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Abstract

In the Intensive and Intermediate Care Units of health
care centres, many sensors are connected to patients 
to measure high frequency physiological data. In or
der to analyse the state of a patient, the medical staff 
requires both appropriately presented and easily ac
cessed information. As most medical devices do not 
support the extraction of digital data in known for
mats, medical staff need to fill out forms manually. 
The traditional methodology is prone to human errors 
due to the large volume of information, with variable 
origins and complexity. The automatic and real-time 
detection of changes in parameters, based on known 
medical rules, will make possible to avoid these er
rors and, in addition, to detect deterioration early. In 
this article, we propose and discuss a high-level sys
tem architecture, an embedded system that extracts the 
electrocardiogram signal from an analog output of a 
medical monitor, and a real-time Big Data infrastruc
ture that integrate Free Software products. We believe 
that the experimental results, obtained with a simple 
prototype of the system, demonstrate the viability of 
the techniques and technologies used, leaving solid 
foundations for the construction of a reliable system 
for medical use, able to scale and support an increasing 
number of patients and captured data.

Keywords: Intensive Care Unit, Clinical Decision 
Support System, Medical Rules Processing, Big Data, 
Embedded System.

Resumen

En las unidades de cuidados intensivos e intermedios 
de centros de salud, muchos sensores están conectados 
a los pacientes para medir datos fisiológicos de alta fre
cuencia. Para analizar el estado de un paciente, el per
sonal médico requiere información presentada de man
era apropiada y de fácil acceso. Como la mayoría del 
equipamiento médico no admite la extracción de datos 
digitales en formatos conocidos, el personal médico

completa formularios manualmente. Esta metodología 
es propensa a errores humanos debido al gran volumen 
de información, con orígenes y complejidad variable. 
La detección automática y en tiempo real de cambios 
en los parámetros, basados en reglas médicas conoci
das, permitirá evitar estos errores y, además, detectar 
el deterioro de forma temprana. En este artículo, pro
ponemos una arquitectura de alto nivel del sistema, un 
sistema embebido que extrae la señal del electrocardio
grama de una salida analógica de un monitor médico, 
y una infraestructura Big Data de tiempo real que in
tegra productos Software Libre. Creemos que los re
sultados experimentales, obtenidos con un prototipo, 
demuestran la viabilidad de las técnicas y tecnologías 
utilizadas, dejando sólidas bases para la construcción 
de un sistema confiable para uso médico, y capaz de 
escalar para soportar un número creciente de pacientes 
y datos capturados.

Palabras claves: Unidad de Cuidados Intensivos, Sis
tema de soporte a la decición clínica, Procesamiento 
de reglas médicas, Big Data, Sistema embebido.

1 Introduction

In health centres, the Intensive Care Unit (ICU) pro
vides comprehensive, rigorous, and continuous care 
for adult persons who are critically ill and who can 
benefit from treatment, providing a good die for unre
coverable patients. Some health institutions, in turn, 
have an Intermediate Care Unit (IMCU) that, unlike 
the ICU, provides care to patients who do not require 
life-sustaining therapeutic treatments, but to monitor
ing and control.

In both units, all patients are connected to a monitor 
that measures their vital signs and issues alerts that 
indicate a risk to their health. These alerts are deter
mined under criteria based on the standard population. 
In the case of the ICU, patients could additionally be 
connected to other medical equipment. Some of them, 
such as mechanical respirators, also issue risk alerts. 
Almost all alerts issued by a medical equipment are
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only based on parameters that it measures. Exception
ally, one device can be interconnected with another 
to issue alerts based on parameters measured by both 
devices.

In order to analyse the state of a patient, the medical 
staff require both appropriately presented and easily 
accessed information. As most medical devices do not 
support the extraction of digital data in known formats, 
medical staff need to fill out forms manually. These 
forms are used to record data observed in each equip
ment at hourly intervals, and to record data related to 
medical studies (as laboratory tests). At the end of 
each day, the physician analyse the data of the forms 
and produce indications for the nurses, such as modi
fications in the medication, practices to be performed 
on patients, etc.

Our objective is to develop a computer system that 
allows the automatic and early detection of deterio
ration of patients hospitalised in ICUs and IMCUs, 
through the real-time processing and analysis of dig
ital health data. The data are acquired from different 
sources, including the real-time data extraction from 
medical equipment.

The traditional methodology is prone to human er
rors due to the large volume of information, with vari
able origins and complexity, that the medical staff 
must analyse. The automatic and real-time detection of 
changes in parameters (from multiple digital sources: 
software systems and medical equipment), based on 
known medical rules, will make it possible to avoid 
these errors and, in addition, to detect deterioration 
early. The latter will give physicians the ability to 
plan and begin treatments without delays, possibly 
increasing their effectiveness (and consequently re
ducing mortality) and decreasing their economic cost. 
Additionally, the accuracy of the diagnoses could be 
increased by contemplating the totality of the data gen
erated by the medical equipment connected to the sys
tem, instead of a few manually registered. In the long 
term, the historical record of data will be extremely 
valuable for conducting studies to discover patterns in 
the data that can predict pathologies, such as septic 
shock [1],

In the literature, few systems of this type are found, 
some of them are [2, 3, 4, 5, 6, 7], However, its au
thors have not exposed, to the community, accurate 
information on how they have addressed the different 
challenges inherent to the system and/or the perfor
mance achieved by their solutions, or they use propri
etary software or hardware (for data acquisition), or 
they do not meet the requirements of: scalability, fault 
tolerance, and interoperability.

In this paper we discuss challenges related to the 
construction of the system and propose solutions that 
were implemented in our prototype. It is designed to be 
deployed at the Francisco Lopez Lima Hospital, a pub
lic hospital with relatively high financial constraints, 
located in the city of General Roca, Río Negro, Ar

gentina.
The main contributions of this work are focused on 

the proposal of:

1. A high-level system architecture, which support 
multiple hospitals with integrated data storage 
and knowledge extraction, considering hospitals 
without Internet leased lines. It uses a mix of lo
cal computing and a public cloud (to reduce eco
nomic cost). An initial approach was proposed in 
[8].

2. An embedded device that extracts the electrocar
diogram (ECG) signal from an analog output of a 
medical monitor, performs an analog-digital con
version, and transmits it via WiFi to the platform 
that process the signal. This device seeks to be 
an alternative to the problem of digital data ex
traction of medical equipment produced by the 
use of different communication interfaces, mostly 
proprietary, and whose specifications are not pub
lished by the manufacturers.

3. A real-time Big Data infrastructure that, based 
on streams of signals data and other health data, 
allows to process rules to determine and issue 
alerts indicating risk in the health of patients. A 
distributed, scalable, fault tolerant and interoper
able solution is proposed, based on the integra
tion of software products under Free Software 
licenses. It is included a web system that allows 
user interfaces with visualisation of signals and 
alerts in real-time.

The rest of this paper is organised as follows. Section 
2 describes the high-level architecture of the system. 
Section 3 presents the embedded system that acquire 
the ECG signal from a medical monitor. Section 4 
discusses the Big Data infrastructure that support real
time processing, analysis, and visualisation of health 
data. Finally, section 6 presents the conclusions and 
future works.

2 High-level System Architecture

Figure 1 shows the high-level system architecture pro
posed. In this figure it is observed several Hospitals 
connected to a Public Cloud. As we are considering 
hospitals with unreliable Internet access, the critical 
part of the system requires to perform on a dedicated 
computing system placed inside each hospital. In a 
hospital, the component Data Acquisition is in charge 
of the connection between our system and external 
health data sources: Medical Equipment and the Elec
tronic Health Record (EHR) System. The Data Ac
quisition module streams the data to a processing in
frastructure. The infrastructure must be capable of 
processing, in real time, a large volume of data per 
unit of time. For that reason it receives the name of
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Figure 1: High-level System Architecture

"Real-time Big Data Infrastructure". This large vol
ume of data per unit of time comes mainly from signals 
produced by medical equipment. For example, one of 
these signals is the electrocardiogram (ECG), a test 
that records the electrical activity of the heart over 
a period of time using electrodes placed on the pa- 
cient skin, and is used to detect cardiac problems. A 
typical vital signs monitor takes 1,000 samples per 
second, and advanced converters can sample at 10,000 
to 15,000 per second or even higher [9].

The Real-time Big Data Infrastructure must manage 
Temporal Data (see Figure 1), which are health data 
relevant to the system, corresponding to patients cur
rently hospitalised. All data acquired from the time of 
the patient’s admission to the ICU/IMCU are consid
ered. When the patient leaves the inpatient unit, some 
data may be recorded in the EHR system.

Some data are useful by themselves, and other data 
may need to be analysed to produce new data. For 
example, the signals obtained from medical equipment 
could be interpreted through a process of Data Anal
ysis (see figure 1), generating meta-data, that is, new 
health data of patients. This is the case of parameters 
such as heart rate, which comes from the analysis of 
the ECG. The system also performs another type of 
data analysis: the processing of medical rules. In the 
figure 2 two example rules are shown. Each rule de
fines the conditions, relating parameters and values, 
which must be met to generate an alert indicating risk 
in the patient’s health. Each patient can be associ
ated with a particular set of rules. Alerts are classified 
according to a risk coefficient that determines their 
importance; the lower the value, the greater the risk 
to patient health and, therefore, the greater the im
portance of the alert. Each alert has a description, 
possibly different, for physicians and nurses. One of 
both alert descriptions could be null, allowing to sup
port alerts directed to a single group, physicians or 
nurses. Optionally, each of these groups is associated 
with a treatment plan to be carried out. The rule also

determines the activation or deactivation of other rules 
(including itself), possibly after a certain time. Once 
an episode of deteriorating patient health is overcome, 
certain rules are re-activated.

The User Interface allows nurses and physician to 
receive alerts, and to visualise any Temporal Data such 
as raw data (signals, vital signs, etc.) or statistical 
processed data (tables, charts, etc.). It is possible to 
view current raw data (in real-time) and to explore 
previous data.

Our system includes the storage of Historical Data 
for Knowledge Extraction, useful for future medical 
research and the discovery of patterns for predicting 
pathologies. The Knowledge Extraction is directed 
by physicians, and the output of this component are 
clinical rules and data specifically tailored to enable 
physicians to perform clinical research. The new rules 
are then incorporated to the set of rules used for Data 
Analysis at each hospital.

The Historical Data includes all acquired inpatient 
data from any hospital. This data is saved in a per
sistent way in a Public Cloud. It must be observed 
that the temporal storage on hospitals needs to save 
only data of current inpatients. This means the storage 
does not need to scale simply by the passing time, but 
only when grows the amount of beds or the number 
of considered health parameters (possibly with new 
acquired data from medical equipment). Instead, the 
persisting storage requires to scaling with the passing 
time because it must save the new medical data that 
are received from hospitals. Therefore, the scalable 
storage offered by a public cloud is very useful. The 
computing resources of the public cloud can be used to 
perform the Knowledge Extraction. As intensive com
putation for Knowledge Extraction need to be done 
sporadically, a Public Cloud will be effective in cost 
(avoiding the high costs of a dedicated system and 
technicians).

3 Data acquisition

The acquisition of data from an EHR system does 
not present significant technological problems because 
they are normally prepared for interoperability. The 
challenge is in the data acquisition from medical equip
ment, the lowest level component (hardware and soft
ware) of the whole system presented on this work. It 
must collect signals from medical monitors (INPUT), 
and send the digital information (OUTPUT) to the 
Real-time Big Data Infrastructure, to be processed. If 
analog signals exist a conversion to a proper digital 
representation is required before the transfer.

Interfacing with the complete set of equipments is 
the long term goal for this level. Unfortunately, the 
hospital keep using a wide and complex varíete of an
cient and newer monitoring equipments, so different 
INPUT/OUTPUT interfaces exist. In some cases, two 
models from a same manufacturer (but different year of
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RULE 1
IF (RR > 30 per minute)

and (Hyperlactacidemia: > 3 mmol/L)
and (Arterial Hypotension: SBP < 90 mmHg or MAP < 70 mmHg)
and (Fever > 38 -C)

THEN
Risk coefficient: 2
Nurse alert: Probable Septic Shock
Nurse treatment: Infuse fluid 20 ml/Kg
Physician alert: Probable Septic Shock
Physician treatment: Two blood cultures and start antibiotic therapy
Activate rules: 2 after 30 minutes
Deactivate rules: 1

RULE 2
IF (Arterial Hypotension: SBP < 90 mmHg or MAP < 70 mmHg)
THEN

Risk coefficient: 1
Nurse alert: Septic Shock
Nurse treatment: Start noradrenaline infusion: 16mg/250cc dextrose 5% 21ml/Hour => Objective MAP 70 mmHg
Physician alert: Septic Shock
Physician treatment: no
Activate Rules: 3
Deactivate Rules: 2

References:
RR = Respiratory Rate
SBP = Systolic Blood Pressure
MAP = Mean Arterial Pressure

Figure 2: Examples of medical rules

production) do not use identical hardware ports and/or 
software protocols for the output signals. Thus the data 
extraction from medical equipment raises a research 
topic previous to the design of an embedded system 
for data acquisition, because internal specifications for 
those variety of interfaces are not always published 
by the manufacturers. Either since it uses propietary 
protocols, or the proper documentation might not avail
able (if, e.g. an ancient equipment is not supported any
more). As a consequence, the data acquisition might 
not be completely possible for all the equipments.

Many monitors uses the RS-232 standard, for the 
electrical and mechanical characteristics of outputs. 
Differences here ocurres on the internal data level. 
RS-232 is commonly used for serial communication 
betweens systems, but some equipment might work 
internally with other different protocols, for intercon
necting devices from the same vendor only.

In order to develop and test our first data acquisition 
embedded system prototype we choose, for interfacing, 
the Life Scope LC, BSM-3101, from Nihon Kohden. 
The BSM-3101 is a medical monitor, with an ana
log interface for continuos ECG data output. Since 
it features a non-digital output (which requires to be 
converted) this equipment is suitable for testing the 
longest use case (fist of actions) of our data acquisition 
prototype. Interfacing other digital outputs monitors 
might be straighforward (if the correct documentation 
is available).

3.1 Embedded ECG Signal Acquisition Sys
tem

The data acquisition system prototype architecture is 
shown on figure 3. It comprises a microcontroller and 
a single board computer (SBC). The former is a 8-bit

USART 4 Wireless
Señal
Comm

Data Acquisition Embedded Syste

Microcontroller (AvR) Single Board Computer 
Atheros SOC (MIPS CPU)

A/D converter

Positivesignal generator

[ Analog output ] 

Medical Monitor

TCP/IP packets I

Real-time Big D ata Infrastructure

Figure 3: Data Acquisition Embedded System Archi
tecture

CPU (AVR architecture) with several low level I/O 
lines, set for interfacing with monitors. It also features 
2KB SRAM, 32KB flash memory, a 6-channel 10-bit 
analog-to-digital converter, SPI serial port, a two-wire 
serial interface, and a serial programmable USART. 
The selected SBC includes a Wi-SOC from Atheros 
(32-bit 400Mhz MIPS CPU, 32MB RAM, 4MB flash 
memory) with low power consumption and reliable 
Wi-Fi interface. The Wi-SOC is the wireless commu
nication bridge between the whole data acquisition 
device and a central server.

The two components communicate using the Uni
versal Asynchronous Receiver/Transmitter (UART). 
The maximum bits/baud rate per second is 115,200, 
which represents almost lOOkbits per second. In case 
of there is an excessive continous data input, the UART 
would be the limiting hardware on this architecture. 
However, it is planified to use just one of this low cost 
data acquisition device per patient/bed, so there should 
not be greater input data than the limit imposed by the 
UART.
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Figure 4: Positive signal generator

On the software level, a custom firmware for the 
microcontroller was developed. It reads the analog 
signal from ECG using an analog-to-digital converter 
driver. Then, after the conversion, the MCU transfers 
the 10-bit resolution digital value to the SBC using 
an UART driver. Since there is not other software 
tasks so far, the INPUT action is accomplished using 
polling programming, inside an infinite loop. When 
some input data is available, the infinite loop calls the 
send procedure, which is part of the UART driver.

It was observed (when studying the ECG monitor 
internals) that the analog output has positive and neg
ative voltages (-5v to 5v range). In view of the fact 
that the choosen MCU is not able to read the negative 
voltage (the ADC works on Ov to 5v range) the analog 
signal was mounted on a unipolar positive signal gen
erator little circuit, which is achieved using a voltage 
divisor and a operational amplifier (OpAmp). Figure 
4 shows this circuit.

The software in the SBC includes two main com
ponents: a custom Linux kernel (featuring UART and 
wireless drivers, and TCP/IP software layers), and the 
userspace software. The latter was built using build- 
root project, which is suitable for small Linux devices 
with low memory. On userspace there is also a custom 
application, which uses the Linux UART driver to read 
for incoming digital data from MCU. When digital 
data bytes are read the userspace application transfers 
those to the central server, using a TCP/IP connection.

3.2 ECG Signal Acquisition System Valida
tion

Several measurement tests of rate and precision were 
performed in a real environment at the hospital. It 
is known that thousand samples per second from the 
ECG are an adequate amount for describing the pa
tient condition on real-time. This rate of data was 
taken for several hours on this actual environment with 
no lost of information, and a wireless TCP/IP online 
communication during the whole test.

The most important validation is about the preci
sion of data acquired. For this purpose a comparison 
between results obtained by the prototype and a real 
oscilloscope (PicoScope 2203) was made. Many sam
ples for several seconds were taken using both data 
acquisition systems, at the same moment. All the sam-

Figure 5: ECG prototype validation

Figure 6: Architecture of the Real-time Big Data In
frastructure

pies were saved, and a script was used to graphically 
show the representative curves (useful for medical di
agnosis, and for our validation). When both curves 
were overlapped it was demostrated that the prototype 
is acquiring the data from ECG correctly. Figure 5 
shows the ECG over 2 sec, with the two set of sam
ples graphically overlapping. The green curve (on top 
of the violet curve) are the samples taken by our pro
totype. The violet curve the samples gotten by the 
PicoScope.

4 Real-time Big Data Infrastructure

The Real-time Big Data Infrastructure, whose function
ality was described in section 1, is implemented using 
the architecture shown in figure 6. Data are organised 
in a central platform, the Streaming Data Platform, 
which receives data streams and makes them available 
to other components to be consumed in real time. It 
works as a messaging system or message queue, under 
the publication-subscription pattern. This organisation 
of the data allows to simplify the flow of communica
tions between the different components, producing a
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Figure 7: Technologies of the Real-time Big Data 
Infrastructure

low coupling between them.
The Data Acquisition module extracts data from the 

EHR System and the Medical Equipment, and sends 
them in the form of streams to the central platform. 
Most of data received by the platform comes from the 
Data Acquisition.

Streaming Data Processing consumes data from the 
central platform, and is responsible for performing a 
Data Analysis, that is, the analysis of physiological 
signals and the processing of medical rules. The results 
of the processing/analysis are returned to the central 
platform.

The NoSQL Database allows the storage of Tempo
rary Data. This type of database (NoSQL) are designed 
to store and process big data, with high-performance 
reading and writing operations [10]. The NoSQL 
Database consumes data from the central platform 
(raw data produced by the Data Acquisition and data 
generated by Streaming Data Processing) and writes 
them to secondary storage.

Finally, the User Interface module presents the data 
(signals, vital signs, etc.) to the physicians and nurses, 
possibly making a small prior processing of them when 
statistical data are required. This module can receive 
data from the Streaming Data Platform or NoSQL 
Database, depending on whether the required data are 
real time or past time, respectively.

The figure 7 shows the software products, with Free 
Software licenses, selected for the implementation of 
the Real-time Big Data Infrastructure. The following 
sections describe the operation of each used software, 
and how they are integrated into our prototype.

4.1 Streaming Data Patform

The Streaming Data Platform is implemented by 
Apache Kafka, a distributed streaming platform that

'----------
P roducer 1 P roducer J

*
Producer

, r
Kafka Cluster

1 Consumer ^Consumer j Consumer

Figure 8: Kafka Producers and Consumers

handles data streams in real time [11]. Kafka was orig
inally developed at Linkedln and now is part of the 
Apache Software Foundation.

The platform allows scaling to multiple nodes of a 
cluster, allowing us to easily support the increase in 
the number of patients and in the volume of data per 
patient (especially when new signals will be acquired 
from medical equipment). In addition, it is tolerant to 
failures, an essential property for a critical application 
of the health field.

The interaction with Kafka is carried out through 
subscriptions/publications of "streams of records" (rep
resenting data streams). Thus, there are producers who 
make publications, to send streams of records to the 
platform, and consumers who make subscriptions to 
receive streams of records from the platform. This is 
exemplified in figure 8. Specifically for our prototype, 
the Data Acquisition module is a producer, Apache 
Flink is both consumer and producer, and Cassandra 
and the web server are consumers.

Each record (of a stream) consists of a key and a 
value. The streams of records are stored in categories 
called topics. For each topic there is a log, which 
stores the records of the topic. A topic can subscribe 
zero, one or more consumers, who will read the de
sired records (the most recent or past) from a single 
shared log. The logs are maintained persistently, and 
are deleted after a specified time of life (whether their 
records have been consumed or not). The use of writ
ing in the filesystem does not involve a loss of perfor
mance because Kafka has pagecache-centric design.

A log can be partitioned. Each partition can be 
stored in a different node of the cluster, and a partition 
will only be in one node. Partitioning allows to use 
the storage of more than one node for the same log. In 
addition, it allows to increase the performance of the 
system by means of parallel access to the log (from 
multiple nodes). Kafka only provides a total order over 
records within a partition, not between different parti
tions in a topic. A global order of topic records can be 
achieved using a single partition topic. However, if the 
use of multiple partitions are required, a solution can 
be found by determining which records are assigned 
to each partition (based on the key) at the producer.

Kafka replicates its partitions over multiple nodes 
for fault-tolerance. Each partition has one node acting 
as leader and zero or more nodes acting as followers. 
The leader handles all read and write requests for the
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Topic Key Value

Alerts <patient_id>

<time_sec>,

<risk_coefficient>,

<nurse_alert>,

<nurse_treatement>,

<physician_alert>,

<physician_treatement>

ECG_1 <time_msec> <sample>

VitalSigns_l HR <sample>

VitalSigns_l RR <sample>

ECG_n <time_msec> <sample>

V ita lS ignsn HR <sample>

VitalSigns_n RR <sample>

Table 1: Kafka topics of our prototype

partition. At the same time, the followers passively 
replicate the leader. If the leader fails, one of the 
followers will automatically become the leader. For 
load balance purpose, each server acts as a leader for 
some of its partitions and a follower for others.

In our prototype, on the one hand, a unique alert 
topic has been created for all patients. Thus, each 
consumer of alerts (the web server and Cassandra) 
will make a single subscription to Kafka to receive all 
alerts, whatever the patient. On the other hand, each 
patient is identified with a number ranging from 1 to 
the total of possible inpatients. The following topics 
are defined per patient: a topic for the ECG signal 
and a topic for the Vital Signs. In table 1 the content 
of each topic implemented in our prototype is shown, 
where n is the maximum patient id, HR is the heart 
rate and RR is the respiratory rate. All topics have 
been defined with a single partition. This allows to 
preserve, in a simple way and without any detriment, 
the global order of the records of the streams.

The criterion for determining topics for data coming 
from the Data Acquisition module, is as follows. A 
topic groups different parameters when two conditions 
occur: the measurements of the parameters are made 
at low frequency, and normally the parameters are 
required together (by Apache Flink, Cassandra, or the 
web server).

4.2 Stream Data Processing

Stream Data Processing performs two activities: sig
nal analysis and medical rule processing. This module 
is implemented by Apache Flink [12], a stream pro
cessing framework to create distributed, scalable, low 
latency, and fault tolerant applications. Other frame
works offer similar solutions but using microbatching 
techniques (like the well-known Apache Spark with 
Spark Streaming). Unlike them, Flink was created 
with Streaming Processing in mind, allowing the pro
cessing of individual elements of a stream with very

low latencies.
Flink works only with data in main memory. There

fore, it is necessary that all data fit in this memory. 
Fortunately, Flink implements its own memory man
agement inside the Java Virtual Machine (JVM), with 
less garbage collection overhead. Furthermore, Flink 
can scale to several nodes of a Cluster (or Cloud), 
allowing the use of more main memory, and the per
formance improvement through parallel computing.

Flink supports fault tolerance through checkpoint- 
restart mechanism to consistently recover the state of 
the distributed streaming dataflow under failures. The 
checkpoint can be stored in a configurable place, possi
bly using a distributed file system. In case of a program 
failure (due to a failure in software, in computer hard
ware, or in the network), Flink stops the distributed 
streaming dataflow. The system then restarts from the 
last successful checkpoint. As our application has a 
small state, the checkpoint is very light-weight and can 
be done frequently with low impact on performance. 
It is necessary that the checkpoint interval of Flink be 
consistent with the retention time configured for the 
Kafka logs. In another case, the recovery will not be 
complete.

Currently, in our prototype, signal analysis is done 
with an application written in C language and its inte
gration into Apache Flink is under development. So, 
at this time, we use Appache Flink only for the pro
cessing of medical rules.

Basically, Flink programs are composed of the fol
lowing 3 parts. Data source is the incoming data to 
be processed. Transformations is the processing step, 
that is, the modifications on the incoming data. Finally, 
Data sink is where Flink sends data after processing.

Particularly to our system, each part is performed 
as following:

Data source: Flink makes a subscription to Kafka for 
each patient id (from 1 to the maximum number 
of inpatients) in the topics ECG_id and Vital- 
Signs_z'd.

Transformations: As data is received from Kafka, 
Flink analyses if conditions specified in mies (as
sociated with each patient id) are met.

Data sink: When conditions of a rule are met, an alert 
is issued by producing a new record in the Alerts 
topic of Kafka.

Flink is natively prepared for integration with Kafka, 
so it is not necessary to add a special connector be
tween both platforms.

Flink supports the kind of processing required for 
medical rules. Flink’s Complex Events Processing li
brary (CEP) is of special interest for our purpose. With 
it, Flink is able to process information by detecting pat
terns that occur in the data, also called events, and then 
to produce some output. The CEP library has a Pattern 
API. This API provides tools to detect sequences of
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patterns that can be extracted from the input stream. 
This sequence can also be seen as a graph where each 
node is a simple pattern and the transitions are made 
through the fulfillment of a specified condition.

4.3 NoSQL Database

During the time that a patient is hospitalised, it is vi
tal to store all your health data (including alerts) to 
be consulted by nurses and doctors. These data need 
to be written in secondary storage and without any 
compression for quick access. Once a patient leaves 
the inpatient unit (ICU/IMCU), their data are removed 
from the local system. However, before being elimi
nated, data need to be stored (possibly compressed) in 
the Public Cloud. This Historical Data will be used for 
Knowledge Extraction. In addition, some data may be 
recorded in the EHR system.

A database is needed to store medical data generated 
for each patient during his hospitalisation. The high- 
frequency of signal data (such as the ECG), multiplied 
by the number of patients, will produce a very high 
number of insertions in the database. In turn, as they 
occur, it is required to respond quickly to queries orig
inated by the web server. The NoSQL databases are 
appropriate for these requirements and, within existing 
ones, we choose Cassandra [13].

Regarding the data model, Cassandra’s philosophy 
is to create optimised tables for certain queries and to 
not implement expensive operations such as joins. In
stead, it opts for data redundancy. Cassandra works in 
a distributed manner and is fault-tolerant. Replication 
in different nodes allows low latency operations.

Cassandra does not have native connection with 
Kafka. However, Kafka provides Kafka Connect, a 
means for integration with other systems through the 
creation of connectors. There are two types of connec
tors: the Source Connectors, which import data of a 
system and insert them into one or more topics (acting 
in a similar way as a producer) and the Sink Connec
tors, which export Kafka information to a target sys
tem. The latter allows Cassandra to be connected with 
Kafka, and to be updated as data from the Kafta topics 
(Alerts, and ECG and VitalSigns for each patient) are 
ingested.

4.4 Web Server

The User Interface module presents patient data to 
doctors and nurses. The data involves: alerts, signals, 
vital signs, and any other medical data. The data can 
be presented in real time, and in that case the data 
need to be extracted from Kafka. In addition, it may 
be necessary to present past-time data. For example, 
a doctor or nurse might check a patient’s ECG and 
temperature curves, which occurred minutes ago, or 
at night. In this case, data need to be extracted from 
Cassandra.

System  N ode Support N od e

Processor
1 x  Intel X eo n  E 5-2630 1 x  Intel Core 2  Quad Q 6600

6  cores, 12 threads 4  cores, 4  threads
M ain M em ory 16 GB 8 GB
kernel version L inux D ebian  4 .9 .18-1 L inux D ebian  4 .9 .82-1

Table 2: Characteristics of the experimental platform

The User Interface is implemented by a web server 
and web or app clients. The server connects to Kafka 
(using a Kafka API) and subscribes to the topics of 
interest, to receive data in real time. When it is re
quired to access past time data, the web server queries 
Cassandra.

The data from the client interfaces should be up
dated as the server receives data from Kafka. The 
typical polling technique (in which each required data 
need to be requested) is not appropriate for this situ
ation. On the contrary, once a client has requested a 
certain data stream to the web server, data should flow 
continuously. To carry out this type of client-server 
communication, the WebSockets protocol (defined in 
RFC 6455) can be used. This provides full-duplex 
communication channels over a single TCP connec
tion. Through a channel, the client can make requests 
or send data to the server. In turn, by another channel, 
the server can send data to clients, without request for 
them constantly. In our prototype we use the Socket.10 
library [14], an implementation of WebSockets with 
extra features.

4.5 Experimentation

The objective of the experimentation is to determine 
if a server of modest characteristics could support the 
processing for patients at the ICU (with 7 beds) and 
IMCU (with 5 beds) of the Francisco Lopez Lima 
Hospital. The prototype implements the Real-time Big 
Data Infrastructure using a single node.

A support node is used for:

• Emulate the Data Acquisition module: data 
streams are generated by Python scripts.

• Capture the alerts: a consumer of Kafka, imple
mented in Python, receives the alerts.

• Take measures for performance evaluation.

The performance evaluation of our prototype consists 
of determining the minimum, maximum and average 
latency to issue alerts. The latency time of an alert is 
measured from the moment the last necessary data that 
causes the alert is sent by the additional node, until the 
alert reaches the additional node.

The characteristics of each node used for experimen
tation are shown in table 2. Both nodes are connected 
to a local network of 1 Gbps.

Experiments were performed for 8 and 20 patients. 
For each patient it is generated an ECG signal with 
a frequency of 1 sample per millisecond, and 5 vital
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8 patients 20 patients
Minimum (msec) 18 29
Average (msec) 154 167

Maximum (msec) 290 323

Table 3: Alert issue latency

signs with a frequency of 1 sample per second. Each 
experiment runs for 5 minutes, and every 15 seconds 
an alert per patient occur. Table 3 shows the minimum, 
average and maximum latency required to issue alerts. 
The result obtained allows to determine that the proto
type, running on a modest server, is suitable for use in 
the FLLH. However, it is necessary to use more than 
one node for the system to be faul tolerant.

5 Conclusions and Future Works

Our objective is to develop a computer system that al
lows the automatic and early detection of deterioration 
of patients hospitalised in ICUs and IMCUs, through 
the real-time processing and analysis of digital health 
data. In this article the challenges and the proposal 
of solutions that we implemented in a prototype were 
discussed. The prototype was developed and evaluated 
to be used in a public hospital of Argentina.

The general problem of ICUs/IMCUs was presented. 
We have described a high-level system architecture 
which supports multiple hospitals without Internet 
leased lines. The solution uses a computing system 
at each hospital and a Public Cloud, used to store 
historical data and for knowledge extraction. The diffi
culty of extracting data from medical equipment using 
unknown interfaces (hardware and software) was dis
cussed. We have presented a solution based on an 
embedded system that we develop for acquire the elec
trocardiogram (ECG) signal from an analog output 
of a medical monitor, performs an analog-digital con
version, and transmits it via WiFi to the platform that 
process the signal. We have detailed a real-time Big 
Data infrastructure that, based on streams of signals 
and other health data, allows to process rules to de
termine and issues alerts indicating risk in the health 
of patients. The infrastructure is distributed, scalable, 
fault tolerant and interoperable, based on Free Soft
ware products.

We believe that experimental results demonstrate 
the feasibility of the techniques and technologies used, 
leaving solid foundations for the construction of a reli
able system for medical use, able to scale and support 
an increasing number of patients and captured data.

As future works, different fault tolerance configu
rations will be evaluated. The detection of QRS com
plexes of ECG signals is expected to be integrated into 
the prototype. Furthermore, it is planned to incorpo
rate the detection of anomalies in ECG signals to avoid 
the contamination of the system with erroneous data.

It is necessary to acquire new signals: oxygen satura
tion in blood, body temperature and blood pressure. 
Interconnection with mechanical respirators is also of 
interest. Finally, the research will be directed to the 
knowledge extraction module, used to define rules for 
pathologies prediction.
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