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Abstract. Visual depth recognition through Stereo Matching is an ac-
tive field of research due to the numerous applications in robotics, au-
tonomous driving, user interfaces, etc. Multiple techniques have been
developed in the last two decades to achieve accurate disparity maps
in short time. With the arrival of Deep Leaning architectures, different
fields of Artificial Vision, but mainly on image recognition, have achieved
a great progress due to their easier training capabilities and reduction of
parameters. This type of networks brought the attention of the Stereo
Matching researchers who successfully applied the same concept to gen-
erate disparity maps. Even though multiple approaches have been taken
towards the minimization of the execution time and errors in the results,
most of the time the number of parameters of the networks is neither
taken into consideration nor optimized. Inspired on the Squeeze-Nets de-
veloped for image recognition, we developed a Stereo Matching Squeeze
neural network architecture capable of providing disparity maps with a
highly reduced network size without a significant impact on quality and
execution time compared with state of the art architectures.

Keywords: Stereo Matching, Deep Learning, Squeeze Nets, Artificial
Intelligence, Artificial Vision, Disparity Maps.

1 Introduction

Stereo Matching is a research field inspired in human capabilities, in particular
the stereopsis which is the ability of gathering depth information from the pair
of images retrieved by the human binocular vision. Getting this information
is essential to make decisions in different applications which interact with the
world, like robotic object manipulation, unmanned vehicles navigation, security
systems, user interfaces, etc. Since Hannah[1] and Marr et al.[2] proposed the
matching of two images to extract stereo information, a number of techniques
were developed to achieve this goal. As these Stereo Matching techniques started
showing similarities, Scharstein et al.[3] developed a taxonomy that precisely
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defined common steps on them, specified their goals and instructed the process
to measure them. Since then, most of the efforts have been focused on measuring
how accurate were the disparity maps obtained in the matching cost calculation
and post-processing steps, and how fast they were built.

Artificial Intelligence, and in particular Machine Learning, offer different
techniques to solve complex problems through the training of different models.
Within this field, a popular technique was the MultiLayer Perceptron (MLP)
developed by Rumelhart et al.[4], a trainable artificial neural network capable of
learning models through the adjustment of the weights that connected the dif-
ferent layers of neurons through the Back-Propagation algorithm. Even though
these networks were widely applied after their appearance, one of their main
problems was their lack of scalability as a product of the exponential growth
of the number of weights when there is a big number of inputs and outputs. A
different type of networks called Convolutional Neural Networks (CNN), a spe-
cific technique of Deep Learning, was also trained through the back-propagation
algorithm [5]. However, CNN started to be widely adopted only when Hinton,
G. [6] shown how to train Deep Network layers independently by tuning the
back-propagation algorithm.

Multiple CNN architectures have been proposed due to their simple and flex-
ible training mechanism. In addition, frameworks like Torch[7], Tensorflow[8] or
Theano[9] simplified their construction, training and test. In particular, one of
the benefits of using CNN appeared when they were applied in image recognition
problems, outperforming all the state of the art techniques [10], and currently
surpassing the human performance[11]. Due to their success in image classifi-
cation problems, CNN were also applied recently by Zbontar et al.[12] for the
disparity cost calculation, bringing CNN architectures to the Stereo Matching
field for the first time.

Different challenges have been presented for image classification[13] and dis-
parity map generation[14] aiming at reducing the error rate and execution time.
The size of the network in terms of number of parameters is very important,
because it affects the computational cost for training and execution, and also
because several applications require remote updates of the trained architectures,
presenting in some cases connectivity restrictions and making the size of the
network an important feature to optimize. Iandola et al.[15] proposed a CNN ar-
chitecture called Squeeze Nets for image recognition which decreases the number
of parameters to train and store, thus reducing the size of the network signifi-
cantly. Inspired on that work, we developed a squeeze-network-based model for
the generation of disparity maps for Stereo Matching, which reduces the network
size in storage, while also maintaining the runtime memory, execution time and
quality of the results.

This paper shows a review of the state of the art techniques presented in
Stereo Matching (Section 2), an explanation of our proposed architecture (Sec-
tion 3), experiments performed based on a case of study (Section 4) and the
conclusions and future work proposals (Section 5).
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2 Literature Review

The construction of disparity maps consist in calculating the distance between
various points or sections in a scene according to the position of the cameras.
This task has several complexities due to the nature of the variable character-
istics of the pictures and the ambiguous information they contain. Researchers
have dealt with these ambiguities by making different assumptions of the images
or data contained on it. The first pair of assumptions taken were uniqueness and
continuity. Uniqueness establishes that each item of each image must be assigned
with at most one disparity value. This condition relies on the assumption that
an item correspond to something that has a unique physical position. Continuity
states that disparity varies smoothly except on object boundaries where there
are depth discontinuities[2]. Another important assumption is the epipolar rec-
tification of the images which reduces the matching process to one dimension,
or in other words a matching calculate over an horizontal line. Based on these
assumptions stereo matching techniques were able to proceed with the matching
of objects. However, we are far away from resolving all the different problems
in the topic. Other important problems in stereo matching are the occlusions,
textureless or repetitive texture surfaces, shape of the objects, differences in the
intensities or noise in the images among others.

At side of the problems presented above, researchers found a number of mech-
anisms to retrieve dense disparity maps which can be divided in two groups: the
ones detached of CNN and the ones based on these type of architectures.

2.1 CNN detached Stereo Matching techniques

Since the taxonomy proposed in [3] multiple techniques were proposed for the
retrieval of dept information. These techniques can be categorized in two main
groups based on the way the disparity map is calculated. The solutions that
calculates the matching cost comparing a windows of neighbor pixels to gradually
build disparity maps are considered local methods. Opposite to this, the solutions
that retrieve a complete map and iteratively optimize it are considered global
methods.

An extensive survey of local and global stereo matching algorithms where
different comparisons and measures are made can be found in Hamzah et al.[16]
work.

2.2 CNN based Stereo Matching techniques

CNN architectures marked a huge improvement in Artificial Vision areas. Par-
ticularly, this kind of artificial networks brought the attention of researchers
when the Alexnet created by Krizhevsky et al.[10] reduced more than 10% the
error rate on image classification problems reaching a 15.3%. Such achievement
caused a revolution in this research field, having multiple CNN architectures
proposed in the last five years. Zeiler et al.[17] was able to tune the hyperpa-
rameters of AlexNet creating the ZFNet and obtaining a 14.8% error rate. Later
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on GoogLeNet architecture by Russakovsky et al.[18] introduced the concept
of inception modules enlarging the number of layers of the net with very small
convolutional layers obtaining a 6.61% error and a considerable reduction of the
parameters. An impressive improvement of the accuracy was achieved by He
et al.[11] proposing the addition of residual links between layers in the ResNet
achieving an error rate of 3.58%. A parameter reduction approach presented by
Iandola et al.[15] decreased the network parameters size by 50x obtaining the
same error rate as AlexNet.

All the previously mentioned networks were applied to the recognition of im-
ages with great success, however they had potential for other Artificial Vision
problems like Stereo Matching. Zbontar et al.[12] worked on this idea inspired
by the popularity of CNN and Mei et al.[19] work. He proposed a CNN based
cost matching architecture with a series of post-processing steps described in
Mei et al. paper obtaining an error rate of 2.63% on their accurate network ver-
sion. It worth to mention a better implemented architecture designed by Shaked
et al.[20] combining Zbontar et al.[12] suggested network with the residual net-
works proposed by He et al.[11]. Our work is highly inspired on [11,12,19] papers
combined with the proposed Squeeze nets proposed in [15].

2.3 Post-processing algorithms

In many occasions, the disparity maps obtained from the matching cost calcu-
lation process can be inaccurate, have occluded areas or unmatched sections. In
order to improve their quality, different post-processing algorithms have been de-
veloped. An adaptive window algorithm based on the color similarity is proposed
as cross-based cost aggregation by Ke Zhang et al.[21]. The method suggested
by Hirschmüller[22] called semi-global matching (SGM) improves the smooth-
ness term in the energy functions performing fast approximations of the neighbor
pixels using Mutual Information in multiple directions. Another interesting post-
processing method is proposed by Yao et al.[23] where the left and right based
disparity maps are interpolated to get a better approximation of the mismatch-
ing areas. In addition, the disparity map results can be improved performing a
quadratic interpolation of neighbor pixels as suggested by Miclea et al.[24].

3 Proposed System

Our model is composed of four steps as depicted the figure 1, following the
common stereo matching taxonomy suggested by Scharstein et al.[3]. The sys-
tem performs a cost calculation through a CNN extracting features of the left
and right images individually and checking their similarity on a final layer, then
a well known post-processing algorithm is applied in a cost aggregation mod-
ule, then a disparity map is constructed based on the matching costs from the
previous steps, and finally different known interpolation and image refinement
algorithms are executed to obtain an optimized dense disparity map. Our con-
tribution can be found in the cost calculation module where a modified Squeeze
Net architecture[15] is used to build a raw disparity map.

ASAI, Simposio Argentino de Inteligencia Artificial

47JAIIO - ASAI - ISSN: 2451-7585 - Página 66



5

Left Image

Post-processing Final Disparity 
Map

Cost Calculation 
Squeeze Net Refinement

Right Image

Map 
Construction

Fig. 1. Four step proposed Stereo Matching system

3.1 Cost Calculation module

The cost calculation of a common stereo matching algorithm is basically the
comparison of pixels from different images. We implemented this functionality
combining a CNN architecture and refinement algorithms as described below.

Network Architecture: The proposed deep network architecture for cost cal-
culation first processes the pair of images separately, executing two passes on
the same layers, and then joins the results in a final layer, as depicted in the
figure 2. The cost calculation network provides a raw disparity map, in the form
of a 3D matrix where each element (i, j, k) is the matching cost of pixel (i, j) for
disparity k.

Each image passes through a set of layers that generate feature maps. The
feature maps obtained from each image are then fed into a similarity calculation
layer at the end. The weights of the feature extraction layers are shared at the
time of processing both the left and right images. The last layer performs a
dot product between the feature maps of the left and right images, which were
previously normalized. The normalization and dot product steps are equivalent
to the cosine similarity measure which is used to retrieve a raw disparity map
based on the similarity of the feature maps.

The first three layers are a Convolutional layer, a ReLU activation layer and
a Pooling layer. The parameters < K,S, P > shown in figure 2 are the kernel
size, stride and padding of the module. FM represents the number of features
to be generated by the convolutional layer. The fire modules are composed of a
set of layers. Each fire module shares the same < K,S, P > parameters in the
internal convolutional layers represented with Sqz, Exp1x1 and Exp3x3, but
they differ in terms of feature maps.

Fire Module: The Fire module, depicted in the figure 3, is composed of two
sequential steps with the purpose of squeezing the number of features received,
and then expanding them in the next step, inspired by the Squeeze Net presented
by Iandola et al.[15].

This model offers two advantages in terms of reduction of parameters. First, it
reduces the number of input parameters to the convolutional layers. For example,
an initial convolutional layer with 1x1 kernels (CL1x1) reduces by a factor of
9 the number of parameters of the layer when compared to a convolutional
layer with 3x3 kernels (CL3x3), helping to decrease the size of the network. In
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Similarity Calculation

Sqz: FM=16
Exp1x1: FM=64
Exp3x3: FM=64

Sqz: FM=32
Exp1x1: FM=96
Exp3x3: FM=96

Sqz: FM=16
Exp1x1: FM=64
Exp3x3: FM=64

Feature Extraction
K=5x5 S=1x1 
P=0 FM=96

K=1x1 S=1x1 
P=0 FM=96

K=3x3 
S=2x2

Left Image

Disparity Map

Conv

Pooling

Fire

Fire

Fire

ReLU

Conv

Normalize

Sqz: K=1x1 S=1x1 P=0
Exp1x1: K=1x1 S=1x1 P=0
Exp3x3: K=3x3 S=1x1 P=1

Dot Product

Right Image

K=3x3 
S=1x1Pooling

Fig. 2. Cost Calculation network architecture. The left and right images are passed
through the same feature extraction layers, and both results are then processed in the
similarity calculation layer
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Fig. 3. Fire Module layers composition. The number of feature maps in the output of
the layers is illustrative and changes in each one of the fire modules of the architecture.
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addition, the number of features produced by the squeeze step is significantly
reduced in contrast with other networks, generating a minimized input for the
next CL3x3 of the expand module.

Second, in order to increase the number of features produced by the Fire
module, a parallel CL1x1 is added, thus generating features maps that should
otherwise be produced by the CL3x3. Consequently, the input required by both
convolutional modules in the expand component to provide variety of feature
maps can be reduced and so the number of parameters to be stored. It worths to
mention that the CL1x1 of the expand module has padding equal to 1 in order
to maintain the output feature map size equivalent to the CL3x3 one.

Cost Calculation: Since we assume that the images are rectified, their epipolar
lines are completely horizontal and vertically coincident on both images. Unless
they are occluded, the corresponding pixels can then be found in the same row,
but differing by a certain disparity. Conversely, having the disparity correspond-
ing to a pixel of one image, we can get the position of the matching pixel on the
other image.

To train the proposed Squeeze Net we used the KITTI 2012 dataset[25]
which offers both left and right images rectified and a group of ground truth
disparities. Taking these latter ones along with one of the images, we can create
training patches with examples of correct and incorrect matches as suggested
by Zbontar et al.[12]. Each patch is a matrix containing pixel intensities. The
negative examples are obtained by adding an offset to the disparity provided
by the ground truth, and getting the patch from the new position. Also we
augmented the training samples by performing a series of transformations on
the patches like rotation, brightness and saturation level modifications, among
others. In this way we can train the network with positive and negative matching
examples for each position and disparity.

Our cost function is described in the equation 1, where PL and PR are the
left and right patches, p is the position of the center of the matrix representing
the patch, d is the horizontal displacement and f is the network output, that
measures the similarity of the patches, being zero when they match exactly.

CSqueeze-Net(p, d) = f
(
PL(p), PR(p− d)

)
(1)

Because the output size we want to produce is fixed, we need to calculate
the patch size wsk to produce it. The patch size is calculated only once, and is
defined by equation 2, being k the number of the last convolutional or pooling
layer, <S, P , K> the module’s stride, padding and kernel size respectively, and
wsi−1 the output size of the module. Notice that wsk is calculated iteratively,
where variable i is initialized to 1 and it is increased step by step up to the
number of convolutional and pooling layers, accumulating its values. In other
words, to obtain the network minimum input size, equivalent to the patch size,
we need to go backwards from the last convolutional or pooling layer to the first
one.
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wsi =

{
1 i = 1(
(wsi−1 − 1) ∗ Sk−i+1

)
− (2 ∗ Pk−i+1) +Kk−i+1 1 < i ≤ k

(2)

Network Training: During training, the network analyzes pairs of left/right
patches, and the result is a measure of their similarity, as stated in equation
1. Then, the loss function to be minimized to adjust the networks parameters
applies the hinge-loss to pairs of positive and negative matching samples, as
defined by equation 3

L = max(0,margin+m− −m+) (3)

where m− and m+ are the results of the negative and positive matching ex-
amples, and margin is the tolerance margin. When the similarity of the positive
example is greater than the similarity of the negative one by a certain margin
the loss will be zero. In our experiments the margin used was 0.2.

3.2 Post-processing module

The cost calculation network provides a representation of a raw disparity map,
in the form of a 3D matrix where each element (i, j, k) is the matching cost of
pixel (i, j) for disparity k. The quality of this map can be improved through a set
of post-processing steps. In our work we only perform a Semi-Global Matching
inspired by Hirschmüller et al.[22].

Semi-global Matching (SGM) An important refinement of the disparity
map is related to smoothness. Since objects usually have similar disparities,
intuitively we can say that differences in the disparity of neighboring pixels
should be penalized. In general, the penalty applied increases according to how
strong the difference between disparities is. We defined the local neighborhood
of a pixel by moving 1 pixel away of if in the up, down, left and right directions,
following the suggestion in [12]. If we call r the vector of the directions where the
pixels q are found, a set of adjustments Cr(p, d) for the matching cost Cr(p,d)

computed by the CNN are calculated through equation 4 (and later averaged,
as described below).

Cr(p, d) = CD(p, d)−min
i

Cr(p− r, i) + min
(
Cr(p− r, d),

Cr(p− r, d− 1) + P1,Cr(p− r, d+ 1) + P1,min
i

Cr(p− r, i) + P2

)
(4)

Here CD is the matching cost calculated by the CNN, P1 is the penalty when
the difference between the disparity Dp and Dq of pixels p and q in the local
neighborhood is 1. P2 is the penalty when that difference is higher than 1, and i
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are the valid disparities. The second term of the equation compensates for cases
where the values of the third term of the equation grow too large, for smoothing
special cases (e.g. occluded or mismatching pixels).

The penalty values P1 and P2 varies according to disparity of the pixel com-
pared with neighbors in edges of objects. Therefore, penalties are lower when
pixels are detected in borders. The parameters are defined as follows:

D1 = |IL(p)− IL(p− r)| D2 = |IR(p− d)− IR(p− d− r)|

P1 = P1, P2 = P2, if D1 < Dsgm ∧D2 < Dsgm;
P1 = P1/Q2, P2 = P2/Q2, if D1 ≥ Dsgm ∧D2 ≥ Dsgm;
P1 = P1/Q1, P2 = P2/Q1, otherwise

(5)

where I is the pixel intensity. In case the disparity shows a big discontinuity
in the disparity map, i.e. when D1 and D2 are equal or bigger than a certain
Dsgm, the penalty is reduced by a large factor Q2 as it is assumed that it is a
steep border. In case just D1 or D2 meets this condition, the border is not that
steep so the penalty is reduced by a smaller factor Q1. Otherwise the case is
not a border. In case of vertical directions a different factor V is used to reduce
P1 as the disparities changes shown in ground truth images are more frequently
vertical.

After computing all these values for each direction, the final smoothed cost
is an average of the results obtained (equation 6).

CSGM(p, d) =
1

4

∑
r

Cr(p, d) (6)

3.3 Map Construction

The disparity map is constructed by gathering the minimum cost from the matrix
of matching costs for each pixel position. This strategy is called winner-takes-all
and is defined in the equation 7.

D(p) = argmin
d

C(p, d) (7)

3.4 Refinement module

Once the disparity map is constructed, problems like mismatching or occluded
pixels can reduce its accuracy. This can be improved through different interpo-
lation and refinement steps. These steps were inspired by Mei et al.[19] work.
The execution order is depicted in figure 4.

ASAI, Simposio Argentino de Inteligencia Artificial

47JAIIO - ASAI - ISSN: 2451-7585 - Página 71



10

Disparity
Map Interpolation Subpixel

Enhancement Filtering Optimized  
Disparity Map

Fig. 4. Refinement steps performed after the map construction module

Interpolation: The disparity map can be calculated either using the left image
as reference or the right image. Changing the reference image produces different
maps since the occluded pixels are different on each one. Having both disparity
maps can help us to determine which are those occluded object by comparing the
disparities of a matching pixel. If the disparities match (the absolute difference
is less than one), we can consider them as correct. If the disparity of the pixel
in one map matches the disparity of a pixel in the other map other than the
corresponding one, we consider it as incorrect. If the disparity does not match
any other disparity in the other map, it is an occluded pixel.

The occluded pixels disparity is obtained by looking at the nearest correct
pixel at the left. For mismatching pixels we look for a disparity value as the
median of sixteen directions pixels around them.

Sub-pixel Enhancement: In this step we use the SGM cost of pixel p and
disparity d and its closest "disparity" neighbors to get a smoothing subtraction
term, to improve the result, as shown in equation 8.

D(p, d) = D(p, d)− CSGM (p, d+ 1)− CSGM (p, d− 1)

2
(
CSGM (p, d+ 1)− 2CSGM (p, d) + CSGM (p, d− 1)

) (8)

Filtering: This module applies a median filter with a 5x5 kernel followed by a
bilateral filter, for the purpose of smoothing disparity changes without affecting
the edges.

4 Case Study

In this section we present details of the environment where the different al-
gorithms were executed, the training specifications and the system setup. The
results obtained are shown in terms of parameters reduction, error rate, exe-
cution time and memory consumption. The experiments were performed on an
AMD Ryzen 1700 CPU with 32 GB DDR–4 2400 MHz ram and a NVidia Titan
Xp GPU.
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Training set: We used the 2012 KITTI dataset [25] composed by 194 training
pairs of images of 1240 x 376 pixels. These images have a maximum of 228 dis-
parity levels. The dataset provides around 30% of the image disparities measured
with laser scanners. Leaving 40 images for test, the remaining 154 images made
a training set of around 19 million positions with measured disparity. Since we
get positive and negatives examples as mentioned in Section 3.1, the number
of training examples (sampled patches) is more than 38 million. Each sample is
subject to several image transformations in order to provide different samples
on each epoch. As a product of the CNN layers’ kernels and padding the window
size of our patches is 9x9.

Learning parameters: These training samples were provided in batches of 128
samples during 15 epochs. We used a learning rate of 0.05 which is decreased
after epoch 11 by a factor of 10. The parameters used for image post-processing
are the same used in Zbontar et al.[12] fast architecture.

Cost calculation parameters: The proposed Squeeze Deep Neural network
considerably decreased the number of parameters in relation with the other two
networks. This result is the product of the reduction of features in the squeeze
layer of the fire module that are fed into the expansion CL3x3 module and the
expansion of features through a parallel CL1x1. A comparison of the network
size, the parameters involved and the reduction rate is shown in the table 1.

Table 1. Cost Calculation Deep Neural network sizes and parameters

Network Size (KB) # Parameters Reduction
Zbontar Accurate 2,534 648,592 87.81%
Zbontar Fast 440 112,564 29.77%
Squeeze Net 309 79,040 -

System accuracy and execution time: The system was executed in two
instances: with post-processing and refinement, and without it. Table 2 shows
the different results obtained as an average over the 40 testing images.

Table 2. System accuracy and execution time

Error Execution time
Network CNN only Full method CNN only Full method
Zbontar Accurate 6.03% 2.54% 33.24 sec 33.84 sec
Zbontar Fast 8.39% 2.93% 0.33 sec 0.65 sec
Squeeze Net 11.87% 3.69% 0.58 sec 0.89 sec
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Even through the error is 6% higher in case the system is executed without
post-processing and refinement, the degradation of the quality including these
two modules is below 1.5% even compared with the accurate architecture. The
execution time of the network is only comparable with the fast architecture and
is over 38 times faster than the accurate architecture. The resulting disparity
maps of each model, including post-processing and refinement steps, are shown
in figure 5.

Zbontar Acct

Zbontar Fast

Squeeze Net

Fig. 5. Full method generated disparity maps

GPU Memory consumption: There is a reduction of memory consumption
by our solution, as compared to the fast architecture, making it feasible to use
in smaller devices with less GPU resources as presented in table 3.

Table 3. Architecture GPU memory consumption comparison

Network Zbontar Accurate Zbontar Fast Squeeze Net
GPU Mem ∼4200 MB ∼1332 MB ∼1975 MB
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5 Conclusions and Future Work

The long term objective of this research is to reduce the computational resources
required by these models, to make their deployment on smaller devices feasible.
These resources include memory, execution time, storage and communications
size. In this paper we presented a Cost Calculation CNN based module built
as a Squeeze Network to generate an initial disparity map. This network was
combined with post-processing and refinement algorithms to improve the final
disparity map quality. In the tests performed the system showed a reduction of
almost 30% of the number of parameters. The cost of such a reduction was less
than 1.5% of accuracy and less than 250 ms of execution time when compared
to state of the art networks. The GPU memory used was comparable with the
fast architecture and consumed less than a half the accurate architecture. Thus,
the results show the utility of our architecture in terms of reducing the size of
the network, and it is a first step towards the more general goal of reducing the
execution time and memory required.

The model proposed might be improved to obtain better quality on disparity
maps and less execution time by experimenting with different architectures and
hyperparameters, like the combination of squeeze nets and residual networks.
Also, different techniques of parameter size reduction like pruning, as mentioned
in Iandola et al[15], to minimize even more the network size, will be explored in
future work.
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