

- ORIGINAL ARTICLE -

Are GPUs Non-Green Computing Devices?
¿Son las GPUs dispositivos eficientes energéticamente?

Martín Pi Puig, Laura De Giusti, Marcelo Naiouf
Instituto de Investigación en Informática LIDI (III-LIDI), CEA-CIC, Facultad de Informática, Universidad

Nacional de La Plata, 50 y 120 2do piso, La Plata, Argentina.
{mpipuig, ldgiusti, mnaiouf}@lidi.info.unlp.edu.ar

Abstract 1

With energy consumption emerging as one of the
biggest issues in the development of HPC (High
Performance Computing) applications, the
importance of detailed power-related research works
becomes a priority. In the last years, GPU
coprocessors have been increasingly used to
accelerate many of these high-priced systems even
though they are embedding millions of transistors on
their chips delivering an immediate increase on
power consumption necessities. This paper analyzes
a set of applications from the Rodinia benchmark
suite in terms of CPU and GPU performance and
energy consumption. Specifically, it compares
single-threaded and multi-threaded CPU versions
with GPU implementations, and characterize the
execution time, true instant power and average
energy consumption to test the idea that GPUs are
power-hungry computing devices.

Keywords: Power, Rodinia, GPU, NVML, RAPL.

Resumen

Con el consumo de energía emergiendo como uno
de los mayores problemas en el desarrollo de
aplicaciones HPC (High Performance Computing),
la importancia de trabajos específicos de
investigación en este campo se convierte en una
prioridad. En los últimos años, los coprocesadores
GPU se han utilizado frecuentemente para acelerar
muchos de estos costosos sistemas, a pesar de que
incorporan millones de transistores en sus chips, lo
que genera un aumento considerable en los
requerimientos de energía. Este artículo analiza un
conjunto de aplicaciones del benchmark Rodinia en

 Citation: M. Pi Puig, L. De Giusti and M. Naiouf. “Are
GPUs Non-Green Computing Devices?”, Journal of Computer
Science & Technology, vol. 18, no. 2, pp. 153-159, 2018.

DOI: 10.24215/16666038.18.e17
Received: May 11, 2018 Revised: August 9, 2018 Accepted:

August 13, 2018.
Copyright: This article is distributed under the terms of the

Creative Commons License CC-BY-NC.

términos de rendimiento y consumo de energía de
CPU y GPU. Específicamente, se comparan las
versiones secuenciales y multihilo en CPU con
implementaciones GPU, caracterizando el tiempo de
ejecución, la potencia real instantánea y el consumo
promedio de energía, con el objetivo de probar la
idea de que las GPU son dispositivos de baja
eficiencia energética.

Palabras claves: Potencia, Rodinia, GPU, NVML,
RAPL.

1. Introduction

The computing scenario has changed substantially
since the introduction of accelerators, particularly
GPGPU (short for general purpose computing on
graphics processing units). Therefore, the number of
devices with GPUs and the amount of GPU
accelerated applications increased more and more
over the past years.

These devices have drawn the attention of the
HPC research community because they have a great
computational power next to a high memory
bandwidth and are formidably suited for massively
data parallel computation (Single Instruction
Multiple Threads applications). Coming along with
these features, the energy consumption of GPU
containers like high performance workstations and
personal computers became a real problem [1][2].
Some direct consequences of its higher power
consumption are growing dissipation of heat, more
complex cooling solutions, and noisier fans [3].

As a result, power dissipation must be reduced
without losing computing performance. Further, the
peak power of latest Nvidia and AMD GPUs is as
high as 300W, while a typical CPU consumes only
80W at Thermal Design Power (TDP). This does not
indicate that the GPU has lower energy efficiency
since the increasing advantage in performance can
offset the larger power consumption [4][5]. For
instance, in the June 2018 Green 500 ranking, 7 of
10 top computer systems incorporate Nvidia
accelerators. However, in this supercomputers list is
not possible to isolate the power consumed by the

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-153-

accelerators.
Historically, GPGPU researching has focused

primary on accelerating scientific applications [6]
such as physical simulations, medical analysis,
image and video processing. This work does not
accelerate a HPC algorithm, but it makes a
description of performance, power and energy
consumption of CPU and GPU computing devices.

Generally, the energy quantification process relies
on two approaches: hardware-based and software-
based measurement. In first, a physical measuring
device is attached between the power supply and the
many-core device. Then, the electrical power can be
computed by multiplying current and voltage. Also,
energy consumption can be determined by
integrating the power over total execution time [7].
On the other hand, latest high-end Nvidia GPUs
provide the possibility to read the current power
consumption by software through the Nvidia
Management Library (NVML) [8]. In addition, Intel
CPUs present a set of counters providing energy and
power consumption information through Running
Average Power Limit (RAPL) software.

This work analyzes a set of applications from the
Rodinia benchmark suite [9], a collection of parallel
programs developed to evaluate the performance of
heterogeneous computing. These applications have
been implemented for both GPUs and multicore
CPUs using CUDA and OpenMP.

Specifically, the experiments compare serial CPU
versions with multithreaded CPU versions and with
GPU versions, where the computation runs
exclusively on the accelerator. Performance, instant
power, and energy consumption are evaluated.

The rest of the paper is organized as follows.
Section 2 presents the background for the proposed
work. Sections 3, 4 and 5 describe the targeted
experiments as well as main performance and power
results. Finally, Section 6 makes a brief conclusion
of obtained data.

2. Background

This section presents some background material in
order to put the research in perspective, particularly
a Rodinia benchmark summary, a brief review of
power consumption approaches and a description of
the measurement system.

2.1. Rodinia suite

Rodinia is a set of benchmark applications designed
for heterogeneous computing environments
including both multi-core CPUs and GPUs using
three different parallel programming models such as
OpenMP [10], CUDA and OpenCL. To provide a
high-level abstraction of common computing,

memory access and communication patterns, each
application is classified according to the Berkeley’s
dwarf taxonomy [11].

Rodinia’s applications adopt an “offloading”
model which assumes that accelerators use a
memory space disjoint from main memory. Again,
the benchmark suite provides a set of applications
from which it may be relatively hard for compilers
to automatically generate accelerator code [12].

Rodinia has 19 applications which cover 6
different dwarves. The experiments target the serial,
OpenMP and CUDA parts of the benchmark suite.
To cover all behaviors, this work analyzes 6 Rodinia
applications, each one with a different Berkeley
dwarf. Table 1 shows the applications along with
their corresponding dwarves.

Table 1. Applications, dwarves and domains
Application Dwarf Domain

PathFinder Dynamic
Programming

Grid
Traversal

SRAD Structured Grid Image
Processing

BFS Graph Traversal Graph
Algorithms

LavaMD N-Body Molecular
Dynamics

CFD Solver Unstructured Grid Fluid
Dynamics

LUD Dense Linear
Algebra

Linear
Algebra

PathFinder is a dynamic programming algorithm
for solving the shortest path problem. The goal is to
find the shortest path of a 2D grid, row by row, by
choosing the smallest accumulated weights. Each
node picks a neighboring node in the previous row
that has the smallest accumulated weight and adds
its own weight to the sum.

Speckle Reducing Anisotropic Diffusion (SRAD)
is a diffusion algorithm based on partial differential
equations and used for removing the speckles
(locally correlated noise) in an image maintaining as
much as possible important image features. SRAD is
commonly used in radar and ultrasonic imaging
applications.

Breadth-First Search (BFS) is a graph algorithm
for traversing all the connected components in the
data structure. It starts at the tree root (or some
arbitrary node) and explores the neighbor nodes
first, before moving to the next level neighbors. BFS
is widely used in scientific and engineering
applications.

LavaMD is an algorithm to study the physical
movements of atoms and molecules. It calculates
particle potential and relocation due to mutual forces
between particles in a 3D space. This space is
divided into cubes, or large boxes, that are allocated
to individual cluster nodes. The large box at each

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-154-

node is further divided into cubes, called boxes.
CFD Solver is an unstructured-grid, finite-volume

solver for the three-dimensional Euler equations for
compressible flow. It has an advantage over other
solvers in memory usage and solution speed,
especially for large problems.

LU Decomposition (LUD) is an algorithm to
calculate the solutions of a set of linear equations.
The LUD kernel factors a matrix as the product of a
lower triangular matrix and an upper triangular
matrix. LUD can be viewed as the matrix form of
Gaussian elimination.

2.2. Power monitoring approach

The power consumption measurement can be carried
out in two different ways.

Firstly, a hardware-oriented solution, where an
additional power capable device is attached between
the computational equipment and the power supply.
This method consists on sampling electrical current
while voltage remains constant. However, voltage
could be eventually measured by clamp probes.
Then, power is computed by multiplying the two
signals, and total energy is calculated as the integral
of the power over the execution time. This approach
might lead to significant errors caused by clamp
sampling variations and instant power
approximation (by multiplication means).

This hardware technique can be invasive or not.
In the invasive way, power consumption is measured
interfering the power supply lines generally through
direct current sensors (Hall Effect). In contrast, an
extern system measurement can be carried out by
intercepting the power supply input through
alternating current and voltage tools.

On the other hand, energy consumption could be
supervised across special software interfaces. In this
case, real time power information could be accessed
through built-in on-board sensors or by a specific
power estimation model. In this last approach, the
power scheme is fueled by hardware counters data.

This work employs a software measurement
approach, where CPU power consumption is
monitored through Intel RAPL interface and GPU
power information is gathered using Nvidia NVML.

RAPL provides a set of counters producing
energy and power consumption information. It uses
a software power model that estimates energy usage
by querying hardware performance counters and I/O
models [13] and results are available to the user via
a model specific register (MSR). This power model
has been validated by Intel in [14].

NVML is an API for monitoring and managing
different Nvidia GPUs features like the ability to
set/unset ECC (Error Correction Code), or to
monitor memory usage, temperature, utilization
rates, and more. Also, this library provides the

ability to query power consumption at runtime
through the built-in power sensor.

2.3. Power measurement system

For all implementations the measuring method
consists on: running the computational algorithm in
one/multiple threads and the RAPL/NVML code in
another thread using Pthreads, which provides
negligible overhead.

Then, the only communication between the power
measuring threads and computational threads is a
flag variable. Furthermore, power readings are
stored in a global structure. Finally, RAPL and
NVML threads stop when the shared flag is reset,
which is when the CPU/GPU finalize its execution.
This brief description is portrayed in Fig. 1.

Fig. 1. Measurement method.

Besides, a critical parameter to define is the
power sampling interval. Some previous research
works on GPU power consumption have focused on
this point. Lang and Rünger et al. [7] shows that the
optimal NVML sampling frequency is 50Hz (20ms).
In contrast, Burtscher et al. [15] demonstrates that
the maximum frequency supported by hardware is
66.7Hz (15ms). In addition, Kasichayanula et al. [1]
and Weaver et al. [16] recommends a sampling
frequency of 62.5Hz (16ms).

This paper uses a NVML (GPU) and RAPL
(CPU) sampling frequency of 62.5Hz. Therefore, a
power measurement tool is written to query the GPU
sensor via NVML interface and to obtain estimated
CPU power data through RAPL.

It is also necessary to mention that NVML power
information refers to whole GPU board, including
DC voltage converters, integrated circuits like video
chip and bridge, memories, etc. The returned value
is accurate to within a range of +/- 5 milliwatts.
However, Intel RAPL provides entire CPU package
power data (including cores, uncore circuit and
DRAM memory) with +/- 1 milliwatt precision.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-155-

Generally, power consumption of commercial
CPUs and GPUs can be described as the sum of
static power, dynamic power and the impact of
ascending temperature. Thus,

𝑃𝑃 = 𝑃𝑃𝑆𝑆 + 𝑃𝑃𝐷𝐷 + 𝑃𝑃𝑇𝑇 (Eq. 1)

where PS is static power, PD is dynamic power and
PT is the temperature effect on power. Static power
depends on chip layout and circuit technology, and it
is independent of workload execution. Dynamic
power results from transistors switching overhead.
Heat also has an impact on power due to transistors
current leakage increases with temperature [17].

In this work, static power is measured when no
workload is executed and while none of the CPU
and GPU resources are turned off. Furthermore,
temperature contribution is considered negligible
because of GPU algorithms execute in a few
seconds. Despite CPU code runs a longer time, the
measured temperature does not increase
significantly. Finally, as dynamic power depends on
the specific workload to be processed, it is the
chosen variable to analyze in results section.

Whereas other related works analyze the power
dissipated by the whole system [18][19][20], this
paper isolates each computing device (CPU and
GPU) from the system, characterizing the true
instant power and total energy consumption. This
approach allows to minimize recurring measurement
errors caused by inefficiencies in the power supply
and also by the energy contribution of different
devices in the system.

3. Target platform

The hardware platform includes a computing server
with an Intel Core i7-7700 (7th gen.) processor with
an 8MB cache and 4 physical cores (8 threads) at
3.60GHz. This processor is attached to a Gigabyte
GA-Z270X-G5 motherboard, which additionally
holds an 16GB RAM memory. The server also
contains a Nvidia Tesla C2075 scientific computing
GPU equipped with 14 multiprocessors including 32
CUDA cores each (448 total cores) and a 6GB
GDDR5 global memory.

Moreover, the software configuration includes a
64-bit Ubuntu distribution (Linux kernel 3.2.0) with
Nvidia Driver v331.62 and CUDA Toolkit 6.0.

4. Experimental setup

As mentioned before, this work analyzes 6 Rodinia
applications, each one with a different Berkeley
dwarf. The serial, OpenMP and CUDA side of the
benchmark are targeted to characterize the execution
time, true instant power and average energy

consumption.
To get accurate timing, the algorithm averages the

results of five runs for all cases. Moreover, as
PathFinder and LavaMD execution times are too
short, these applications are run in a ten times loop.

Table 2 illustrates the targeted applications with
their corresponding input size.

Table 2. Application parameters

Application Data size Multiple
runs?

PathFinder 1.000.000 x 200 data
points, pyram. height = 10 10x

SRAD 8.192 x 8.192 data
points -

BFS 16.000.000 nodes -
LavaMD 103 = 1.000 boxes 10x
CFD Solver 97.000 elements -

LUD 8.000 x 8.000 data
points -

To increase performance, both CPU versions are
compiled with gcc/g++ O2 optimization flag. For
detailed information, see [21]. Furthermore, GPU
algorithms are compiled with Nvidia nvcc tool.

 Therefore, the three selected scenarios are:

 Serial version
 Multithreaded version
 GPU version

5. Experimental results

This section introduces the GPU speedup and some
power related measurements like instant dynamic
power (load dependent observed power), total
measured power and total energy consumption.

As explained in measurement section, total power
fluctuation associates directly with dynamic power
variation. Table 3 shows static, dynamic and total
average power for PathFinder application. As
mentioned, temperature impact is considered
negligible in this work.

Table 3. Observed power consumption (Watts)
CPU GPU

Static 4,01 76,82
Dynamic 23,93 63,69
Total 27,94 140,51

Static power measurements correspond with CPU
and GPU idle state and it is almost constant for all
experiments. Then, dynamic values vary depending
on the specific workload.

So as to calculate and display dynamic power
data, this work uses the measured static power
values shown above: 4,01W for the Intel i7 CPU and
76,82W for the Nvidia Tesla GPU. These numbers
are the zero reference for CPU and GPU dynamic

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-156-

power plot.
Fig. 2 presents the execution time and instant

dynamic power for PathFinder application.

Fig. 2. PathFinder instant dynamic power and execution
time.

As shown in the graph, the zero reference (idle

state) represents beginning and end of algorithm
execution for all cases. Notice that the serial
versions correspond to less power consumption
while the multithreaded version raises this value.
Moreover, the GPU implementation presents a huge
difference in power consumption regarding serial
and OpenMP versions.

In contrast, GPU execution time is minimal
compared to CPU versions. Fig. 3 introduces the
speedup of each CUDA implementation running on
the GPU relative to serial and OpenMP
implementations running on the multicore CPU.

To achieve speedup calculation, the execution
time is measured on the CPU and GPU for the core
part of the computation (excluding setup).

Fig. 3. GPU speedup over single and multi-threaded
applications.

The speedups range from 4 to 31 over the multi-

threaded CPU implementations and from 6 to 161
over the single-threaded CPU implementations.

Even though the generation difference between
the Intel i7 and the Tesla C2075 is huge, the
achieved speedups are considerable.

Most of the performance diversity results from the
different application characteristics implicit in the
benchmark suite (Berkeley dwarves). In particular,
compute-bound applications like LU
Decomposition, LavaMD, CFD Solver and SRAD
reach higher acceleration than applications
presenting complex behaviors. In this case,
PathFinder and Breadth-First Search algorithms
implemented through CUDA are extremely
dependent on the off-chip memory (poor bandwidth)
and utilize uncommon data structures. In all cases,
the Rodinia OpenMP implementation outperforms
serial version.

Although it is necessary to analyze dynamic
power consumption (Fig. 2), it is also significant to
present and evaluate total power consumption, that
means, static and dynamic power behavior.

In this case, Fig. 4 displays LavaMD total power
consumption and execution time.

Fig. 4. Total power consumption and execution time for
LavaMD molecular application.

As shown, the remaining gap between GPU and

CPU solutions increases when total power
consumption is introduced. This is because GPU
power consumption on idle state is extremely higher
than the CPU one (dotted lines).

Having exposed power measurements and total
execution time, the average energy consumption can

GPU Idle

CPU Idle

0

20

40

60

80

100

120

140

160

0,0 1,0 2,0 3,0 4,0 5,0 6,0

In
st

an
t t

ot
al

 p
ow

er
 [W

]

Execution time [s]

GPU OpenMP Serial

0

10

20

30

40

50

60

70

0,0 0,4 0,8 1,2 1,6 2,0 2,4

In
st

an
t d

yn
am

ic
 p

ow
er

 [W
]

Execution time [s]

GPU OpenMP Serial

13

40

6

104

48

161

8
26

4

30
13

31

0

20

40

60

80

100

120

140

160

Sp
ee

du
p

Serial

OpenMP

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-157-

be presented. This metric is computed by
multiplying average power consumption (static +
dynamic) over total execution time.

Fig. 5 shows the average energy consumption for
all experiments.

Fig. 5. Energy consumption for all applications.

Nearly all the evaluated applications present a

significant decrease in energy consumption when the
GPU acceleration is applied. Compute-intensive
algorithms like LU Decomposition, LavaMD, CFD
Solver and SRAD exhibit a serious difference
between serial, multithreaded and GPU
implementations in terms of energy consumption.
The energy boost ranges from 2.8 to 6.8 over the
multi-threaded CPU implementations and from 3.7
to 18.7 over the single-threaded CPU
implementations.

However, PathFinder and Breadth-First Search
applications do not perform in the same way. In first,
GPU outperforms CPU implementations, but the
energy speedup is negligible. On the other hand, the
Breadth-First Search algorithm shows that GPU
utilization does not improve energy efficiency. In
both cases, the serial algorithm delivery a smaller
energy consumption regarding the multi-threaded
implementation.

6. Conclusion and future work

This article presents some measurements and a
detailed analysis of the performance and energy
consumption of an application set from the Rodinia
benchmark suite. The algorithms were carefully
selected following the Berkeley dwarves to represent
all the diverse behaviors implicit in the suite.

The experimental results show that GPU-

accelerated code can outperform CPU single and
multi-threaded programs in terms of performance
and total energy consumption in almost all cases.
Despite GPU observed power is huge, applications
can finish faster, so the total energy consumption is
notably less than CPU versions. This debunk the
idea that this kind of accelerators are non-green
computing devices.

Essentially, compute-bound dwarves like particle
dynamics, grids and linear algebra benefit more
from GPU acceleration than a dynamic
programming algorithm like PathFinder. Further,
only the Graph traversal dwarf exhibits a
degradation in energy efficiency when using the
accelerator.

In future work, it would be useful to combine
software-based power data with physical
measurements directly from CPU and GPU.
Therefore, this accurate information merged with
performance counters data can be the starting point
to design a new model to predict CPU and GPU
power consumption.

Competing interests

The authors have declared that no competing
interests exist.

References

[1] K. Kasichayanula, D. Terpstra. “Power Aware
Computing on GPUs”. In: Symposium on
Application Accelerators in High Performance
Computing, pp. 64-73, 2012.

[2] X. Mei, Q. Wang, X. Chu. A survey and
measurement study of GPU DVFS on energy
conservation. Digital Communications and
Networks, vol. 3, no. 2, pp. 89-100, 2017.

[3] X. Ma, M. Dong, L. Zhong, Z. Deng.
“Statistical Power Consumption Analysis and
Modeling for GPU-based Computing”. In:
HotPower ACM SOSP Workshop Power Aware
Computing and Systems, pp. 1-5, 2009.

[4] H. Nagasaka, N. Maruyama. “Statistical Power
Modeling of GPU Kernels Using Performance
Counters”. In: International Conference on
Green Computing, pp. 115-122, 2010.

[5] R. Suda, Da Qi Ren. “Accurate Measurements
and Precise Modeling of Power Dissipation of
CUDA Kernels toward Power Optimized High
Performance CPU-GPU Computing”. In:
International Conference on Parallel and
Distributed Computing, Applications and
Technologies, pp. 432-438, 2009.

[6] S. Huang, S. Xiao, W. Feng. “On the energy
efficiency of Graphic Processing Units for

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Av
er

ag
e

en
er

gy
 [J

]

Serial OpenMP GPU

0

35

70

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-158-

scientific computing”. In: IEEE Symposium on
Parallel & Distributed Processing, pp. 1-8,
2009.

[7] J. Lang, G. Rünger. “High-Resolution Power
Profiling of GPU Functions Using Low-
Resolution Measurement”. In: Euro-Par 2013
Parallel Processing Lecture Notes in Computer
Science vol. 8097, Springer, pp. 801–812, 2013.

[8] NVML Reference Guide,
http://docs.nvidia.com/deploy/nv
ml-api/index.html. Accessed on 2018-
04-13.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W.
Sheaffer, S. Lee, K. Skadron. “Rodinia: A
benchmark suite for heterogeneous computing”.
In: IEEE International Symposium on Workload
Characterization (IISWC), pp. 44-54, 2009.

[10] OpenMP Application Programming Interface,
http://www.openmp.org/wp-
content/uploads/openmp-4.5.pdf.
Accessed on 2018-04-13.

[11] 10 K. Asanovic et al. “The landscape of parallel
computing research: A view from Berkeley”.
Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley,
pp. 56-67, 2006.

[12] S. Che, J. W. Sheaffer, M. Boyer, L. G.
Szafaryn, L. Wang, K. Skadron. “A
characterization of the Rodinia benchmark suite
with comparison to contemporary CMP
workloads”. In: IEEE International Symposium
on Workload Characterization (IISWC), pp. 1-
11, 2010.

[13] Running Average Power Limit – RAPL,
https://01.org/blogs/2014/runnin
g-average-power-limit-%E2%80%93-
rapl. Accessed on 2018-04-13.

[14] 13 E. Rotem, A. Naveh, D. Rajwan, A.
Anathakrishnan, E. Weissmann, “Power-

management architecture of the Intel
microarchitecture codenamed Sandy Bridge”.
In: IEEE Micro, vol. 32, no. 2, pp. 20–27, 2012.

[15] M. Burtscher, I. Zecena, Z. Zong. “Measuring
GPU Power with the K20 Built-in Sensor”. In:
GPGPU-7 Proceedings of Workshop on General
Purpose Processing Using GPUs, pp. 28-36,
2014.

[16] V. Weaver, M. Johnson, K. Kasichayanula, J.
Ralph, P. Luszczek, D. Terpstra, S. Moore.
“Measuring Energy and Power with PAPI”. In:
41st International Conference on Parallel
Processing Workshops, pp. 262-268, 2012.

[17] D. Li, S. Byna, S. Chakradhar. “Energy-Aware
Workload Consolidation on GPU”. In: 40th
International Conference on Parallel Processing
Workshops, pp. 389-398, 2011.

[18] Y. Zhang, Y. Hu, B. Li, L Peng. “Performance
and power analysis of ATI GPU: A statistical
approach”. In: 6th IEEE International
Conference on Networking, Architecture and
Storage (NAS), pp. 149-158, 2011.

[19] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M.
Edahiro, M. Peres. “Power and performance
characterization and modeling of GPU-
accelerated systems”. In: 28th IEEE
International Parallel and Distributed Processing
Symposium, pp. 113-122, 2014.

[20] J. Chen, B. Li, Y. Zhang, L. Peng, J. K. Peir.
“Tree structured analysis on GPU power study”.
In: 29th IEEE International Conference on
Computer Design (ICCD), pp. 57-64, 2011.

[21] GCC Command Options: Options That Control
Optimization,
https://gcc.gnu.org/onlinedocs/g
cc-4.6.2/gcc/Optimize-
Options.html. Accessed on 2018-04-13.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-159-

