPS is accounted according to the number of objects.

4. Textures: a simulation similar to the basic mesh rendering is performed, but in this

case the objects have complex textures, such as transparencies, reflections, etc. The

FPS is accounted according to the number of objects.

5. Particle Systems: a scene is created where new instances of a particle system are

progressively presented (for example smoke, sparks, explosion, etc.). The FPS is

accounted for according to the number of particle systems.

6. Physics: a simulation similar to the basic mesh rendering is performed, but in this

case the objects are subject to physics rules, such as gravity. The FPS is accounted

throughout the simulation according to the number of objects.

The use of this set of tests simplifies considerably the task of determining the critical

points in the developed applications, thus enabling a better calibration of the analyzed

characteristics.

In particular for this work, cubes were used as simple objects, while for the rendering

test of a complex object, the building model of the Facultad de Informática was chosen.

The model used in the InfoUNLP3D application, contains more than 500,000 polygons

and a large number of windows. Due to the latter, for the textures tests, "glass transpar-

ency" was applied to the elements. As for the particle system, one similar to that used

by the robot in R-Info3D when executing a repositioning instruction (Pos) was gener-

ated.

4 Experimentation

The experiments consisted in performing the test set previously detailed over a set of

mobile devices with different characteristics. The devices used in the tests were three

smartphones and two tablets: Samsung Galaxy S2 (smartphone), Samsung Galaxy J5

(smartphone), LG L5 II (smartphone), Asus MemoPad FHD10 (tablet) y Acer B1-730

(tablet). These devices present considerable differences preformance-wise, and have

different hardware architectures, such as ARM and x86.

Figures 1 and 2 show the average values of the results obtained from the tests exe-

cuted over all the devices, considering two different quality rendering configurations

that Unity provides: Fastest (the lowest) and Fantastic (the highest) [13].

Fig. 1. FPS. Evolution of each test, Fastest quality.

In all cases and depending on the type of test, the information is normalized accord-

ing to the possible range of minimum and maximum values for each test. In tests 1, 3,

4, 5 and 6 the number of objects on screen starts at 1 and gradually increments through-

out the simulation until reaching a high value, such as 10000 objects. For the test 2, the

evolution in this case is the rendering distance, that can vary from a minimum of 200

up to a maximum of 2000 distance units. Additionally, the ideal frame rate considered

is 60 FPS.

Fig. 2. FPS. Evolution of each test, Fantastic quality.

The results of the tests offer an interesting set of conclusions, which allow the pos-

sibility for the correspondent optimization of the application. The following observa-

tions results from applying the proposed evaluation specifically for the current case of

study.

 Basic mesh rendering using both Fastest or Fantastic quality does not present per-

formance differences. Both curves show almost the same evolution throughout the

simulation.

 Light affects the performance under Fantastic quality, but not under Fastest quality,

configuration which seems to completely ignore lights calculations. Lights/shad-

ows rendering is one of the key factors in respect to visual performance, as it will be

later explained in this paper.

 The amount of polygons (+500k) under the complex mesh simulation is excessively

high for the set of mobile devices used in the tests in order to achieve a fluent visu-

alization. Both Fastest and Fantastic quality settings suffered the same degradation.

 Textures application does not seem to considerably affect general performance, at

least with the selected texture (which includes transparency), applied through a

standard shader, and with a moderate texture size.

 Being 2D, particle systems are not considerably affected by quality change; but a

high number of systems prohibits the correct execution of the simulation, given the

large amount of individual calculations required for each of the particles of each

system.

 Both Collision detection and Physics have a relatively minor impact over perfor-

mance, when a reasonable number of objects are displayed in the scene (for instance,

less than 2000 cubes).

Figure 3 shows the FPS coefficient between Fastest and Fantastic quality configu-

rations. A value of 1 implies that the test behaves the same under both configurations;

whereas a value greater than 1 implies a factor of degradation under Fantastic relative

to Fantastic, and a value less than 1 implies the opposite. Thanks to test 3 is possible

to clearly appreciate the performance degradation under Fantastic configuration, with

an average of 50% less fluent than Fastest configuration (which obviously relegates

graphical quality in this matter).

Fig. 3. FPS. Fastest vs. Fantastic.

Additionally, as previously explained, the complexity of the object to be renderized

(test 2) equally impacts on both Fastest and Fantastic configurations, and after certain

threshold there is practically no distinction between each configuration.

Thanks to this analysis, it was possible to achieve an acceptable balance between

graphical quality and visualization fluency in each of the developed applications in

Unity. Figure 4 presents a scene of InfoUNLP3D application with the highest possible

level of detail, considering characteristics such as textures, lights and shades; but with

a extremely poor FPS performance. Figure 5 shows the same scene once modified in

order to achieve máximum fluidity, although relegating in excess the characteristics

previously mentioned. Figure 6 presents the achieved results thanks to the selected

optimal calibration, based on the results of the tests. In this calibration both image

quality and visualization fluidity is considered. For instance, the use of spot lights is

omitted in order to avoid shadow processing, given that the objetive of the application

is not to present a photorealistic rendering, but to serve as a reference guide for students.

Fig. 4. InfoUNLP3D. Maximum level of detail.

Fig. 5. InfoUNLP3D. Minimum level of detail.

Under this context, a new feature was added to the Info UNLP 3D application that

allows the user to configure the rendering distance (and therefore the number of poly-

gons on the scene). By avoiding rendering the most distant elements in the scene, flu-

idity is gained without losing functionality, which is based on navigate the building

gathering information about the nearby rooms. This new option allows the use of the

application on devices with lower processing power.

Fig. 6. InfoUNLP3D. Selected optimal calibration.

5 Conclusions and future work

The present paper proposes a set of heuristics that allows to establish the key factors

that degrade visualization fluidity of 3D mobile applications.

Thanks to the proposed evaluation method it is possible to identify these factors in

order to redesign an application and considerably reduce performance problems.

As a proof of concept and to test its effectiveness, the evaluation method was applied

over Unity engine. Simulation tests were carried on, gathering as a result the required

information in order to execute the correspondent optimizations on the applications de-

veloped with the mentioned engine.

As starting point, a 3D mobile application developer has a set of guidelines to con-

sider in order to aid visual performance optimization.

As a future work, the same evaluation method will be applied over other 3D mobile

application engines such as Unreal Engine or CryEngine, and ideally will be perform a

comprehensive performance comparison between these frameworks for each of the

evaluated characteristics.

6 References

1. Cristina, F.; Dapoto, S.; Thomas, P.; Pesado, P. “3D Mobile Prototype for Basic Algorithms

Learning”. Computer Science & Technology Series - XXI Argentine Congress of Computer

Science. Selected Papers. ISBN: 978-987-4127-00-6, pages 239-247. 2016.

2. Cristina, F.; Dapoto, S.; Thomas, P.; Pesado, P. “InfoUNLP3D: An interactive experience

for freshman students”. Computer Science & Technology Series - XXII Argentine Congress

of Computer Science. Selected Papers. ISBN: 978-987-4127-28-0, pages 249-256. 2017.

3. Linowes J. “Unity Virtual Reality Projects”. ISBN-13: 978-1783988556. 2015.

4. Unity. https://unity3d.com

5. Unreal Engine. https://www.unrealengine.com/

6. CryEngine. https://www.cryengine.com/

7. Unity online manual. http://docs.unity3d.com/Manual/index.html

8. Unity Blogs: The Unity Community. https://blogs.unity3d.com/2014/03/11/we-got-karma/

9. Messaoudi F., Simon G., Ksentini A. "Dissecting Games Engines: the Case of Unity3D".

International Workshop on Network and Systems Support for Games (NetGames). Elec-

tronic ISSN: 2156-8146. 2015.

10. Akekarat Pattrasitidecha. "Comparison and evaluation of 3D mobile game engines".

Chalmers University of Technology. University of Gothenburg. 2014.

11. Petridis P., Dunwell I., Panzoli D., Arnab S., Protopsaltis A., Hendrix M., de Freitas S.

"Game Engines Selection Framework for High-Fidelity Serious Applications". International

Journal of Interactive Worlds. Article ID 418638. DOI: 10.5171/2012.418638. 2012.

12. Optimizing Graphics Performance.

https://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html

13. Unity Manual: Quality Settings. https://docs.unity3d.com/Manual/class-QualitySet-

tings.html

