
VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Fire propagation visualization in real time

Sigfrido Waidelich1, Karina Laneri2,3, and Monica Denham1,2

1 Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento. Sede Andina, Universidad Nacional
de Río Negro, Argentina

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
3Física Estadística e Interdisciplinaria, Centro Atomico Bariloche, Río Negro, Argentina

sigfri2wai@gmail.com, laneri@cab.cnea.gov.ar, mdenham@unrn.edu.ar

Abstract

Our motivation comes from the need of a tailored com­
putational tool for simulation and prediction of forest
fire propagation, to be used by firefighters in Patago­
nia, Argentina. Based on previous works on Graphic
Processing Units (GPU) for fitting and simulating fires
in our region, we developed a visualization interface
for real time computing, simulation and prediction of
fire propagation. We have the possibility of changing
the ensemble of raster maps layers to change the re­
gion in which fire will propagate. The visualization
platform runs on GPUs and the user can rotate and
zoom the landscape to select the optimal view of fire
propagation. Opacity of different layers can be regu­
lated by the user, allowing to see fire propagation at the
same time that underlying vegetation, wind direction
and intensity. The ignition point can also be selected
by the user, and firebreaks can be plotted while sim­
ulation is going on. After the performance of a high
number of stochastic simulations in parallel in GPUs,
the application shows a map of the final fire surface
colored according to the probability that a given cell
burns. In this way the user can visually identify the
most critical direction for fire propagation, a useful
information to stop fire optimizing resources, which
is specially important when they are scarce like is the
case of our Patagonia region.

Keywords: Forest Fire Simulation, GPGPU, High
Performance Computing

1 Introduction

Every year, Argentina is the scenery of several and
sometimes huge forest fires. Our country has a big
extension of wild vegetation and firefighters unfor­
tunately don't have reliable computational tools for
management purposes.

In addition, our region still doesn't have fuel models
for local vegetation to use as input for propagation and
instead similar vegetation types from countries like
Canada, Australia and USA are used [1, 2, 3].

Our team is working in collaboration with the fire

brigade of ’’Fire, Communications and Emergency De­
partment” (ICE) of the Nahuel Huapi National Park,
in San Carlos de Bariloche. When a fire occurs, they
mainly use their experience in the field to build the
strategy to stop the fire. In some of the cases they
used the outcome of FARSITE [4] but they noticed
that simulations were very inaccurate depending on
the vegetation that burns. Therefore we based our de­
velopment on the needs of the ICE, a simulation tool
adapted to our region with a friendly interface to be
used to have more information to make decisions when
fire is occurring.

Several simulators were developed to reproduce for­
est fire behavior, which need accurate inputs to give
high quality results. Typical inputs are: topography
(terrain elevation, slope and aspect), type of fuel, wind
intensity and direction, and in several cases informa­
tion from different weather stations. Simulators can
be classified in to mainly two types: vector based
and raster based [5]. Vector based approaches rely on
elliptical waves propagation, they are more accurate
for reproducing fire perimeter but they have greater
time requirements. The most popular of this type of
simulators is FARSITE [4]. Raster based approaches
are based on a uniform grid in which fire propagates
according to certain rules.

Some authors ([6], [7]) claim that the raster ap­
proach (including Cellular Automaton (CA) model)
is more efficient than the vectorial approach. Vector
implementation treats the fire perimeter as a closed
curve, discretized through a number of points, each
point spreads fire according its local conditions and
fire propagation model. Then, the new fire perimeter is
formed by the union of the outer shape of all individual
fires. On the other hand the raster approach spread fire
over a mesh of contiguous cells that can be inactive
(not burning or burnt) or active (burning). Each cell
has its own state and fire spreads from a cell to its
neighbours based on a set of rules. It is interesting to
note that raster approach matches with GPU execution
model that uses a large amount of threads in a grid of
threads in a SIMD (Single Instruction Multiple Data)
model.

The use of GPUs shortened tremendously simula­

53

mailto:sigfri2wai@gmail.com
mailto:laneri@cab.cnea.gov.ar
mailto:mdenham@unrn.edu.ar

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

tion times but also offers the capability of rendering
the simulation outputs in simulation time. In this sense
they are optimal to visualize fire spread in reasonable
times, which allow the use of these tools for decision
making and management purposes.

Visualization of fire spread offers a number of ben­
efits, that includes the comparison of model output
with fires occurred in the past, but also the evaluation
of the consequences of implementing preventing mea­
sures like firebreaks, prescribed burns or other changes
in the environment. Using visualization is also pos­
sible to train firefighters and communicate results to
the community in an easier way. If the visualization
is also interactive it allows to test fire behavior after
thinking strategies that could be very dangerous to test
directly in the field. FARSITE has a visual interface
that shows the simulation in 2D [4] but more attractive
and interactive spatial visualization tools were built in
GPUs [5].

Fire propagation models, on one extreme, can rely
only in physical principles, in which case we have
the advantage of understand the mechanisms but the
disadvantage that very detailed and difficult to obtain
input information is needed [5]. On the other extreme
there are pure statistical models based on datasets to
predict fire propagation for a particular situation but
these models are very specific. And in between both
approaches we can design semi-physical models that
rely in some physical principles but are fitted to some
data sets that allow to validate the model [5].

In previous works [8], a High Performance Comput­
ing forest fire simulator was developed as a parallel cel­
lular automata implemented in CUDA-C ([9, 10, 11]).
Our simulator spreads the fire over a landscape taking
into account several layers of topography, vegetation
type and wind ([12, 8]). The model for fire propaga­
tion is a semi-physical model and takes into account
as input the actual vegetation, slope, average wind in­
tensity and direction. The simulator is calibrated for a
given region comparing thousand of simulations with
the real fire final perimeter. The search in the parame­
ter space was done using a Genetic Algorithm (GA), a
previously implemented methodology [13,14,15] that
we programmed in parallel using CUDA-C. A Monte
Carlo method was also used to find the best parameters
but GA was proved to be more efficient. The results
of this calibration step are exposed in [8].

We now present the development of a visualization
tool using OpenGL ([16, 17]), built on top of the sim­
ulator. Once the calibration was performed and the
propagation parameters were estimated, we can simu­
late and visualize 10 stochastic simulations in parallel
in the order of fraction of seconds which is acceptable
for the time needed to make decisions in real time
[18]. In this contribution we will not discuss in detail
the model fitting stage that was previously explained
elsewhere [8]. The main contribution of this work is
the design and implementation of a powerful visual­

ization tool for fire propagation, based on the needs of
firefighters in Patagonia, Argentina.

2 Forest fire spread model

A Cellular Automaton was developed to simulate fire
spread. The landscape is represented as a grid of cells
and fire spreads over this grid. Each cell has its own
state: burnt, unburnt and burning (cells that can spread
fire to their neighborhood). Fire spreads to neighboring
cells according to the following probability:

1
P 1 + e x p (- (f t + f t I / + f t y + f t® + f t a))

(1)
Where I/ , y , ® and a , are related with the vegeta­

tion type, aspect, wind direction and slope respectively,
as explained in [8, 12]. Fuel type coefficient f t is
the baseline fire propagation probability for shrubland
cells and f t is the difference between shrubland and
forest. Parameters f t , f t and f t modify propagation
probabilities according to aspect (y), wind direction
(®), and slope (a) respectively [12].

In order to determine if a target cell is reached by
fire, the ignition probability is calculated taking into ac­
count the state of the 8-cells neighborhood using Equa­
tion 1 as explained in [8]. The following pseudocodes
illustrate the main characteristics of algorithms (in or­
der to improve clarity these algorithms does not show
visual interface details):

Algorithm 1 Main loop
1: init all maps > Read maps from hard disk
2: init input simulator parameters > ft values
3: while fire spreads do > CA simulation steps
4: parallel CUDA thread grid execution
5: fire map update
6: fire spread flag setting > If fire stops
7: end while

Algorithm 1 presents the main fire spread simulation
loop, which is executed to perform a complete simula­
tion. Firstly, input simulator parameters are initialized
(Algorithm 1 lines 1 and 2). Then, while fire spreads,
the loop block is executed: a CUDA thread grid is
launched to perform each CA step. The thread grid is
a 2D matrix of threads, with the same dimension of the
raster maps. Then, one thread per map cell is launched
and all cells of the new fire map are calculated concur­
rently (or parallel execution depending on the number
of CUDA cores available on the graphic card). All
threads execute the same function (CUDA kernel) in a
SIMD way. In a more accurate analysis, when CUDA
application is analyzed the model becomes to SIMT:
Single Instruction Multiple Thread since each thread
can take its own instruction trace.

Once the kernel function ends, the fire progress map
is updated with the new fire state. Furthermore, if

54

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

no cell changes to the burning state, then fire does
not spread (if borders are reached or the fire can’t
propagate any more), and a flag is set false to stop the
simulation.

Algorithm 1 presents a complete simulation, that is
one of the options of our simulator. When user needs,
the CA advances just 10 time steps. Section 4.2 will
present this propagation possibility.

Algorithm 2 Thread;, j algorithm
1: thread position ^ grid row i and column j
2 : if cell;, j is burnable then
3: for each neighbor k of cell;, j do
4: Pol = f (pk)
5: end for
6: if Pol > random value then
7: cell;, j = burning
8: end if
9: end if

The Algorithm 2 illustrates the inner loop that is
executed to spread the fire (line 4 Algorithm 1). First
of all we verify that the target cell is burnable (Algo­
rithm 2 line 2) and if this is the case, we proceed to
evaluate the Probability of Ignition (Pol in line 4 of
Algorithm 2) of the target cell produced by at least
one of its neighbors. This probability of ignition (Pol)
is computed evaluating Equation 1 for each of the k
neighbors and combining all the contributions in the
function represented by f in line 4 Algorithm 2, as
explained in [8].

The target cell will be burned according to that prob­
ability (Pol) by throwing a random number as in line
6 of Algorithm 2. All is done in parallel and once
all burning probabilities are computed by each of the
threads the whole fire map is updated at once.

The above explained simulation procedure is done
millions of times to fit the parameters of the model to
the real fire data. This fitting step is done in order to
find the best set of simulator parameters (fi; values in
Equation 1) [8].

The fitting procedure is done by minimizing the dis­
tance, or fitness, between real fire and simulation. The
fitness is computed as the number of burned cells that
have in common both, simulation and real fire. Fitness
equal to zero indicates that the fire after simulation is
identical to the real fire. The search of the ensemble of
parameters that best fit the model to data, was done
using a Genetic Algorithm (GA). This search strategy
consists in changing randomly some fy;, perform a sim­
ulation and compute the corresponding fitness. The fy;
values are changed by performing selection, crossover
and mutation between different ensembles, after every
change a simulation is performed and the fitness of the
simulation is calculated comparing with real data.

In addition to GA, a Monte Carlo method was imple­
mented, where fy; values where chosen from the valid
range of parameter values simulating a brute force

method. The GA converges quickly to good results
[8].

The fitness values are ranked in decreasing order
and the corresponding fy; are therefore ranked together
with their fitnesses. A histogram of the best ranked
individuals allows to determine the best values of fy;
and the associated errors, as explained in more detail
in [8].

After the fitting procedure we obtain a best set of fy;
parameters for each of the Patagonia regions presented,
i. e. Falso granítico and Laguna Seca. Is with those
parameters that we will simulate and visualize several
simulations to have a measure of fire extension and
propagation. As the simulations are stochastic, the use
of the best set of parameters will give rise to different
fire scars.

3 Simulator inputs and outputs

Simulator inputs are several maps that describe the
landscape (terrain vegetation, slope, aspect and eleva­
tion), as well as wind speed and direction.

Fire environment is described by several raster maps
that represent the area of interest as a grid of cells.
Each raster map has the description of the area that
represents: number of rows and columns, cell sizes,
and coordinates of one corner. Using this information,
each map can be georeferenced using GIS software
(including Google Earth).

For topography description DEM (Digital Elevation
Model) maps were used. Nowadays several satellite
and radar information is available from different data
sets on Internet. For example, USGS Earth Explorer
offers maps of several sources and types: LandSat,
Sentinel, ASTER global DEM collections for example,
with high temporal and spatial resolution [19]. This
information is freely available and we are using DEM
raster maps from this site. Therefore using GIS tools,
slope and aspect maps can be obtained from the eleva­
tion raster map. The elevation map is used to visualize
the topology of the area of interest. Slope and aspect
maps are inputs for the fire spread model.

Fuel type information, as described on [1, 2, 3], are
specific combinations of vegetation types that together
define the fire behavior. For Argentina, fuel types are
still not characterized as in [1] and [2]. As a surrogate
of fuel type we will use vegetation type. Combining
vegetation type with fire behavior is a very important
task to be accomplished, because fuel type often deter­
mines fire behavior (specially when nor slope neither
wind are strong enough to drive fire propagation).

Our simulator uses wind velocity and direction for
fire spread computation. However for the moment we
are using average quantities and it would be a future
task to include wind variability and ultimately coupled
wind models [18] to allow a more accurate real-time
prediction of fire propagation.

At the moment, we are working with 2 real fires

55

VI Jomadas de Cloud Computing & Big Data (JCC&BD 2018)

occurred at the Northwestern Patagonia Andean re­
gion (Figure 1). This Figure shows estimated ignition
points of both real fires. The first test case is called
Falso Granítico fire, that occurred in 1999, in the Falso
Granítico Hill proximity (at 41°21'59" S, 71°38'46"
O). Raster maps of 801x801 cells were used for this
case. The second test case corresponds to a fire oc­
curred in 2012 near to Laguna Seca (at 41°02'35'' S,
71° 16'36'' O). Raster maps of 181x423 cells were used
for this case. We constructed slope and aspect raster
maps from DEM information. In both cases, map
resolution is 30x30m.

Figure 1 shows different vegetation types. More
detailed vegetation cover classification for Patagonia
Andean region is available in [20] (updated in 2016).

In Figure 1 vegetation classification corresponds to:
forest type A where predominates native forest (lenga,
coihue, cypress), forest type B where predominates
low vegetation (lenga, hire, and mixed woods) and for­
est type I to indicate exotic forest. Grassland includes
steppe, marshland and wetland. Finally, shrubland in­
cludes shrubland (native and exotic) and infrastructure
areas (to avoid more vegetation type divisions). No
fuel includes rocks, lakes, bare ground, ice and snow.

In order to feed our simulator we transform this data
to three vegetation types. At the moment our simulator
considers three fuel types: shrub, forest and no fuel.
Including more accurate and real vegetation types is
one of the most important open lines in a near future.

4 Forest fire simulator

Our application has the ability to perform high per­
formance simulations of the spread of wild fire in a
very complex environment. In addition it incorporates
a powerful visualization platform, including an intu­
itive interface for user interaction, to command fire
progress.

Most of the times, the visualization of a problem
helps to understand the behavior of a complex phe­
nomena. Our simulator shows fire progress over the
landscape, where the action of topography, vegetation
and wind can be tested and modify. For instance, we
provide a helpful user interface, where firebreaks can
be easily set, fire can move forward and backward, the
ignition point can be changed by the user, etc.

OpenGL ([16, 17]) was chosen to program the sim­
ulator visualization and user interaction. Therefore,
fire environment visualization and fire progress are
rendered by graphic cards, as well as user interaction
(with mouse and keyboard). Finally as previously men­
tioned, CA for fire spread simulation is also executed
in graphic cards. In summary, simulation fire progress,
visualization in real time and user interaction are all
solved by GPUs, that deal with all these high perfor­
mance requirements in a successful way.

Next paragraphs will expose visualization and after­
wards the most relevant tools of our simulator. We will
explain important simulator characteristics, as well as
design details and some implementation decisions.

Test Fires Map

1:570.122

4.1 Forest fire progress visualization
Figures 2 and 4 show our application main window.
The left panel shows the fire progress and the ignition
probability of cells. The ignition point was arbitrarily
set by the user. Ten simulations are performed in
parallel starting from exactly the same ignition point.
Given that the model is stochastic every realization is
different from the previous one. While performing 10
simulations in parallel the burning probability of each
cell is determined. If a given cell was burnt in all of
the simulations, the burning probability is one, but if
only some of the times the cell with coordinates (i, j)
burns, the probability will be:

Figure 1: Area of interest situated at the Nahuel Huapi
National Park in the North West Patagonia. Arrows
indicate the two ignition points of Laguna Seca and
Falso Granítico fires.

The simulator output is a raster map where each
cell is labeled according to the resulting probability
of ignition after the execution of 10 simulations (this
number can be changed by the user and is limited by
the memory of the graphic card). The output map can
be georeferenced using GIS, given that meta data is
copied from the input raster maps.

10 Times burns
= E — ¡5— (2)

According to Equation 2 if a given cell burns in all
the simulations then bp=1. We colored the final simu­
lation according to this probability, being red for bp=1
and more yellowish when this probability diminishes.

When the mouse pointer moves over the map cells,
a label with the ignition probability information is
shown. This probability is the one displayed in Equa­
tion 2, i. e. the number of times that this cell burned
through the 10 simulations. As the model is stochastic,
the simulations are different from each other. Figure 3

56

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Figure 2: Top view of the landscape: burnable cells
(green) correspond to different types of vegetation,
unburnable cells (blue) are lakes, rocks, etc. Fire is
showed in red (high burning probability) and yellow
(lower burning probability).

shows the same simulator top view where the mouse
pointer is labeled with cell fire probability. This Fig­
ure includes the wind layer (arrows above the terrain).
This simulator feature will be explained later.

Figure 3: Top view of the landscape: arrows repre­
sent average wind direction and arrow colors represent
wind intensity. More wind (red) and less wind (blue).
Fire scar is shown in red/orange/yellow according to
the probability that cell burns after ten simulations.
Higher probability (red) lower probability (yellow).

The number of parallel simulations to be performed
can be changed. Input maps are loaded once in GPU
global memory. These maps are read by kernel threads
through each of the simulations. However each of
the parallel simulations need current fire map and a
new fire map for labeling each cell that is reached
by fire. Therefore, these two maps (with fire spread
state) are allocated for each of the 10 simulations since
vegetation, slope, aspect, wind maps are allocated just
once (they are read only input maps). Our application
takes care of the use of GPU memory.

The visualization of fire progress is updated every

10 cellular automaton steps. This value can be changed,
but we could see that this value is useful for clarity.
Furthermore, every 10 steps fire maps are saved in or­
der to go back and reproduce past states of the fire. For
improving application efficiency just the coordinates
of the ignited cells are stored. In this way past fires can
be easily recovered. Then, fire can advance or rewind
as the user needs for simulation observation. This sim­
ulator feature in combination with firebreak setting
are very important and powerful tools for firefighters
and other users. Two buttons on the main menu and
two keys allow to command fire progress forward and
backward.

Map view (left panel on the simulator Figures) can
be changed as user need: top view is the default view
(Figure 2 and Figure 3), then user can zoom in and
out the map, and drag it to view adjacent areas. Fur­
thermore, the map can also be rotated to modify this
view.

This actions are performed on the graphic card. Fig­
ure 5 and Figure 6 show different views of the same
map (Falso Granítico fire area). Figures5 and Figure
6 show the left top map corner zoomed in and rotated.
Terrain elevation is accentuated in these last figures.
Each time, the default top view can be set with the
Camera Reset button.

The performance of visualization and user inter­
action is excellent. For example due to design and
implementation characteristics, setting firebreaks and
changing map view (zoom, drag and rotation) needs
lot of computation for updating fire map. We can see
that GPUs solve this requirements in a very successful
way. We tested our simulator in different computers
and graphic cards and it executes with no delays both
computation and interaction.

Next paragraphs present the simulator tools imple­
mented until now and in the section open lines we will
explain the additional functionality that is planned to
be added to our simulator.

4.2 Interaction tools
Most of the simulator options and functionality is con­
trolled with the right panel menu. Figure 4 shows this
main panel with the most important interaction tools
classified in different sections.

First menu section shows cell features: the user
can move the mouse pointer over the map and the
most important cell characteristics are shown: cell
coordinates, terrain elevation and burning probability
(if cell was reached by fire).

Then, two buttons appear with < and > symbols.
This buttons allow the user to select to go forward
or backward the fire progress. This functionality is
available with ^ and ^ keyboard buttons also. As
mentioned, 10 cellular automaton steps are performed
each time the > or ^ buttons are pressed. The Auto
button executes CA steps until the simulation is com­
pleted (process showed on Algorithm 1).

57

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Figure 4: Simulator main menu. In this case the as­
pect map view is shown: this view emphasize slope
orientation.

Next menu section defines firebreak functionality.
This panel section allows the user to set firebreaks
over the landscape. That means that these parts of
the terrain are set as nonburnable cells. Once the fire­
break button is selected, the mouse is used to draw the
firewall.

The user can set line firewalls as well as multiline
firewalls (freehand drawing). Figures 5 and 6 show the
same time step of the CA without firebreak and when
a firebreak was set respectively. When a firebreak is
set, fire doesn’t spread to the north-west (in this case)
of the terrain.

Figure 5: Top left corner of previous figure zoomed
and rotated. Cellular Automaton was executed 460
times. No firebreak was set.

Firewalls can be stored in files and they can be
loaded at any time. The combination of setting fire­
walls and choosing when fire goes forward or back­
ward allows the user to understand where firewalls
are more efficient, in combination with topography,
vegetation, etc. This is a powerful capability of our
simulator.

Firebreaks are limited by raster cells shape. Fire

Figure 6: Same simulation step than the previous fig­
ure but with a firebreak (white line) at the top left
corner. The fire does not spread to the north of the
terrain. Cellular Automaton was executed 460 times.

propagation through a diagonal firebreak is avoided
calculating when fire has to spread or not when target
cell is adjacent to a firebreak. For example, authors
of [5] mention the same problem and they decided to
modify the thickness of the firebreak line. Firebreak
thickness was set to twice the size of a single cell.
Our approach maintains the thickness of firewall but
calculating the interaction of the fire with the firebreaks
diagonal cells.

The next section manages camera options. As al­
ready mentioned, fire area can be zoomed, rotated,
relocated and simulator window can be reshaped. Cam­
era Reset button allows the user to set the default top
view (Figure 2).

The last menu section allow to manage several raster
maps as information layers that can be visible or not,
depending on their transparency. Wind layer, fire layer
and firebreaks layer can be turned on and off by chang­
ing layer level of transparency. Using transparency
sliders, the users can change which information to vi­
sualize, depending on their needs. If aspect terrain
information is useful then the user can check this op­
tion (this check box is selected in Figure 4).

More layers are planned to be included. For exam­
ple, wild fires final burnt area can be obtained from
aerial images. Then, using GIS tools (digitalization
process) we can obtain vectorial or raster maps with
the final burned area. At the moment our team is work­
ing in order to include this final fire map as a simulator
layer. As other layers, user will be able to set its trans­
parency in order to visualize this map in combination
with other layers. This will be a powerful tool for
testing firebreaks and simulations accuracy.

Wind speed and direction is showed as a wind layer.
User can manage layer transparency to see wind fea­
tures. This information is presented by colored arrows.
Each arrow shows the direction and intensity of wind.

Wind intensity is calculated using a color ramp: blue
are minimum velocities and red are higher velocities.
The color ramp is included in the main menu. Arrow
color is calculated for each map using an equalized
histogram for wind speeds. Therefore, less frequent

58

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

values are ignored and most frequent values are used
for speed values discretization.

Wind direction is represented by arrows. Each ar­
row represents the average of a group of cells values.
Depending on the map resolution, if each of the wind
cell is represented by a unique arrow, the visualization
gets confused specially when combined with other lay­
ers. Therefore, we choose to divide the number of
cells proportionally to the map dimension size.

Border cells were a particular difficulty for visu­
alization of wind arrows. As they have less than 8
neighbors, the average was calculated taking into ac­
count the available neighbors.

4.3 OpenGL programming
When the simulator is launched all fire environment
maps are read from the hard disk. The OpenGL func­
tionality is also initialized: several functions (call­
backs) are registered to OpenGL in order to solve the
simulator window display, keyboard button pressing
(down or up), mouse motion (active or passive) and
simulator window reshape.

To implement the simulator main menu, the library
ImGUI (Immediate Modal Graphical User Interface
[21]) was used. ImGUI is a graphical user interface
library for C++. This library is particularly suited for
integration in game engines (for tooling), real-time 3D
applications, full screen applications, embedded appli­
cations, etc. This library offers the implementation of
menu buttons, panels, lists, checkboxes, radio button,
labels, sliders, etc.

The simulator main window shows fire progress
map. This map is an OpenGL texture calculated from
different bitmaps. Our simulator manages 4 bitmaps:
vegetation map, fire breaks map and fire map. These
bitmaps have the same fire maps dimensions (rows x
columns). Each bitmap pixel corresponds to a map
cell. Each pixel is a (r,g,b,alpha) tuple, where r, g and
b form pixel color and alpha is the transparency of the
pixel. Using these 3 bitmaps a final bitmap is formed
(this is the texture that the simulator passes to OpenGL
to draw each frame).

There are some events that cause final texture up­
date. This texture update will be used during next
window frames actualization. Different operations
cause texture regeneration: fire spread changes (mov­
ing forward or backwards), line or multiline firebreak
setting, saved firebreak loading, layer slider controls
settings, etc.

When a texture update occurs, bitmaps are copied
to GPU, then, a CUDA kernel is launched in order to
compute final texture, pixel colors and transparencies,
and this new texture is used to update the fire progress
map on the following frames.

In a low level of implementation all the visualization
is solved by OpenGL vertexes, triangles and indexes.
Indexes are converted to bitmap UV coordinates to
form textures. Camera and light position (ambiance

light and spectral light), near and far planes, zooms,
dragging and rotation of the figure are solved by low
level matrices that multiply vertexes or are used to
define colors and transparencies.

In order to calculate map zooms, dragging, rota­
tions, etc, some transformation matrices are used and
joined with the map model. For example, if user has
zoomed in and rotated the image, 4x4 matrices for
this operations are multiplied and the result is saved in
the transformation matrix. Then, this transformation
matrix is used to multiply each vertex to obtain the
new vertex values.

These operations are optimized in GPGPU. The
simulator response time and user interaction are solved
in a very successful way in CUDA-C and OpenGl.

5 Conclusions and Open Lines

A visualization tool for fire propagation was developed
in OpenGL on top of a forest fire simulator previously
developed in CUDA-C. We presented a useful compu­
tational tool to be used for fire management, training
and communication. It was developed on graphic pro­
cessing units to meet the requirements of a high perfor­
mance real time application, with a friendly graphical
interface to be use for firefighters.

Models based more on the physical mechanisms of
fire propagation, such as the physical-statistic model
defined by Rothermel will be implemented in the near
future. This will help to better understand the mech­
anisms involved in fire propagation in our region. To
this aim it's necessary to characterize the fuel types
for Patagonia, a task that should be in the agenda of
natural resources management.

To improve prediction, it will be necessary to in­
clude the wind variability both in direction and inten­
sity in real time. Another possibility will be to couple a
wind simulator to the model simulator. This would be a
very challenging task because the whole simulator will
have to accomplish with the real time requirements.

Our model includes three vegetation types, but we
have access to more detailed vegetation maps that
should be conveniently transformed to raster maps,
to be included in the model.

Another open line is to fit the advance of the fire
front. In previous works we fitted our model to the
final fire scar but intermediate fires scars can be ob­
tained using satellite images or will be provided by our
collaborators at ICE.

One of the useful features of our previous work was
the possibility to determine the ignition point with its
corresponding uncertainty. The ignition point could be
caused by natural factors, like thunders or by anthropic
causes which is mostly the case in our region. The pos­
sibility to visualize the ignition point if its unknown,
will probably help to get clues about the fire origin.

Other feature to be included into the visualization in­
terface will be a sensitivity analysis of the parameters.

59

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

Until now we are visualizing the output of 10 simula­
tions performed with the best set of parameters. How­
ever with our fitting procedure we can determine an
error associated with those parameters. Changing one
of the parameters in its error range, but fixing the rest
in the best values, it is possible to measure how sensi­
ble are the simulations of fire propagation to a change
of that parameter. In this way we can add to the visual­
ization panel interface, some slider bars representing
the possible variability range of each parameter. With
this tool, the user can easily explore the sensitivity of
simulations when parameters are changed, generating
less probable but also possible fire scenarios.

6 Acknowledgements

We acknowledge Marcelo Bari and collaborators from
ICE (Departamento de Incendios, Comunicaciones
y Emergencias del Parque Nacional Nahuel Huapi,
APN: Administración de Parques Nacionales). For
helpful comments on maps and GIS we thank Gabriela
Denham. M. Denham and K. Laneri are members
of Consejo Nacional de Investigaciones Científicas y
Tecnicas (CONICET), Argentina. M. Denham and K.
Laneri are part of the project TIN2014-53234-C2-1-
R of Ministerio de Ciencia e Innovation (MICINN-
Spain). M. Denham, K. Laneri and S. Waidelich are
part of the project PI-UNRN ”Aplicacion de Alto
Rendimiento para Prediction del avance del fuego
en Incendios Forestales”.

References

[1] J. H. Scott and R. E. Burgan, “Standard fire be­
havior fuel models: A comprehensive set for
use with Rothermel’s surface fire spread model,”
tech. rep., United States Department of Agricul­
ture. Forest Service. Rocky Mountain. Research
Station, 2005.

[2] E. H. Anderson, “Aids to determining fuel mod­
els for estimating fire hehavior,” tech. rep.,
United States Department of Agriculture. For­
est Service, 1982.

[3] S. Taylor, R. G. Pike, and M. E. Alexander, Field
Guide to the Canadian Forest Behaviour Pre­
diction (FBP) System. Canadian Forest Service,
1996.

[4] M. A. Finney, “Farsite: Fire area simulator -
model development and evaluation,” tech. rep.,
USDA Forest Service, 2004.

[5] R. V. Hoang, M. R. Sgambati, T. J. Brown, D. S.
Coming, and F. C. Harris, “VFire: Immersive
wildfire simulation and visualization,” Comput­
ers & Graphics, vol. 34, no. 6, pp. 655 - 664,
2010.

[6] T. Ghisu, B. Arca, G. Pellizzaro, and P. Duce,
“A level-set algorithm for simulating wildfire
spread,” CMES Computer Modeling in Engineer­
ing and Sciences, vol. 102, no. 1, pp. 83 - 102,
2014.

[7] T. Ghisu, B. Arca, G. Pellizzaro, and P. Duce,
“An improved cellular automata for wildfire
spread,” Procedia Computer Science, vol. 51,
no. Supplement C, pp. 2287 - 2296, 2015. Inter­
national Conference On Computational Science,
ICCS 2015.

[8] M. Denham and K. Laneri, “Using efficient par­
allelization in graphic processing units to param­
eterize stochastic fire propagation models,” Jour­
nal of Computational Science, vol. 25, pp. 76 -
88,2018.

[9] T. M. John Cheng, Max Grossman, Professional
CUDA C Programming. Wrox, 2014.

[10] S. Cook, CUDA Programming. A developer’s
guide to parallel computing with GPUs. Morgan
Kaufmann Publishers Inc., 2013.

[11] D. B. Kirk and W.-m. W. Hwu, Programming
Massively Parallel Processors: A Hands-on Ap­
proach. San Francisco, CA, USA: Morgan Kauf­
mann Publishers Inc., 1st ed., 2010.

[12] J. M. Morales, M. Mermoz, J. H. Gowda, and
T. Kitzberger, “A stochastic fire spread model for
north patagonia based on fire occurrence maps,”
Ecological Modelling, vol. 300, no. 0, pp. 73 -
80, 2015.

[13] M. Mendez Garabetti, G. Bianchini, M. L. Tar-
divo, P. Caymes Scutari, and G. V. Gil Costa,
“Hybrid-parallel uncertainty reduction method
applied to forest fire spread prediction,” Journal
o f Computer Science and Technology, vol. 17,
pp. p. 12-19, Apr. 2017.

[14] M. Denham, “Dynamic data driven application
for forest fire spread prediction,” Journal of Com­
puter Science and Technology, vol. 12, pp. p.
84-86, Aug. 2012.

[15] M. Denham, Predicción de la Evolución de los
Incendios Forestales Guiada Dinámicamente por
los Datos. PhD thesis, Universidad Autónoma
de Barcelona, 2009.

[16] E. Meiri, “OGL. Modern OpenGL Tutorials.”

[17] E. Luten, “OpenGL Book.”

[18] G. Sanjuan, T. Margalef, and A. Cortes, “Apply­
ing domain decomposition to wind field calcula­
tion,” Parallel Computing, vol. 57, pp. 185 - 196,
2016.

60

VI Jornadas de Cloud Computing & Big Data (JCC&BD 2018)

[19] U.S. Department of the Interior, “USGS: U.S.
Geological Survey. Earth Explorer.”

[20] CIEFAP-MAyDS, “Actualization de la Clasifi­
cación de Tipos Forestales y Cobertura del Suelo
de la Region Bosque Andino Patagonico. In­

forme Final,” tech. rep., Centro de Investigation
y Extension Forestal Andino Patagonico, 2016.

[21] O. Cornut, “Immediate mode graphical user in­
terface.”

61

