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Abstract 

The aim of this paper is to formulate an optimal 
academic exam for a given subject. To do this, the 
probability is first modelled of a student passing the 
exam according to the number of units he studies 
and the professor evaluates. That simulation model 
is developed by performing a probabilistic analysis. 
An optimal exam is then defined as the one that 
awards the grade that the student deserves. 
Therefore, in an optimal exam, approve those who 
deserve to approve, and disapprove those that do not 
deserve to approve. Besides, this exam must respect 
the limitations of time and effort that the professor 
imposes. Based on this definition and using the 
simulation model, an INLP type optimization model 
is formulated. This optimization model determines 
the number of units the professor must evaluate to 
maximize the probability of getting an optimal 
exam. 

Keywords: Academic evaluation, optimization, 
probabilistic analysis. 

Resumen 

El objetivo de este trabajo es formular un examen 
académico óptimo para una materia dada. Para ello, 
primero, se modela la probabilidad de que un 
estudiante apruebe el examen en función del número 
de unidades que estudia y de las que el profesor 
evalúa. Ese modelo de simulación es desarrollado 
realizando un análisis probabilístico. Un examen 
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óptimo es luego definido como aquel que asigna la 
nota que el estudiante merece. Por lo tanto, en un 
examen óptimo, aprueban quienes merecen aprobar, 
y desaprueban quienes no merecen aprobar. 
Además, el examen debe respetar las limitaciones de 
tiempo y esfuerzo que el profesor impone. En base a 
esta definición y usando el modelo de simulación, se 
formula un modelo de optimización del tipo INLP. 
Este modelo de optimización determina el número 
de unidades que el profesor debe evaluar para 
maximizar la probabilidad de conseguir un examen 
óptimo. 

Palabras claves: Análisis probabilístico, evaluación 
académica, optimización. 

1. Introduction

This work is a substantially extended version of a 
previous one published at the conference CACIC 
2017 [1]. This enhanced version contains more 
detailed explanations of models, additional results 
and a deeper analysis. 

Evaluation is a critical issue in any institution, 
particularly in educational ones. According to Frola 
and Velásquez [2], the evaluation process involves 
information acquisition, elaboration of judgements 
once the information is processed, and the 
consequent decision-making aimed at improving 
processes and services. 

Evaluation can be qualitative or quantitative. The 
first one is preferred for evaluating learning, while 
the second is chosen to measure the knowledge the 
student has retained at the end of a period. 

Despite the importance of evaluation, it is not 
properly solved in the education field, with the 
consequent negative impact on the education of the 
students [3,4,5]. For example, Trillo Alonso and 
Porto Currás [6] have indeed analyzed the 
perception students had about evaluation in the 
Faculty of Educational Sciences of the University of 
Santiago de Compostela during the 1997-1998 
academic year, and concluded that, for students, 
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evaluations did not achieve their objectives. Faced 
with this result, the authors concluded that, if this 
happened in a faculty of educational sciences, a 
better scenario was not likely to be met in other 
faculties. The results are even more worrying if it is 
considered that these students could be future 
professors. 

Information and communication technologies 
(ICT) not only influence many aspects of education; 
but also influence evaluation particularly. ICT 
introduce new ways of evaluation, opening new 
possibilities by automating corrections, calculating 
statistical indices and performing histograms [7]. 
These functions favor a better evaluation; but they 
do not provide a finished solution; in fact, they bring 
about new problems. Multiple choice tests, for 
example, pose the problem of how to qualify those 
tests that have been made using random choices [8]. 

Huapaya et al. [9] stated that in order to carry out 
a fair evaluation, in addition to the grade of an exam, 
other aspects must be also considered; for example, 
averages of student’s grades, class average, 
evolution of student's grades. These data were 
processed by a fuzzy logic expert system to diagnose 
the level of knowledge of the students. The use of an 
expert system has the advantage of removing 
subjectivity from the evaluation and producing 
uniform evaluations. It is however limited by the 
knowledge of the consulted experts and by the 
knowledge acquisition process [10]. 

An important aspect of evaluation that is little 
investigated is the professor role. When designing 
the evaluation, the professor makes several 
decisions: the number of questions to be asked, the 
topics covered by the questions, the approval grade 
(if it is not set by the institution). The decisions that 
the professor makes at this stage have a profound 
impact on the evaluation results. For this reason, the 
present work analyzes the effects that the decisions 
of the professor have on the evaluation. 

To pose the problem formally, it is assumed that 
there is an evaluation stage in the lecturing of all 
subjects. This stage, in general, consists of a 
quantitative examination. The students pass the 
exam if they answer appropriately to the questions 
the professor asks. If the students have the minimum 
required level of knowledge, they obtain the 
minimum approval grade. In this scenario, the 
objective of this work is to optimize the evaluation. 
For this to be done, the probability of a student 
approving the evaluation must be first modeled as a 
function of a set of relevant variables. 

The simulation model presented in this paper is 
developed after performing a probabilistic analysis. 
With the developed model, the work analyzes how 
the probability of the student passing the exam 
varies, and also analyzes the probabilistic 
distribution of the grades that can be obtained by the 

student depending on the selected variables. 
Considering the previous analysis, an optimal 

exam is defined as the one that awards the grade that 
the student deserves. Therefore, in an optimally 
designed exam, approve those who deserve to 
approve, and disapprove those that do not deserve to 
approve. Besides, the exam should respect the 
limitations of time and effort that the professor 
imposes. Based on this definition and using the 
simulation model, an optimization model is 
formulated that determines the number of units that 
must be evaluated to maximize the probability of 
having an optimal exam. The optimal number of 
units to be evaluated produced by this model is not 
always the maximum allowed by the imposed 
restriction. In this sense, it is clear that sometimes 
fewer questions allow a better evaluation. 

A second optimization model is then proposed 
that allows solving the problem within a certain 
tolerance. By increasing the tolerance, the number of 
units to be evaluated is significantly reduced. In 
turn, raising the approval threshold has little effect 
on the number of units to be evaluated. It is finally 
observed that increasing the maximum grade of the 
test significantly reduces the probability of assigning 
a fair grade to a student. 

2. Simulation model

2.1. Problem formulation 

The initial problem addressed in this paper is to 
estimate the probability that a student passes the 
exam of a subject composed of UM units of 
evaluation when the student studies UE units and the 
professor examines UT units. The exam is passed 
with a grade equal to or higher than NA, with a 
maximum grade equal to NM. The units of 
evaluation of the subject represent the degree of 
detail in which the professor breaks down the 
subject to carry out the evaluation. In degree of 
increasing detail, the units of evaluation can be units 
of the program of the subject, topics of the subject or 
subtopics of the subject. The answer of a student to 
an unit of evaluation can be correct or incorrect. 
Intermediate results are not considered. It is assumed 
that all units of evaluation have the same degree of 
difficulty, either for being studied or for being 
evaluated. 

2.2. Presentation case 

To best understand the solutions that will be 
presented in this work, it is convenient first to 
analyze a simple case. Table 1 contains all the 
possible exams for a subject with NM = 10, NA = 4, 
UM = 5 and UT = 3, where the “X” marks the units 

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-168-



the professor evaluates. 

Table 1 Possible exams for UM = 5 and UT = 3. 
Nº 1 2 3 4 5 
1 X X X 
2 X X X 
3 X X X 
4 X X X 
5 X X X 
6 X X X 
7 X X X 
8 X X X 
9 X X X 

10 X X X 

If the student knows two units, UE = 2, and if it 
is assumed that they are the first two (generality is 
not lost with this assumption), the only favorable 
exams the student will pass are those that contain the 
two units he knows; i.e., cases 8, 9 and 10. In those 
cases, the student will pass with a grade of 10 2/3 ≈ 
7, with a probability equal to (favorable 
exams)/(possible exams) = 3/10. 

2.3. Analytical solution 

To present the analytical solution, it is convenient to 
analyze Table 2. In the first two rows, the content of 
the subject is divided into two parts: the UE units the 
student knows and the rest of the units of the subject, 
UM-UE. In the third row, the units evaluated in the 
exam are represented. Of the UT units asked by the 
professor in the exam, the student can only answer U 
units because they correspond to the part he studied, 
while the rest, UT-U, remain unanswered because 
they correspond to the part the student did not study. 

Table 2 Exam structure. 
… U

E 
UE

+1 
UE

+2 
… U

M 
UE UM-UE 
U UT-U 

With the structure presented in Table 2, the total 
number of possible exams is equal to the chosen UT 
combinations of UM, CUM,UT. The number of exams 
in which the student can answer U questions can be 
calculated by considering that there are CUE,U 
possible combinations for the first part of the exam 
(the part the student knows), while there exist 
CUM-UE,UT-U possible combinations for the second 
part of the exam (that the student does not know). 
Therefore, the number of exams in which the student 
will answer U questions is CUE,U CUM-UE,UT-U. Hence, 
the probability of the student correctly answering u 
questions, P(U = u), is given by the following 
expression: 

( )

UE UM UE
u UT u

Pu u
UM
UT

−  
  −  =

 
 
 

(Eq. 1) 

and the grade the student gets is: 

( ) Round uN u NM
UT

 =  
 

 (Eq. 2) 

Continuing with the analysis of the structure 
shown in Table 2, it follows that the minimum value 
of U is: 

( )min max 0, ( )U UT UM UE= − −   (Eq. 3) 
whereas the maximum value that U can reach is: 

( )max min ,U UE UT= (Eq. 4) 
For the presentation case, the minimum and 
maximum values of U are 0 and 2, respectively. 

The Pu(u) distribution obtained is the 
“hypergeometric” one [10], a discrete distribution 
related to random sampling without replacement. 
For the problem that is being analyzed, there is a 
population of UM elements belonging to two 
categories: units the student knows and units he does 
not know; the EU units belong to the first, and the 
UM-UE units belong to the second. Once these 
categories are defined, the hypergeometric 
distribution allows calculating the probability of 
obtaining elements of the first category in a sample 
without replacement of UT elements from the 
original population; i.e., the probability that the 
student answers well U questions of the UT ones 
made by the professor. 

From the probabilistic distribution of U, the 
probability PA can be derived, which is the 
probability that the student approves the evaluation 
by obtaining a grade N(u) equal to or greater than 
NA: 

( )( ) ( )
max

min

U

u U
PA H N u NA Pu u

=

= −∑  (Eq. 5) 

H(.) is the step function: 

( )
0 0
1 0

x
H x

x
<

=  ≥
(Eq. 6) 

On the other hand, the probability of the student 
obtaining a grade n in the exam, P(N = n), is 
calculated as follows: 

( )

( )( ) ( )( ) ( )
max

min

U

u U

PN n

H N u n H n N u Pu u
=

=

− −∑
 (Eq. 7) 

i.e., the probability of n is obtained by adding the
probabilities of all u with N(u) = n. 

For the presentation case, PA = Pu(2) = 3/10, 
with N(2) = 7. In this calculation, only the 
probability of u = 2 remains because N(0) = 0 and 
N(1) = 3. 

Finally, the value of the fair grade NJ can be 
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defined. This is the grade deserved by the student 
who studied UE units: 

Round UENJ NM
UM

 =  
 

(Eq. 8) 

If this grade is equal to or higher than NA, the 
student deserves to approve the exam; otherwise he 
does not deserve to approve. For the presentation 
case, NJ = 4, but the only possible grades are 0, 3 
and 7. It can be seen that is not always possible to 
qualify with the fair grade. 

3. Case study

The results obtained for a subject with NM = 10, 
NA = 4 and UM = 10 are presented below. In this 
case, NJ will be equal to UE, so 4 is the minimum 
amount of units that the student must study to 
deserve passing the exam. Although the graphics to 
be presented in this work should only have points, 
lines were included to ease the recognition of the 
different series. 

Fig. 1 shows the probability PA of a student 
passing the exam when he studies UE units and the 
professor asks UT units. In this figure, as UT 
increases, the exam better discriminates among 
students who deserve to pass (UE ≥ NA) and those 
who do not. For UT equal to 3, 6 and 9, PA 
decreases. To explain this behavior, the case with 
UE = 3 is analyzed. On the one hand, if UT = 2, u 
may be 0, 1 or 2; with grades 0, 5 or 10, 
respectively; therefore, PA = 0.47 + 0.07 = 0.54. On 
the other hand, if UT = 3, u may be 0, 1, 2 or 3; with 
grades 0, 3, 7 or 10, respectively; therefore, PA = 
0.18 + 0.01 = 0.19. Hence, the main reason for the 
decrease of PA is that, in the last case, there is an 
additional exam that is not passed by the student, in 
which he answers only one question correctly (N(1) 
= 3 < NA); whereas for the same situation in the first 
case, since there is one less question, the student 
passes the exam (N(1) = 5 > NA). 

Fig. 2 has the same information than Fig. 1, but 
from another point of view. From this new 
perspective, it is more clearly seen that, as UT 
increases, the approval threshold is NA. Fig. 1 is 
more useful for the professor, since it shows the 
effect of UT on PA. Fig. 2 instead, is more useful for 
the student, since it shows the effect of UE on PA. 

Fig. 3 to Fig. 11 show the probability 
distributions PN(n) of the grades a student may 
obtain for different amounts of studied units UE. In 
those plots, the number of units UT the professor 
evaluates is a parameter. As it can be seen, the 
probable grades may be quite different from the fair 
grade; e.g., for UE = 5 (NJ would also be 5) and 
UT = 2 (Fig. 7), the probable grades are 0, 5 and 10. 
In other words, a student that deserves a grade equal 

to 5, may get 0, 5 or 10. Besides, those figures show 
that the grade dispersion decreases when UT 
increases. In contrast, the grade dispersion is almost 
independent of EU. In conclusion, only the professor 
can reduce the grade uncertainty. 

Fig. 1 Probability PA of passing the exam when the 
student studies UE units and the professor asks UT units 
(UE as parameter), with NM = 10, NA = 4 and UM = 10. 

Fig. 2 Probability PA of passing the exam when the 
student studies UE units and the professor asks UT units 
(UT as parameter), with NM = 10, NA = 4 and UM = 10. 

Fig. 3 Probabilistic distribution of the grades Pn(n) for 
UE = 1, with NM = 10, NA = 4 and UM = 10. 
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Fig. 4 Probabilistic distribution of the grades Pn(n) for 
UE = 2, with NM = 10, NA = 4 and UM = 10. 

Fig. 5 Probabilistic distribution of the grades Pn(n) for 
UE = 3, with NM = 10, NA = 4 and UM = 10. 

Fig. 6 Probabilistic distribution of the grades Pn(n) for 
UE = 4, with NM = 10, NA = 4 and UM = 10. 

Fig. 7 Probabilistic distribution of the grades Pn(n) for 
UE = 5, with NM = 10, NA = 4 and UM = 10. 

Fig. 8 Probabilistic distribution of the grades Pn(n) for 
UE = 6, with NM = 10, NA = 4 and UM = 10. 

Fig. 9 Probabilistic distribution of the grades Pn(n) for 
UE = 7, with NM = 10, NA = 4 and UM = 10. 

Fig. 10 Probabilistic distribution of the grades Pn(n) for 
UE = 8, with NM = 10, NA = 4 and UM = 10. 

Fig. 11 Probabilistic distribution of the grades Pn(n) for 
UE = 9, with NM = 10, NA = 4 and UM = 10. 

4. The optimal exam

As it was stated in the introduction of the present 
work, an optimal exam is defined as the one that 
awards the grade that the student deserves, and 
which can be carried out respecting the time and 
effort limitations that the professor imposes (time of 
completion of the exam, time of correction, etc.). 
Consequently, in an optimal examination, approve 
those who deserve to approve, and disapprove those 
that do not deserve to approve. Thus, for a student 
who studied UE units, the following objective 
functions to be maximized can be proposed: 

• Probability of fair grade
( ) ( )1f UE PN NJ=   (Eq. 9) 

This function aims at giving the student the grade 
he deserves. This is a difficult measure to satisfy 
because the student must be assigned to one of the 
NM + 1 possible categories (by assigning a grade 
from 0 to NM); and this is increasingly difficult as 
NM becomes higher. 

• Probability of fair approval
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( )2

1 4
4

PA NJ
f UE

PA NJ
− <

=  ≥
(Eq. 10) 

This function aims at approving if the student 
deserves it, and disapproving if he does not deserve 
to pass. This is a more relaxed measure than the 
previous one because it considers only two 
categories: approved and disapproved. 

The posed objective functions measure how 
optimal the exam is in relation to a particular type of 
student: the one who studied UE units. To consider 
all students, a global objective function independent 
of UE must be considered. Two possible global 
objective functions that meet this condition are: 

( ) ( ) ( )11
0

UM

ue
FO UT Pb ue f ue

=

= ∑  (Eq. 11) 

( ) ( ) ( )22
0

UM

ue
FO UT Pb ue f ue

=

= ∑  (Eq. 12) 

Pb(ue) is the probability that a student studies ue 
units, P(UE = ue). Therefore, the proposed global 
objective functions are probabilistic averages of the 
individual objective functions analyzed before. 

Particularly in this work, it is assumed that 
Pb(ue) obeys a binomial distribution: 

( ) ( )1 UM ueueUM
Pb ue p p

ue
− 

= − 
 

(Eq. 13) 

where p is the probability that students study a given 
unit. The higher p, the more dedicated the students 
are (Fig. 12). For the case study, a value of p = 0.5 is 
adopted. Fig. 13 shows how the two global objective 
functions vary for that case. 

The presented global objective functions must be 
maximized to achieve an optimal exam. The only 
decision variable the professor has is UT. In Fig. 13, 
both functions reach the maximum value when 
UT = UM. However, this solution has the highest 
cost (duration of the exam design, duration of the 
exam, duration of the correction). Therefore, it is 
convenient to establish the following constrain: 

maxUT UT≤ (Eq. 14) 
for preventing a high cost. UTmax is the maximum 
number of units the professor can or wants to 
evaluate. For the case study, UTmax = UM/2 = 5. 

Fig. 3 to Fig. 11 show, for the case study 
(NM = 10, NA = 4, UM = 10, p = 0.5 and UTmax = 5), 
four low-cost solutions that roughly meet the first 
proposed objective function. These solutions are 
obtained for UT from 2 to 5. If the lines 
corresponding to those UT values are examined in 
Fig. 2, it can be seen that the option UT = 3 tends to 
disapprove in general (even those that deserve to 
approve); while the option UT = 5 tends to approve 
in general (even those students who do not deserve 
to approve). UT = 4 is an intermediate option, and 
apparently the most recommended; but the effect of 
p has not yet been considered. To do this, Fig. 13 is 

analyzed, which is constructed for p = 0.5. In this 
figure, it can be seen that the trivial solution UT = 5 
satisfies the constraint stated above (less than or 
equal to 5) and maximizes both objective functions. 
Then, for the case study, it is advisable to evaluate 
five units. It is important to note however that, 
although both objective functions have an increasing 
tendency, they are not monotonically increasing 
functions. Hence, in some cases, there may exist 
non-trivial solutions to the proposed optimization 
problem. 

Finally, it can also be seen that being the second 
objective function more relaxed than the first one, 
the second function has higher values and is less 
sensitive to UT. This means that an exam is more 
likely to be considered optimal if it is evaluated with 
the second function. 

Fig. 12 Binomial distribution of UE. 

Fig. 13 Global objective functions for the case study, with 
NM = 10, NA = 4, UM = 10 and p = 0.5. 

4.1. Optimization model 

To solve the stated problem for any UM and p, the 
following INLP (Integer Nonlinear Programming) 
optimization model is posed: 

( )

max

Max

s. t.:
UT

FO UT

UT UT
UT

≤
∈

(Eq. 15) 
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where FO(UT) is the chosen global objective 
function, FO1(UT) or FO2(UT). Because the feasible 
region is small, this model can be solved by 
exhaustive search. 

The solution produced by this model guarantees 
the maximum value of FO(UT), but not the 
minimum value of UT. In the case of multiple 
solutions, the desired solution is the minimum UT. 
To find this value, a second INLP optimization 
problem must be solved: 

( ) opt

Min

s. t.:
UT

UT

FO UT FO
UT

≥

∈

(Eq. 16) 

where FOopt is the maximum value of the objective 
function reported by the first optimization problem. 

Table 3 Optimum values of UT for FO1 and FO2. 
p 0.3 0.5 0.7 

UM UT 
max 1opt 2opt 1opt 2opt 1opt 2opt 

5 2 1 2 1 2 1 2 
6 3 3 3 3 2 3 2 
7 3 3 3 3 2 3 2 
8 4 4 4 4 4 4 4 
9 4 3 3 3 4 4 4 

10 5 5 4 5 5 5 5 
11 5 5 5 4 5 5 5 
12 6 6 6 6 5 6 5 
13 6 6 6 6 5 6 5 
14 7 7 7 7 5 7 7 
15 7 7 6 6 7 7 7 
16 8 8 7 8 8 8 8 
17 8 5 8 8 8 8 8 
18 9 9 9 8 8 9 8 
19 9 9 9 8 8 9 8 
20 10 10 10 10 8 10 10 
21 10 10 9 10 8 10 10 
22 11 11 10 11 11 11 11 
23 11 10 9 11 11 10 11 
24 12 12 12 11 11 12 11 
25 12 12 12 11 11 12 11 
26 13 12 12 13 11 13 13 
27 13 12 12 13 11 13 13 
28 14 12 12 14 14 13 14 
29 14 12 12 14 14 13 14 
30 15 15 15 15 14 15 14 

Table 3 shows the optimal UT values obtained 

for different values of UM, UMmax and p. The UT1opt 
values were obtained with FO(UT) = FO1(UT); 
while the UT2opt, with FO(UT) = FO2(UT). Fig. 14 
shows the results corresponding to p = 0.5. It can be 
seen that the quantity UT does not always reach the 
maximum value allowed by the constraint (up to 3 
units less than the maximum amount allowed), and 
hence sometimes fewer questions produce a better 
evaluation. These somewhat unexpected cases are 
marked with red and italic font in the table. 
Additionally, as the second objective function is 
more relaxed than the first one, the optimal values of 
UT2opt are less or equal to UT1opt, producing lower 
evaluation costs. 

Fig. 14 Optimal values of UT for FO1 and FO2, with 
NM = 10, NA = 4 and p = 0.5. 

4.2. Optimization model with tolerance 

Inspection of Fig. 13 hints that there is no great 
difference between FO1(2) and FO1(5), nor between 
FO2(2) and FO2(5). For this reason, if the professor 
has a certain tolerance, the practical amount of units 
to evaluate, UTpra, may be less than the UTopt 
recommended in the previous section. 

With this new tolerance parameter, the 
optimization problem gets broken down into two 
sequential problems. Firstly, the first optimization 
problem posed in the previous section must be 
solved, in order to determine the maximum value 
FOopt of the objective function. With that value, the 
following INLP optimization problem must then be 
solved: 

( ) opt

Min

s. t.:
UT

UT

FO UT FO Tol
UT

≥ −

∈

(Eq. 17) 

where Tol ∈ [0, 1] is the tolerance, or decrease in the 
probability of performing an optimal examination 
accepted by the professor. 

Applying this model to the case study (NM = 10, 
NA = 4, UM = 10, p = 0.5 and UTmax = 5) with 
Tol = 0.1, the practical amount of units to be 
evaluated is 2 in place of 5 for the second global 
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objective function. This is a significant reduction in 
the cost of the evaluation. 

Fig. 15 and Fig. 16 present the results for Tol 
values equal to 0.1 and 0.2, respectively, with 
p = 0.5 and the same UTmax considered in Table 3. 
The UT1pra values were obtained with 
FO(UT) = FO1(UT), and UT2pra were obtained with 
FO(UT) = FO2(UT). In these figures, the UT values 
are well below the allowed amounts UTmax and the 
optimum values UTopt. This is achieved without 
affecting too much the quality of the evaluation (i.e., 
FO(UT)). 

Fig. 15 Optimal values of UT for FO1 and FO2, with 
NM = 10, NA = 4, p = 0.5 and Tol = 0.1. 

Fig. 16 Optimal values of UT for FO1 and FO2, with 
NM = 10, NA = 4, p = 0.5 and Tol = 0.2. 

4.3. Approval grade effect 

In the previous study, it was assumed that the 
approval grade NA was equal to 4, which is the 
standard for approval in some universities. However, 
other universities or chairs adopt different approval 
grades according to the instance of the evaluation. 
For example, a chair may adopt a grade 5 to approve 
a partial exam, a grade 7 to promote the subject and 
a grade 4 to approve the final exam. Considering this 
possible scenario, the effect of modifying NA should 
be analyzed. 

Fig. 17 Optimal values of UT for FO1 and FO2, with 
NM = 10, NA = 5, p = 0.5, UTmax = 5 and Tol = 0.2. 

The modification of the approval grade modifies 
FO2(UT) and, therefore, also UT2opt and UT2pra. Fig. 
17 shows the values of UT2pra for NM = 10, NA = 5, 
UM = 10, p = 0.5, UTmax = 5 and Tol = 0.2. The 
same values are obtained for NA = 6. The values 
obtained for NA = 7 are the same as those obtained 
for NA = 4 (Fig. 16). Although there are changes in 
UT2pra for Tol = 0.2 when NA changes from 4 to 7, 
the difference is at most one unit of evaluation. 

4.4. Scale effect 

When the maximum grade NM is increased to 100 
and NA to 40, a marked deterioration of FO1(UT) is 
observed, whereas FO2(UT) remains almost 
unchanged. Fig. 18 presents both global objective 
functions for NM = 100, NA = 40, UM = 10 and 
p = 0.5. FO1(UT) is degraded because when the 
scale is increased the possible grades also increase, 
and then the exam grade is less likely to match the 
fair grade NJ. In this case, both UT1pra and UT2pra 
adopt values less than or equal to 2 when UTmax = 5 
and Tol = 0.2 (Fig. 19). 

Fig. 18 Global objective functions, with NM = 100, 
NA = 40, UM = 10 and p = 0.5. 
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Fig. 19 Practical values of UT for FO1 and FO2, with 
NM = 100, NA = 40, p = 0.5, UTmax = 5 and Tol = 0.2. 

4.5. Grade error 

The effect of the grade error that the professor 
tolerates should also be analyzed. In this case, the 
professor accepts as good a grade belonging to the 
interval NJ ± Error. The simplest way to deal with 
this case is to change NM in the following way: 

'
2

NMNM
Error

 
=  

 
    (Eq. 18)

where NM’ is the new scale. This solution is not 
exact, but it is a good approximation. 

To see how good this approximation can be, the 
case in which the professor has a scale with NM = 
100 and Error = 5 is analyzed. For this case, NM’ 
will be equal to 10. Fig. 20 shows the lower limits 
(LI and LI’) and upper limits (LS and LS’) of the 
grades that the professor will assign with both 
scales. The abscissae of the figure represent the 
grades the student deserves. The ordinates represent 
the limits of the grades assigned by the professor. It 
can be seen, that there is little error in replacing the 
band corresponding to NM = 100 with the band 
corresponding to NM’ = 10. 

Fig. 20 Upper and lower limits of grades. 

4.6. Sequence of questions 

If the exam is oral, the following procedure can be 
implemented to accelerate the evaluation: 

1. The UT units of evaluation are presented to
the student.

2. The student is allowed to choose the
answering order after being advised to
choose an order of his convenience. The
student should put units he dominates the
most in the first places and leave units he
scarcely know in the last ones.

3. The units are examined following the
sequence chosen by the student.

4. The exam is ended when the student
correctly presented all the units or when the
student could not present a unit.

5. The exam grade is calculated by assigning
to U the number of units the student
correctly presented.

It should be noted that this procedure does not 
alter the probability of assigning the fair grade, nor 
the probability of approving for those who deserved 
it, nor the probability of disapproving for those who 
should not pass the exam. The only consequence of 
this procedure is the reduction of the duration of the 
exam. If one student cannot answer correctly an 
evaluation unit, he will not be able to answer the 
following questions because, by ordering the 
questions, the student acknowledged that knows 
even less of the following topics. 

4.7. Subunits evaluation 

Another common case is that in which the professor 
divides the evaluation units into subunits. That is, 
once the UT units for the examination have been 
chosen, each unit is further divided into subunits for 
evaluation. To model this situation, the student 
should also be allowed to decompose into subunits 
the UE chosen units. With this variation one 
restriction must be removed, the one related to the 
student answering correctly or not at all each unit of 
evaluation. Now this must be applied to each subunit 
separately. This subdivision does not modify the 
probable grades determined with the previous study, 
but it adds intermediate grades: the greater the 
number of subunits in which the units are 
decomposed, the greater the number of feasible 
intermediate grades. 

5. Conclusions

In this paper, a simulation model was presented to 
estimate the probability of a student passing an 
exam. The probabilistic distribution of the grades to 
be obtained was also analyzed. Based on a previous 
analysis of the examination practice, an optimal 
exam was defined as the exam that awards the grade 
that the student deserves, and that can be carried out 
with respect to the limitations of time and effort of 

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-175-



the professor. Briefly, an optimal exam approves 
those who deserve to approve and disapproves those 
that do not deserve to approve. Based on this 
definition, an optimization model was formulated 
that determines the number of units to be evaluated 
in order to maximize the probability of carry out an 
optimal exam. This model was solved for different 
cases, and it was found that the optimal number of 
units to be evaluated was not always the maximum 
allowed.  

A second optimization model was then proposed 
that allowed solving the evaluation problem with a 
certain tolerance. By increasing the tolerance 
accepted by the professor, the number of units to be 
evaluated was significantly reduced. The effects of 
modifying the minimum grade for approval were 
also analyzed. It was found that it does not have an 
important effect on the number of units that must be 
evaluated to get an optimal examination. On the 
other hand, modifying the maximum grade of the 
exam greatly reduced the probability of assigning a 
fair grade to the student. 

The main practical teachings of this study are: (i) 
sometimes fewer questions produce a better 
evaluation; (ii) getting an optimal exam is more 
likely when the exam is only qualified as approved 
or disapproved (no grade scale). 
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List of symbols 

Error: Error of a grade compared with NJ. 
f1(UE): Probability of fair grade. 
f2(UE): Probability of fair approval. 
FO(UT): The chosen global objective function. 
FO1(UT): Average probability of fair grade. 
FO2(UT): Average probability of fair approval. 
FOopt: The maximum value of FO(UT). 
LI: Lower limit for grades with scale NM. 
LI’: Lower limit for grades with scale NM’. 
LS: Upper limit for grades with scale NM. 
LS’: Upper limit for grades with scale NM’. 
N(u): Exam grade of a student correctly answering u 

questions, U = u. 
NA: Minimum grade to pass the exam. 
NJ: Fair grade in the scale NM. 

NJ’: Fair grade in the scale NM’. 
NM: Maximum of the scale grade. 
NM’: Maximum of the new scale grade. 
p: Probability that students study a given unit. 
PA: Probability of a student passing the exam. 
PN(n): Probability of a student getting a particular 

grade, P(N = n). 
Pu(u): Probability of a student correctly answering u 

questions, P(U = u). 
Tol: Tolerance of performing an optimal 

examination accepted by the professor. 
U: Number of right answers of a student. 
UE: Number of units a student studies. 
UM: Number of units of evaluation. 
Umax: Maximum value of U. 
Umin: Minimum value of U. 
UT: Number of units the professor examines. 
UT1opt: Optimum value of UT when 

FO(UT) = FO1(UT) and Tol = 0. 
UT1pra: Optimum value of UT when 

FO(UT) = FO1(UT) and Tol > 0. 
UT2opt: Optimum value of UT when 

FO(UT) = FO2(UT) and Tol = 0. 
UT2pra: Optimum value of UT when 

FO(UT) = FO2(UT) and Tol > 0. 
UTmax: Maximum value of UT. 
UTopt: Optimum value of UT, for which 

FO(UTopt) = FOopt. 
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