
A Systematic Literature Review in Cross-browser Testing
Leandro N. Sabaren1, Maximiliano A. Mascheroni1,2, Cristina L. Greiner1, Emanuel Irrazábal1

1Departamento de Informática. Facultad de Ciencias Exactas y Naturales y Agrimensura.
Universidad Nacional del Nordeste. Corrientes, Argentina

leans177@gmail.com, {mascheroni, cgreiner, eirrazabal}@exa.unne.edu.ar
2Facultad de Informática, Universidad Nacional de La Plata

Abstract

Many users access web pages from different
browsers looking for the same user experience in all
of them. However, there are several causes that
produce compatibility issues. Those defects affect
functionalities and user interface components. In this
paper we present a systematic literature review
which aims to find and summarize existing
techniques, tools and challenges related to cross-
browser testing. According to the results, the most
used technique is the visual analysis. However, there
are still challenges to face. The most important
challenge is the identification of dynamic
components in the user interface. Cross-browser
compatibility topics are getting importance
according to an increment in published articles.
Nevertheless, there are techniques that are not
completely developed yet and do not fully support
test automation practices.

Keywords: cross-browser testing, systematic
literature review, web application.

1. Introduction

When developing a website, one of the goals is that
it has to be visualized by many users worldwide [1,
2]. Due to websites distribution, based on the client-
server architecture model [3], users can access any
site from many types of web browsers, from
different platforms and devices. However, the
differences between each browser and the way they
interpret the website source code may cause
incompatibility defects. One of the developer’s tasks
is to provide an accepted user experience to every
user. Browser compatibility is a website’s capability

Citation: L. Sabaren, M. Mascheroni, C. Greiner and E.
Irrazábal. “A Systematic Literature Review in Cross-browser
Testing”, Journal of Computer Science & Technology, vol. 18,
no. 1, pp. 18-27, 2018.

DOI: 10.24215/16666038.18.e03
Received: February 10, 2017 Revised: April 04, 2018

Accepted: April 06, 2018
Copyright: This article is distributed under the terms of the

Creative Commons License CC-BY-NC.

that makes it work correctly in a certain number of
web browsers [4]. It is impossible to test a web
application in all of the web browsers that exist in
the world, and in all operating systems [4]. A
website has cross-browser compatibility if it is
interpreted in the same way by all of the browsers.

There are test tools in the market, like
CrossBrowserTesting1 or BrowserStacks2, but they
produce screenshots that require visual inspection by
a user. In the last years, many researchers have
proposed techniques and tools to perform
compatibility testing. While the state of the art
grows and diversifies, the need to systematically
summarize these solutions arises. We propose this
study in cross-browser compatibility testing through
a systematic literature review, aimed to find: testing
techniques, implemented tools and new challenges.
This work constitutes the continuation of a previous
work published in CACIC 2017 [5], and it includes
new content regarding the discussed testing
techniques and documented challenges. We also
include an updated pool of articles and an additional
research line that helps to understand better how the
testing tools and techniques were validated.

This paper is divided into sections. The selected
methodology is detailed in Section 2. Section 3 lists
the selected articles, Section 4 presents the analysis.
A list of related works is presented in Section 5.
Section 6 contains discussions on findings, research
trends and threats to validity. Finally, our
conclusions are presented in Section 7.

2. Methodology

The selected methodology is the systematic
literature review (SLR), proposed by Kitchenham
and Charters [6]. The protocol is shown in Fig. 1.

The goal is to analyze scientific articles related to
cross-browser compatibility, focusing in the
proposed techniques and tools. The research
questions (RQ) will guide the process and the
findings will answer the raised questions. We
believe that a summary of the state of art will aid

1https://crossbrowsertesting.com/
2https://www.browserstack.com/

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

18

works in this line of investigation. The RQ are:
RQ1 - What are the proposed cross-browser

compatibility testing techniques?
RQ2 - What are the proposed tools to detect

cross-browser incompatibility?
RQ3 - How are the proposed tools validated?
RQ4 - What challenges are presented when

implementing the tests approaches?

Fig. 1 Diagram of the protocol used for this review.

For the search terms, keywords were extracted
from the RQ. Successive searches were conducted,
adjusting the parameters to improve the results. The
search term was: (web OR website) AND ("cross-
browser" OR "cross browser" OR crossbrowser)
AND (test OR testing OR defect OR failure OR
issue) AND (technique OR method OR tool).

Fig. 1 shows the review protocol’s steps. After
selecting the sources, the search term is used to
obtain the articles. Then, articles are selected based
on inclusion/exclusion criteria. Once the relevant
articles are obtained, pertinent data is extracted and
analyzed to answer the RQ. Finally, a summary of
them and conclusions are presented. The selected
repositories were used in similar studies [7, 8, 9, 10]:
Scopus, ACM Digital Library, IEEE Xplore, Science
Direct. Relevant studies are selected based on
inclusion and exclusion criteria. Every article was
examined, taking the title, abstract, keywords,
introduction and conclusion sections in order to
judge its relevance. The criteria used were:
• Identify article’s relevance in the cross-browser

compatibility testing domain.
• Evaluate whether the article provides

information that addresses the proposed RQ.

3. Selected articles

The first search provided a total of 179 articles.
After applying the inclusion/exclusion criteria, 31
articles were selected, as seen in Table 1.

Table 1 Scientific articles selected for this SLR.

ID Ref. Title
S1 [11] A Cross-browser Web Application Testing Tool
S2 [12] Webdiff: Automated Identification of Cross-browser Issues in Web Applications
S3 [13] Detecting cross-browser issues in web applications
S4 [14] Automated cross-browser compatibility testing
S5 [15] Cross Browser Incompatibility Reasons and Solutions
S6 [16] CrossCheck: Combining crawling and differencing to better detect cross-browser incompatibilities in web

applications
S7 [17] WebMate: A Tool for Testing Web 2.0 Applications
S8 [18] Visual testing of Graphical User Interfaces; An exploratory study towards systematic definitions and

approaches
S9 [19] Measuring and Improving Website User Experience using UX Methodologies; A Case Study on Cross

Browser Compatibility Heuristic
S10 [20] X-PERT Accurate identification of cross-browser issues in web applications
S11 [21] WebMate: Generating test cases for web 2.0
S12 [22] Browserbite: Accurate cross-browser testing via machine learning over image features
S13 [23] X-PERT: A web application testing tool for cross-browser inconsistency detection
S14 [24] Crawl-based analysis of web applications; Prospects and challenges
S15 [25] Cross Browser Testing Using Automated Test Tools
S16 [26] Modeling web application for cross-browser compatibility testing
S17 [27] Finding HTML presentation failures using image comparison techniques
S18 [28] Adaptive random testing for image comparison in regression web testing
S19 [29] A crowdsourcing framework for detecting cross-browser issues in web Application
S20 [30] An oracle based on image comparison for regression testing of web applications
S21 [31] Detection and Localization of HTML Presentation Failures Using Computer Vision-Based Techniques
S22 [32] Browserbite: cross-browser testing via image processing
S23 [33] Cross-Browser Compatibility Testing Based on Model Comparison
S24 [34] Static Analysis Technique of Cross-Browser Compatibility Detecting
S25 [35] A Survey on Cross Browser Inconsistencies in Web Application
S26 [36] X-Check A Novel Cross-browser Testing Service based on Record/Replay
S27 [37] Using Visual Symptoms for Debugging Presentation Failures in Web Applications
S28 [38] An Automated Approach for Cross-Browser Inconsistency (XBI) Detection
S29 [39] Detect cross-browser issues for javascript-based web applications based on record-replay
S30 [40] Detection of Cross Browser Inconsistency by Comparing Extracted Attributes
S31 [41] VISOR: A Fast Image Processing Pipeline with Scaling andTranslation Invariance for Test Oracle

Automation of Visual OutputSystems

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

19

4. Results

4.1. RQ1 – What are the proposed cross-
browser compatibility testing
techniques?

In total, 29 articles developed testing techniques
(93.5%), listed in Table 2. Some of them propose a
combination of these. The techniques are:

DOM model analysis. Document Object Model
(DOM) is a multi-platform language independent
interface to represent HTML, XHTML or XML
documents as tree structures [42]. Each tree node
represents a webpage’s object. This technique
compares a pair of models of the same page in
different configurations. A configuration is defined
by a web browser-operating system pair [22]. In
total, 11 studies (35.4%) proposed this technique
(S1, S2, S3, S4, S6, S7, S10, S13, S14, S19, S26).

Visual analysis. Consists in comparing
screenshots taken from the application. Generally,
they are compared in pairs. One image is considered
the webpage’s correct representation, the second is
taken from a different configuration being tested.
Methods for image comparison include the use of
histograms - color histograms of the screenshots are
compared by measuring the χ2 distance (S13) -, pixel
comparison, graphical user interface element’s
properties comparison and image segmentation in so
called, regions of interest. Proposed by 16 studies
(51.6%), it is the most selected technique (S1, S2,
S6, S10, S13, S3, S8, S12, S17, S21, S18, S20, S22,
S26, S27, S31).

Navigation model analysis. Using a web crawler
the behavior model of the application is generated,
resulting in a finite state machine. These tools
explore all the webpage’s possible states. This is
followed by a comparison of two different models
produced. Eight studies (25.8%) proposed this
technique (S4, S7, S11, S10, S13, S14, S16, S23).

Record/replay. First, a user performs a series of
actions in the application, which are recorded to be
replayed in a different configuration. The results are
compared to find incompatibilities. Three articles
(9.6%) proposed this technique (S19, S26, S29).

Static analysis. A direct analysis of the
application’s source code is performed, instead of
rendering the webpage in a browser. It detects
possible conflicting elements bound to the HTML5
standard. The code analysis is managed through
regular expressions detection. The researchers first
built a database with HTML5 incompatible features
linked to the web browsers. This is followed by a
detection of HTML5 incompatible features in the
application. If an incompatibility is found, a report
highlights the code location that generated the issue.
The static analysis needs access to the webpage

source code to generate tests. One article (3.2%)
proposed this technique (S24).

Attribute comparison. It generates graphs using
web crawlers, which contain webpage elements’
attributes in different configurations. Then, the same
element’s attributes in different graphs are compared
to detect incompatibilities. Two articles (6.4%)
proposed this technique (S28, S30).

Heuristic evaluation. It is an inspection method
to assess an application’s usability, focused on
detecting user interface issues. Experts examine the
interface, and judge the compliance with
predetermined usability principles. The verification
lists (defined as heuristic checklists) guide the
evaluation process. This is performed across various
browsers, resolutions and operating systems. One
article (3.2%) proposed this technique (S9).

Table 2 Proposed techniques by selected articles.

Technique Selected articles N° of
art.

DOM model analysis (S1, S2, S6, S10, S13, S3,
S4, S7, S14, S19, S26)

11

Visual analysis (S1, S2, S6, S10, S13, S3,
S8, S12, S17, S21, S18,
S20, S22, S26, S27 S31)

16

Navigation model
analysis

(S4, S7, S11, S10, S13,
S14, S16, S23)

8

Record/replay (S19, S26, S29) 3
Static analysis (S24) 1
Attribute comparison (S28, S30) 2
Heuristic evaluation (S9) 1

The tendency in the techniques selection can be
seen in Fig. 2. The DOM model analysis was largely
preferred the first years. Navigation model analysis
had an increase in its use, but it has been overlooked
the last two years. Visual analysis was the most
selected technique, and its use has been increasing in
time. Static analysis and attribute comparison are the
newest techniques.

Fig. 2 Number of articles that selected each technique by
publication year.

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

20

4.2. RQ2 – What are the proposed tools to
detect cross-browser incompatibility?

Two types of articles can be distinguished: those that
propose a tool developed by its own authors (17
articles, 54.8%), and those that examine commercial
tools (3 articles, 10%). One article (3.3%) proposes a
testing technique using an already existing tool
(S23). Table 3 lists the tools developed by the
studies’ authors, these papers propose a testing
technique as well.

Table 3 Author developed tools that implement the
proposed testing techniques.

Tool Ref. Testing technique
Webdiff (S1, S2, S3) DOM model analysis,

visual analysis
CrossT (S4) DOM model analysis,

navigation model analysis
CrossCheck (S6) DOM model analysis,

visual analysis
WebMate (S7, S11) DOM model analysis,

navigation model analysis
X-PERT (S10, S13) DOM model analysis,

visual analysis, navigation
model analysis

Browserbite (S12, S22) Visual analysis
WebSee (S21) Visual analysis
Crowdcheck (S19) Record/replay, DOM model

analysis
Crawljax (S23) Navigation model analysis
X-Check (S26, S29) Record/replay, DOM model

analysis, visual analysis
FieryEye (S27) Visual analysis
VISOR (S31) Visual analysis

Table 4 Commercial tools evaluated by the articles.

Tool Observations Ref.
Adobe Browserlab Obsolete since March

13, 2013.
(S5)

IE Netrenderer Only works with
Internet Explorer. Free.

Browsera Performs full website
testing.

Litmusapp Obsolete since 2017.
Browsrcamp Obsolete.
IETester Only works with

Internet Explorer.
(S15)

SuperPreview Part of Expression Web.
No longer supported.

BrowserStack
BrowserShots Free.
CrossBrowserTesting
Browser Sandbox Free. (S25)
IE Tab Firefox and Chrome

extension.
BrowserCam Obsolete.
Browserseal Obsolete.

Table 4 lists the examined commercial tools. Some
of them are no longer supported, and the others work
only on certain configurations.

4.3. RQ3 – How are the proposed tools
validated?

The validation methods used by the articles consist
on testing the developed tool on websites. In total,
20 articles (66.6%) contain details about the
validation process and only 14 of them list the
number of test artifacts used. We can classify these
articles in those that validate a testing technique (4
papers, 13.3%) as shown in Table 5, and those that
validate a tool developed by the authors (10 papers,
33.3%) as shown in Table 6.

Table 5 Number of tested websites on proposed
techniques' validation phase.

Technique tested
Selected
article

Number of tested
sites

Visual analysis (S17) 4

Visual analysis (S18) 7

Visual analysis (S20) 3

Static analysis (S24) 1

Table 6 Number of tested websites on developed tools’
validation phase.

Tool tested Selected article
Number of tested

sites

Webdiff (S1, S2, S3) 9

Browserbite (S12, S22) 140

X-PERT (S13) 14

WebSee (S21) 8

X-Check (S26, S29) 8, 11

FieryEye (S27) 5

In (S13), 10 websites were chosen by the authors.
The remaining 4 were obtained by a random URL
generator3. In (S1, S2, S3) a similar random URL
generator was used as well. (S7) has chosen real
webpages based on their popularity (Gmail,
Craigslist Autos, Virgin America, PayPal). (S20)
tested their proposed technique focusing on
shopping cart based applications. In (S27), a fault
seeding mechanism was used instead of real-world
faults. This is because of a lack of access to real
refactored web pages (related to visual symptoms
implemented in the technique). In (S12, S18, S22,
S24), the testing was conducted in the browsers
considered the most popular: Google Chrome,
Mozilla Firefox, Opera and Internet Explorer.

3http://www.uroulette.com/

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

21

4.4. RQ 4 - What challenges are presented
when implementing the tests
approaches?

Fig. 3 shows the most encountered challenges while
performing tests. Variable elements detection is one
of the most mentioned. It refers to web application
regions that are not static. It includes animations,
statistics and publicity that change when reloading
the website. In (S1, S2, S20), this is handled with a
variable region detection strategy. The website is
loaded multiple times in the same configuration, and
any section of the screen that presents variation is
detected. Then, these sections are discarded properly
in the tests.

Fig. 3 Challenges found in the articles.

False positive (sometimes called as flaky tests)
refers to positive tests that should have resulted
negative, because the site is cross-browser
compatible. False negative refers to tests that failed
despite the presence of incompatibilities. This issue
affects all the testing techniques. According to (S6),
information gathered from DOM models may
produce false positives. Therefore, this technique is
used together with visual analysis. In (S12, S22), a
classification module for potential incompatibilities
in screenshots is detailed. Tests are classified in true
positives and false positives. This classification is
supported by a machine learning technique using
neuronal networks. Machine learning is an artificial
intelligence branch that allows computers to learn
behavior based on empirical data [16]. Machine
learning techniques are used in (S6) as well, to build
a more precise visual difference detector. In (S29), it
is outlined that navigation model analysis is prone to
produce false positives and negatives as well. By
crawling the application with web crawlers, non-
deterministic actions are ignored.

Triggering state changes is related to navigation
model analysis. The articles (S7, S14), mention the
difficulty of changing states in the navigation model.
When the events are numerous, any click can trigger
a new state. In (S16), it is highlighted that
performing certain actions in different order may

conduct to different states.
Interactive elements are a recurring issue in the
selected studies (S7, S16). Web 2.0 technologies
promote dynamic behavior with source code that is
executed in the client-side, like JavaScript and
HTML5 [43].

The need for a tool to be automated is evident in
several articles (S6, S9, S29). It is mentioned the
high cost associated with the need of a user
performing manual actions (S6). However, (S8, S9)
propose entirely manual testing techniques.

Unreachable states are related to navigation model
analysis. According to (S14, S29), there are states
that cannot be reached from the website links. Thus,
the produced model will be incomplete, leaving part
of the system untested.

Table 7 displays the relation between the most
mentioned challenges and the testing techniques
discussed.

Table 7 Documented challenges by the selected studies
related to the testing techniques.

Challenge Testing technique
Variable element detection Visual analysis
Interactive elements DOM model analysis,

Navigation model
analysis

Trigger state changes Navigation model
analysis

Unreachable states Navigation model
analysis

Different DOM models of
the same webpage DOM model analysis

Besides the more common challenges mentioned,
other issues have been identified. (S2) states that is
difficult to take screenshots in visual analysis. This
article also exposes the existing issues related to the
presence of embedded objects when trying to
generate DOM models. For (S3), web browsers that
implement security measures constituted a challenge
when extracting information to create DOM models.
According to (S4), there are cases when an
incompatibility is not shown in a DOM model,
which leads to false positives. For (S6), sometimes a
browser’s data provided to construct the DOM
model are not accurate, which again, leads to false
positives. In (S12), it is described how the variation
of parameters needed for visual analysis resulted
unproductive, since a reduction in false negatives
conducted to an increment of false positives. The
authors tried to solve this issue with a neural
network model, which achieves high precision at the
expense of lower recall. Recall is a term used in
machine learning, referring to the proportion of real
positive cases that are correctly predicted [44].
Certain CSS properties can cause incompatibilities

0 2 4 6 8

Variable element detection

The tool should be automated

Interactive elements

Trigger state changes

Unreachable states

False positives and false
negatives

Different DOM models of the
same webpage

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

22

(S16), because these may not be fully supported by
the browser. A given example is the expression
property, which only works on Internet Explorer. In
(S22), a challenge which may affect any test
regardless of the testing technique is discussed:
when classifying a potential incompatibility as a real
incompatibility (opposite of a false positive), there is
a certain degree of subjectivity in which critical and
non-critical differences may vary on different
applications. They affirm that the proposed tool
(Browserbite) is just for static pages, needing
modifications to work on adaptive webpages. The
static technique proposed in (S24) has a limitation,
since the tests are computed on the webpage’s
source code directly, this should be available to the
testers. Finally, in (S27), the use of visual symptoms
is proposed when testing. The challenge discussed is
the need for a visual symptom to be independent of
any webpage. A symptom should cover all issue’s
source, and to distinguish itself from other related
issues’ symptoms. Due to the big number of similar
properties, the authors argue that this idea is
doubtful.

5. Related work

There are few secondary studies related to the SLR
developed in this paper. Even though they do not
study cross-browser testing specifically, they focus
on other types of testing techniques on the UI layer.
We mention the studies as follows.

Two studies on web application testing are
presented by Garousi et al. [45] and Dogan et al.
[9].The first one is a systematic mapping, followed
by a deep analysis using a systematic review. These
studies were conducted by the same research team.
Paz and Pow-Sang [46] present a systematic review
to identify evaluation methods which are employed
to assess the usability of applications. The preferred
method is usability testing. In the same context, Al-
Ismail and Sajeev [47] present a SLR on primary
studies related to mobile web usability, user
experience and usability challenges for mobile web
browsing.

Mascheroni et al. [48] present a study on cross-
browser compatibility testing in a continuous
software development environment. The same
authors also study web incompatibility detection
using digital image processing [49].

Saleem et al. [50] propose a systematic review
focused on how to maintain quality (based on
parameters like reliability, compatibility, etc.), the
types of used tests and how to improve quality. The
findings have proven that the major contribution for
quality assurance of web services, is done by
maintaining compatibility issues, the effectiveness
of services and traceability of operations.

Garousi et al. [51] conducted a multivocal
literature review, which is a type of SLR that
includes data from gray literature (such as blog
posts, white papers and videos). This study looked
for models, challenges and benefits of software test
maturity (measured with test maturity assessments
(TMA)) and test process improvement (TPI).

Therefore, to our knowledge, this is the first SLR
which studies cross-browser compatibility testing.

6. Discussions

6.1. Findings and current research trends

RQ 1- Techniques for cross-browser testing: the
visual analysis is the most used technique, as 16
studies selected it. Eight of the authors developed
tools that applied this technique, four of those used it
in combination with other techniques, and the rest of
them used it exclusively. Three studies explored and
validated this technique without the development of
a proper tool. DOM model analysis is the second
most used technique, although there is a decline in
its use after 2015. This technique was always
implemented in combination with other techniques.
The navigation model analysis facilitates the testing
of entire websites, and it is also used in combination
with other techniques. Other less popular techniques
such as record/replay, static analysis, attribute
comparison and heuristic evaluation have also been
proposed.

RQ2 - Tools: we classified the studied tools in (1)
tools developed by the article's authors (12 tools,
46.1%) and (2) commercial tools evaluated by the
study (14 tools, 53.8%). Twelve tools were
developed and proposed by studies' authors. From
these, 7 tools used a combination of testing
techniques, while the rest have implemented a single
technique. The techniques that have been applied to
these tools are: DOM model analysis, visual
analysis, navigation model analysis, and
record/replay. None of the developed tools used
static analysis, attribute comparison or heuristic
evaluation. Also, 14 commercial tools were listed,
although 6 became obsolete or are no longer
supported.

RQ3 - Validation of developed tools and
techniques: 20 articles provided validation data,
from those, only 14 listed a proper number of test
artifacts used on the process. From the 14 articles,
13 use visual analysis as a testing technique (making
it the most documented technique on validation
phase), 3 use DOM model analysis, 2 use
record/replay, static analysis and navigation model
analysis are used in 1 article each. Four studies
validated a technique and ten validated a tool. The
selection of tested sites and web browsers seemed to

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

23

be based on popularity. Some authors highlight the
difficulty in validation due to the need of
unavailable website information.

RQ4 - Challenges presented upon
implementation: we listed 7 challenges which were
mentioned by several studies. Five of these studies
are related to a specific testing technique. The most
mentioned challenge was variable element detection,
which affects the visual analysis. The other two
challenges (false positives and false negatives, and
the necessity for the tool to be automated), affect to
all the techniques. Other challenges (mentioned only
once across the selected article pool) were discussed
in the results. These issues are related to how the
testing technique was implemented or how the
researchers validated the tool.

The research trends found are closely associated
to the challenges listed in the RQ4. Several studies
(S1, S2, S4, S17, S20, S31) purport the need to
improve the tool’s precision and decrease the
number of false positives by tweaking the
configuration variables involved in the testing
algorithms. Several studies agree upon the
importance in handling variable elements and
adaptive websites (S1, S10, S17, S20, S22). Some
studies evidence the insufficiency in the validation
phase and appraise to increase the number of tested
sites (S1, S2, S18). In (S1, S2) it is highlighted the
importance to include mobile platforms in the tests.
In (S7, S11) it is evidenced the importance of
covering server-side parts of the application under
test. The studies (S6, S10, S29) suggest investigating
techniques to assist in diagnosing and automatic
fixing of cross browser incompatibilities through
browser-specific automated web page repairs. (S14)
delves into benchmarking and security as other
possible areas to expand the testing tool’s coverage.
Some studies (S4, S16, S23), have sufficiently
proven the importance of tool automation. In studies
that research testing techniques which depend on
databases (S4, S24), it is highlighted the importance
to increase the available data to improve the results.

6.2. Threats to validity

Here we present potential threats to validity to this
study and the actions we took to minimize their
impact. A secondary study in threats to validity in
SLRs served as guideline for this section [52].

6.2.1. Construct validity

Construct validity is the correct operational measure
for the concepts being studied [52]. To avoid not
including important resources we used multiple
databases to reduce errors during the primary studies
searching phase.

To reduce the possibility of incorrect or

incomplete search terms, we included key terms
synonyms used with logical connectors, along with
each search engine's specific configurations to
obtain the best results from each search engine.

To avoid using an incorrect search method, we
adjusted the search terms according to each
repository, performing minor changes to find all
relevant sources.

6.2.2. Internal validity

The main threat is an incomplete selection of
relevant studies. Our review method is discussed in
section 2. To ensure a complete as possible pool of
resources, the search was handled in iterations. The
search terms were refined to exhaust all possible
results that may contain relevant articles.
Nevertheless, there is the possibility to have missed
pertinent studies to our work. To avoid bias in the
study selection, a careful analysis of each article's
title, abstract, keywords and conclusions was
performed. This method was decided before the
selection phase. To prevent article duplication, each
article was double checked to discard duplicate
results from the repositories search. To minimize
subjective quality assessment, we established clear
inclusion/exclusion criteria (discussed in section 2).

6.2.3. External validity

The selected articles analyzed for this work were
published between 2010 and 2017. This study is
within the software engineering scope, the findings
and results are only valid in the web application
testing field and cross-browser compatibility testing
specifically.

6.2.4. Conclusion validity

The data extraction method was guided by the
research questions to achieve consistent extraction
of relevant information. To ensure the presented
results and conclusions are traceable to the data, we
presented graphs generated directly from the
extracted information. The discussions and
conclusions are product of those data. This assures
this work can be replicated by others obtaining the
same results.

7. Conclusions and future work

Currently, the selected platform for communication
and exploitation is the web and effective web testing
becomes a challenge for developers. The
technology’s rapid evolution and its popularity have
increased the production of complex and dynamic
applications [43, 53]. This makes usability,
compatibility and availability, key success attributes

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

24

in the web [1]. However, different web browsers
produce different content [54, 55, 56]. Thus, the
need for cross-browser compatibility testing gains
importance.

In this paper, we have studied the developed
techniques to test cross-browser compatibility. The
visual analysis is the most popular technique. We
also have reviewed the proposed tools to implement
the tests. The tools were classified depending on
their source: developed by the authors or
commercial applications.

We also addressed the validation phase of the
proposed tools and techniques, listing the articles
that provided a concrete number of testing artifacts.
The visual analysis is the most validated technique.

Finally, we listed the challenges described in the
articles. The presence of dynamic objects was one of
the biggest challenges found, especially in modern
web applications [53]. The tests automation was an
important requirement mentioned as well. Several
tools and techniques are developed with different
levels of automation. Therefore, it is necessary to
automate the testing process.

As future work, we propose the development of a
tool to conduct cross-browser compatibility testing,
addressing the challenges found in this SLR.

Acknowledgements

This work has been supported by two research
projects. One of the projects is “Metodologías y
herramientas emergentes para contribuir con la
calidad del software” (PI 17F018 SCyT UNNE).
The other Project is Análisis e Implementación de
tecnologías emergentes en sistemas computacionales
de aplicación regional (PI 17F017 SCyT UNNE).

This paper is also part of a project called
“Software para la automatización de pruebas de
compatibilidad web en un entorno de desarrollo
continuo de software” supported by Consejo
Interuniversitario Nacional (CIN).

Competing interests

The authors have declared that no competing
interests exist.

References

[1] E. Dustin, J. Rashka and D. McDiarmid, Quality
Web Systems: Performance, Security, and
Usability, Boston, Massachusetts, USA:
Addison Wesley, 2001.

[2] V. S. Moustakis, C. Litos, A. Dalivigas and L.
Tsironis, “Website Quality Assessment
Criteria,” IQ, pp. 59-73, 2004.

[3] J. F. Kurose and K. W. Ross, Redes de
computadoras. Un enfoque descendente,
Pearson, 2010.

[4] “Introduction to cross browser testing – Learn
web development | MDN”. Available:
https://developer.mozilla.org/en-US/docs/Learn/
Tools_and_testing/Cross_browser_testing/Intro
duction. Accessed on 2017-04-03.

[5] L.N. Sabaren, M. A. Mascheroni, C. L. Greiner
and E. Irrazábal, “Una Revisión Sistemática de
la Literatura en Pruebas de Compatibilidad
Web,” in XXIII Congreso Argentino de Ciencias
de la Computación (CACIC 2017), pp. 812-821,
La Plata, Argentina, 2017.

[6] B. Kitchenham and S. Charters, “Guidelines for
performing Systematic Literature Reviews in
Software Engineering,” Keele University and
Durham University Joint Report, EBSE 2007-
001, 2007.

[7] Z. Zakaria, R. Atan, A. A. A. Ghani and N. F.
M. Sani, “Unit Testing Approaches for BPEL:
A Systematic Review,” in Software Engineering
Conference, APSEC '09. Asia-Pacific, pp. 316-
322, Penang, Malaysia, 2009.

[8] E. Mendes, “A systematic review of Web
engineering research,” in International
Symposium on Empirical Software Engineering,
pp. 498-507, Queensland, Australia, 2005.

[9] S. Dogan, A. Betin-Can and V. Garousi, “Web
application testing: A systematic literature
review,”Journal of Systems and Software, vol.
91, pp. 174-201, 2014.

[10] E. I. Nabil, “Specifications for Web Services
Testing: A Systematic Review,” in 2015 IEEE
World Congress on Services, pp. 152-159, New
York, USA, 2015.

[11] S. Choudhary, H. Varsee and A. Orso, “A cross-
browser web application testing tool,” in 2010
IEEE International Conference on Software
Maintenance, pp. 1-6, Romania, 2010.

[12] S. R. Choudhary, H. Versee and A. Orso,
“WEBDIFF: Automated Identification of Cross-
browser Issues in Web Applications,” in 26th
IEEE International Conference on Software
Maintenance, pp. 1-10, Romania, 2010.

[13] S. Choudhary, “Detecting Cross-browser Issues
in Web Applications,” in 2011 33rd
International Conference on Software
Engineering, pp. 1146-1148, Hawaii, USA,
2011.

[14] A. Mesbah and M. R. Prasad, “Automated
Cross-Browser Compatibility Testing,” in 2011
33rd International Conference on Software
Engineering, pp. 561-570, Hawaii, USA, 2011.

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

25

[15] J. G. Ochin, “Cross Browser Incompatibility:
Reasons and Solutions,” International Journal
of Software Engineering & Applications, July
2011, vol. Vol.2, nº No.3, pp. 66-77, 2011.

[16] S. Choudhary, M. Prasad and A. Orso,
“CROSSCHECK: Combining Crawling and
Differencing To Better Detect Cross-browser
Incompatibilities in Web Applications,” in 2012
IEEE Fifth International Conference on
Software Testing, Verification and Validation,
pp. 171-180, Montreal, Quebec, Canada, 2012.

[17] V. Dallmeier, M. Burger, T. Orth and A. Zeller,
“WebMate: A Tool for Testing Web 2.0
Applications,” in Workshop on JavaScript
Tools, pp. 11-15, Beijing, China, 2012.

[18] A. Issa, J. Sillito and V. Garousi, “Visual
Testing of Graphical User Interfaces: an
Exploratory Study Towards Systematic
Definitions and Approaches,” in 2012 14th
IEEE International Symposium on Web Systems
Evolution, pp. 11-15, Trento, Italy, 2012.

[19] A. Sivaji, N. A. Ramli, Z. M. Nor, N.-K. Chuan,
F. Wan, A. Wan and S. Shi-Tzuaan, “Measuring
and Improving Website User Experience using
UX Methodologies: A Case Study on Cross
Browser Compatibility Heuristic,” in Southeast
Asian Network of Ergonomics Societies, pp. 1-6,
Langkawi, Kedah, Malasia, 2012.

[20] S. Choudhary, M. Prasad and A. Orso, “X-
PERT: Accurate identification of cross-browser
issues in web applications,” in 2013 35th
International Conference on Software
Engineering, pp. 702-711, San Francisco,
California, USA, 2013.

[21] V. Dallmeier, M. Burger, T. Orth and A. Zeller,
“WebMate: Generating Test Cases for Web
2.0,” in International Conference on Software
Quality, Software Quality. Increasing Value in
Software and Systems Development, pp. 55-69,
Vienna, Austria, 2013.

[22] N. Semenenko, M. Dumas and T. Saar,
“Browserbite: Accurate Cross-Browser Testing
via Machine Learning over Image Features,” in
2013 29th IEEE International Conference on
Software Maintenance, pp. 528-531, Eindhoven,
Netherlands, 2013.

[23] S. Choudhary, M. Prasad and A. Orso, “X-
PERT: a web application testing tool for cross-
browser inconsistency detection,” in 2014
International Symposium on Software Testing
and Analysis, pp. 417-420, San Jose, California,
USA, 2014.

[24] A. Deursen, A. Mesbah and A. Nederlof,
“Crawl-based analysis of web applications:
Prospects and challenges,” Science of Computer
Programming, vol. 87, pp. 173-180, 2014.

[25] B. Kaalra and K. Gowthaman, “Cross Browser
Testing Using Automated Test Tools,”
International Journal of advanced studies in
Computer Science and Engineering, vol. 3, nº
10, pp. 7-12, 2014.

[26] X. Li and H. Zeng, “Modeling web application
for cross-browser compatibility testing,” in
2014 15th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed
Computing, pp. 1-5, Nevada, USA, 2014.

[27] S. Mahajan and W. Halfond, “Finding HTML
presentation failures using image comparison
techniques,” in 29th ACM/IEEE international
conference on Automated software engineering,
pp. 91-96, Vasteras, Sweden, 2014.

[28] E. Selay, Z. Q. Zhou and J. Zou, “Adaptive
Random Testing for Image Comparison in
Regression Web Testing,” in 2014 International
Conference on Digital lmage Computing:
Techniques and Applications, pp. 1-7, New
South Wales, Australia, 2014.

[29] M. He, H. Tang, G. Wu and H. Zhong, “A
Crowdsourcing framework for Detecting Cross-
Browser Issues in Web Application,” in the 7th
Asia-Pacific Symposium on Internetware, pp.
239-242, Wuhan, China, 2015.

[30] A. Hori, S. Takada, H. Tanno and M. Oinuma,
“An oracle based on image comparison for
regression testing of web applications,” in 27th
International Conference on Software
Engineering and Knowledge Engineering, pp.
639-645, Pittsburgh, USA, 2015.

[31] S. Mahajan and W. G. J. Halfond, “Detection
and Localization of HTML Presentation
Failures Using Computer Vision-Based
Techniques,” in 2015 IEEE 8th International
Conference on Software Testing, Verification
and Validation, pp. 1-10, Graz, Austria, 2015.

[32] T. Saar, M. Dumas, M. Kaljuve and N.
Semenenko, “Browserbite: cross-browser
testing via image processing,” Software—
Practice & Experience, vol. 46, nº 11, pp. 1459-
1477, 2015.

[33] H. Shi and H. Zeng, “Cross-Browser
Compatibility Testing Based on Model
Comparison,” in 2015 International Conference
on Computer Application Technologies, pp.
103-107, Matsue, Japan, 2015.

[34] S. Xu and H. Zeng, “Static Analysis Technique
of Cross-Browser Compatibility Detecting,” in
2015 3rd International Conference on Applied
Computing and Information Technology/2nd
International Conference on Computational
Science and Intelligence, pp. 103-107,
Okayama, Japan, 2015.

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

26

[35] N. Barskar and C. Patidar, “A Survey on Cross
Browser Inconsistencies in Web Application,”
International Journal of Computer
Applications, vol. 137, nº 4, pp. 37-41, 2016.

[36] M. He, G. Wu, H. Tang, W. Chen, J. Wei, H.
Zhong and T. Huang, “X-Check: A Novel
Cross-browser Testing Service based on
Record/Replay,” in 2016 IEEE International
Conference on Web Services, pp. 123-130, San
Francisco, California, USA, 2016.

[37] S. Mahajan, B. Li, P. Behnamghader and W. G.
J. Halfond, “Using Visual Symptoms for
Debugging Presentation Failures in Web
Applications,” in 2016 IEEE International
Conference on Software Testing, Verification
and Validation, pp. 191-201, USA, 2016.

[38] M. Sharma and C. P. Patidar, “An Automated
Approach for Cross-Browser Inconsistency
(XBI) Detection,” in 9th Annual ACM India
Conference, pp. 141-145, India, 2016.

[39] G. Wu, M. He, H. Tang and J. Wei, “Detect
Cross-Browser Issues for JavaScript-Based Web
Applications Based on Record/Replay,” in 2016
IEEE International Conference on Software
Maintenance and Evolution, pp. 78-87, Raleigh,
North Carolina, USA, 2016.

[40] C. Patidar, M. Sharma and V. Sharda,
“Detection of Cross Browser Inconsistency by
Comparing Extracted Attributes,” International
Journal of Scientific Research in Computer
Science and Engineering, vol. 5, nº 1, pp. 1-6,
2017.

[41] M. Furkan Kıraç, B. Aktemur and H. Sözer,
“VISOR: A Fast Image Processing Pipeline
with Scaling and Translation Invariance for Test
Oracle Automation of Visual Output Systems,”
in Journal of Systems and Software, vol. 136,
pp. 266-277, 2018.

[42] “W3C Document Object Model,” Available at:
https://www.w3.org/DOM/. Accessed on 2017-
05-22.

[43] “What Is Web 2.0 - O’Reilly Media,” Available
at: http://www.oreilly.com/pub/a/web2/archive/
what-is-web-20.html. Accessed on2017-05-03.

[44] D. M. W. Powers, “Evaluation: From precision,
recall and F-measure to ROC, informedness,
markedness & correlation,”Journal of Machine
Learning Technologies, vol. 2, nº 1, pp. 37-63,
2011.

[45] V. Garousi, A. Mesbah, A. Betin-Can and S.
Mirshokraie, “A systematic mapping study of
web application testing,” Information and
Software Technology, vol. 55, nº 8, pp. 1374-
1396, 2013.

[46] F. Paz and J. A. Pow-Sang, “Current Trends in
Usability Evaluation Methods: A Systematic
Review,” in 2014 7th International Conference
on Advanced Software Engineering and Its
Applications, pp. 11-15, Haikou, China, 2014.

[47] M. Al-Ismail and A. Sajeev, “Usability
challenges in mobile web,” in 2014 IEEE
International Conference on Communication,
Networks and Satellite, pp. 50-55, Jakarta,
Indonesia, 2014.

[48] M. Mascheroni, M. Cogliolo and E. Irrazábal,
“Automatización de pruebas de compatibilidad
web en un entorno de desarrollo continuo de
software,” in Simposio Argentino de Ingeniería
de Software - JAIIO 45, pp. 51-63, 2016.

[49] M. Mascheroni, M. Cogliolo and E. Irrazábal,
“Automatic detection of Web Incompatibilities
using Digital Image Processing,” Electronic
Journal of Informatics and Operations
Research, vol. 16, nº 1, pp. 29-45, 2017.

[50] G. Saleem, F. Azam, M. Younus, N. Ahmed
and L. Yong, “Quality assurance of web
services: A systematic literature review,” in
2016 2nd IEEE International Conference on
Computer and Communications, pp. 1391-1396,
Chengdu, China, 2016.

[51] V. Garousi, M. Felderer and T. Hacaloğlu,
“What We Know about Software Test Maturity
and Test Process Improvement,”IEEE Software,
vol. 35, nº 1, pp. 84-92, 2017.

[52] X. Zhou, Y. Jin, H. Zhang, S. Li and X. Huang,
“A Map of Threats to Validity of Systematic
Literature Reviews in Software Engineering,” in
2016 23rd Asia-Pacific Software Engineering
Conference, pp. 153-160, Hamilton, New
Zealand, 2017.

[53] M. Jazayeri, “Some Trends in Web Application
Development,” in Future of Software
Engineering 2007, FOSE '07, pp. 199-213,
Minneapolis, Minesota, USA, 2007.

[54] E. Kiciman and B. Livshits, “AjaxScope: a
platform for remotely monitoring the client-side
behavior of web 2.0 applications,” in
Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles,
Stevenson, pp. 17-30, Washington, USA, 2007.

[55] F. Ricca and P. Tonella, “Web testing: a
roadmap for the empirical research,” in Seventh
IEEE International Symposium on Web Site
Evolution, pp. 63-70, Budapest, Hungary, 2005.

[56] R. Ramler, E. Weippl, M. Winterer, W.
Schwinger and J. Altmann, “A Quality-Driven
Approach to Web Testing,” in Ibero American
Conference on Web Engineering, pp. 81-95,
Santa Fé, Argentina, 2002.

Journal of Computer Science & Technology, Volume 18, Number 1, April 2018

27

