
VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Automatic and early detection of the deterioration of
patients in Intensive and Intermediate Care Units:

technological challenges and solutions

Javier Balladini1, Pablo Bruno1, Rafael Zurita1, and Cristina Orlandi2

1 Universidad Nacional del Comahue, Neuquén, Argentina
{javier.balladini, rafa} @fi.uncoma.edu.ar, pablo.bruno@est.fi.uncoma.edu.ar

2Hospital Francisco Lopez Lima, Rio Negro, Argentina
orlandi.mariacristina@gmail.com

Abstract

In the Intensive and Intermediate Care Units of health
care centres, many sensors are connected to patients
to measure high frequency physiological data. In or
der to analyse the state of a patient, the medical staff
requires both appropriately presented and easily ac
cessed information. As most medical devices do not
support the extraction of digital data in known for
mats, medical staff need to fill out forms manually.
The traditional methodology is prone to human errors
due to the large volume of information, with variable
origins and complexity. The automatic and real-time
detection of changes in parameters, based on known
medical rules, will make possible to avoid these er
rors and, in addition, to detect deterioration early. In
this article, we propose and discuss a high-level sys
tem architecture, an embedded system that extracts the
electrocardiogram signal from an analog output of a
medical monitor, and a real-time Big Data infrastruc
ture that integrate Free Software products. We believe
that the experimental results, obtained with a simple
prototype of the system, demonstrate the viability of
the techniques and technologies used, leaving solid
foundations for the construction of a reliable system
for medical use, able to scale and support an increasing
number of patients and captured data.

Keywords: Intensive Care Unit, Clinical Decision
Support System, Medical Rules Processing, Big Data,
Embedded System.

Resumen

En las unidades de cuidados intensivos e intermedios
de centros de salud, muchos sensores están conectados
a los pacientes para medir datos fisiológicos de alta fre
cuencia. Para analizar el estado de un paciente, el per
sonal médico requiere información presentada de man
era apropiada y de fácil acceso. Como la mayoría del
equipamiento médico no admite la extracción de datos
digitales en formatos conocidos, el personal médico

completa formularios manualmente. Esta metodología
es propensa a errores humanos debido al gran volumen
de información, con orígenes y complejidad variable.
La detección automática y en tiempo real de cambios
en los parámetros, basados en reglas médicas conoci
das, permitirá evitar estos errores y, además, detectar
el deterioro de forma temprana. En este artículo, pro
ponemos una arquitectura de alto nivel del sistema, un
sistema embebido que extrae la señal del electrocardio
grama de una salida analógica de un monitor médico,
y una infraestructura Big Data de tiempo real que in
tegra productos Software Libre. Creemos que los re
sultados experimentales, obtenidos con un prototipo,
demuestran la viabilidad de las técnicas y tecnologías
utilizadas, dejando sólidas bases para la construcción
de un sistema confiable para uso médico, y capaz de
escalar para soportar un número creciente de pacientes
y datos capturados.

Palabras claves: Unidad de Cuidados Intensivos, Sis
tema de soporte a la decición clínica, Procesamiento
de reglas médicas, Big Data, Sistema embebido.

1 Introduction

In health centres, the Intensive Care Unit (ICU) pro
vides comprehensive, rigorous, and continuous care
for adult persons who are critically ill and who can
benefit from treatment, providing a good die for unre
coverable patients. Some health institutions, in turn,
have an Intermediate Care Unit (IMCU) that, unlike
the ICU, provides care to patients who do not require
life-sustaining therapeutic treatments, but to monitor
ing and control.

In both units, all patients are connected to a monitor
that measures their vital signs and issues alerts that
indicate a risk to their health. These alerts are deter
mined under criteria based on the standard population.
In the case of the ICU, patients could additionally be
connected to other medical equipment. Some of them,
such as mechanical respirators, also issue risk alerts.
Almost all alerts issued by a medical equipment are

36

mailto:pablo.bruno@est.fi.uncoma.edu.ar
mailto:orlandi.mariacristina@gmail.com

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

only based on parameters that it measures. Exception
ally, one device can be interconnected with another
to issue alerts based on parameters measured by both
devices.

In order to analyse the state of a patient, the medical
staff require both appropriately presented and easily
accessed information. As most medical devices do not
support the extraction of digital data in known formats,
medical staff need to fill out forms manually. These
forms are used to record data observed in each equip
ment at hourly intervals, and to record data related to
medical studies (as laboratory tests). At the end of
each day, the physician analyse the data of the forms
and produce indications for the nurses, such as modi
fications in the medication, practices to be performed
on patients, etc.

Our objective is to develop a computer system that
allows the automatic and early detection of deterio
ration of patients hospitalised in ICUs and IMCUs,
through the real-time processing and analysis of dig
ital health data. The data are acquired from different
sources, including the real-time data extraction from
medical equipment.

The traditional methodology is prone to human er
rors due to the large volume of information, with vari
able origins and complexity, that the medical staff
must analyse. The automatic and real-time detection of
changes in parameters (from multiple digital sources:
software systems and medical equipment), based on
known medical rules, will make it possible to avoid
these errors and, in addition, to detect deterioration
early. The latter will give physicians the ability to
plan and begin treatments without delays, possibly
increasing their effectiveness (and consequently re
ducing mortality) and decreasing their economic cost.
Additionally, the accuracy of the diagnoses could be
increased by contemplating the totality of the data gen
erated by the medical equipment connected to the sys
tem, instead of a few manually registered. In the long
term, the historical record of data will be extremely
valuable for conducting studies to discover patterns in
the data that can predict pathologies, such as septic
shock [1],

In the literature, few systems of this type are found,
some of them are [2, 3, 4, 5, 6, 7], However, its au
thors have not exposed, to the community, accurate
information on how they have addressed the different
challenges inherent to the system and/or the perfor
mance achieved by their solutions, or they use propri
etary software or hardware (for data acquisition), or
they do not meet the requirements of: scalability, fault
tolerance, and interoperability.

In this paper we discuss challenges related to the
construction of the system and propose solutions that
were implemented in our prototype. It is designed to be
deployed at the Francisco Lopez Lima Hospital, a pub
lic hospital with relatively high financial constraints,
located in the city of General Roca, Río Negro, Ar

gentina.
The main contributions of this work are focused on

the proposal of:

1. A high-level system architecture, which support
multiple hospitals with integrated data storage
and knowledge extraction, considering hospitals
without Internet leased lines. It uses a mix of lo
cal computing and a public cloud (to reduce eco
nomic cost). An initial approach was proposed in
[8].

2. An embedded device that extracts the electrocar
diogram (ECG) signal from an analog output of a
medical monitor, performs an analog-digital con
version, and transmits it via WiFi to the platform
that process the signal. This device seeks to be
an alternative to the problem of digital data ex
traction of medical equipment produced by the
use of different communication interfaces, mostly
proprietary, and whose specifications are not pub
lished by the manufacturers.

3. A real-time Big Data infrastructure that, based
on streams of signals data and other health data,
allows to process rules to determine and issue
alerts indicating risk in the health of patients. A
distributed, scalable, fault tolerant and interoper
able solution is proposed, based on the integra
tion of software products under Free Software
licenses. It is included a web system that allows
user interfaces with visualisation of signals and
alerts in real-time.

The rest of this paper is organised as follows. Section
2 describes the high-level architecture of the system.
Section 3 presents the embedded system that acquire
the ECG signal from a medical monitor. Section 4
discusses the Big Data infrastructure that support real
time processing, analysis, and visualisation of health
data. Finally, section 6 presents the conclusions and
future works.

2 High-level System Architecture

Figure 1 shows the high-level system architecture pro
posed. In this figure it is observed several Hospitals
connected to a Public Cloud. As we are considering
hospitals with unreliable Internet access, the critical
part of the system requires to perform on a dedicated
computing system placed inside each hospital. In a
hospital, the component Data Acquisition is in charge
of the connection between our system and external
health data sources: Medical Equipment and the Elec
tronic Health Record (EHR) System. The Data Ac
quisition module streams the data to a processing in
frastructure. The infrastructure must be capable of
processing, in real time, a large volume of data per
unit of time. For that reason it receives the name of

37

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Figure 1: High-level System Architecture

"Real-time Big Data Infrastructure". This large vol
ume of data per unit of time comes mainly from signals
produced by medical equipment. For example, one of
these signals is the electrocardiogram (ECG), a test
that records the electrical activity of the heart over
a period of time using electrodes placed on the pa-
cient skin, and is used to detect cardiac problems. A
typical vital signs monitor takes 1,000 samples per
second, and advanced converters can sample at 10,000
to 15,000 per second or even higher [9].

The Real-time Big Data Infrastructure must manage
Temporal Data (see Figure 1), which are health data
relevant to the system, corresponding to patients cur
rently hospitalised. All data acquired from the time of
the patient’s admission to the ICU/IMCU are consid
ered. When the patient leaves the inpatient unit, some
data may be recorded in the EHR system.

Some data are useful by themselves, and other data
may need to be analysed to produce new data. For
example, the signals obtained from medical equipment
could be interpreted through a process of Data Anal
ysis (see figure 1), generating meta-data, that is, new
health data of patients. This is the case of parameters
such as heart rate, which comes from the analysis of
the ECG. The system also performs another type of
data analysis: the processing of medical rules. In the
figure 2 two example rules are shown. Each rule de
fines the conditions, relating parameters and values,
which must be met to generate an alert indicating risk
in the patient’s health. Each patient can be associ
ated with a particular set of rules. Alerts are classified
according to a risk coefficient that determines their
importance; the lower the value, the greater the risk
to patient health and, therefore, the greater the im
portance of the alert. Each alert has a description,
possibly different, for physicians and nurses. One of
both alert descriptions could be null, allowing to sup
port alerts directed to a single group, physicians or
nurses. Optionally, each of these groups is associated
with a treatment plan to be carried out. The rule also

determines the activation or deactivation of other rules
(including itself), possibly after a certain time. Once
an episode of deteriorating patient health is overcome,
certain rules are re-activated.

The User Interface allows nurses and physician to
receive alerts, and to visualise any Temporal Data such
as raw data (signals, vital signs, etc.) or statistical
processed data (tables, charts, etc.). It is possible to
view current raw data (in real-time) and to explore
previous data.

Our system includes the storage of Historical Data
for Knowledge Extraction, useful for future medical
research and the discovery of patterns for predicting
pathologies. The Knowledge Extraction is directed
by physicians, and the output of this component are
clinical rules and data specifically tailored to enable
physicians to perform clinical research. The new rules
are then incorporated to the set of rules used for Data
Analysis at each hospital.

The Historical Data includes all acquired inpatient
data from any hospital. This data is saved in a per
sistent way in a Public Cloud. It must be observed
that the temporal storage on hospitals needs to save
only data of current inpatients. This means the storage
does not need to scale simply by the passing time, but
only when grows the amount of beds or the number
of considered health parameters (possibly with new
acquired data from medical equipment). Instead, the
persisting storage requires to scaling with the passing
time because it must save the new medical data that
are received from hospitals. Therefore, the scalable
storage offered by a public cloud is very useful. The
computing resources of the public cloud can be used to
perform the Knowledge Extraction. As intensive com
putation for Knowledge Extraction need to be done
sporadically, a Public Cloud will be effective in cost
(avoiding the high costs of a dedicated system and
technicians).

3 Data acquisition

The acquisition of data from an EHR system does
not present significant technological problems because
they are normally prepared for interoperability. The
challenge is in the data acquisition from medical equip
ment, the lowest level component (hardware and soft
ware) of the whole system presented on this work. It
must collect signals from medical monitors (INPUT),
and send the digital information (OUTPUT) to the
Real-time Big Data Infrastructure, to be processed. If
analog signals exist a conversion to a proper digital
representation is required before the transfer.

Interfacing with the complete set of equipments is
the long term goal for this level. Unfortunately, the
hospital keep using a wide and complex varíete of an
cient and newer monitoring equipments, so different
INPUT/OUTPUT interfaces exist. In some cases, two
models from a same manufacturer (but different year of

38

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

RULE 1
IF (RR > 30 per minute)

and (Hyperlactacidemia: > 3 mmol/L)
and (Arterial Hypotension: SBP < 90 mmHg or MAP < 70 mmHg)
and (Fever > 38 -C)

THEN
Risk coefficient: 2
Nurse alert: Probable Septic Shock
Nurse treatment: Infuse fluid 20 ml/Kg
Physician alert: Probable Septic Shock
Physician treatment: Two blood cultures and start antibiotic therapy
Activate rules: 2 after 30 minutes
Deactivate rules: 1

RULE 2
IF (Arterial Hypotension: SBP < 90 mmHg or MAP < 70 mmHg)
THEN

Risk coefficient: 1
Nurse alert: Septic Shock
Nurse treatment: Start noradrenaline infusion: 16mg/250cc dextrose 5% 21ml/Hour => Objective MAP 70 mmHg
Physician alert: Septic Shock
Physician treatment: no
Activate Rules: 3
Deactivate Rules: 2

References:
RR = Respiratory Rate
SBP = Systolic Blood Pressure
MAP = Mean Arterial Pressure

Figure 2: Examples of medical rules

production) do not use identical hardware ports and/or
software protocols for the output signals. Thus the data
extraction from medical equipment raises a research
topic previous to the design of an embedded system
for data acquisition, because internal specifications for
those variety of interfaces are not always published
by the manufacturers. Either since it uses propietary
protocols, or the proper documentation might not avail
able (if, e.g. an ancient equipment is not supported any
more). As a consequence, the data acquisition might
not be completely possible for all the equipments.

Many monitors uses the RS-232 standard, for the
electrical and mechanical characteristics of outputs.
Differences here ocurres on the internal data level.
RS-232 is commonly used for serial communication
betweens systems, but some equipment might work
internally with other different protocols, for intercon
necting devices from the same vendor only.

In order to develop and test our first data acquisition
embedded system prototype we choose, for interfacing,
the Life Scope LC, BSM-3101, from Nihon Kohden.
The BSM-3101 is a medical monitor, with an ana
log interface for continuos ECG data output. Since
it features a non-digital output (which requires to be
converted) this equipment is suitable for testing the
longest use case (fist of actions) of our data acquisition
prototype. Interfacing other digital outputs monitors
might be straighforward (if the correct documentation
is available).

3.1 Embedded ECG Signal Acquisition Sys
tem

The data acquisition system prototype architecture is
shown on figure 3. It comprises a microcontroller and
a single board computer (SBC). The former is a 8-bit

USART 4 Wireless
Señal
Comm

Data Acquisition Embedded Syste

Microcontroller (AvR) Single Board Computer
Atheros SOC (MIPS CPU)

A/D converter

Positivesignal generator

[Analog output]

Medical Monitor

TCP/IP packets I

Real-time Big D ata Infrastructure

Figure 3: Data Acquisition Embedded System Archi
tecture

CPU (AVR architecture) with several low level I/O
lines, set for interfacing with monitors. It also features
2KB SRAM, 32KB flash memory, a 6-channel 10-bit
analog-to-digital converter, SPI serial port, a two-wire
serial interface, and a serial programmable USART.
The selected SBC includes a Wi-SOC from Atheros
(32-bit 400Mhz MIPS CPU, 32MB RAM, 4MB flash
memory) with low power consumption and reliable
Wi-Fi interface. The Wi-SOC is the wireless commu
nication bridge between the whole data acquisition
device and a central server.

The two components communicate using the Uni
versal Asynchronous Receiver/Transmitter (UART).
The maximum bits/baud rate per second is 115,200,
which represents almost lOOkbits per second. In case
of there is an excessive continous data input, the UART
would be the limiting hardware on this architecture.
However, it is planified to use just one of this low cost
data acquisition device per patient/bed, so there should
not be greater input data than the limit imposed by the
UART.

39

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Figure 4: Positive signal generator

On the software level, a custom firmware for the
microcontroller was developed. It reads the analog
signal from ECG using an analog-to-digital converter
driver. Then, after the conversion, the MCU transfers
the 10-bit resolution digital value to the SBC using
an UART driver. Since there is not other software
tasks so far, the INPUT action is accomplished using
polling programming, inside an infinite loop. When
some input data is available, the infinite loop calls the
send procedure, which is part of the UART driver.

It was observed (when studying the ECG monitor
internals) that the analog output has positive and neg
ative voltages (-5v to 5v range). In view of the fact
that the choosen MCU is not able to read the negative
voltage (the ADC works on Ov to 5v range) the analog
signal was mounted on a unipolar positive signal gen
erator little circuit, which is achieved using a voltage
divisor and a operational amplifier (OpAmp). Figure
4 shows this circuit.

The software in the SBC includes two main com
ponents: a custom Linux kernel (featuring UART and
wireless drivers, and TCP/IP software layers), and the
userspace software. The latter was built using build-
root project, which is suitable for small Linux devices
with low memory. On userspace there is also a custom
application, which uses the Linux UART driver to read
for incoming digital data from MCU. When digital
data bytes are read the userspace application transfers
those to the central server, using a TCP/IP connection.

3.2 ECG Signal Acquisition System Valida
tion

Several measurement tests of rate and precision were
performed in a real environment at the hospital. It
is known that thousand samples per second from the
ECG are an adequate amount for describing the pa
tient condition on real-time. This rate of data was
taken for several hours on this actual environment with
no lost of information, and a wireless TCP/IP online
communication during the whole test.

The most important validation is about the preci
sion of data acquired. For this purpose a comparison
between results obtained by the prototype and a real
oscilloscope (PicoScope 2203) was made. Many sam
ples for several seconds were taken using both data
acquisition systems, at the same moment. All the sam-

Figure 5: ECG prototype validation

Figure 6: Architecture of the Real-time Big Data In
frastructure

pies were saved, and a script was used to graphically
show the representative curves (useful for medical di
agnosis, and for our validation). When both curves
were overlapped it was demostrated that the prototype
is acquiring the data from ECG correctly. Figure 5
shows the ECG over 2 sec, with the two set of sam
ples graphically overlapping. The green curve (on top
of the violet curve) are the samples taken by our pro
totype. The violet curve the samples gotten by the
PicoScope.

4 Real-time Big Data Infrastructure

The Real-time Big Data Infrastructure, whose function
ality was described in section 1, is implemented using
the architecture shown in figure 6. Data are organised
in a central platform, the Streaming Data Platform,
which receives data streams and makes them available
to other components to be consumed in real time. It
works as a messaging system or message queue, under
the publication-subscription pattern. This organisation
of the data allows to simplify the flow of communica
tions between the different components, producing a

40

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Client

Streaming Data Processing

Apache Flink

NoSQL Database

cassandra

Streaming Data Platform

§e leaf ka

Data
Acquisition

Figure 7: Technologies of the Real-time Big Data
Infrastructure

low coupling between them.
The Data Acquisition module extracts data from the

EHR System and the Medical Equipment, and sends
them in the form of streams to the central platform.
Most of data received by the platform comes from the
Data Acquisition.

Streaming Data Processing consumes data from the
central platform, and is responsible for performing a
Data Analysis, that is, the analysis of physiological
signals and the processing of medical rules. The results
of the processing/analysis are returned to the central
platform.

The NoSQL Database allows the storage of Tempo
rary Data. This type of database (NoSQL) are designed
to store and process big data, with high-performance
reading and writing operations [10]. The NoSQL
Database consumes data from the central platform
(raw data produced by the Data Acquisition and data
generated by Streaming Data Processing) and writes
them to secondary storage.

Finally, the User Interface module presents the data
(signals, vital signs, etc.) to the physicians and nurses,
possibly making a small prior processing of them when
statistical data are required. This module can receive
data from the Streaming Data Platform or NoSQL
Database, depending on whether the required data are
real time or past time, respectively.

The figure 7 shows the software products, with Free
Software licenses, selected for the implementation of
the Real-time Big Data Infrastructure. The following
sections describe the operation of each used software,
and how they are integrated into our prototype.

4.1 Streaming Data Patform

The Streaming Data Platform is implemented by
Apache Kafka, a distributed streaming platform that

'----------
P roducer 1 P roducer J

*
Producer

, r
Kafka Cluster

1 Consumer ^Consumer j Consumer

Figure 8: Kafka Producers and Consumers

handles data streams in real time [11]. Kafka was orig
inally developed at Linkedln and now is part of the
Apache Software Foundation.

The platform allows scaling to multiple nodes of a
cluster, allowing us to easily support the increase in
the number of patients and in the volume of data per
patient (especially when new signals will be acquired
from medical equipment). In addition, it is tolerant to
failures, an essential property for a critical application
of the health field.

The interaction with Kafka is carried out through
subscriptions/publications of "streams of records" (rep
resenting data streams). Thus, there are producers who
make publications, to send streams of records to the
platform, and consumers who make subscriptions to
receive streams of records from the platform. This is
exemplified in figure 8. Specifically for our prototype,
the Data Acquisition module is a producer, Apache
Flink is both consumer and producer, and Cassandra
and the web server are consumers.

Each record (of a stream) consists of a key and a
value. The streams of records are stored in categories
called topics. For each topic there is a log, which
stores the records of the topic. A topic can subscribe
zero, one or more consumers, who will read the de
sired records (the most recent or past) from a single
shared log. The logs are maintained persistently, and
are deleted after a specified time of life (whether their
records have been consumed or not). The use of writ
ing in the filesystem does not involve a loss of perfor
mance because Kafka has pagecache-centric design.

A log can be partitioned. Each partition can be
stored in a different node of the cluster, and a partition
will only be in one node. Partitioning allows to use
the storage of more than one node for the same log. In
addition, it allows to increase the performance of the
system by means of parallel access to the log (from
multiple nodes). Kafka only provides a total order over
records within a partition, not between different parti
tions in a topic. A global order of topic records can be
achieved using a single partition topic. However, if the
use of multiple partitions are required, a solution can
be found by determining which records are assigned
to each partition (based on the key) at the producer.

Kafka replicates its partitions over multiple nodes
for fault-tolerance. Each partition has one node acting
as leader and zero or more nodes acting as followers.
The leader handles all read and write requests for the

41

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Topic Key Value

Alerts <patient_id>

<time_sec>,

<risk_coefficient>,

<nurse_alert>,

<nurse_treatement>,

<physician_alert>,

<physician_treatement>

ECG_1 <time_msec> <sample>

VitalSigns_l HR <sample>

VitalSigns_l RR <sample>

ECG_n <time_msec> <sample>

V ita lS ignsn HR <sample>

VitalSigns_n RR <sample>

Table 1: Kafka topics of our prototype

partition. At the same time, the followers passively
replicate the leader. If the leader fails, one of the
followers will automatically become the leader. For
load balance purpose, each server acts as a leader for
some of its partitions and a follower for others.

In our prototype, on the one hand, a unique alert
topic has been created for all patients. Thus, each
consumer of alerts (the web server and Cassandra)
will make a single subscription to Kafka to receive all
alerts, whatever the patient. On the other hand, each
patient is identified with a number ranging from 1 to
the total of possible inpatients. The following topics
are defined per patient: a topic for the ECG signal
and a topic for the Vital Signs. In table 1 the content
of each topic implemented in our prototype is shown,
where n is the maximum patient id, HR is the heart
rate and RR is the respiratory rate. All topics have
been defined with a single partition. This allows to
preserve, in a simple way and without any detriment,
the global order of the records of the streams.

The criterion for determining topics for data coming
from the Data Acquisition module, is as follows. A
topic groups different parameters when two conditions
occur: the measurements of the parameters are made
at low frequency, and normally the parameters are
required together (by Apache Flink, Cassandra, or the
web server).

4.2 Stream Data Processing

Stream Data Processing performs two activities: sig
nal analysis and medical rule processing. This module
is implemented by Apache Flink [12], a stream pro
cessing framework to create distributed, scalable, low
latency, and fault tolerant applications. Other frame
works offer similar solutions but using microbatching
techniques (like the well-known Apache Spark with
Spark Streaming). Unlike them, Flink was created
with Streaming Processing in mind, allowing the pro
cessing of individual elements of a stream with very

low latencies.
Flink works only with data in main memory. There

fore, it is necessary that all data fit in this memory.
Fortunately, Flink implements its own memory man
agement inside the Java Virtual Machine (JVM), with
less garbage collection overhead. Furthermore, Flink
can scale to several nodes of a Cluster (or Cloud),
allowing the use of more main memory, and the per
formance improvement through parallel computing.

Flink supports fault tolerance through checkpoint-
restart mechanism to consistently recover the state of
the distributed streaming dataflow under failures. The
checkpoint can be stored in a configurable place, possi
bly using a distributed file system. In case of a program
failure (due to a failure in software, in computer hard
ware, or in the network), Flink stops the distributed
streaming dataflow. The system then restarts from the
last successful checkpoint. As our application has a
small state, the checkpoint is very light-weight and can
be done frequently with low impact on performance.
It is necessary that the checkpoint interval of Flink be
consistent with the retention time configured for the
Kafka logs. In another case, the recovery will not be
complete.

Currently, in our prototype, signal analysis is done
with an application written in C language and its inte
gration into Apache Flink is under development. So,
at this time, we use Appache Flink only for the pro
cessing of medical rules.

Basically, Flink programs are composed of the fol
lowing 3 parts. Data source is the incoming data to
be processed. Transformations is the processing step,
that is, the modifications on the incoming data. Finally,
Data sink is where Flink sends data after processing.

Particularly to our system, each part is performed
as following:

Data source: Flink makes a subscription to Kafka for
each patient id (from 1 to the maximum number
of inpatients) in the topics ECG_id and Vital-
Signs_z'd.

Transformations: As data is received from Kafka,
Flink analyses if conditions specified in mies (as
sociated with each patient id) are met.

Data sink: When conditions of a rule are met, an alert
is issued by producing a new record in the Alerts
topic of Kafka.

Flink is natively prepared for integration with Kafka,
so it is not necessary to add a special connector be
tween both platforms.

Flink supports the kind of processing required for
medical rules. Flink’s Complex Events Processing li
brary (CEP) is of special interest for our purpose. With
it, Flink is able to process information by detecting pat
terns that occur in the data, also called events, and then
to produce some output. The CEP library has a Pattern
API. This API provides tools to detect sequences of

42

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

patterns that can be extracted from the input stream.
This sequence can also be seen as a graph where each
node is a simple pattern and the transitions are made
through the fulfillment of a specified condition.

4.3 NoSQL Database

During the time that a patient is hospitalised, it is vi
tal to store all your health data (including alerts) to
be consulted by nurses and doctors. These data need
to be written in secondary storage and without any
compression for quick access. Once a patient leaves
the inpatient unit (ICU/IMCU), their data are removed
from the local system. However, before being elimi
nated, data need to be stored (possibly compressed) in
the Public Cloud. This Historical Data will be used for
Knowledge Extraction. In addition, some data may be
recorded in the EHR system.

A database is needed to store medical data generated
for each patient during his hospitalisation. The high-
frequency of signal data (such as the ECG), multiplied
by the number of patients, will produce a very high
number of insertions in the database. In turn, as they
occur, it is required to respond quickly to queries orig
inated by the web server. The NoSQL databases are
appropriate for these requirements and, within existing
ones, we choose Cassandra [13].

Regarding the data model, Cassandra’s philosophy
is to create optimised tables for certain queries and to
not implement expensive operations such as joins. In
stead, it opts for data redundancy. Cassandra works in
a distributed manner and is fault-tolerant. Replication
in different nodes allows low latency operations.

Cassandra does not have native connection with
Kafka. However, Kafka provides Kafka Connect, a
means for integration with other systems through the
creation of connectors. There are two types of connec
tors: the Source Connectors, which import data of a
system and insert them into one or more topics (acting
in a similar way as a producer) and the Sink Connec
tors, which export Kafka information to a target sys
tem. The latter allows Cassandra to be connected with
Kafka, and to be updated as data from the Kafta topics
(Alerts, and ECG and VitalSigns for each patient) are
ingested.

4.4 Web Server

The User Interface module presents patient data to
doctors and nurses. The data involves: alerts, signals,
vital signs, and any other medical data. The data can
be presented in real time, and in that case the data
need to be extracted from Kafka. In addition, it may
be necessary to present past-time data. For example,
a doctor or nurse might check a patient’s ECG and
temperature curves, which occurred minutes ago, or
at night. In this case, data need to be extracted from
Cassandra.

System N ode Support N od e

Processor
1 x Intel X eo n E 5-2630 1 x Intel Core 2 Quad Q 6600

6 cores, 12 threads 4 cores, 4 threads
M ain M em ory 16 GB 8 GB
kernel version L inux D ebian 4 .9 .18-1 L inux D ebian 4 .9 .82-1

Table 2: Characteristics of the experimental platform

The User Interface is implemented by a web server
and web or app clients. The server connects to Kafka
(using a Kafka API) and subscribes to the topics of
interest, to receive data in real time. When it is re
quired to access past time data, the web server queries
Cassandra.

The data from the client interfaces should be up
dated as the server receives data from Kafka. The
typical polling technique (in which each required data
need to be requested) is not appropriate for this situ
ation. On the contrary, once a client has requested a
certain data stream to the web server, data should flow
continuously. To carry out this type of client-server
communication, the WebSockets protocol (defined in
RFC 6455) can be used. This provides full-duplex
communication channels over a single TCP connec
tion. Through a channel, the client can make requests
or send data to the server. In turn, by another channel,
the server can send data to clients, without request for
them constantly. In our prototype we use the Socket.10
library [14], an implementation of WebSockets with
extra features.

4.5 Experimentation

The objective of the experimentation is to determine
if a server of modest characteristics could support the
processing for patients at the ICU (with 7 beds) and
IMCU (with 5 beds) of the Francisco Lopez Lima
Hospital. The prototype implements the Real-time Big
Data Infrastructure using a single node.

A support node is used for:

• Emulate the Data Acquisition module: data
streams are generated by Python scripts.

• Capture the alerts: a consumer of Kafka, imple
mented in Python, receives the alerts.

• Take measures for performance evaluation.

The performance evaluation of our prototype consists
of determining the minimum, maximum and average
latency to issue alerts. The latency time of an alert is
measured from the moment the last necessary data that
causes the alert is sent by the additional node, until the
alert reaches the additional node.

The characteristics of each node used for experimen
tation are shown in table 2. Both nodes are connected
to a local network of 1 Gbps.

Experiments were performed for 8 and 20 patients.
For each patient it is generated an ECG signal with
a frequency of 1 sample per millisecond, and 5 vital

43

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

8 patients 20 patients
Minimum (msec) 18 29
Average (msec) 154 167

Maximum (msec) 290 323

Table 3: Alert issue latency

signs with a frequency of 1 sample per second. Each
experiment runs for 5 minutes, and every 15 seconds
an alert per patient occur. Table 3 shows the minimum,
average and maximum latency required to issue alerts.
The result obtained allows to determine that the proto
type, running on a modest server, is suitable for use in
the FLLH. However, it is necessary to use more than
one node for the system to be faul tolerant.

5 Conclusions and Future Works

Our objective is to develop a computer system that al
lows the automatic and early detection of deterioration
of patients hospitalised in ICUs and IMCUs, through
the real-time processing and analysis of digital health
data. In this article the challenges and the proposal
of solutions that we implemented in a prototype were
discussed. The prototype was developed and evaluated
to be used in a public hospital of Argentina.

The general problem of ICUs/IMCUs was presented.
We have described a high-level system architecture
which supports multiple hospitals without Internet
leased lines. The solution uses a computing system
at each hospital and a Public Cloud, used to store
historical data and for knowledge extraction. The diffi
culty of extracting data from medical equipment using
unknown interfaces (hardware and software) was dis
cussed. We have presented a solution based on an
embedded system that we develop for acquire the elec
trocardiogram (ECG) signal from an analog output
of a medical monitor, performs an analog-digital con
version, and transmits it via WiFi to the platform that
process the signal. We have detailed a real-time Big
Data infrastructure that, based on streams of signals
and other health data, allows to process rules to de
termine and issues alerts indicating risk in the health
of patients. The infrastructure is distributed, scalable,
fault tolerant and interoperable, based on Free Soft
ware products.

We believe that experimental results demonstrate
the feasibility of the techniques and technologies used,
leaving solid foundations for the construction of a reli
able system for medical use, able to scale and support
an increasing number of patients and captured data.

As future works, different fault tolerance configu
rations will be evaluated. The detection of QRS com
plexes of ECG signals is expected to be integrated into
the prototype. Furthermore, it is planned to incorpo
rate the detection of anomalies in ECG signals to avoid
the contamination of the system with erroneous data.

It is necessary to acquire new signals: oxygen satura
tion in blood, body temperature and blood pressure.
Interconnection with mechanical respirators is also of
interest. Finally, the research will be directed to the
knowledge extraction module, used to define rules for
pathologies prediction.

Acknowledgements

We thank Ariel Stancato for his collaboration in the
design of the unipolar positive signal generator circuit.

Competing interests

The authors have declared that no competing interests
exist.

References

[1] A. Bravi, G. Green, A. Longtin, and A. J. Seely,
“Monitoring and identification of sepsis develop
ment through a composite measure of heart rate
variability,” PLoS One, vol. 7, no. 9, p. e45666,
2012.

[2] S. Balaji, M. Patil, and C. McGregor, “A cloud
based big data based online health analytics for
rural nicus and picus in india: Opportunities
and challenges,” in Computer-Based Medical
Systems (CBMS), 2017 IEEE 30th International
Symposium on, pp. 385-390, IEEE, 2017.

[3] “ehcos smarticu.” Available at: h t tp s ://www.
eh co s . co m /p ro d u c to s/eh co s-sm articu /.
Accessed on 2018-06-09.

[4] “Excel medical.” Available at: h t t p : / /
excel-m edical.com . Accessed on 2018-06
09.

[5] B. R. Matam and H. Duncan, “Technical chal
lenges related to implementation of a formula
one real time data acquisition and analysis sys
tem in a paediatric intensive care unit,” Journal
o f clinical monitoring and computing, pp. 1-11,
2017.

[6] “Amara health analytics.” Available at: h t t p : / /
www. a m a ra h e a lth a n a ly tic s . com. Accessed
on 2018-06-09.

[7] J. Antony, “A tablet pc based system for ubiq
uitous patient monitoring and smart alert gen
eration in an intensive care unit,” International
Journal o f Computer Applications, vol. 67, no. 6,
2013.

[8] J. Balladini, C. Rozas, F. E. Frati, N. Vicente,
and C. Orlandi, “Big data analytics in intensive

44

http://www.amarahealthanalytics.com

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

care units: challenges and applicability in an ar
gentinian hospital,” Journal o f Computer Science
& Technology, vol. 15, 2015.

[9] P. Kligfield, L. S. Gettes, J. J. Bailey, R. Childers,
B. J. Deal, E. W. Hancock, G. van Herpen, J. A.
Kors, P. Macfarlane, D. M. Mirvis, O. Pahlm,
P. Rautahaiju, and G. S. Wagner, “Recommenda
tions for the Standardization and Interpretation of
the Electrocardiogram: Part I: The Electrocardio
gram and Its Technology: A Scientific Statement
From the American Heart Association Electrocar
diography and Arrhythmias Committee, Council
on Clinical Cardiology; the American College of
Cardiology Foundation; and the Heart Rhythm
Society Endorsed by the International Society
for Computerized Electrocardiology,” Circula
tion, vol. 115, no. 10, pp. 1306-1324, 2007.

[10] A. B. M. Moniruzzaman and S. A. Hossain,

“Nosql database: New era of databases for big
data analytics - classification, characteristics and
comparison,” International Journal o f Database
Theory and Application, vol. abs/1307.0191,
2013.

[11] “Apache kafka.” Available at: h t t p s : / / k a f k a .
ap ach e . org. Accessed on 2018-06-09.

[12] “Apache Sink: Scalable batch and stream data
processing.” Available at: h t t p s : / / f l i n k ,
ap ach e . org. Accessed on 2018-06-09.

[13] “Apache cassandra.” Available at: h t t p s : / /
cas sa n d ra . apache . org. Accessed on 2018
06-09.

[14] “Socket.io.” Available at: h t t p s : / / s o c k e t .
io / . Accessed on 2018-06-09.

45

https://flink
https://socket

