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Abstract  

This work presents some analytical and numerical results of a dynamic analysis of 

the dimensionless 2-D sheet flight equations. Two empirical models for aerodynamic forces 

and moments are used and compared. Results show that the initial condition of rest is 

always unstable, and for long times three distinct flight regimes are possible, depending on 

the initial angle of attack, the Tachikawa number, Ta (in fact, the parameter chosen was its 

inverse, Ω), and a mass ratio Φ. The final orbits in the velocity space and their maximum 

kinetic energy are compared with a theoretical asymptotic state of the motion equations, and 

some design considerations are proposed. 
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1. INTRODUCTION 

A considerable part of the damage produced in wind storms is not due simply to the wind 

loads on buildings and structures, but to the impact of windborne debris.  

Holmes et al (2006) and Baker (2007) list some of the historical research in this topic, which 

is surprisingly sparse, despite its economic importance. The pioneer and fundamental work 

of Masao Tachikawa (Tachikawa 1983, Tachikawa 1988) has been recognized in the wind 

engineering community. One of the fundamental parameters in the dynamics of windborne 

debris flight, namely the non-dimensional ratio of aerodynamic forces to gravity forces, is 
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today known as the Tachikawa number, Ta, after the proposal of Holmes, Baker and 

Tamura (2006), unanimously approved by the International Association of Wind Engineering 

in its General Assembly of year 2007.  

As Wills et al (2002) point out,  the cumulative damage inflicted by the debris, particularly on 

cladding elements, may lead to serious external damage or even to breaching of the 

building envelope. In their work they identify three generic debris types: compact, sheet and 

rod, a convenient classification accepted today by different researchers.  

In the last years wind tunnel experiments have been carried out and debris velocities and 

trajectories have been measured (Wang and Letchford 2003, Holmes 2004, Lin et al 2006). 

Holmes et al (2006) and Baker (2007) have implemented numerical models for the 

equations of debris flight that reproduce acceptably some results of these and other wind 

tunnel experiments.  

The sheet debris flight is particularly interesting due to the strong dependence of the 

aerodynamic forces on the sheet angle of attack. This turns the governing equation into a 

highly non-linear system, where the long-term evolution of the sheet flight can reach 

completely different states, depending on the initial conditions and a few relations of 

characteristic magnitudes. Baker (2006) performed a numerical research with an 

approximate model for aerodynamic forces on the sheet. Holmes et al (2006), on their side, 

used the empirical force coefficients measured by Flachsbart (1932) and reported by 

Hoerner (1965).  

A problem similar in many aspects to that of sheet debris flight is the flutter, tumble and 

vortex induced autorotation of falling wings or plates. This could be considered a limit state 

of debris flight when the wind velocity is very small and was studied among others by 

Fremaux et al (1995), Mittal and Seshadri (2004) and Gallaway and Hankey (1985), who 

found in numerical simulations that free falling autorotating plates experienced considerably 

larger autorotation coefficients than those obtained at static angles of attack. 

In the first part of this work the initial stability of the two-dimensional equations for sheet 

debris flight in uniform wind is studied analytically, proving that the system initially at rest is 
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unstable for all angles of attack. In the second part, the final condition is investigated for 

different values of the initial angle, mass ratio and the inverse of Ta. Three possible regimes 

are found, depending on the values of these parameters: positive rotation, negative rotation 

and back-and-forth oscillations. The simulations were carried out with the two models for 

aerodynamic forces adopted respectively by Baker (2007) and Holmes (2006), and the 

differences in the results are reported. The maximum kinetic energy in each long-term 

condition is compared with the analytical asymptotic solution of the equations, showing that 

these values can underestimate considerably the sheet potential impact energy. 

 

2. SHEET DEBRIS FLIGHT EQUATIONS 

The general two dimensional equations for flying debris are derived from Newton’s second 

law, are (Baker, 2007):  
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Here x and y are the sheet CG position, θ its inclination with respect to the horizontal axis, u 

and v the sheet horizontal and vertical velocity components, ω the sheet angular velocity, M 

is the sheet mass, A its area, l its length in the plane of motion, I its moment of inertia, ρ the 

air density, Uw and Vw the horizontal and vertical components of the wind velocity, and α the 

angle between the wind and the sheet velocity. 

CD, CL and CM are the aerodynamic drag, lift  and pitching moment coefficients, that depend 

primarily on the angle of attack β (angle between the relative wind and the sheet axis), and 
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CLA and CMA are the autorotation lift and moment coefficients, function of the angular velocity 

ω. 

Positive values of u, v and θ are shown in figure 1: 

 

Figure 1: positive values of u, v and θ 

 

The angle α between the relative wind velocity vector and the horizontal can be expressed in 

terms of Uw, Vw, u and v and the equations can be written for steady uniform horizontal wind 

in non dimensional form, following Baker (2007) as: 

 

  

  

 

12
2 22

2

12
2 22

2

12
2 22

2

(1 ) ( ) (1 )

( )(1 ) (1 )

( ) (1 )

D L LA

L LA D

M MA

d x du
C u C C v u v

d td t

d x dv
C C u C v u v

d td t

d d
C C u v

dtd t

 

      

       

     

    (2) 

with  

 
2

2

; ;  ; ;

; ; ;
0.5

w

w w

w w

tUx y u v
x y u v t

l l U U l

l Ml Mg

U I AU


  



       

      

    (3) 

 



 5 

The parameter Ω is equal to the inverse of Ta, the Tachikawa number. The parameter   is 

a non-dimensional mass relation:  

0.5 Al

M


            (4) 

An alternative formulation, not used in this work, was implemented by Tachikawa (1983).  

 

2.1 Aerodynamic coefficients adopted by Holmes et al (2006) 

Two different sets of aerodynamic coefficients were chosen for this work. This is a somewhat 

arbitrary choice, since different authors use other models. There is at present no consensus 

on a simple non-stationary aerodynamic model to be employed for rotating or pitching flat 

plates at arbitrary angles of attack. 

The equations for aerodynamic forces adopted in Holmes et al (2006) is based on the 

normal forces on a square plate compiled by Hoerner (1965) from a report by Flaschbart 

(1932)  
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Figure 2: Scheme of a sheet object, from Holmes et al (2006). 
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Here β is the direction of the wind velocity relative to the axis of the object and is given by 
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Figure 3: Normal force coefficient on a plate, from Holmes et al. (2006) 

 

From the normal force coefficients the drag and lift coefficient are derived: 
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The constant value 0.1 in the drag coefficient is added to allow for the skin friction 

component in the non-stationary plate motion. For the quasi-static moments, the pressure 

center position “c” must be computed. This value can be approximated as (Holmes et al 

2006): 
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And the moment coefficient CM is  
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c
C C

l

 
  

 
          (9) 

Autorotation lift coefficients (Magnus effect) are: 
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With maximum and minimum (negative) values of ω equal to m  = 0.64 /U l   (11) 

These equations will be referred to as “Holmes´ model”. 

 

2.2 Baker´s approximated aerodynamic coefficients 

The quasi-steady force and moment coefficients are approximated as (Baker 2007):  
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These lift, drag and moment coefficient variation, are taken as a smooth analytical 

approximation, that give normal forces and centre of pressure location similar to those of 

Holmes model. In Figure 4  lift, drag, and moment coefficients are shown for both models. 
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Figure 4: Baker´s and Holmes´ models for lift, drag and pitching moment coefficient for sheet 

objects 

 

The following forms are adopted for the autorotation coefficients: 
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Where m  is the maximum numerical value of  and is taken to be 0.64. The constants kLA 

for autorotation lift and kMA for the autorotation pitching moment are taken to have the values 

of 0.4 and 0.12, respectively. 

These equations will be referred as Baker´s model. Earlier results published by Lugt (1983) 

and Iversen (1979) state the importance of   as a controlling parameter for autorotation 

motions. Lugt also states that for autorotation, the flow patterns are essentially independent 

of the Reynolds number and are even similar for the laminar and turbulent cases. 
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2.3 Asymptotic solutions 

It is possible to derive asymptotic solutions to eqs. (2)  for large times, by assuming that the 

sheet is rotating at its maximum rate and thus , 0LA LA MAC k C    and considering that the 

quasi-steady force and moment coefficients take on their average values: 
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These assumptions give the following results, reported in Baker 2007: 
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An alternative way of writing this asymptotic solution is: 
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These equations show that with no rotation (kLA = 0), the asymptotic velocities are  1u   (the 

sheet horizontal velocity is equal to the wind velocity) and 

0.5

D

v
C

 
  

 
(the weight is 

balanced by the aerodynamic drag), the same result as for compact debris (Baker 2007). 

The final dimensionless kinetic energy in this case can be computed as 

 

2 2 2

2

/

2

E u v
E

MU

  
  ,         (17) 

 

which gives for the asymptotic values  
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The positive sign in the last term corresponds to a final state of negative rotation, and a 

negative sign correspond to positive rotation. 

These results are derived from the assumption that the flying object reaches final constant 

velocities , andu v  . Baker´s simulations for typical values of the parameters Δ = 12 

(rectangular plates) and Ω = 1.02 (small sheet debris) and 0.163 (large sheet debris), show 

that for long term simulations the horizontal and vertical velocities oscillate around their 

mean values in periodical orbits. In this work the final kinetic energy predicted by eq. (18) is 

compared with the instantaneous values in the final state of the debris flight, in order to 

perform safer estimates of debris impact. 
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3. METHODOLOGY 

Equations (2) can be written as: 
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From these, the time evolution of ,  and u v   is computed explicitly for discrete time 

increments t  as: 
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The dimensionless time interval chosen for this work was 0.005. With this value, the 

velocities evolution and trajectories were identical to those reported by Holmes et al (2006) 

and Baker (2007), with his approximated model, and reproduced acceptably well 

Tachikawa´s experimental results, as shown in the mentioned papers. The simulations were 

checked against results of an adaptive time step numerical method (Matlab ode45 function) 

in order to prevent possible numerical instabilities due to the use of fixed time steps in non 

linear problems, and the chosen time step of 0.005 showed to be appropriate. 

In order to compute and analyze the final orbits, the simulation runs were extended up to 

200t   and the system evolution was study between 100 and 200t  , when the sheet 

velocities had already reached a periodical or quasi-periodical variation. 

In order to study the system stability we analysed first eq. (19). No fix points (equilibrium 

points constants in time) were found for the system.  
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Equations (19) were then linearised for small perturbations ,́ ,́ ´u v  around the point of 

analysis and the system behaviour was studied considering the eigenvalues of matrix A. 

(Elsgoltz, 1977) 

 

´

´
´

( , , ) ´

´
´

du

dt u
dv

A u v v
dt

d

dt






 
 

  
  

   
  
    

 
  

     with         

u u u

v v v

dF dF dF

du dv d

dF dF dF
A

du dv d

dF dF dF

du dv d

  







 
 
 
 
 
 
 
  

  (21) 

 

4. RESULTS 

 

4.1 Initial stability analysis 

For  ( , , ) (0,0,0)u v    the object is at rest and the determinant parameter for the acting 

forces is the initial angle of incidence of the relative wind. The relative non dimensional 

velocity modulus 
22(1 )relV u v    is 1. In consequence, we have from eq. (21): 
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Superindex 0 indicates the initial values, which depend on the initial angle θ0 in this case, 

and on β0 in case of an initial condition different from rest. The characteristic polynomial of 

matrix A0  is 
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The analysis was performed with the characteristic values: 

ωm = 0.64; 

Δ = 12;   (rectangular plates)       (24)  

kLA = 0.4;    

kMA = 0.12; 

 

Equation (23) is independent of the parameters Ω and Φ. For all values of the θ0 between 0o 

and 180o and the characteristic parameters (24) and using both Holmes´ and Baker´s 

aerodynamic forces models, at least one of the roots of eq. (23) is positive, between 2.19 

and 2.52, as shown in Table I. Thus the system is always unstable and any perturbation will 

be amplified, starting the sheet flight. The second and third eigenvalues of A are either 

negative or complex with negative real part. 

 

 

Table I: Eigenvalues of the stability matrix at rest 

β0 Model λ1 λ2 λ3 
 

β0 Model λ1 λ2 λ3 
 

0 
B 2.25 -0.26 -0.26  

90 
B 2.48 

-1.3545 + 
0.9257i 

-1.3545 - 
0.9257i 

H 2.25 -0.10 -0.10  H 2.25 -1,25 -1,25 

10 
B 2.24 -0.44 -0.13  

100 
B 2.52 

-1.3430 + 
0.9936i 

-1.3430 - 
0.9936i 

H 2.21 -0.48 0.17  H 2.24 -1.37 -1.09 

20 
B 2.22 -0.65 -0.07  

110 
B 2.52 

-1.2602 + 
0.9891i 

-1.2602 - 
0.9891i 

H 2.18 -0.77 0.06  H 2.24 -1.34 -1.01 

30 

B 2.20 -0.86 -0.10  

120 

B 2.49 
-1.1155 + 
0.9135i 

-1.1155 - 
0.9135i 

H 2.26 
-0.7417 + 
0.1590i 

-0.7417 - 
0.1590i 

 H 2.25 -1.17 -1.02 

40 

B 2.19 -1.04 -0.23  

130 

B 2.44 
-0.9276 + 
0.7740i 

-0.9276 - 
0.7740i 

H 2.30 
-0.8662 + 
0.4111i 

-0.8662 - 
0.4111i 

 H 2.27 
-0.9910 + 
0.2551i 

-0.9910 - 
0.2551i 

50 

B 2.22 -1.12 -0.52  

140 

B 2.36 
-0.7225 + 
0.5857i 

-0.7225 - 
0.5857i 

H 2.28 
-0.9950 + 
0.3018i 

-0.9950 - 
0.3018i 

 H 2.36 
-1.2478 + 
0.6228i 

-1.2478 - 
0.6228i 

60 

B 2.28 
-1.0068 + 
0.2915i 

-1.0068 - 
0.2915i 

 

150 

B 2.30 
-0.5313 + 
0.3741i 

0.5313 - 
0.3741i 

H 2.27 
-1.1036 + 
0.2268i 

-1.1036 - 
0.2268i 

 H 2.40 
-0.8149 + 
0.6930i 

-0.8149 - 
0.6930i 
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70 

B 2.35 
-1.1729 + 
0.5841i 

-1.1729 - 
0.5841i 

 

160 

B 2.26 
-0.3824 + 
0.1760i 

-0.3824 - 
0.1760i 

H 2.26 
-1.1853 + 
0.1789i 

-1.1853 - 
0.1789i 

 H 2.39 
-0.4605 + 
0.6189i 

-0.4605 - 
0.6189i 

80 

B 2.42 
-1.2947 + 
0.7883i 

-1.2947 - 
0.7883i 

 

170 

B 2.25 
-0.2921 + 
0.0318i 

-0.2921 - 
0.0318i 

H 2.26 
-1.2350 + 
0.1321i 

-1.2350 - 
0.1321i 

 H 2.31 
-0.2039 + 
0.3857i 

-0.2039 - 
0.3857i 

 

 

4.2 Final state 

 

Numerical simulations were carried out with the different aerodynamic force models. In all 

cases, after initial oscillations that depend on the value of θ0 or β0, the velocities reach 

periodical or quasi-periodical oscillations for large times, unlike the stationary final state 

assumed in equations (15) and (16). Three qualitatively different types of final motions or 

final orbits in the ( , , )u v   space can be identified, that depends on the parameters Φ, Ω and 

β0, but also on the choice of the aerodynamic model employed. 

 

4.2.1 Large debris, positive final rotation  

Figures 5 and 6 show the evolution of the system with (Ω = 0.163, Φ = 0.05, β0 = 15o). These 

values correspond, for example, to a wooden board (density 800 kg/m3) of 0.33 m x 3 m x 

0.005 m. at a wind speed of 20 m/s. In this case, the plate starts and continues its flight with 

positive angular velocity, reaching its final quasi-periodical velocities after a non-dimensional 

time 5t  .  In this time, corresponding to 1.7 s, the plate has travelled a distance of 18.8 m 

downwind and has fallen 3.3 m. Figure 5c) shows the projection of its orbit, computed with 

Holmes´ model, in the u v  plane. Baker´s model produces a similar evolution, but the final 

state is slightly different, as shown in figure 6c).  
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Figure 5: Large debris, positive final rotation. a) , andu v   evolution, Baker´s model, 

b) , andu v  evolution, Holmes´ model . Dashed lines: asymptotic values of  and u v  from eq. 

(15) c) Projection of the system orbit in the u v plane 

 
 

The apparent thickness of the final orbit based on Holmes´ coefficients is due to the fact that 

its trajectory is bounded but not strictly periodical, presenting the aspect of a chaotic 

attractor. The “correlation dimension” (Grassberger and Procaccia - 1983) of each final 

trajectory was computed, being 1 in all cases. 

Unlike the limit stationary state assumed in equations (16), the system reaches a final orbit, 

which is periodical when using Baker´s model and quasi-periodical with Holmes´ model. In 

these orbits, the sheet kinetic energy fluctuates around a mean value, close to the 

theoretical limit of eq. (18) in Baker´s approximation, but about 15% higher when using 

Holmes’ coefficients derived from Hoerner´s reports.   
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The results of both models show that in this case the positive rotation slows down the sheet 

fall up to 40 % approx. of the wind velocity, and the final mean horizontal velocity is lower 

than 85 % of the wind velocity.  

Figure 6: a) Kinetic energy evolution. Dashed: asymptotic value after eq. (18) 

b) Final orbits in u v  space. The cross indicates the asymptotic final state. 

 
 
 
 
 

4.2.2 Large debris, negative final rotation. 

Figures 7 and 8 show the evolution of the system with Ω = 0.163, Φ = 0.05, β0 = 60o. For this 

large initial angle β0, the sheet reaches a final state of negative angular velocity. The forces 

and moments induced by this rotation increase the horizontal velocity above that of the wind 

and make the modulus of the final negative vertical velocity larger than in the case of 

positive rotation. At a non-dimensional time of 7, a real time of 2.3 s, the plate has travelled 

37.8 m and fallen 17 m.  
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Figure 7: Large debris, negative final rotation. a) , andu v   evolution, Baker´s model, 

 b) , andu v  evolution, Holmes´ model . Dashed lines: asymptotic values of  and u v  from 

eq. (16) c) Projection of the system orbit in the u v plane. 

 

The vertical velocity increases in modulus until 1u  . For larger v  this sense of rotation 

produces positive lift forces and the final value of v  becomes smaller. Holmes’ model 

predicts in this case a smaller value of the kinetic energy than eq. (18). 
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Figure 8: a) Kinetic energy evolution. Dashed: asymptotic value after eq. (17) 

b) Final orbits in u v  space. The cross indicates the asymptotic final state 

 

4.2.3 Small, heavy debris, (Ω = 5, Φ = 0.03, β0 = 15o). 

 

For increasing values of Ω, which can imply either smaller debris or a lower wind velocity, a 

new final state appears, in which the vertical velocity v  is larger than u , and so we describe 

the sheet motion as “fall” rather than “flight”, resembling that of a falling plate in the absence 

of wind. 

Notable differences appear between the results of Baker’s and Holmes’ models in this case, 

as shown in Fig. (9) 
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Figure 9: “Heavy debris”: Φ=0.03, Ω=5, β0 = 15. a) and b) Velocity evolution. c) and d) Final 

orbits in u v  space.  

 

For Ω=5, Φ=0.03, β0 = 15, Holmes’ model predicts fall with positive autorotation, only slightly 

influenced by the wind velocity. Baker’s model, on the other hand, shows a falling motion 

with back and forth oscillations, not completing a roll. Nevertheless, this behaviour is 

reached at a non-dimensional time of 1, which can represent 4.2 s of flight for a glass panel 

of 1.2 m x 0.55 m x 0.01 m, falling in a low velocity building wake, with a local wind speed of 

9 m/s. The panel will travel 15 m, falling 55 m.  

It is interesting to note that these types of motions can be easily produced by letting fall 

strips of paper of different width/length ratio. In the absence of wind, this motion will 

reproduce the limit case for  . 
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Figure 10: a) and b) Kinetic Energy with Baker’s and Holmes’ Model respectively. c) Final 

orbits with steady velocity values, Ω = 5. 

 

The final orbits reached and their kinetic energy are shown in figure 10-c). While eq. (18) still 

gives a good estimate for Holmes’ final orbit, Baker’s model final state has instantaneous 

values higher than twice that asymptotic value. 

The transition from a rotational regime to the back and forth oscillations was studied by 

varying the parameters Ω, Φ and β0 and results showed remarkable differences depending 

on the model used. In figure 11, the sudden jumps in the quotient maximal / asymptotic 

kinetic energy mark the transition from one regime to a different one. For an initial incidence 

angle of 60o and certain values of Ω, the final state changes from negative to positive 

rotation, a transition indicated by the sudden fall in the final energy. 
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Figure 11: (Maximal kinetic energy)/(Asymptotic kinetic energy) vs. Ω for different values of 
Φ y βo. EB: Baker´s model, EH: Holmes´ model. 
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Figure 12: (Maximal kinetic energy)/(Asymptotic kinetic energy) vs. Ω for Φ=0.07 y β0=60o. 
 
 

It can be seen in figure 12 that the change in the final rotation sense is predicted, although 

with some difference in the values of Ω, by both models for Φ = 0.07 and Ω between 0.3 and 
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1. For larger Ω, Holmes´ model predicts a second change in the final rotation sense at Ω = 

2.8, and transition to the oscillatory regime at Ω = 5, while Baker´s model predicts this 

transition at the much lower value of 1.8. 

 

 

5. CONCLUSIONS 

 
A dynamic analysis was carried out on the equations for the flight of sheet debris. Two 

different empirical models were used for the computation of aerodynamic coefficients and 

the results were compared. 

The stability of the system initially at rest was analysed, finding that the characteristic 

polynomial of the linearised matrix has always positive eigenvalues, thus the system is 

always unstable and motion will start for any initial angle of attack, independently of the 

mass parameters Ω and Φ. 

After some oscillations the velocities , andu v   of the sheet reach a final orbit. Depending 

on the parameters Ω=1/Ta and Φ=(0.5ρAl)/M, two distinct final regimes appear: “sheet 

flight”, with either positive or negative rotation, when the final horizontal velocity is larger 

than the vertical component, and “sheet fall” in the opposite case. In the latter one the sheet 

can fall rolling or with a back-and-forth oscillating motion, two possibilities than can be easily 

observed for a strip of paper in the absence of wind. The instantaneous kinetic energy in this 

condition can be as high as four times the value predicted from the equations of motion 

under the assumption of a final state of uniform angular velocity. Since during storms in 

cities debris are carried into building wakes and regions of local low wind velocity, the 

parameter Ω can increase and the motion change to a regime of higher kinetic energy than 

that predicted by a quasi-stationary rotation. The values of Ω and Φ that change the regime 

from “flying” to “falling” and the transition from “rotation” to “oscillation” have been found to 

depend strongly on the choice of the aerodynamic model. Both Baker´s approximation for 

the aerodynamic coefficients with continuous trigonometric functions of the angle of attack 
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and Holmes` fit of Hoerner´s reports have proven to be good for predicting short time 

trajectories and for low values of Ω and Φ, but for long times Baker´s results diverge from 

those obtained with Holmes´ model, not only quantitatively, but qualitatively, leading to very 

different final flight regimes. Experiments must be carried out in order to determine better 

models for the prediction of the long-time behaviour of sheet debris carried by the wind. 

The numerical results state that the final orbit kinetic energy in case of oscillating fall is much 

larger than that predicted considering a hypothetical stationary state for u, v and ω, but this 

supposition does approximate reasonably the behaviour of plates when they rotate in a 

definite sense. For safe estimates of debris impact, both cases must be considered. 

A word of caution is needed about the aerodynamic models employed, which are based in 

quasi-static force and moment measurements (Flachsbart, 1932) and at a fixed-point 

rotation. The non-stationary aerodynamic forces on rotating and oscillating plates can be 

very different than the quasi-static loads, with higher peaks and hysteresis cycles, as in the 

known effects of dynamic stall (Carr, 1988). since different models can lead to very different 

results, this work pretends to alert, on one side, for the possible wrong estimations of impact 

damage using simple models, and, on the other, for the need of better non-stationary force 

models for predictions of the flying sheet dynamics, range and impact damage. 

Thus, the long term numerical results obtained in this work pretend simply to highlight the 

qualitative aspects of the sheet debris flight and to give a reasonable estimation of the debris 

impact energy, more than to give an accurate prediction of sheet debris trajectories and 

energy, which are also influenced by the wind shear, turbulence, and lateral forces not 

considered in this analysis. More wind tunnel experiments and full scale observations are 

needed in order to have better predictive tools for assessing the risk of debris impact. 
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