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Metrics and distances in probability spaces have shown to be useful tools for physical purposes. Here we use this idea, with
emphasis on Jensen Divergences and relative entropies, to investigate features of the road towards the classical limit. A well-known
semiclassical model is used and recourse is made to numerical techniques, via the well-known Bandt and Pompe methodology, to
extract probability distributions from the pertinent time-series associated with dynamical data.

1. Introduction

Many problems of quantum and statistical mechanics can
be formulated in terms of a distance between probability
distributions. A frequently used quantity to compare two
probability distributions, which arose in information theory,
is the Kullback-Leibler (KL) Divergence [1]. Given two
probability distributions𝑃 and𝑄, it provides an estimation of
howmuch information𝑃 contains relative to𝑄 andmeasures
the expected number of extra bits required to code samples
from 𝑃 when using a code based on 𝑄, rather than using a
code based on 𝑃 [2]. Some of them can also be regarded as
entropic distances.

It is well-known that systems that are characterized
by either long-range interactions, long-term memories, or
multifractality are best described by a formalism [3] called
Tsallis’ 𝑞-statistics. The basic quantity is the entropy [𝑞 ∈ R
(𝑞 ̸= 1)]

𝑆𝑞 =
1

(𝑞 − 1)

𝑛

∑

𝑖=1

𝑝𝑖 [1 − 𝑝𝑖
𝑞−1

] , (1)

with 𝑝𝑖 being probabilities associated with the 𝑛 different
system-configurations. The entropic index (or deformation

parameter) 𝑞 describes the deviations of Tsallis entropy from
the standard Boltzmann-Gibbs-Shannon (BGS) one. One has

𝑆 = −

𝑛

∑

𝑖=1

𝑝𝑖 ln𝑝𝑖. (2)

The BGS entropy works best for systems composed of
either independent subsystems or interacting via short-range
forces, whose subsystems can access all the available phase
space [4–7]. For systems exhibiting long-range correlations,
memory, or fractal properties, Tsallis’ entropy becomes the
most convenient quantifier [4–17]. Tsallis relative entropies,
studied in [18], are NOT distances in probability space. An
alternative tool is the Jensen ShannonDivergence, introduced
by Lamberti et al. [2].

How good are these quantifiers to statistically describe
complex scenarios? To answer we will apply the above-
mentioned quantifiers to a well-known semiclassical system
in its path towards the classical limit [19, 20]. The pertinent
dynamics displays regular zones, chaotic ones, and other
regions that, although not chaotic, possess complex features.
The system has been investigated in detail from a purely
dynamic viewpoint [20] and also from a statistical one [21–
23]. For this a prerequisite emerges: how to extract informa-
tion from a time-series (TS) [24]? The data at our disposal
always possess a stochastic component due to noise [25, 26],
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so that different extraction-procedures attain distinct degrees
of quality. We will employ Bandt and Pompe’s approach
[27] that determines the probability distribution associated
to time-series on the basis of the nature of the underlying
attractor (see [27] for the mathematical details).

In this paper we employ the normalized versions of Tsallis
relative entropy [10, 18, 28], to which we add the Jensen
Divergences associated to it. We will compare, via Jensen,
(i) the probability distribution functions (PDFs) associated
to the system’s dynamic equation’s solutions in their route
towards the classical limit [20] with (ii) the PDF associated
to the classical solutions. Our present Jensen way will be also
compared to the 𝑞-Kullback-Leibler analyzed in [18].

The relative entropies and Jensen Divergences mentioned
above are discussed in Section 2, which briefly recapitu-
lates notions concerning the Tsallis relative entropy and
the Kullback-Leibler relative one. The Jensen Shannon and
generalized Jensen Divergences are also discussed in this
Section. A simple, but illustrative example is considered in
Section 2.1. In Section 2.2, we consider normalized forms
corresponding to the information quantifiers mentioned in
Section 2.1. As a test-scenario, the semiclassical system and its
classical limit are described in Section 3, and the concomitant
results presented in Section 4. Finally, some conclusions are
drawn in Section 5.

2. Kullback and Tsallis Relative
Entropies, Jensen Shannon, and
Generalized Jensen Divergences

The relative entropies (RE) quantify the difference between
two probability distributions 𝑃 and 𝑄 [29]. The best rep-
resentative is Kullback-Leibler’s (KL) one, based on the
BGS canonical measure (2). For two normalized, discrete
probability distribution functions (PDF)𝑃 = (𝑝1, . . . , 𝑝𝑛) and
𝑄 = (𝑞1, . . . , 𝑞𝑛) (𝑛 > 1), one has

𝐷KL (𝑃, 𝑄) =
𝑛

∑

𝑖=1

𝑝𝑖 ln(
𝑝𝑖

𝑞𝑖

) , (3)

with 𝐷KL(𝑃, 𝑄) ≥ 0. 𝐷KL(𝑃, 𝑄) = 0 if and only if 𝑃 = 𝑄. One
assumes that either 𝑞𝑖 ̸= 0 for all values of 𝑖, or that if one
𝑝𝑖 = 0, then 𝑞𝑖 = 0 as well [30]. In such an instance people
take 0/0 = 1 [30] (also, 0 ln 0 = 0, of course).

KL can be seen as a particular case of the generalized
Tsallis relative entropy [10, 18, 28]

𝐷𝑞 (𝑃, 𝑄) =
1

𝑞 − 1

𝑛

∑

𝑖=1

𝑝𝑖 [(
𝑝𝑖

𝑞𝑖

)

𝑞−1

− 1] , (4)

when 𝑞 → 1 [10, 18, 28]. 𝐷𝑞(𝑃, 𝑄) ≥ 0 if 𝑞 ≥ 0. For 𝑞 > 0

one has 𝐷𝑞(𝑃, 𝑄) = 0 if and only if 𝑃 = 𝑄. For 𝑞 = 0 one has
𝐷𝑞(𝑃, 𝑄) = 0 for all 𝑃 and 𝑄.

The two entropies (3) and (4) provide an estimation of
how much information 𝑃 contains relative to 𝑄 [29]. They
also can be regarded as entropic distances, alternative means
for comparing the distribution𝑄 to 𝑃. Our two entropies are
not symmetric in 𝑃 − 𝑄.

So as to deal with the nonsymmetric nature of the KL
Divergence, Lamberti et al. [2] proposed using the following
quantity:

𝐽𝑆 (𝑃, 𝑄) =
1

2
[𝐷KL (𝑃,

𝑃 + 𝑄

2
) + 𝐷KL (𝑄,

𝑃 + 𝑄

2
)] , (5)

as a measure of the distance between the probability distribu-
tions𝑃 and𝑄. 𝐽𝑆(𝑃, 𝑄) = 0 if and only if𝑃 = 𝑄.This quantity
verifies 𝐽𝑆(𝑃, 𝑄) = 𝐽𝑆(𝑄, 𝑃).Moreover, its square root satisfies
the triangle inequality [2]. In terms of the Shannon entropy,
expression (5) can be rewritten in the form

𝐽𝑆 (𝑃, 𝑄) = 𝑆 (
𝑃 + 𝑄

2
) −

1

2
𝑆 (𝑃) −

1

2
𝑆 (𝑄) . (6)

We can obtain a generalization of Jensen’s Divergence by
using the relative entropy (4) instead of the KL Divergence;
that is,

𝐽𝐷𝑞 (𝑃, 𝑄) =
1

2
[𝐷𝑞 (𝑃,

𝑃 + 𝑄

2
) + 𝐷𝑞 (𝑄,

𝑃 + 𝑄

2
)] . (7)

2.1. An Illustrative Example. A simple scenario will now
illustrate on the behavior of our quantifiers. Let us evaluate
𝐷𝑞(𝑃, 𝑄) for the certainty versus the equiprobability case; that
is, (i) 𝑃 = (𝑝1, . . . , 𝑝𝑛), for 𝑝𝑘 = 1 and 𝑝𝑖 = 0 if 𝑖 ̸= 𝑘, and (ii)
𝑄 = (𝑞1, . . . , 𝑞𝑛), with 𝑞𝑖 = 1/𝑛, ∀𝑖. In this case, (4) adopts the
form

𝐷𝑞 (𝑃, 𝑄) =
𝑛
𝑞−1

− 1

𝑞 − 1
, (8)

if 𝑞 > 1. For 𝑞 = 1, that is, Kullback-Leibler entropy (3)
instance, we obtain 𝐷KL(𝑃, 𝑄) = ln 𝑛. For these same PDFs,
consider now 𝐽𝐷𝑞(𝑃, 𝑄) given by (7). We find

𝐽𝐷𝑞 (𝑃, 𝑄)

=
1

𝑞 − 1
{
(1 + 𝑛

𝑞
) (1 + 𝑛)

(1−𝑞)
+ (𝑛 − 1)

2(2−𝑞)𝑛
− 1} ,

(9)

if 𝑞 > 1. In the Jensen Shannon Divergence-case (𝑞 = 1),
given by (6), one has

𝐽𝑆 (𝑃, 𝑄)

= −
1

2
{(

𝑛 + 1

𝑛
) ln (𝑛 + 1) − 2 ln (2𝑛) + ln (𝑛)} .

(10)

Let us discuss the behavior of these quantities for large 𝑛,
when 𝑛 → ∞. We ascertain that 𝐷𝑞(𝑃, 𝑄) → ∞ (and
𝐷KL(𝑃, 𝑄) → ∞). Instead, the Jensen Divergences attain an
asymptotic value

𝐽𝐷𝑞 (𝑃, 𝑄) 󳨀→
2
𝑞−1

− 1

𝑞 − 1
, (11)

and 𝐽𝑆(𝑃, 𝑄) → ln 2. Comparing (11) and (8), one notes that
𝐽𝐷𝑞(𝑃, 𝑄) for large 𝑛 behaves like𝐷𝑞(𝑃, 𝑄) for 𝑛 = 2 (𝐽𝑆(𝑃, 𝑄)
behaves like 𝐷KL(𝑃, 𝑄)). What are the consequences on the
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Figure 1: (a) 𝐷
𝑞
(𝑃, 𝑄) and (b) 𝐽𝐷

𝑞
(𝑃, 𝑄) versus 𝑛, for the certainty versus the equiprobability cases (see Section 2.1) for 𝑞 = 5. For large 𝑛,

when 𝑛 → ∞, we ascertain that 𝐷
𝑞
(𝑃, 𝑄) → ∞. Instead, the Jensen Divergences attain an asymptotic value. The maximum 𝑛 was chosen

to coincide with the number of states 𝑛 of the semiclassical system described in Figures 4, 5, and 6. This fact facilitates comparison.
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Figure 2: (a) 𝐷
𝑞
(𝑃, 𝑄) and (b) 𝐽𝐷

𝑞
(𝑃, 𝑄) versus 𝑞, for 𝑛 = 2, for the same case described by Figure 1. The behavior of 𝐽𝐷

𝑞
(𝑃, 𝑄) resembles

that of𝐷
𝑞
(𝑃, 𝑄).

𝑞-dependence? Given reasonable 𝑞-values, for small 𝑛 (𝑛 ∼

2), the behavior of 𝐽𝐷𝑞(𝑃, 𝑄) resembles that of 𝐷𝑞(𝑃, 𝑄) (see
Figure 2). For 𝑛 ≫ 2, the 𝑞-dependence is quite different (see
scales in Figure 3). The asymptotic behavior for both large 𝑛
and large 𝑞 is such that 𝐷𝑞(𝑃, 𝑄) ∼ 𝑛

𝑞
/𝑞, while 𝐽𝐷𝑞(𝑃, 𝑄) ∼

2
𝑞
/𝑞. Thus, scale differences may become astronomic.
In real-life statistical problems 𝑛 ≫ 2, on the basis

of our simple but illustrative example, we expect quite
different behaviors for 𝐷𝑞(𝑃, 𝑄) and 𝐽𝐷𝑞(𝑃, 𝑄) regarding the
𝑞-dependence for large 𝑞. 𝑞-variations aremuch smoother for
𝐽𝐷𝑞(𝑃, 𝑄) than for𝐷𝑞(𝑃, 𝑄).

In this work we consider (see Sections 3 and 4) a
system representing the zerothmode contribution of a strong
external field to the production of chargedmeson pairs, more
specifically, the roald lading to the classical limit.The ensuing
dynamics is much richer and more complex. However, we
will see that the pertinent difference in the 𝑞-behaviors of

our quantifier is the one of our simple example. The two
quantities, (a) maximum 𝑛 of Figure 1 and (b) the 𝑛-value
in Figure 3, were both chosen so as to coincide with our
semiclassical system’s number of states for this case, which
facilitates comparison.

2.2. Normalized Quantities. It is convenient to work with
a normalized version for our information quantifiers, for
the sake of a better comparison between different results
[18]. In this way the quantifier’s values are restricted to
the [0, 1] interval, via division by its maximum allowable
value. Accordingly, the example of the preceding section
can be useful as a reference. If we divide 𝐷KL(𝑃, 𝑄) by ln 𝑛,
expression (3) becomes

𝐷
𝑁

KL (𝑃, 𝑄) =
1

ln 𝑛

𝑛

∑

𝑖=1

𝑝𝑖 ln(
𝑝𝑖

𝑞𝑖

) , (12)
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Figure 3: (a) 𝐷
𝑞
(𝑃, 𝑄) and (b) 𝐽𝐷

𝑞
(𝑃, 𝑄) versus 𝑞 as in Figure 2, but for 𝑛 = 720. The 𝑛-value was chosen to coincide with the semiclassical

system’s number of states. We observe different behaviors for𝐷
𝑞
(𝑃, 𝑄) and 𝐽𝐷

𝑞
(𝑃, 𝑄) regarding the 𝑞-dependence for large 𝑞. 𝑞-variations are

much smoother for 𝐽𝐷
𝑞
(𝑃, 𝑄) than for𝐷

𝑞
(𝑃, 𝑄).

with 0 ≤ 𝐷
𝑁

KL ≤ 1. If one wishes to employ a normalized
𝐷𝑞(𝑃, 𝑄) version for comparison purposes, one must con-
sider two cases. So as to normalize the expression of𝐷𝑞(𝑃, 𝑄)
given by (4), (a) if 𝑞 ≥ 1, we divide by 𝐷𝑞(𝑃, 𝑄), given by
(8), and (b) if 0 ≤ 𝑞 < 1, we divide by (𝑛−𝑞 − 1)/(𝑞 − 1),
when computing 𝐷𝑞(𝑃, 𝑄) for the equiprobability versus the
certainty example. We obtain

𝐷
𝑁

𝑞
(𝑃, 𝑄) =

1

𝑛𝑞−1 − 1

𝑛

∑

𝑖=1

𝑝𝑖 [(
𝑝𝑖

𝑞𝑖

)

𝑞−1

− 1] ,

𝑞 ≥ 1,

(13a)

𝐷
𝑁

𝑞
(𝑃, 𝑄) =

1

𝑛−𝑞 − 1

𝑛

∑

𝑖=1

𝑝𝑖 [(
𝑝𝑖

𝑞𝑖

)

𝑞−1

− 1] ,

0 ≤ 𝑞 < 1,

(13b)

with 0 ≤ 𝐷
𝑁

𝑞
(𝑃, 𝑄) ≤ 1. To normalize the Jensen Shannon

Divergence (5), we divide by 𝐽𝑆(𝑃, 𝑄) (see (10)), so as to
obtain a normalized 𝐽𝑆𝑁(𝑃, 𝑄). For 𝐽𝐷𝑞(𝑃, 𝑄), we use only the
normalization procedure corresponding to the case 𝑞 ≥ 1.We
divide by 𝐽𝐷𝑞(𝑃, 𝑄) (see (9)), so as to obtain the normalized
𝐽𝐷
𝑁

𝑞
(𝑃, 𝑄). Of course, 𝐷𝑁KL(𝑃, 𝑄) = 0, 𝐷𝑁

𝑞
(𝑃, 𝑄) = 0,

𝐽𝑆
𝑁
(𝑃, 𝑄) = 0, and 𝐽𝐷𝑁

𝑞
(𝑃, 𝑄) = 0 hold if and only if 𝑃 = 𝑄.

We will work below with these normalized quantities.

3. Classical-Quantum Transition: A Review

This is a really important issue.The classical limit of quantum
mechanics (CLQM) can be viewed as one of the frontiers of
physics [31–35], being the origin of exciting discussion (see,
e.g., [31, 32] and references therein). An interesting subissue
is that of “quantum” chaotic motion. Recent advances made
by distinct researchers are available in [36] and references
therein. Another related interesting subissue is that of the
generalized uncertainty principle (GUP) ([37, 38]). Zurek

[33–35] and others investigated the emergence of the classical
world from quantum mechanics.

We are interested here in a semiclassical perspective,
for which several directions can be found: the historical
WKB, Born-Oppenheimer approaches, and so forth.The two
interacting systems, considered by Bonilla and Guinea [39],
Cooper et al. [19], andKowalski et al. [20, 40], constitute com-
positemodels in which one system is classical and the other is
quantal.Thismakes sense when the quantum effects of one of
the two systems are negligible in comparison to those of the
other one [20]. Examples encompass Bloch equations, two-
level systems interacting with an electromagnetic field within
a cavity, and collective nuclear motion. We are concerned
below with a bipartite system representing the zeroth mode
contribution of a strong external field to the production of
charged meson pairs [19, 20], whose Hamiltonian reads

𝐻̂ =
1

2
(
𝑝
2

𝑚𝑞

+
𝑃𝐴
2

𝑚cl
+ 𝑚𝑞𝜔

2
𝑥
2
) . (14)

𝑥 and 𝑝 above are quantum operators, while 𝐴 and 𝑃𝐴 are
classical canonical conjugate variables. The term 𝜔

2
= 𝜔𝑞
2
+

𝑒
2
𝐴
2 is an interaction one introducing nonlinearity, with

𝜔𝑞 a frequency. 𝑚𝑞 and 𝑚cl are masses, corresponding to
the quantum and classical systems, respectively. As shown
in [40], when faced with (14), one has to deal with the
autonomous system of nonlinear coupled equations:

𝑑 ⟨𝑥
2
⟩

𝑑𝑡
=

⟨𝐿̂⟩

𝑚𝑞

;

𝑑 ⟨𝑝
2
⟩

𝑑𝑡
= −𝑚𝑞𝜔

2
⟨𝐿̂⟩ ,

𝑑 ⟨𝐿̂⟩

𝑑𝑡
= 2(

⟨𝑝
2
⟩

𝑚𝑞

− 𝑚𝑞𝜔
2
⟨𝑥
2
⟩) ,
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𝑑𝐴

𝑑𝑡
=

𝑃𝐴

𝑚cl
,

𝑑𝑃𝐴

𝑑𝑡
= −𝑒
2
𝑚𝑞𝐴⟨𝑥

2
⟩ ,

𝐿̂ = 𝑥𝑝 + 𝑝𝑥,

(15)

derived from Ehrenfest’s relations for quantum variables and
from canonical Hamilton’s equations for classical ones [40].
To investigate the classical limit one needs also to consider
the classical counterpart of the Hamiltonian (14), in which
all variables are classical. In such case, Hamilton’s equations
lead to a classical version of (15). One can consult [40] for
further details. The classical equations are identical in form
to (15), after replacing quantum mean values by classical
variables. The classical limit is obtained considering the limit
of a “relative energy” [20]:

𝐸𝑟 =
|𝐸|

𝐼1/2𝜔𝑞

󳨀→ ∞, (16)

where 𝐸 is the total energy of the system and 𝐼 is an invariant
of the motion described by the system (15). 𝐼 relates to the
uncertainty principle:

𝐼 = ⟨𝑥
2
⟩ ⟨𝑝
2
⟩ −

⟨𝐿̂⟩
2

4
≥
ℎ
2

4
.

(17)

To tackle this system one appeals to numerical solution. The
pertinent analysis is affected by plotting quantities of interest
against 𝐸𝑟 that ranges in [1,∞]. For 𝐸𝑟 = 1 the quantum
system acquires all the energy 𝐸 = 𝐼

1/2
𝜔𝑞 and the quantal

and classical variables get located at the fixed point (⟨𝑥2⟩ =

𝐼
1/2
/𝑚𝑞𝜔𝑞, ⟨𝑝

2
⟩ = 𝐼

1/2
𝑚𝑞𝜔𝑞, ⟨𝐿̂⟩ = 0, 𝐴 = 0, 𝑃𝐴 = 0)

[40]. Since 𝐴 = 0, the two systems become uncoupled. For
𝐸𝑟 ∼ 1 the system is of an almost quantal nature, with a quasi-
periodic dynamics [20].

As 𝐸𝑟 augments, quantum features are rapidly lost and a
semiclassical region is entered. From a given value 𝐸𝑟

cl, the
morphology of the solutions to (15) begins to resemble that
of classical curves [20]. One indeed achieves convergence of
(15)’s solutions to the classical ones. For very large 𝐸𝑟-values,
the system thus becomes classical. Both types of solutions
coincide. We regard as semiclassical the region 1 < 𝐸𝑟 < 𝐸𝑟

cl.
Within such an interval we highlight the important value
𝐸𝑟 = 𝐸𝑟

P, at which chaos emerges [40]. We associate to our
physical problem a time-series given by the 𝐸𝑟-evolution of
appropriate expectation values of the dynamical variables and
use entropic relations so as to compare the PDF associated to
the purely classical dynamic solution with the semiclassical
ones, as these evolve towards the classical limit.

4. Numerical Results

In our numerical study we used 𝑚𝑞 = 𝑚cl = 𝜔𝑞 = 𝑒 = 1.
For the initial conditions needed to tackle (15), we employed
𝐸 = 0.6. Thus, we fixed 𝐸 and then varied 𝐼 in order to

determine the distinct 𝐸𝑟’s. We employed 55 different values
for 𝐼. Further, we set ⟨𝐿⟩(0) = 𝐿(0) = 0, 𝐴(0) = 0 (for the
quantum and for the classical instances), while 𝑥2(0), ⟨𝑥2⟩(0)
take values in the intervals (0, 2𝐸), (𝐸−√𝐸2 − 𝐼, 𝐸+√𝐸2 − 𝐼),
with 𝐼 ≤ 𝐸

2, respectively. Here, 𝐸𝑟
P

= 3.3282 and 𝐸𝑟
cl
=

21.55264. At 𝐸𝑟
𝑀 we encounter a maximum of the quantifier

called statistical complexity and 𝐸𝑟
𝑀
= 8, 0904.

Remember that our “signal” represents the system’s state
at a given 𝐸𝑟. Sampling this signal we can extract several
PDFs using the Bandt and Pompe technique [27], for which
it is convenient to adopt the largest 𝐷-value that verifies the
condition 𝐷! ≪ 𝑀 [27]. Such value is 𝐷 = 6, because we
will be concerned with vectors whose components comprise
at least𝑀 = 5000 data-points for each orbit. For verification
purposes, we also employed 𝐷 = 5, without detecting
appreciable changes.

In evaluating our relative entropies, our 𝑃-distributions
are extracted from the time-series for the different 𝐸𝑟’s, while
𝑄 is associated to the classical PDF.

Figure 4 represents the Kullback Divergence 𝐷𝑁KL(𝑃, 𝑄)
and the generalized relative entropy 𝐷

𝑁

𝑞
(𝑃, 𝑄) (i.e., the

pseudodistances (psd) between PDFs) for 𝑞 = 3.5 that were
computed in [18]. All curves show that (i) the maximal psd
between the pertinent PDFs is encountered for 𝐸𝑟 = 1,
corresponding to the purely quantal situation, and (ii) that
they grow smaller as 𝐸𝑟 augments, tending to vanish for
𝐸𝑟 → ∞, as they should. One sees that the results depend
upon 𝑞. We specially mark in our plots special 𝐸𝑟-values
whose great dynamical significance was pointed above.These
are 𝐸𝑟

P (chaos begins), 𝐸𝑟
cl (start of the transitional zone),

and 𝐸𝑟
𝑀, known to be endowed with maximum statistical

complexity [41]. As a general trend, when 𝑞 grows, the size of
the transition region diminishes and that of the classical zone
grows. For the Kullback Divergence, the size of the transition
region looks overestimated if one considers the location of
𝐸𝑟

cl (Figure 4(a)). As found in [18], we can assert that our
description is optimal for 1.5 < 𝑞 < 2.5. The description
instead lose quality for 𝑞 ≥ 2.5 (Figure 4(b)).

In Figures 5 and 6, we plot the Jensen Shannon Diver-
gence 𝐽𝑆(𝑃, 𝑄) and the generalized Jensen Divergences
𝐽𝐷𝑞(𝑃, 𝑄), for different values of 𝑞. All curves show that the
maximal distance between the pertinent PDFs is encountered
for𝐸𝑟 = 1 and that the distance grows smaller as𝐸𝑟 augments,
save for oscillations in the transition zone. We note that
the three regions are well described (which is not the case
for 𝐷𝑁KL(𝑃, 𝑄)) for any reasonable 𝑞-value. Our probability-
distance tends to vanish for 𝐸𝑟 → ∞, but in slower fashion
than for𝐷𝑁KL(𝑃, 𝑄) and𝐷

𝑁

𝑞
(𝑃, 𝑄).

The 𝑞-dependence is quite different in the case of sym-
metric versus nonsymmetric relative entropies, as can be also
seen in the simple example of Section 2.1, notwithstanding
the fact the this difference is significantly reduced for small
𝑞. As 𝑞 grows, 𝐽𝐷𝑁

𝑞
(𝑃, 𝑄) changes in a much smoother

fashion than 𝐷
𝑁

𝑞
(𝑃, 𝑄), which casts doubts concerning the

appropriateness of employing𝐷𝑁
𝑞
(𝑃, 𝑄).
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Figure 4: (a) The normalized Kullback Divergence 𝐷𝑁KL(𝑃, 𝑄) is plotted versus 𝐸
𝑟
. (b) Normalized generalized relative entropy 𝐷𝑁

𝑞
(𝑃, 𝑄)

versus 𝐸
𝑟
for 𝑞 = 3.5. As noted in [18], (i) the maximal distance (pseudodistance) between the pertinent PDFs is encountered for 𝐸

𝑟
= 1,

corresponding to the purely quantal situation and (ii) that distance (pseudodistance) grows smaller as 𝐸
𝑟
augments, tending to vanish for

𝐸
𝑟
→ ∞. For the Kullback Divergence description, the size of the transition region looks overestimated if one considers the location of 𝐸

𝑟

cl.
In (b), the transition region almost disappears.
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Figure 5: We plot (a) the Jensen Shannon Divergence versus 𝐸
𝑟
and (b) the generalized Jensen Divergence versus 𝐸

𝑟
for 𝑞 = 1.5. We observe

that the behavior is similar for both curves. As in previous figures, here the maximal distance is encountered for 𝐸
𝑟
= 1, and distance grows

smaller as 𝐸
𝑟
augments. The description of the three dynamical regions is optimal.

Themaximum statistical complexity value [41] is attained
at 𝐸𝑟
𝑀. In Figures 4, 5, and 6 we detect shape-changes, before

and after 𝐸𝑟
𝑀. Figures 5 and 6 also display there a local

minimum for the Jensen Divergence.

5. Conclusions

Thephysics involved is that of a special bipartite semiclassical
system that represents the zeroth mode contribution of a
strong external field to the production of charged meson

pairs [19, 20]. The system is endowed with three-dynamical
regions, as characterized by the values adopted by the
parameter 𝐸𝑟. We have a purely quantal zone (𝐸𝑟 ≃ 1),
a semiclassical one, and finally a classical sector. The two
latter ones are separated by the value 𝐸𝑟

cl (see Section 3). In
evaluating (i) the normalized relative entropies ((12), (13a)
and (13b)) [18] and (ii) normalized versions of the Jensen
Divergences given by (6) and (7), the 𝑃-PDFs are extracted
from time-series associated to different 𝐸𝑟-values, while 𝑄 is
always the PDF that describes the classical scenario. We are
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Figure 6: We plot (a) the Jensen Divergence and (b) the generalized Jensen Divergence, both versus 𝐸
𝑟
, for (i) 𝑞 = 3 and (ii) 𝑞 = 5. We

observe that the behavior of both curves resembles that of Figure 5. The description of the three dynamical regions is optimal.

thus speaking of “distances” between (a) the PDFs extracted
in the path towards the classical limit and (b) the classical
PDF.

For the normalized Jensen Divergences, all curves show
that the maximal distance between the pertinent PDFs is
encountered for 𝐸𝑟 = 1 and that the distance grows smaller
as 𝐸𝑟 augments, save for oscillation in the transition zone.

Our three regions are well described for any reasonable
𝑞 (which is not the case with 𝐷

𝑁

𝑞
(𝑃, 𝑄)). The vanishing of

the distance referred to above for 𝐸𝑟 → ∞ acquires now
a much slower pace than that of 𝐷𝑁

𝑞
(𝑃, 𝑄) (and 𝐷

𝑁

KL(𝑃, 𝑄)).
These results are to be expected, given the behavior of
the concomitant statistical quantifiers in the example of
Section 2.1.

We conclude that the Jensen Divergences 𝐽𝐷
𝑁

𝑞
(𝑃, 𝑄)

(and 𝐽𝑆
𝑁
(𝑃, 𝑄)) improve on the description provided by

the corresponding nonsymmetric relative entropies𝐷𝑁
𝑞
(𝑃, 𝑄)

(and𝐷KL(𝑃, 𝑄)).
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