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Abstract 1 

With energy consumption emerging as one of the 
biggest issues in the development of HPC (High 
Performance Computing) applications, the 
importance of detailed power-related research works 
becomes a priority. In the last years, GPU 
coprocessors have been increasingly used to 
accelerate many of these high-priced systems even 
though they are embedding millions of transistors on 
their chips delivering an immediate increase on 
power consumption necessities. This paper analyzes 
a set of applications from the Rodinia benchmark 
suite in terms of CPU and GPU performance and 
energy consumption. Specifically, it compares 
single-threaded and multi-threaded CPU versions 
with GPU implementations, and characterize the 
execution time, true instant power and average 
energy consumption to test the idea that GPUs are 
power-hungry computing devices. 
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Resumen 

Con el consumo de energía emergiendo como uno 
de los mayores problemas en el desarrollo de 
aplicaciones HPC (High Performance Computing), 
la importancia de trabajos específicos de 
investigación en este campo se convierte en una 
prioridad. En los últimos años, los coprocesadores 
GPU se han utilizado frecuentemente para acelerar 
muchos de estos costosos sistemas, a pesar de que 
incorporan millones de transistores en sus chips, lo 
que genera un aumento considerable en los 
requerimientos de energía. Este artículo analiza un 
conjunto de aplicaciones del benchmark Rodinia en 
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términos de rendimiento y consumo de energía de 
CPU y GPU. Específicamente, se comparan las 
versiones secuenciales y multihilo en CPU con 
implementaciones GPU, caracterizando el tiempo de 
ejecución, la potencia real instantánea y el consumo 
promedio de energía, con el objetivo de probar la 
idea de que las GPU son dispositivos de baja 
eficiencia energética. 

Palabras claves: Potencia, Rodinia, GPU, NVML, 
RAPL. 

1. Introduction

The computing scenario has changed substantially 
since the introduction of accelerators, particularly 
GPGPU (short for general purpose computing on 
graphics processing units). Therefore, the number of 
devices with GPUs and the amount of GPU 
accelerated applications increased more and more 
over the past years. 

These devices have drawn the attention of the 
HPC research community because they have a great 
computational power next to a high memory 
bandwidth and are formidably suited for massively 
data parallel computation (Single Instruction 
Multiple Threads applications). Coming along with 
these features, the energy consumption of GPU 
containers like high performance workstations and 
personal computers became a real problem [1][2]. 
Some direct consequences of its higher power 
consumption are growing dissipation of heat, more 
complex cooling solutions, and noisier fans [3]. 

As a result, power dissipation must be reduced 
without losing computing performance. Further, the 
peak power of latest Nvidia and AMD GPUs is as 
high as 300W, while a typical CPU consumes only 
80W at Thermal Design Power (TDP). This does not 
indicate that the GPU has lower energy efficiency 
since the increasing advantage in performance can 
offset the larger power consumption [4][5]. For 
instance, in the June 2018 Green 500 ranking, 7 of 
10 top computer systems incorporate Nvidia 
accelerators. However, in this supercomputers list is 
not possible to isolate the power consumed by the 
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accelerators. 
Historically, GPGPU researching has focused 

primary on accelerating scientific applications [6] 
such as physical simulations, medical analysis, 
image and video processing. This work does not 
accelerate a HPC algorithm, but it makes a 
description of performance, power and energy 
consumption of CPU and GPU computing devices. 

Generally, the energy quantification process relies 
on two approaches: hardware-based and software-
based measurement. In first, a physical measuring 
device is attached between the power supply and the 
many-core device. Then, the electrical power can be 
computed by multiplying current and voltage. Also, 
energy consumption can be determined by 
integrating the power over total execution time [7]. 
On the other hand, latest high-end Nvidia GPUs 
provide the possibility to read the current power 
consumption by software through the Nvidia 
Management Library (NVML) [8]. In addition, Intel 
CPUs present a set of counters providing energy and 
power consumption information through Running 
Average Power Limit (RAPL) software. 

This work analyzes a set of applications from the 
Rodinia benchmark suite [9], a collection of parallel 
programs developed to evaluate the performance of 
heterogeneous computing. These applications have 
been implemented for both GPUs and multicore 
CPUs using CUDA and OpenMP. 

Specifically, the experiments compare serial CPU 
versions with multithreaded CPU versions and with 
GPU versions, where the computation runs 
exclusively on the accelerator. Performance, instant 
power, and energy consumption are evaluated.  

The rest of the paper is organized as follows. 
Section 2 presents the background for the proposed 
work. Sections 3, 4 and 5 describe the targeted 
experiments as well as main performance and power 
results. Finally, Section 6 makes a brief conclusion 
of obtained data. 

2. Background

This section presents some background material in 
order to put the research in perspective, particularly 
a Rodinia benchmark summary, a brief review of 
power consumption approaches and a description of 
the measurement system.  

2.1. Rodinia suite 

Rodinia is a set of benchmark applications designed 
for heterogeneous computing environments 
including both multi-core CPUs and GPUs using 
three different parallel programming models such as 
OpenMP [10], CUDA and OpenCL. To provide a 
high-level abstraction of common computing, 

memory access and communication patterns, each 
application is classified according to the Berkeley’s 
dwarf taxonomy [11].  

Rodinia’s applications adopt an “offloading” 
model which assumes that accelerators use a 
memory space disjoint from main memory. Again, 
the benchmark suite provides a set of applications 
from which it may be relatively hard for compilers 
to automatically generate accelerator code [12]. 

Rodinia has 19 applications which cover 6 
different dwarves. The experiments target the serial, 
OpenMP and CUDA parts of the benchmark suite. 
To cover all behaviors, this work analyzes 6 Rodinia 
applications, each one with a different Berkeley 
dwarf. Table 1 shows the applications along with 
their corresponding dwarves. 

Table 1. Applications, dwarves and domains 
Application Dwarf Domain 

PathFinder Dynamic 
Programming 

Grid 
Traversal 

SRAD Structured Grid Image 
Processing 

BFS Graph Traversal Graph 
Algorithms 

LavaMD N-Body Molecular 
Dynamics 

CFD Solver Unstructured Grid Fluid 
Dynamics 

LUD Dense Linear 
Algebra 

Linear 
Algebra 

PathFinder is a dynamic programming algorithm 
for solving the shortest path problem. The goal is to 
find the shortest path of a 2D grid, row by row, by 
choosing the smallest accumulated weights. Each 
node picks a neighboring node in the previous row 
that has the smallest accumulated weight and adds 
its own weight to the sum. 

Speckle Reducing Anisotropic Diffusion (SRAD) 
is a diffusion algorithm based on partial differential 
equations and used for removing the speckles 
(locally correlated noise) in an image maintaining as 
much as possible important image features. SRAD is 
commonly used in radar and ultrasonic imaging 
applications.  

Breadth-First Search (BFS) is a graph algorithm 
for traversing all the connected components in the 
data structure. It starts at the tree root (or some 
arbitrary node) and explores the neighbor nodes 
first, before moving to the next level neighbors. BFS 
is widely used in scientific and engineering 
applications. 

LavaMD is an algorithm to study the physical 
movements of atoms and molecules. It calculates 
particle potential and relocation due to mutual forces 
between particles in a 3D space. This space is 
divided into cubes, or large boxes, that are allocated 
to individual cluster nodes. The large box at each 
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node is further divided into cubes, called boxes. 
CFD Solver is an unstructured-grid, finite-volume 

solver for the three-dimensional Euler equations for 
compressible flow. It has an advantage over other 
solvers in memory usage and solution speed, 
especially for large problems. 

LU Decomposition (LUD) is an algorithm to 
calculate the solutions of a set of linear equations. 
The LUD kernel factors a matrix as the product of a 
lower triangular matrix and an upper triangular 
matrix. LUD can be viewed as the matrix form of 
Gaussian elimination. 

2.2. Power monitoring approach 

The power consumption measurement can be carried 
out in two different ways.  

Firstly, a hardware-oriented solution, where an 
additional power capable device is attached between 
the computational equipment and the power supply. 
This method consists on sampling electrical current 
while voltage remains constant. However, voltage 
could be eventually measured by clamp probes. 
Then, power is computed by multiplying the two 
signals, and total energy is calculated as the integral 
of the power over the execution time. This approach 
might lead to significant errors caused by clamp 
sampling variations and instant power 
approximation (by multiplication means). 

This hardware technique can be invasive or not. 
In the invasive way, power consumption is measured 
interfering the power supply lines generally through 
direct current sensors (Hall Effect). In contrast, an 
extern system measurement can be carried out by 
intercepting the power supply input through 
alternating current and voltage tools. 

On the other hand, energy consumption could be 
supervised across special software interfaces. In this 
case, real time power information could be accessed 
through built-in on-board sensors or by a specific 
power estimation model. In this last approach, the 
power scheme is fueled by hardware counters data. 

This work employs a software measurement 
approach, where CPU power consumption is 
monitored through Intel RAPL interface and GPU 
power information is gathered using Nvidia NVML. 

RAPL provides a set of counters producing 
energy and power consumption information. It uses 
a software power model that estimates energy usage 
by querying hardware performance counters and I/O 
models [13] and results are available to the user via 
a model specific register (MSR). This power model 
has been validated by Intel in [14]. 

NVML is an API for monitoring and managing 
different Nvidia GPUs features like the ability to 
set/unset ECC (Error Correction Code), or to 
monitor memory usage, temperature, utilization 
rates, and more. Also, this library provides the 

ability to query power consumption at runtime 
through the built-in power sensor. 

2.3. Power measurement system 

For all implementations the measuring method 
consists on: running the computational algorithm in 
one/multiple threads and the RAPL/NVML code in 
another thread using Pthreads, which provides 
negligible overhead. 

Then, the only communication between the power 
measuring threads and computational threads is a 
flag variable. Furthermore, power readings are 
stored in a global structure. Finally, RAPL and 
NVML threads stop when the shared flag is reset, 
which is when the CPU/GPU finalize its execution. 
This brief description is portrayed in Fig. 1. 

Fig. 1. Measurement method. 

Besides, a critical parameter to define is the 
power sampling interval. Some previous research 
works on GPU power consumption have focused on 
this point. Lang and Rünger et al. [7] shows that the 
optimal NVML sampling frequency is 50Hz (20ms). 
In contrast, Burtscher et al. [15] demonstrates that 
the maximum frequency supported by hardware is 
66.7Hz (15ms). In addition, Kasichayanula et al. [1] 
and Weaver et al. [16] recommends a sampling 
frequency of 62.5Hz (16ms).  

This paper uses a NVML (GPU) and RAPL 
(CPU) sampling frequency of 62.5Hz. Therefore, a 
power measurement tool is written to query the GPU 
sensor via NVML interface and to obtain estimated 
CPU power data through RAPL. 

It is also necessary to mention that NVML power 
information refers to whole GPU board, including 
DC voltage converters, integrated circuits like video 
chip and bridge, memories, etc. The returned value 
is accurate to within a range of +/- 5 milliwatts. 
However, Intel RAPL provides entire CPU package 
power data (including cores, uncore circuit and 
DRAM memory) with +/- 1 milliwatt precision. 
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Generally, power consumption of commercial 
CPUs and GPUs can be described as the sum of 
static power, dynamic power and the impact of 
ascending temperature. Thus, 

𝑃𝑃 = 𝑃𝑃𝑆𝑆 +  𝑃𝑃𝐷𝐷 + 𝑃𝑃𝑇𝑇  (Eq. 1) 

where PS is static power, PD is dynamic power and 
PT is the temperature effect on power. Static power 
depends on chip layout and circuit technology, and it 
is independent of workload execution. Dynamic 
power results from transistors switching overhead. 
Heat also has an impact on power due to transistors 
current leakage increases with temperature [17]. 

In this work, static power is measured when no 
workload is executed and while none of the CPU 
and GPU resources are turned off. Furthermore, 
temperature contribution is considered negligible 
because of GPU algorithms execute in a few 
seconds. Despite CPU code runs a longer time, the 
measured temperature does not increase 
significantly. Finally, as dynamic power depends on 
the specific workload to be processed, it is the 
chosen variable to analyze in results section. 

Whereas other related works analyze the power 
dissipated by the whole system [18][19][20], this 
paper isolates each computing device (CPU and 
GPU) from the system, characterizing the true 
instant power and total energy consumption. This 
approach allows to minimize recurring measurement 
errors caused by inefficiencies in the power supply 
and also by the energy contribution of different 
devices in the system. 

3. Target platform

The hardware platform includes a computing server 
with an Intel Core i7-7700 (7th gen.) processor with 
an 8MB cache and 4 physical cores (8 threads) at 
3.60GHz. This processor is attached to a Gigabyte 
GA-Z270X-G5 motherboard, which additionally 
holds an 16GB RAM memory. The server also 
contains a Nvidia Tesla C2075 scientific computing 
GPU equipped with 14 multiprocessors including 32 
CUDA cores each (448 total cores) and a 6GB 
GDDR5 global memory. 

Moreover, the software configuration includes a 
64-bit Ubuntu distribution (Linux kernel 3.2.0) with 
Nvidia Driver v331.62 and CUDA Toolkit 6.0. 

4. Experimental setup

As mentioned before, this work analyzes 6 Rodinia 
applications, each one with a different Berkeley 
dwarf. The serial, OpenMP and CUDA side of the 
benchmark are targeted to characterize the execution 
time, true instant power and average energy 

consumption. 
To get accurate timing, the algorithm averages the 

results of five runs for all cases. Moreover, as 
PathFinder and LavaMD execution times are too 
short, these applications are run in a ten times loop. 

Table 2 illustrates the targeted applications with 
their corresponding input size. 

Table 2. Application parameters 

Application Data size Multiple 
runs? 

PathFinder 1.000.000 x 200 data 
points, pyram. height = 10 10x 

SRAD 8.192 x 8.192 data 
points - 

BFS 16.000.000 nodes - 
LavaMD 103 = 1.000 boxes 10x 
CFD Solver 97.000 elements - 

LUD 8.000 x 8.000 data 
points - 

To increase performance, both CPU versions are 
compiled with gcc/g++ O2 optimization flag. For 
detailed information, see [21]. Furthermore, GPU 
algorithms are compiled with Nvidia nvcc tool.  

    Therefore, the three selected scenarios are: 

 Serial version
 Multithreaded version
 GPU version

5. Experimental results

This section introduces the GPU speedup and some 
power related measurements like instant dynamic 
power (load dependent observed power), total 
measured power and total energy consumption.  

As explained in measurement section, total power 
fluctuation associates directly with dynamic power 
variation. Table 3 shows static, dynamic and total 
average power for PathFinder application. As 
mentioned, temperature impact is considered 
negligible in this work. 

Table 3. Observed power consumption (Watts) 
CPU GPU 

Static 4,01 76,82 
Dynamic 23,93 63,69 
Total 27,94 140,51 

Static power measurements correspond with CPU 
and GPU idle state and it is almost constant for all 
experiments. Then, dynamic values vary depending 
on the specific workload.  

So as to calculate and display dynamic power 
data, this work uses the measured static power 
values shown above: 4,01W for the Intel i7 CPU and 
76,82W for the Nvidia Tesla GPU. These numbers 
are the zero reference for CPU and GPU dynamic 
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power plot.  
Fig. 2 presents the execution time and instant 

dynamic power for PathFinder application. 
 

Fig. 2. PathFinder instant dynamic power and execution 
time. 

 
As shown in the graph, the zero reference (idle 

state) represents beginning and end of algorithm 
execution for all cases. Notice that the serial 
versions correspond to less power consumption 
while the multithreaded version raises this value. 
Moreover, the GPU implementation presents a huge 
difference in power consumption regarding serial 
and OpenMP versions.  

In contrast, GPU execution time is minimal 
compared to CPU versions. Fig. 3 introduces the 
speedup of each CUDA implementation running on 
the GPU relative to serial and OpenMP 
implementations running on the multicore CPU. 

To achieve speedup calculation, the execution 
time is measured on the CPU and GPU for the core 
part of the computation (excluding setup). 

Fig. 3. GPU speedup over single and multi-threaded 
applications. 

 
The speedups range from 4 to 31 over the multi-

threaded CPU implementations and from 6 to 161 
over the single-threaded CPU implementations.  

Even though the generation difference between 
the Intel i7 and the Tesla C2075 is huge, the 
achieved speedups are considerable. 

Most of the performance diversity results from the 
different application characteristics implicit in the 
benchmark suite (Berkeley dwarves). In particular, 
compute-bound applications like LU 
Decomposition, LavaMD, CFD Solver and SRAD 
reach higher acceleration than applications 
presenting complex behaviors. In this case, 
PathFinder and Breadth-First Search algorithms 
implemented through CUDA are extremely 
dependent on the off-chip memory (poor bandwidth) 
and utilize uncommon data structures. In all cases, 
the Rodinia OpenMP implementation outperforms 
serial version. 

Although it is necessary to analyze dynamic 
power consumption (Fig. 2), it is also significant to 
present and evaluate total power consumption, that 
means, static and dynamic power behavior. 

In this case, Fig. 4 displays LavaMD total power 
consumption and execution time.   

Fig. 4. Total power consumption and execution time for 
LavaMD molecular application. 

 
As shown, the remaining gap between GPU and 

CPU solutions increases when total power 
consumption is introduced. This is because GPU 
power consumption on idle state is extremely higher 
than the CPU one (dotted lines). 

Having exposed power measurements and total 
execution time, the average energy consumption can 
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be presented. This metric is computed by 
multiplying average power consumption (static + 
dynamic) over total execution time.  

Fig. 5 shows the average energy consumption for 
all experiments.  

 

 
Fig. 5. Energy consumption for all applications. 

 
Nearly all the evaluated applications present a 

significant decrease in energy consumption when the 
GPU acceleration is applied. Compute-intensive 
algorithms like LU Decomposition, LavaMD, CFD 
Solver and SRAD exhibit a serious difference 
between serial, multithreaded and GPU 
implementations in terms of energy consumption. 
The energy boost ranges from 2.8 to 6.8 over the 
multi-threaded CPU implementations and from 3.7 
to 18.7 over the single-threaded CPU 
implementations.  

However, PathFinder and Breadth-First Search 
applications do not perform in the same way. In first, 
GPU outperforms CPU implementations, but the 
energy speedup is negligible. On the other hand, the 
Breadth-First Search algorithm shows that GPU 
utilization does not improve energy efficiency. In 
both cases, the serial algorithm delivery a smaller 
energy consumption regarding the multi-threaded 
implementation. 

6. Conclusion and future work 

This article presents some measurements and a 
detailed analysis of the performance and energy 
consumption of an application set from the Rodinia 
benchmark suite. The algorithms were carefully 
selected following the Berkeley dwarves to represent 
all the diverse behaviors implicit in the suite. 

The experimental results show that GPU-

accelerated code can outperform CPU single and 
multi-threaded programs in terms of performance 
and total energy consumption in almost all cases. 
Despite GPU observed power is huge, applications 
can finish faster, so the total energy consumption is 
notably less than CPU versions. This debunk the 
idea that this kind of accelerators are non-green 
computing devices. 

Essentially, compute-bound dwarves like particle 
dynamics, grids and linear algebra benefit more 
from GPU acceleration than a dynamic 
programming algorithm like PathFinder. Further, 
only the Graph traversal dwarf exhibits a 
degradation in energy efficiency when using the 
accelerator. 

In future work, it would be useful to combine 
software-based power data with physical 
measurements directly from CPU and GPU. 
Therefore, this accurate information merged with 
performance counters data can be the starting point 
to design a new model to predict CPU and GPU 
power consumption. 
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