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Abstract. The pervasiveness of geo-located devices has opened new possibili-
ties in recommender systems on social networks. In effect, Location-Based Social
Networks or LBSNs are a relatively new breed of social networks that let users
share their location by triggering ”check-in” events on venues, such as businesses
or historical places. In this paper, we compare the performance of traditional rat-
ing and social-based similarity metrics against location-based metrics in a user-
based collaborative filtering algorithm that recommends venues or places to visit.
This analysis was performed on a large real-world dataset provided by the Yelp
social network service. Our results show that, geo-located metrics perform as
well as rating or social metrics for selecting like-minded users and, thus, to issue
a recommendation.

1 Introduction

The ubiquitous use of gps-enabled devices, such as smartphones and wearable electron-
ics, have fostered the development of new social network services [3], such as Yelp 1

and Foursquare 2. These services extend the traditional social network by including a
location-based layer that connects users through the places they visit in the real-world
and the way they move between these places. Thus, a Location-Based Social Network
(LBSN) introduces new features, besides the traditional characteristics of a social net-
work, that may be leveraged to improve the user experience and engagement in a social
network service.

In particular, Recommender Systems (RSs) can benefit from these new location-
based features to improve the accuracy of recommendations [4]. For example, RSs can
improve venue recommendations by keeping track of the current and past locations
visited by the user. Additionally, the user´s location may be used to improve item rec-
ommendations, such as food and clothes. Finally, friendship recommendations based
on common visiting patterns can help to expand the user´s social network [4].

In this work, we analyze the impact of several location-based features in the recom-
mendation of venues using a large LBSN dataset. Specifically, we construct different
similarity metrics based on the features provided by the LBSN and analyze how each
metric influences prediction accuracy and in building a ranking of the venues the user
may be interested in. To that end, we used a user-based collaborative filtering algorithm,

1 Yelp main WebPage https://www.yelp.com/
2 Foursquare main WebPage https://www.foursquare.com
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which is a widely used algorithm that is easy to implement and provides easy-to-explain
recommendations [13]. The set of similarity metrics were also combined in order to
maximize the accuracy of the recommendation.

The following sections are organized as follows. Section 2 provides some back-
ground and related work regarding recommendations in LBSNs. Section 3 introduces
the user-based CF algorithm used in this work. Section 4 summarizes the similarity
metrics considered for our experiments. Section 5 presents the experiments and, finally,
Section 6 presents some conclusions and future work.

2 Related Work

Collaborative Filtering (CF) has been widely used to build recommender systems. CF
algorithms infer the interest of a user in a given item by assuming that like-minded
users are good predictors and, hence, can be used to compute a recommendation [1].
Neighbourhood-based and Matrix Factorization methods are among the most popu-
lar CF algorithms, and have been successfully implemented in practice [13]. Hybrid
weighting methods (ensemble methods) that combine the output of many predictors
have had recent success in improving the accuracy of recommendations [2].

Techniques on building social networks that leverage data coming from geolocation
sensors can be found in [3]. Moreover, Location-Based Recommender Systems based
on CF need to translate user check-ins into an user-item matrix with rows represent-
ing users’ history of visits and columns points-of-interest (POIs) or venues. Cells in
the matrix can be filled in several ways, ranging from explicit ratings (e.g. stars) to
implicit ones (e.g. check-in frequency or amount of reviews). For instance, LARS [9]
is a location-aware recommender system that deals with three types of location-based
ratings: spatial ratings for non-spatial items, non-spatial ratings for spatial items, and
spatial ratings for spatial items. GeoMF [10] uses a Matrix Factorization technique to
model a spatial clustering phenomenon observed in human mobility behavior on LB-
SNs. Context-awareness is also considered in CF approaches. For example, Huang and
Gartner [8] use highly available GPS trajectories to enhance visitors with context-aware
POI recommendations and [19] extract the user travel experience in the target region to
reduce the range of candidate POIs.

The authors in [17] built an efficient, friendship-based similarity metric using the
distance between friends, but disregard many of the features available in Foursquare.
[15] propose several friendship recommendation similarity metrics that use geo-located
features in three LBSNs and compare them against well-known similarity metrics. In
our work we use several of the ideas by [15] to design location-based similarity metrics.

In [11], the authors tackle the problem of venue recommendation by using a random-
walk algorithm that computes the probability that a user may visit any place in the
LBSN. The authors evaluate their approach against traditional similarity metrics, in-
cluding a distance metric between ”home” locations, computed as the place the user
has visited the most. We base our home similarity metric on this work.

Although, location-based recommendations have been used in the literature [4],
most of the studies are limited to studying the accuracy of a single similarity metric
and many ignore geographical data, such as the longitude and latitude of the venue. In
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this work we propose alternatives to combine these features, and assess their effectivity
as a prediction source. An study of neighbour selection techniques in the context of LB-
SNs has been carried out by Rios et al. [14]. We extend the work by Rios et al. [14], not
only by providing a richer set of similarity metrics but also by carrying out an analysis
on a larger amount of data.

3 User-based collaborative filtering

One of the most popular types of neighbourhood-based CF algorithms are memory-
based collaborative filtering algorithms. These algorithms take advantage of the rela-
tionship between items and how users have rated them - known as item-based CF - or
the relationship between users - known as user-based CF - to produce item recommen-
dations [13]. In order to easily include the location-based similarity metrics, we chose
a simple user-based CF algorithm.

User-based CF are amongst the easiest algorithms to implement and have proven
to be effective. However, this type of algorithms is resource-intensive as they use the
entire dataset as input to produce a recommendation [13]. The user-based CF algorithm
used in this paper is proposed by Bellogı́n et al. [5] and is defined as:

r(u, i) = r(u)+C ∑
v∈g(u,i;k;s)

f (s(u,v, i),sim(u,v))(r(v, i)− r(v)) (1)

This equation predicts that rating r of user u for the unseen item i is the average
of the ratings given by u, plus a deviation computed from ”like-minded” users. The g
function selects a group of k candidate users that are similar to u, known as its neigh-
bourhood, and uses a score function s to penalize neighbours v that are not trustworthy
for a given item i and target user u. The f function aggregates the similarity score sim
and the output of s in order to weigh the contribution of neighbour v on the final sum-
mation.

4 Similarity Metrics

This Section presents the similarity metrics used to obtain the neighbourhood of the
target user. These metrics are grouped according to the type of feature used to compute
the score, namely, Rating, Social Graph, Popularity and Location-based metrics.

4.1 Rating-based metrics

Similarity metrics based on the ratings given by users are the standard way of finding
like-minded users: in this context users that rate the same items similarly are bound to
behave equally. Table 1 summarizes the metrics considered in this study, being the Co-
sine Similarity one the most commonly used metrics and, incidentally, used as baseline
for our experiments.
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Similarity Equation

Cosine sCosine
xy = ∑vεV rvxrvy√

∑vεVx r2
vx

q
∑vεVy r2

vy

Pearson sPearson
xy =

∑vεV (rvx−µRx )(rvy−µRy )√
∑vεVx (rvx−µRx )

2
q

∑vεVy (rvy−µRy )
2

Jaccard sJaccard
xy =

|Rx∩Ry|
|Rx∪Ry|

Euclidean sEuclidean
xy = 1

1+
√

∑vεV (rvy−rvx)2

Table 1. Rating-based similarity metrics.

4.2 Social Graph-based metrics

LBSNs also have a social component that is worth considering in order to find the
neighbourhood of the target user. As it is shown in Table 2, we used well-known link-
prediction metrics available in the literature [16]. The hypothesis behind these Social
Graph-based similarity metrics is that the structural information of the graph can predict
future interactions between users and items.

Similarity Equation

Jaccard sJaccardGraph
xy =

|Γ (x)∩Γ (y)|
|Γ (x)∪Γ (y)|

Cosine sCosineGraph
xy =

|Γ (x)∩Γ (y)|√
kx×ky

Preferential Attachment sPA
xy = kx × ky

Adamic-Adar sAA
xy = ∑z∈Γ (x)∩Γ (y)

1
logkz

Friendship sFriends
xy =

(
1 i f y isa f riend o f x
0 otherwise

Table 2. Social Graph-based similarity metrics.

4.3 Popularity-based metrics

Although they are not exclusive to LBSNs, popularity features are considered important
in building trust throughout the social network. For example, in Yelp, users are able to
give ”useful” valuations for a user’s review and, in turn, making that review, and its user,
more trustworthy. Consequently, introducing the ability to weigh popular or trustworthy
users in neighbourhood selection may help to produce better recommendations.

The first three metrics are standalone, global popularity metrics: PageRank [12],
Usefulness (the normalized amount of useful valuations) and Liked Tips (normalized
amount of ”likes” for tips). Naturally, an standalone popularity metric of users is not a
synonym of similarity, which means that popular users are not necessarily similar. Addi-
tionally, inspired by [15], we introduced two similarity metrics based on Adamic-Adar
that penalize the influence of very popular users. Finally, although not strictly being
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popularity-based, the Connected Components graph algorithm was used as a similarity
metric that gives an score of 1 if users belong to the same component, and 0 otherwise.
The set of popularity metrics used in this work is shown in Table 3.

Similarity Equation

PageRank PR(i) = (1−α)e+α ∑( j,i)∈E
PR(i)

O j

Usefulness -
Liked Tips -

Adamic-Adar of Reviews sAA
xy = ∑v∈Γ (x)∩Γ (y)

1
log|Rv|

Adamic-Adar of Tips sAA
xy = ∑v∈Γ (x)∩Γ (y)

1
log|Tv|

Connected Components sCC
xy =

(
1 CCx =CCy

0 otherwise
Table 3. Popularity-based similarity metrics.

4.4 Location-based similarity metrics

Location-based similarity metrics use the geographic position - latitude and longitude -
of venues visited by users. In this context, we considered three location-based metrics.
The first metric computes de home location of each user as the area where the user
visited a large number of venues. Then, the ”home similarity” is the euclidean similar-
ity between the home location of two users. The second metric computes the Jaccard
similarity of venues visited by a pair of users, but filters out those pairs of venues that
are more than 200-meters away from each other. Finally, the third metric extends the
previous one by using only venues that belong to the same category of venue.

Similarity Equation

Home sEuclidean
xy = 1

1+d(hx,hy)

Jaccard of Venues sJaccardGraph
xy =

|D(x)∩D(y)|
|D(x)∪D(y)|

Jaccard of Venues of the same Category sJaccardGraph
xy =

|D(x)∩D(y)|category
|D(x)∪D(y)|category

Table 4. Location-based similarity metrics.

5 Experiments

This Section presents the rationale behind the experiments selected, the setup used to
run them and the metrics used to evaluate them.
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5.1 Experiment configurations

Table 5 summarizes the individual and grouped metrics evaluated in the experiments.
Metric groups are an effective way of combining the advantages of individual metrics.
Unfortunately, some combinations may be prone to suffer low performance, compared
to using metrics individually, if the combination technique is not adequate. In particular,
some metrics may be incompatible with each other, and instead of amplifying similar-
ity between like-minded users, they tend to reduce it, and produce low-performance
neighbourhoods.

Configuration Name Metrics

Rating Cosine, Pearson, Jaccard, Euclidean
Social (friendship-based) Adamic-Adar, Jaccard, Cosine (Graph),

Preferential Attachment, Friendship
Social Popularity Connected Components, Adamic-Adar of

Reviews, Adamic-Adar of Tips
Geo Home, Jaccard of Businesses < 200m, Jaccard

of Business < 200m by Category
Rating + Geo Rating metrics and Geo metrics

Baseline Cosine of Ratings
Home Home similarity

Jaccard of Business Jaccard of Business <200m
Jaccard of Business by Category Jaccard of Business <200m, by Category

All Includes all pairwise similarity metrics
Table 5. Single and grouped metrics used in the experiments.

Besides the similarity metrics, each experiment configuration consisted in a metric
interpolation method (used to find a single similarity score) and a scoring boost for
neighbour selection. All of the experiments used a top-k, with k = 10, neighbourhood
selection algorithm, but some of them also employed a popularity-based metric to boost
the ranking score of popular or trustworthy users.

Three metric interpolation methods were used: mean of the similarity scores, se-
lecting the maximum similarity and selecting the minimum similarity. As mentioned
before, the ranking built by the neighbourhood selection algorithm can also be boosted
by a popularity metric to leave out unpopular, untrustworthy users. As a consequence,
the three aforementioned standalone popularity metrics (PageRank, Usefulness, Liked
Tips) were used separately as score boosts for each experiment configuration.

5.2 Experimental Setup

The dataset used for our experiments is a publicly-available, real-world snapshot of the
Yelp Social Network originally created for the Yelp Dataset Challenge [6]. The entire
dataset was pre-processed to build the similarity metrics described above.

Initially, in order to reduce the influence of the cold-start effect and, naturally, to
reduce the size of the dataset, we filtered those users with less than 10 ratings. The

ASAI, Simposio Argentino de Inteligencia Artificial

47JAIIO - ASAI - ISSN: 2451-7585 - Página 159



resulting dataset was then randomly divided into 5 folds of train-test pairs, using a
cross-fold validation scheme, to reduce the possible bias of the dataset on the results.
Thus, for each fold, the metrics described in Section 4 were computed and saved for
each pair of users in the fold.

As a result, each fold contained 2M ratings provided by 75K users, split in 1.6M
train ratings and 456K test ratings. Processing the similarity metrics on the training set
resulted in 382M individual records, each containing a pair of users that presented a
non-zero score on any given metric.

The tools used to build and test our experiments were implemented in Python and
used the Spark platform [18] as processing backend. The Hadoop Distributed File Sys-
tem 3 was used as the storage support where the dataset and the intermediate results
were kept. The cluster used in this work consisted of a set of 10 nodes of commodity
hardware that sum up 100 GB of RAM, 68 cores and 5 TB of storage capacity.

5.3 Evaluation

In the experiments, two main aspects of the CF algorithm were evaluated. Firstly, we
evaluate its ability to predict item stars given the top-10 neighbours. In this evaluation,
the Mean Average Error (MAE) metric and the Coverage metrics are the most com-
mon ways of testing the recommendation accuracy. Whereas MAE measures the error
between the predicted ratings and the test ratings, the Coverage metric measures the per-
centage of items that the algorithm was able to give a prediction to. A good-performing
algorithm in this regard produces low MAE and high Coverage.

Secondly, in many applications, building a ranking of items that the user may be
interested in is more important than accurately predicting the user’s rating. The top-N
precision is a useful metric to assess ranking quality, disregarding the order in which
the items are shown. In this work, we considered the Precision@5 and Precision@10
metrics.

5.4 Results

Figure 1 shows the MAE and Coverage results that evaluate the accuracy of the rat-
ing prediction. As expected, the selected rating-based metrics are the best way to pre-
dict item ratings but have relatively low coverage (less than 20%). However, the base-
line metric (cosine similarity) combined with PageRank produces a large coverage and
low MAE. Social-based and Social Popularity-based metrics performed relatively good
in comparison to rating-based similarities. Remarkably, taking the minimum signal of
the social popularity metrics produced a large coverage (41%). Location-based metrics
produce very good results in this evaluation. For example, location-based metrics in
combination with a PageRank boost produces a low MAE, while keeping almost 25%
of coverage. Additionally, location-based metrics combined with rating-based metrics
produced a good mae-vs-coverage result.

The evaluation of ranking quality was performed using the Precision@N metric.
Figure 2 shows the Precision results. In this regard, the rating-based metric provided the

3 Hadoop Main Web Pagehttps://hadoop.apache.org
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Fig. 1. MAE and Coverage results.
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best results in building a ranking of items. However, the difference of performance with
the location-based metrics is negligible in absolute value results. In particular, location-
based metrics in combination with ratings using a mean interpolation produced high
results.

It is also important to know how many of items recommended are actually liked by
the user. Thus, we introduced a version of the Precision metric, called Liked Precision,
in which an item is considered a hit provided that it appears in the test set and its
predicted rating is greater than the average of the ratings given by the user. Although
the Precision score was significantly reduced, the ordering of the evaluated metrics was
not modified.

6 Conclusions

Location-based features have a significant impact in the quality of CF recommenda-
tions. In fact, in our experiments, geo-located neighbour selection performed similarly
to rating-based similarity metrics. Social Popularity-based metrics also affected the
quality of recommendations and, in some cases, improved the ranking of items and
reduced the prediction error. Nevertheless, most similarity metrics performed poorly.
For instance, the Precision@N metrics of the business rankings built by the proposed
similarity metrics are relatively low. This is a direct effect of recommending locations
that like-minded users have rated as ”good places to visit” and were not part of the test
set. In effect, recommending items that the user would not have found by himself is
actually a good characteristic of a recommender system [13].

Unfortunately, user-based CF algorithms are very resource-intensive and struggle in
the face of scenarios with high data sparsity. Future work includes evaluating the same
metrics in a matrix-factorization algorithm and use hybridization techniques to mix the
output of several recommendation algorithms. Additionally, the content of users’ ratings
was left aside in favor of features that are easier to process. Nonetheless, the content of
a rating has been shown to be a good predictor of item rating [7].
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Fig. 2. Precision@5 and Precision@10 results.
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