

- ORIGINAL ARTICLE -

Identifying Key Success Factors in Stopping Flaky Tests in
Automated REST Service Testing

Identificación de Factores Clave de Éxito para Evitar las Pruebas Automatizadas no
Determinísticas en Servicios REST

Maximiliano A. Mascheroni1,2, Emanuel Irrazábal2
1 Departamento de Informática, Universidad Nacional del Nordeste, Corrientes, Argentina

{mascheroni, eirrazabal}@exa.unne.edu.ar
2 Facultad de Informática, Universidad Nacional de La Plata

Abstract

A flaky test is a test which could fail or pass for the
same version of a certain software code. In
continuous software development environments,
flaky tests represent a problem. It is difficult to get
an effective and reliable testing pipeline with a set of
flaky tests. Also, according to many practitioners,
despite the persistence of flaky tests in software
development, they have not drawn much attention
from the research community. In this paper, we
describe how a company faced this issue, and
implemented solutions to solve flaky tests for REST
web services. The paper concludes proposing a set
of key success factors for stopping flaky tests in this
type of testing.

Keywords: Flaky tests, continuous integration,
continuous deployment, continuous delivery, web
service testing.

Resumen

Una prueba no determinística es una prueba que
podría fallar o ser exitosa con la misma versión de
un determinado código de software. En entornos de
desarrollo de software continuo, las pruebas no
determinísticas representan un problema. Es difícil
obtener un proceso de pruebas efectivo y confiable
con pruebas no determinísticas. Además, de acuerdo
con muchos profesionales, a pesar de la persistencia
de este tipo de pruebas, las mismas no han llamado
mucho la atención de la comunidad científica. En

 Citation: M.A. Mascheroni and E. Irrazábal. “Identifying key
success factors in stopping flaky tests in automated REST service
testing”, Journal of Computer Science & Technology, vol. 18, no.
2, pp. 143-152, 2018.

DOI: 10.24215/16666038.18.e16
Received: February 10, 2018 Revised: August 30, 2018

Accepted: September 4, 2018.
Copyright: This article is distributed under the terms of the

Creative Commons License CC-BY-NC.

este trabajo, describimos cómo una empresa se ha
enfrentado este problema e implementado soluciones
para resolver pruebas no determinísticas en servicios
REST. Al final, se proponen un conjunto de factores
clave de éxito para evitar este problema en pruebas
de servicios.

Palabras claves: Pruebas no determinísticas,
integración continua, despliegue continuo, entrega
continua, pruebas de servicios web.

1. Introduction

An important characteristic of an automated test is
its determinism. This means that a test should
always produce the same result when the system
under test (SUT) does not change. A test that fails
randomly is not reliable and it is commonly called as
“flaky test”. Automated flaky tests slow down
progress, cannot be trusted, hide real bugs and are
not cost effective.

“Flaky tests” is not a new term. Some
practitioners like Martin Fowler [1] have referred to
flaky tests as non-deterministic tests. According to
different authors [1,2,3,4,5,6], flaky tests are tests
that have non-deterministic outcomes with respect to
a given software version. During the last years, flaky
tests have been a problem for several companies.

Google, for example, has a continual rate of
about 1.5% of all test runs reporting a "flaky" result
[7]. They have a Continuous Integration (CI)
pipeline which identifies the moment when a passing
test becomes a failure, so that they can investigate
the checked-in code that caused that transition.
Google statistics show that in practice 84% of the
transitions from pass to fail involve a flaky test [7].

In the same way, many authors have reported
testing problems related to flaky tests
[3,8,9,10,11,12,13,14,15]. Nowadays, organizations
invest a lot of effort to stop flaky tests. Thus,
different proposals can be found in the literature
with their corresponding pros and cons. Similarly, in
this paper we describe how a company was able to

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-143-

stop flaky tests in automated REST service testing
by applying a set of practices. In the end, we
propose a list of key success factors that are derived
from applying these practices to stop flaky tests.

Apart from this introductory section, common
causes of flaky tests and existing proposals on how
to deal with them are described in section 2. Section
3 describes the issues that the company had and the
implemented solutions. The proposed key success
factors are presented in Section 4, with a brief
discussion of the applied steps. Section 5 describes
threats to validity. Finally, we present our
conclusions and ideas for future work in Section 6.

2. Background in flaky tests

2.1. Common causes

In [2], an empirical analysis of flaky tests is
presented. The authors of that article classify the
most common root causes of flaky tests and they
describe strategies that developers use to fix flaky
tests. Thus, the most common root causes of flaky
tests are [2]:

1) Asynchronous wait: it happens when a test
script makes an asynchronous call and does
not wait for the results to be available
before using them.

2) Concurrency: flaky tests that are caused
by different threads interacting in a non-
desirable manner (data races, deadlocks,
atomicity violations, etc.)

3) Test order dependency: according to the

best practices of automated testing, all tests
in a test suite should be independent of one
another and the order in which they are run
should not affect their outcomes.
However, in practice, it is not the case:
flaky tests can be produced by test
outcomes that depend on the order in which
the tests are run.

4) Resource leak: test failures may also occur
whenever the application does not properly
manage one or more of its resources such
as database connections, memory
allocations, etc.

5) Network: the network is a resource that is
difficult to control, so tests whose
execution depends on it can be flaky.

6) Time: relying on the system time may
introduce flakiness. For example, a test
may fail when the midnight changes in the

UTC time zone.

7) IO: I/O operations may also cause flaky
tests similarly to resource leaks.

8) Randomness: the use of random numbers
generator (without accounting for all the
possible values that may be generated) may
also cause some tests to be flaky.

9) Floating point operations: tests that
performs these operations may become
flaky.

10) Unordered collections: when the tests
iterate over unordered collections (e.g.,
lists, maps, sets), and they assume that the
elements are returned in a particular order,
then the test outcome can become non-
deterministic because different executions
may have a different order.

According to [2], there are more causes of flaky

tests that depends on each individual project. A
project where a big data application is being
developed may have a certain type of flaky tests,
different from a project for a microservices based
application. Also, we have found more causes like:

11) Servers problems: when the server is
down or unstable, automated tests may fail
[16].

12) Having user interface (UI) testing: the UI
is the part of an application that changes
most frequently, and it can drive to flaky
tests [12,17].

2.2. Common fixes

There are many workarounds for flaky tests that can
be found in the literature. We will list the most
common fixes for the aforementioned root causes:

1) Fixes for asynchronous wait failures:
using waitFor calls [2,18,19]; using sleep
calls [2], reordering code [2].

2) Fixes for concurrency failures: adding
locks [2,18]; making code deterministic
[2,13,20]; changing concurrency guard
conditions [2]; changing assertions [2,20].

3) Fixes for test order dependency failures:
setting up/cleaning up states [2,17];
removing dependency [2,18]; merging tests
[2].

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-144-

4) Fixes for resource leak failures: managing

relevant resources through resource pools
[1].

5) Fixes for network failures: using mocks
[2,21], using waitFor calls [2]; adding
connection retries [18].

6) Fixes for time failures: avoiding the use of
platform dependent values (e.g. time) [2].

7) Fixes for I/O failures: closing any opened
resource [2,18]; using proper
synchronization between different threads
sharing the same resource [2].

8) Fixes for randomness failures: controlling
the seed of the random generator and the
boundary values that the random number
can return [2]; modifying assertions [18].

9) Fixes for floating point operations
failures: making assertions more flexible in

to accepting a range of values instead of
just one [18].

10) Fixes for unordered collections: writing
tests that do not assume any specific
ordering on collections [2]; using pointers
[18].

11) Fixes for server problems: using waitFor
calls [18].

12) Fixes for UI false positive failures: using
waitFor calls [18, 19]; adopting model-
based UI testing [22]; adopting Visual GUI
testing (VGT) [23]; adding image
comparison [24]; including crowdsourced
GUI testing [25].

A summary of the reported common causes
for flaky tests and their common fixes are
shown in Table 1.

Table 1 Common causes and fixes for flaky tests.

Common Causes Common Fixes
Asynchronous wait waitFor and sleep calls, code reordering.
Concurrency Locks, deterministic code, concurrency guard

conditions and assertions improvement.
Test order
dependency

States cleaning up, dependency removal.

Resource leak Managing relevant resources through resource
pools.

Network Mocks, Retries, waitFor calls.
Time Avoid time as platform dependent values
I/O operations Closing resources after using them, adding

synchronization.
Randomness Managing the seed and boundaries of random

values generators.
Floating point
operations

Flexible Assertions.

Unordered
collections

Dependency removal on collections that need to
be ordered.

UI false positive
failures

waitFor calls, model-based testing, VGT, image
comparison, crowdsourced UI testing.

Server problems waitFor calls.

Apart from these workarounds, other solutions
for general flaky test issues can be found.

In Table 2 solutions for general flaky test issues
are presented with their pros and cons.

However, we have found more flaky tests root
causes in automated REST service testing. In the
next section we will describe them and how the
company has mitigated them.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-145-

Table 2 Pros and cons of solutions for general automated flaky tests.

Solution Ref. Pros Cons
Test prioritization and
test selection

[26, 27, 28] 1) It reduces the number of flaky
tests in the test-suite execution.

1) Flaky tests still exist.

2) Flaky tests are not
identified.

Running tests only for
new or modified code.

[27] 1) Flaky tests are easier to
identify and ignore.

1) Flaky tests still exist.

Test the automated test
scripts for flakiness.

[2,29] 1) Flaky tests can be identified
and ignored.

2) It is possible to determine the
cause of flakiness.

3) Flaky tests can be removed or
fixed.

1) Cost
2) A lot of execution time.

Re-running tests. [17,30] 1) It reduces the number of
failures due to flaky tests.

1) Longer execution times.

2) Flaky tests still exist.

Postpone tests re-runs
till the end of the
execution.

[17] 1) It reduces the number of
failures due to flaky tests.

2) It is possible to determine the
cause of flakiness.

1) Longer execution times.

2) Flaky tests still exist.

3. Facing flaky tests in a REST service
architecture

In this section we describe the project background,
the problems with flaky tests and the solutions that
have been applied in order to face them.

3.1. The project

The company where the project is being developed,
is a digital marketing agency and an Interactive
Investment Management (IIM) firm which
specializes in digital media and analytics for
different clients worldwide. Its services include Paid
Search, SEO, Affiliate Marketing, Web Analytics,
Link Building, Display, Email, Mobile, Affiliate and
Social Media. It uses a cloud-based, or software as a
service model. It operates offices in the United
States, Canada, Europe and Latin America.

The project consists in a backend architecture,
which connect the frontend of the application with
several big data technologies such as Hadoop,
HBase, MongoDB, Elasticsearch and Spark
Streaming. This connection is made by using

RESTful web services.
Currently, there are 4 teams working on that

project. Each team is composed by 6 Java
developers, 1 manual tester and 1 test developer1.
Thus, the project is supported by 24 developers, 4
manual testers and 4 test developers.

3.1.1. The testing process

While the feature is being developed, manual testers
write test scenarios using ubiquitous language. At
the same time, test developers prepare the necessary
components (drivers, dependencies, etc.) before
developing the test scripts for that feature.

When the feature is completed, it is deployed to
an environment for developers (dev environment).
There, developers verify that the feature is working
with the other components of the application. Then,
when all the features of the current sprint are
completed, they are deployed to a QA environment,
where the manual testers verify whether they satisfy

1 The company uses this term to refer to a person who only
develops test scripts.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-146-

the acceptance criteria and they also run the
regression tests. At the same time, the test
developers start to develop the test scripts for the
features. It is very important to highlight that for the
development of test scripts, it was used a QA
framework. In that framework, test developers added
classes that interacted with the different databases
(Mongo, Hbase, etc.) and Elasticsearch. In the same
way, they created classes that represented the
requests and the responses for the different REST
services of the application. Finally, the test classes
were composed by methods which interacted with
the mentioned classes and made assertions to verify
expected conditions. The architecture of the QA
framework can be seen in Fig. 1.

Fig. 1 Architecture of the QA Framework.

3.1.2. Flaky tests in the project

Execution of regular and regression tests are
performed using a CI server. The CI server contains
plugins which provide developers with metrics such
as tests duration, number of failed tests, number of
passed tests, number of skipped tests, build status
trend, and similar metrics.

However, regression testing was not performed
immediately after developers checked-in changes
into the repository, because the test results were not
reliable. The reports generated by the CI server
helped the team to analyze root causes of failures,
and then identify 4 reasons (see Fig. 2):

Reason 1 (R1): Failures produced by unavailable
or inconsistent test data. For example, given a
database which contains city names associated with
country codes, a list of city names can be retrieved
using a web service. The request to the server must
contain the country code as a parameter. If the
requested country code does not exist in the database
or it is incorrect, then the server will not return the
expected number of city names and the test at
verifying this scenario will fail.

Reason 2 (R2): Internal server errors (HTTP
status code 500) not related to a server which is
down or unavailable. An internal server error
indicates that there was a problem with the server.
However, sometimes the server returned this error
but it was produced by other completely different
cause (for example, a bad request).

Reason 3 (R3): Failures produced by REST API

requests/responses which have changed because of
business requirements. The requests and the
responses of the web services are represented using
POJOs in the QA framework. When these requests
and responses change because of business
requirements, the POJOs need to be refactored.
However, this refactoring is performed once the
code is deployed in the QA environment, causing
tests to fail in previous stages.

Reason 4 (R4): Real Failures. Bugs introduced
by developers.

Fig. 2 Failures reasons in the project by percentage.

As it can be seen, R1, R2 and R3 are causes of
flaky tests and they represent almost a 90% of the
failures. In Fig. 3 it is also presented the build status
trend report generated by the CI server.

Fig. 3 Build status trend report of the builds #74 to #86.

3.2. The solution

The solution approach consisted of a set of steps
which were applied gradually. Some of the steps
were taken from unit tests principles [31]. Others
were taken from continuous software development
practices [32,33,34]. Finally, the rest of them were
taken from a set of papers whose main focus is
software testing [35,36,37]. We will detail each
solution for every failure reason.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-147-

3.2.1. R1: Failures produced by unavailable or
inconsistent test data

S1.1: Preconditions verification for test data
The presence of test data is verified before running
the test cases which use that data. Also, if some
scenarios have to be ran before others in order to
generate specific data, they are verified in
precondition steps. The result is a number of skipped
tests, instead of failures. However, not having a
pass/fail result decreases the coverage of the testing
stage.

S1.2: Automated test content injection/deletion
As S1.1 avoids flaky tests produced by unavailable
or inconsistent test data, but it does not generate a
pass/fail result, an automated test data generator was
developed. Developers in collaboration with test
engineers, made two endpoints in the application:
one for injecting test data and the other one for
deleting it.

Thus, a file containing valid test data is prepared
and then injected automatically as part of a
beforeSuite method by using the injection endpoint.
Finally, after the test cases run, the deletion endpoint
is called as part of an afterSuite method and the test
data is deleted from the databases and the search
engine.

A screenshot of the TestDataGenerator class is
shown in Fig. 4.

Fig. 4 TestDataGenerator class.

After applying S1.1 and S1.2 flaky tests
produced by unavailable or corrupted test data were
fixed.

3.2.2. R2: False Internal server errors

S2.1: Negative testing
It includes the verification of negative scenarios
which produce errors like bad requests, not found
resources, unauthorized access, etc. Thus, it’s
possible to distinguish between real failures
produced by the server (internal server errors) and
errors produced by negative scenarios. In order to do
this, developers have to follow HTTP standards and
fix all the incorrect errors in the responses. Then, if a
non-expected error appears, it is considered as a
defect.

S2.2: Health suite
Negative scenarios fix the false internal server
errors, by adding a verification of real expected
errors. However, in order to avoid failures caused by
problems with the servers, a health suite has been
added. The health suite is ran before any test script,
even before the injection of the test data. It verifies
that the environment is up and running. The scope of
this verification includes the server, databases,
streams and the search engine.

3.2.3. R3: Failures produced by REST API
requests/responses

S3.1: Integration of the QA framework as another
module of the REST application project.
The integration of the QA framework with the other
project modules, allows test developers to reuse the
same classes used by developers, to be mapped with
the requests and responses.

Thus, if changes in the requests or responses of
the service are made, they will not have an effect in
the requests or responses classes (POJOs) handled
by the test scripts. Also, the test code can be
refactored at the same time the code base is
modified.

4. Discussion

After applying the 5 mentioned solutions, the
different teams working on the project were able to
fix the flaky tests. The results of the progress can be
seen in Fig. 5.

The first step was the analysis of the root causes
of the failures which was described in section 3.1.2.
Then, the test developers started to share the
problems across the developers of the different
teams by using presentation slides.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-148-

Fig. 5 Build status trend report showing the last 100 results and the time where solutions were applied.

S.1.1 was implemented first in build #126,
skipping the number of flaky tests caused by R1.
After one week of analyzing the best option to fix
those skipped tests, and three weeks of developing
the injection and deletion endpoints for test data,
S.1.2 was implemented in build #157. The
percentage of passed test scripts increased from 57%
to 65% approximately. Two weeks later, negative
scenarios (S.2.1) were added, at the same time with
the health suite (S.2.2). The negative scenarios
increased the number of test cases and the coverage
of the REST service test stage. However, they
decreased the number of passed test scripts. These
failures represented just incorrect error responses, so
developers started to fix them gradually. After two
weeks, the project increased the percentage of
passed tests to 78%. Finally, in build #212, S.3.1
was implemented. After a couple of days of
refactoring, the test build was completely stabilized.
New failures after that, represented real defects.
Thereby, the test stage gained reliability by
eliminating false positives.

The adoption of these solutions took almost 4
months. However, the most important step was
bridging the gap between test engineers and
developers. Without that collaboration, most of these
solutions could not have been implemented. Thus,
we propose a list of key success factors to stop flaky
tests in automated REST service testing.

Also, the company have improved the test
processes by adding continuous deployment as
follows:

1) Developers check-in new code into the
mainline trunk.

2) The CI server builds the code and runs the
unit tests.

3) If step 2 passes, then the CI server deploys
the changes automatically into the
developer’s environment.

4) The CI server runs the automated REST
service test scripts.

5) If step 4 passes, then the code is deployed
automatically into the QA environment.

Thus, the QA environment is ready for a manual
testing stage where manual testers only need to
verify that the newly developed features satisfy the
acceptance criteria.

The implementation of the solutions fixed the
problems related to unreliable tests, but the use of
continuous deployment and the execution of the test
scripts earlier in the pipeline, helped the teams to
improve the speed of the release process.

4.1.1. Key success factors to stop flaky tests in
automated REST service testing

Based on the experience we acquired by applying
the solutions to different problems and attaining the
results, we propose the following 10 key success
factors. We consider that they can be applied to
automated REST service testing in order to avoid
flaky tests.

1) Bridge the gap between DEV and QA. If
your team has different roles for testing and
developing tasks, then improve the
collaboration between test engineers and
developers.

2) Don’t create a testing framework, but add a
testing module to the code base.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-149-

3) Reuse as much code base as possible:
entities, database and search engine
connectors, configuration files, scripts, etc.

4) Create a mechanism to create test data
before your test scripts run.

5) Create a mechanism to delete the created test
data after your test scripts run.

6) Verify that the test data required for the test
scripts is available before running them. If
the test data is not available, then skip the
tests that depend on it.

7) Create a health suite in order to verify the
stability of your environment and run it
before any other suite (smoke, regression,
etc.). If the health suite fails, then skip all of
your test scripts.

8) Add negative scenarios.

Additional good practices for continuous software
development environments:

9) Add continuous deployment.

10) Run your automated REST service testing
suites in the corresponding environment,
immediately after the changes in the code
base are introduced.

5. Threats to validity

The validity of this proposal is threatened by the
following issues:

• The scope of the proposed key success
factors is the testing of RESTful web
services. Even though it might be applied to
the testing of other web services
architectures like SOAP or WSDL, they
have not been contemplated in the
experiment.

• The injection/deletion of test data is not
always possible. If it is not possible, then
the key success factors cannot be applied.

• Sometimes, the servers do not have an API
to verify their status. Verifying the status of
a server is very important for the creation of
the health suite.

• The implementation of the mentioned

solutions took almost 4 months, but that
time is directly related to the amount of
people working on the project and the size
of the project.

• The experiment was performed in a project
where developers and testers were able to
work together. As it was mentioned above,
collaboration between them is very
important. If the collaboration between
developers, test engineers and other similar
roles is something hard to achieve, then the
adoption of the proposed solutions might be
hard to achieve as well.

6. Conclusions

Creating stable automated tests is a difficult goal to
accomplish. Flaky tests are present at all testing
levels such as unit tests, integration tests, functional
tests and non-functional tests. We have studied that
there are many causes for non-deterministic tests.
Additionally, there are some workarounds that may
help software development teams to fix them.
However, according to different authors, flaky tests
are still a problem for organizations which try to get
a continuous software development approach like
continuous delivery.

In this paper, we have described the experience
of a company that has faced this issue and that has
implemented solutions to solve flaky tests for REST
services. Based on the successful implementation of
these solutions, we have proposed a set of key
success factors for stopping flaky tests in this type of
testing. We believe that this might be a little
contribution and a starting point for avoiding flaky
tests in one type of testing.

Finally, in future works we will continue
working on exploring solutions to stop flaky tests in
other types of testing like UI testing. We also will
work on finding more solutions that may contribute
to the improvement of the testing process in
continuous software development environments.

Acknowledgements

This work has been supported by two research
projects. One of the projects is “Metodologías y
herramientas emergentes para contribuir con la
calidad del software” (PI 17F018 SCyT UNNE).
The other project is “Análisis e Implementación de
tecnologías emergentes en sistemas computacionales
de aplicación regional” (PI 17F017 SCyT UNNE).

We also thank Atif Chaudhry who provided
language help for the preparation of this paper.

-150-

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

Competing interests

The authors have declared that no competing
interests exist.

References

[1] M. Fowler, “Eradicating non-determinism in
tests”, 2011. Available at:
https://martinfowler.com/article
s/nonDeterminism.html
Accessed on 2018-01-27

[2] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov,
“An empirical analysis of flaky tests”, in
Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of
Software Engineering, pp. 643-653, 2014.

[3] F. Lacoste, “Killing the gatekeeper: Introducing
a continuous integration system,” in Agile
Conference ‘09, pp. 387-392, 2009.

[4] P. Sudarshan. “No more flaky tests on the Go
team”. Available at:
https://www.thoughtworks.com/ins
ights/blog/no-more-flaky-tests-
go-team
Accessed on 2018-01-27

[5] TotT. “Avoiding flakey tests”. Available at:
https://testing.googleblog.com/2
008/04/tott-avoiding-flakey-
tests.html
Accessed on 2018-01-27

[6] “Flakiness dashboard HOWTO”. Available at:
http://www.chromium.org/develope
rs/testing/flakiness-dashboard
Accessed on 2018-01-27

[7] J. Micco, “Flaky Tests at Google and How We
Mitigate Them”, 2016. Available at:
https://testing.googleblog.com/2
016/05/flaky-tests-at-google-
and-how-we.html
Accessed on 2018-01-27

[8] L. Hukkanen. Adopting Continuous Integration
– A Case Study. M.Sc. thesis, Aalto University,
2015.

[9] E. Laukkanen, T. O. A. Lehtinen, J. Itkonen, M.
Paasivaara, and C. Lassenius, “Bottom-up
Adoption of Continuous Delivery in a
StageGate Managed Software Organization,” in
10th ACM/IEEE International Symposium on
Empirical Software Engineering and
Measurement, pp. 1-10, 2016.

[10] F. Cannizzo, R. Clutton and R. Ramesh,
"Pushing the boundaries of testing and
continuous integration," in IEEE Agile
Conference '08, pp. 501-505, 2008.

[11] J. Downs, J. Hoskins and B. Plimmer, “Status
Communication in Agile Software Teams: A
Case Study”, in Fifth International Conference
on Software Engineering Advances, pp. 82-87,
2010.

[12] G. Gruver, M. Young, and P. Fulghum, A
Practical Approach to LargeScale Agile
Development: How HP Transformed LaserJet
FutureSmart Firmware, New York, NY, USA:
Addison-Wesley Professional, 1 ed., 2012

[13] S. Neely and S. Stolt, "Continuous delivery?
easy! just change everything (well, maybe it is
not that easy)," in IEEE Agile Conference '13,
pp. 121-128, 2013.

[14] J. Süß and W. Billingsley, “Using continuous
integration of code and content to teach
software engineering with limited resources,” in
Proceedings of the 34th International
Conference on Software Engineering, pp. 1175-
1184, 2012.

[15] A. Debbiche, M. Diener, and R. Berntsson
Svensson, “Challenges When Adopting
Continuous Integration: A Case Study,”
Product-Focused Software Process
Improvement, ser. Lecture Notes in Computer
Science, vol. 8892, pp. 17–32, 2014.

[16] L. Elloussi, Determining flaky tests from test
failures. Master Thesis, University of Illinois at
Urbana-Champaign, 2015.

[17] A. Miller, “A hundred days of continuous
integration,” in IEEE Agile Conference ‘08, pp.
289-293, 2008.

[18] Q. Luo, L. Eloussi, F. Hariri and D. Marinov,
“Can We Trust Test Outcomes?”, 2014.
 Available at:
https://pdfs.semanticscholar.org
/a4b2/f4b9bcfdd0e83323570c40b893
310f41e979.pdf Accessed on 2018-01-27

[19] M. Collin, Mastering Selenium WebDriver,
Birmingham, UK, Packt Publishing, 2015.

[20] F. Palomba and A. Zaidman, “Does refactoring
of test smells induce fixing flaky tests?” in
Proceedings of the IEEE International
Conference on Software Maintenance (ICSME),
pp. 1-12, 2017.

[21] A. Gyori, Proactively detecting unreliable tests.
PhD Thesis, University of Illinois at Urbana-
Champaign, 2017.

[22] G. Brajnik, A. Baruzzo and S. Fabbro, “Model-
based continuous integration testing of
responsiveness of web applications,” in
Proceedings of the IEEE 8th International
Conference on Software Testing, Verification
and Validation (ICST), pp. 1-2, 2015.

-151-

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

https://testing.googleblog.com/2008/04/tott-avoiding-flakey-tests.html
https://testing.googleblog.com/2008/04/tott-avoiding-flakey-tests.html
https://testing.googleblog.com/2008/04/tott-avoiding-flakey-tests.html

[23] E.G. Smith, “Automated Test Results
Processing,” in Proceedings of the STAREAST
2001 Conference, pp. 1-13, 2001.

[24] M.A. Mascheroni, M.K. Cogliolo and E.
Irrazábal. “Automatic detection of Web
Incompatibilities using Digital Image
Processing,” Electronic Journal of Informatics
and Operations Research (SADIO EJS), Special
Issue dedicated to JAIIO 2016, Vol. 16, No. 1,
pp. 29-45, 2017.

[25] E. Dolstra, R. Vliegendhart and J. Pouwelse,
"Crowdsourcing GUI tests," in Proceedings of
the IEEE 6th International Conference on
Software Testing, Verification and Validation
(ICST), pp. 332-341, 2013.

[26] B. Busjaeger and T. Xie, “Learning for test
prioritization: an industrial case study,” in
Proceedings of the 24th International
Symposium on Foundations of Software
Engineering, pp. 975–980, 2016.

[27] M. Eyl, C. Reichmann, and K. Müller-Glaser,
“Fast feedback from automated tests executed
with the product build,” in Proceedings of the
International Conference on Software Quality,
pp. 199–210, 2016.

[28] S. Elbaum, G. Rothermel, and J. Penix.
“Techniques for improving regression testing in
continuous integration development
environments,” in Proceedings of the
International Symposium on Foundations of
Software Engineering, pp. 235–245, 2014.

[29] E. Laukkanen, J. Itkonen, and C. Lassenius.
“Problems, Causes and Solutions When
Adopting Continuous Delivery - A Systematic
Literature Review,” Information and Software
Technology, Vol. 8, pp. 55-79, 2016.

[30] J. Penix, “Large-scale test automation in the
cloud”, in Proceedings of the 34th IEEE
International Conference on Software
Engineering (ICSE), page 1122, 2012.

[31] M. Gousset, A. Krishnamoorthy, B. Keller and
S. Timm, Professional Application Lifecycle
Management with Visual Studio 2010: with
Team Foundation Server 2010, New Jersey,
USA, Wiley Publishing, 2010.

[32] P. Duvall, S. Matyas and A. Glover, Continuous
integration: improving software quality and
reducing risk, Addison-Wesley, 2007.

[33] J. Humble and D. Farley, Continuous delivery:
reliable software releases through build, test,
and deployment automation, Boston, Addison-
Wesley, 2011.

[34] M. Erder and P. Pureur, Continuous
architecture: Sustainable architecture in an
agile and cloud-centric world, Morgan
Kaufmann, 2015.

[35] E. Givoni, N. Albert, Z. Ravitz, T.Q. Nguyen
and T. Nguyen, "Automated software testing
and validation system", 2006, U.S. Patent No
US 7,093,238 B2.

[36] S. Khurshid, C.S. Păsăreanu and W. Visser,
“Test input generation with Java PathFinder:
then and now”, in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software
Testing and Analysis, pp. 1-2, 2018.

[37] J. Wolf and S. Yoon, “Automated Testing for
Continuous Delivery Pipelines” (industrial talk),
in Pacific NW Software Quality Conference,
2016.

-152-

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

