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Objectives: The formation of biofilms on titanium dental implants is one of the main causes

of failure of these devices. Streptococci are considered early colonizers that alter local

environment favouring growing conditions for other colonizers. Chlorhexidine (CHX) is

so far the most effective antimicrobial treatment against a wide variety of Gram-positive

and Gram-negative organisms as well as fungi. This study was designed to develop a CHX

delivery system appropriate for healing caps and abutments, with suitable drug release rate,

effective as antimicrobial agent, and free of cytotoxic effects.

Methods: Polybenzyl acrylate (PBA) coatings with and without CHX (Ti/PBA and Ti/PBA-CHX,

respectively) and different drug loads (0.35, 0.70, and 1.40%, w/w) were assayed. The

cytotoxic effect of CHX released from the different substrates on UMR106 cells was tested

by alkaline phosphatase specific activity (ALP), and microscopic evaluation of the cells. Non-

cytotoxic drug load (0.35%, w/w) was selected to evaluate the antimicrobial effectiveness of

the system using a microbial consortium of Streptococcus species.

Results: The kinetic profile of CHX delivered by Ti/PBA-CHX showed an initial fast release

rate followed by a monotonic increase of delivered mass over 48 h. The number of attached

bacteria decreased in the following order: Ti > Ti/PBA > Ti/PBA-0.35.

Conclusions: PBA-0.35 coating is effective to inhibit the adhesion of early colonizers on Ti

without any cytotoxic effect on UMR-106 cells.
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1. Introduction

Initial bacterial adhesion and colonization of healing caps,

abutments and dental implant surfaces play a key role in
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biomaterial-related infections. Oral microorganisms are

able to colonize biomaterial implant surfaces and related

devices during surgery (perioperative contamination). Fürst

et al.3 demonstrated that the submucosal dental implant

microbiota is already established at the completion of the
as Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas,
5 7430; fax: +54 221 425 4642.
e@inifta.unlp.edu.ar (M.A. Fernández Lorenzo de Mele).

.

http://dx.doi.org/10.1016/j.jdent.2012.01.008
mailto:gcortizo@inifta.unlp.edu.ar
mailto:mmele@inifta.unlp.edu.ar
http://www.sciencedirect.com/science/journal/03005712
http://dx.doi.org/10.1016/j.jdent.2012.01.008


j o u r n a l o f d e n t i s t r y 4 0 ( 2 0 1 2 ) 3 2 9 – 3 3 7330
surgical procedure. Actinomyces species and Streptococci are

considered early colonizers that alter the local environment

preparing the surroundings for later colonizers that require

more demanding growth conditions.1,4 Since Streptococci

usually coadhere with P. gingivalis, their presence allow

presume the eventual development of periodontitis. Strepto-

coccus gordoni, for example, is able to extract and accumulate

divalent cations in vivo, which may be a critical factor for the

successful colonization of oral surfaces and communication

with other microbial residents. Other bacteria which bind to

Streptococci, such as Fusobacterium, Capnocytophaga, and

Prevotella species, are also known to be involved in periodon-

tal infections.

Microbial analyses of failed implants5 showed the presence

of Streptococcus anginosus (milleri) and Fusobacterium nucle-

atum in 70% of cases. Additionally, in all but one implant (97%),

bacterial growth was found on the implant surface. The

implant (or fixture) showed to be 100 to 1000 times more

effective as bacteriological sample source than the scoop

samples of sockets.

Difficulty of antibiotic treatments to eradicate oral infec-

tions is known to be related to a significant decrease in the

susceptibility to biocidal agents of biofilms, compared with

cultures grown in suspension (planktonic cells).3,6,7 The high

cell density of microbial biofilms is associated to their higher

antimicrobial resistance. Mechanical management to remove

the biofilm in the peri-implant vicinity is almost impossible

since the roughness and composition of the implant surface,

which modulate osteoblast attachment and proliferation,

should not be altered. The application of biocidal agents by

means of controlled delivery seems to be a suitable alterna-

tive. Chlorhexidine (CHX) and its water-soluble derivative

chlorhexidine digluconate have been extensively used to

control biofilms on teeth.8,9 CHX is so far the most effective

antimicrobial treatment because of its several advantages:

high antimicrobial capability, and ability to inhibit glycosydic

and proteolytic activities and reduce matrix metal-proteinase

action in most oral bacteria.10 CHX is also effective against a

wide variety of Gram-positive and Gram-negative organisms

as well as fungi.11 Additionally, it is retained by the dentine

hard tissues and is an effective irrigator to prevent root canal

reinfection due to coronal leakage.12 CHX does not negatively

affect the push-out bond strength in post bond cementation.13

Unfortunately this compound has been reported to induce

cytotoxicity14 and genotoxicity in oral tissue cells, preventing

fibroblast attachment, reducing their proliferation, inducing

DNA damage and other genotoxic side effects, thus negatively

interfering the early healing phase.15 However, biofilms are

characterized by a microscale spatial, structural, and func-

tional heterogeneity that may change to become more

resistant when CHX is present in the biological fluid.16 This

highlights the importance of a drug release system on the

dental implant surfaces, healing caps and abutments in order

to hinder early bacterial attachment and the subsequent

biofilm development favouring antimicrobial action against

the early less dense biofilm.

Current research on properties of titanium implant and

related devices focuses on two main purposes: to accelerate

bone healing and prevent bacterial attachment.4 Over a period

of several days, CHX adsorption to titanium dioxide (anatase
and rutile) proved to be more rapid on rutile and desorption on

anatese.17 Polymer coatings also seem to be suitable to control

the release rate of antimicrobial drugs. Promising results on

the antimicrobial properties of biochemically modified colla-

gen coated titanium were also reported.18 Moreover, several

studies have suggested a controlled release drug device with

water-permeable polymer for antimicrobials delivery.19,20

However, the development of suitable drug carriers for

prolonged release of CHX still remains a challenge. Further

studies are needed to evaluate the release rate, antimicrobial

effects, and the cytotoxicity of controlled drug release

devices.11,18

During the last decades, polymeric materials have signifi-

cantly contributed to the development and improvement of

implant and related devices 21–23 as well as drug delivery

systems.24–26 Amongst them, metha/acrylic polymers exhibit

good adhesion to metal surfaces27 and resistance to enzymatic

hydrolysis, and may be good candidates for osseointegrated

interfaces. This last condition is crucial because the clinical

success of oral implants depends on their early osseointegra-

tion, which is in turn related to implant–tissue interac-

tion.28The chlorhexidine coating was designed to inhibit the

adhesion of bacteria on healing caps and abutments (very

close to the dental implant). However, the coating may release

the drug towards both fibroblastic and osteoblastic surround-

ing tissues. Considering that the lack of adherence of

osteoblasts is the main cause of failure of the implants,

cytotoxicity assays were performed with an osteosarcoma

(UMR106) cell line to investigate if these osteoblastic cells were

affected by the release of the drug from the surrounding

region. The effects, if any, would be reflected by the decrease

of alkaline phosphatase production and/or the inhibition of

cell growth. UMR-106 cells have been widely used for the

evaluation of cytotoxicity of different compounds of clinical

interest during the last two decades.29–31

On the basis of previous observations on the key role of

early biofilm formation in implant-related infections, the

present study was designed to find a CHX drug delivery system

with suitable antiadherent properties and drug release rate,

effective as antimicrobial agent during the initial bacterial

adhesion, and free of cytotoxic effects. Thus, CHX-containing

titanium/polybenzyl acrylate coatings (Ti/PBA-CHX) with

different drug loads were used. First, the cytotoxic effect of

CHX released from different samples was tested in UMR106

cells in order to select the suitable non-cytotoxic drug load.

Subsequently, the antimicrobial effectiveness of the selected

Ti/PBA-CHX coating was evaluated using a microbial consor-

tium of Streptoccoccus.

2. Materials and methods

2.1. Materials

Grade I titanium samples (10 mm � 20 mm � 1 mm) were

used as substrate. Samples were pretreated by polishing

down to alumina 1 mm size; subsequently they were degreased

with acetone, and rinsed in distilled water.

Polybenzyl acrylate (PBA) was synthetized by radical

polymerization under microwave conditions as previously
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described.32 Average molecular weight (Mw) and polydispersi-

ty index (Mw/Mn) of the sample used in this study were 91370

and 2.6, respectively.

Chlorhexidine (CHX, from Aldrich), and chloroform (Carlo

Erba, PA) were used unmodified. The composition of the

phosphate buffer solution (PBS) was the following: NaCl 8.0 g/

L; K2HPO4 1.4 g/L; KH2PO4 0.34 g/L, pH 7.4.

2.2. Coating preparation

Polymer films were prepared by solvent casting methodolo-

gies: a PBA solution (alone or with CHX) was prepared in

chloroform (5%, w/v) and poured onto Ti samples. The solvent

was left at room temperature to evaporate, and the resulting

films were then dried under vacuum until constant weight.

The coating was sterilized by autoclaving for 30 min before

use. Three CHX concentrations were tested: 0.35, 0.70, and

1.40% (w/w) and the corresponding samples were assigned as

Ti/PBA-0.35, Ti/PBA-0.7, and Ti/PBA-1.4, respectively.

2.3. Cell culture and differentiation assay

UMR106 rat osteosarcoma cells were grown in DMEM contain-

ing 10% FBS, 100 U/mL penicillin, and 100 mg/mL streptomycin

at 37 8C in a 5% CO2 atmosphere.33 Cells were seeded in six-

well plates with Ti, Ti/PBA, or Ti/PBA-CHX coating samples at

105 cells/mL density, and incubated for 24 h. At the end of this

incubation period, osteoblasts adhered to plastic wells were

washed with PBS, fixed with methanol, stained with Giemsa,

and evaluated by optical microscopy, as previously de-

scribed.34 The number of cells was counted in ten representa-

tive fields/well. Cell morphology was evaluated using a BX51

Olympus microscope and a DP Controller image processor.

Alkaline phosphatase specific activity (ALP), a marker of

osteoblastic phenotype, was determined. The cell layer was

washed with PBS and solubilized in 0.1% TritonX-100. Aliquots

of the total cell extract were used for protein determination by

the Bradford technique.35 ALP was measured by spectropho-

tometric determination of hydrolysis initial rates of p-

nitrophenyl phosphate ( p-NPP) to p-nitrophenol ( p-NP) at

37 8C for 10 min. The formation of the product was assessed by

the absorbance at 405 nm.

2.4. Bacterial adhesion

A bacterial consortium collected from the oral cavity of several

patients with normal periodontal condition was used in the

experiments. Informed consent was requested from each

patient following the recommendations of the Ethical Com-

mittee of the University of La Plata. Samples were obtained by

scraping the gingival area of buccal and lingual tooth surfaces.

Each sample was dispersed by sonication for 10 s in PBS. Oral

microorganisms were cultured in modified Mitis-Salivarius

liquid medium (MSL) to isolate Streptococcus mitis (S. mitis) and

S. salivarius.36 The initial number of cells was adjusted to ca.

105 cells/mL. Samples of Ti, Ti/PBA, and Ti/PBA-CHX were

immersed in Erlenmeyer flasks containing a bacterial culture

in order to allow biofilm formation during 2 days. For direct

counts, the samples with biofilms were removed from the

bacterial culture, rinsed with PBS to remove loose cells,
stained with 0.01% acrydine orange for 5 min, and examined

under ultraviolet light by epifluorescence microscopy. Images

were recorded and analyzed using a BX51 Olympus fluores-

cence microscope and a DP Controller image processor.

Some Ti/PBA-0.35 samples together with Ti and Ti/PBA

(controls) were immersed for 48 h in PBS (Ti/PBA-0.35-48 h) in

order to allow the release of CHX from Ti/PBA-0.35. Then the

samples were dipped into the culture media inoculated with

bacteria, and microbial adhesion was analyzed after 2- and 7-

day periods (Ti/PBA-0.35-48 h–2 d; Ti/PBA-0.35-48 h–7 d, re-

spectively) on surfaces characterized by the lowest CHX

release rate from Ti/PBA-0.35-48 h in relation to the release

rate of fresh Ti/PBA-0.35 samples.

2.5. Chlorhexidine release kinetics

Drug release experiments with Ti samples were carried out in

tubes containing 5 ml PBS (pH 7.4), at 37 8C. At appropriate

times, the supernatants were removed and replaced by 5 ml

fresh buffer. The time-dependent release of the drug was

followed by monitoring the amount of CHX present in the

supernatant medium, using a double-bean on a Cary 3 (Varian,

Australia) spectrophotometer with 1 cm optical path cell

(lmax = 254 nm). A linear calibration curve of CHX concentra-

tion versus absorbance at 254 nm was obtained using CHX

standards at 0–50 mg/ml range.

2.6. Statistical analysis

For each experimental condition at least three separate

experiments were performed. Data were expressed as the

mean � standard deviation. Statistical differences amongst

the groups were assessed by the one-way ANOVA test with

Tukey–Kramer Multiple Comparisons. A <0.05 p value was

considered significant for all statistical analyses.

3. Results

3.1. Cytotoxicity assay

In order to investigate the effect of CHX addition on the

cytotoxicity of substrates, UMR106 osteoblastic cells were

used to study proliferation and differentiation on different

substrates. Fig. 1A–E shows the aspect of the surviving UMR106

cells in wells containing different substrates after 24 h. As

previously described,37 cells growing on standard tissue

culture polystyrene dishes with a Ti sample (Fig. 1A) exhibited

a polygonal morphology with cytoplasmic processes connect-

ing cells. Nuclei were well stained and showed kidney-jarring

aspect. Mitotic figures were also evident under this culture

condition. After 24 h in culture, cells exposed to Ti/PBA

showed no morphological changes (Fig. 1B). When cells were

cultured in presence of Ti/PBA-0.35, a few vacuolated cells

with otherwise normal culture were observed (Fig. 1C). On the

other hand, higher CHX concentrations (0.7 and 1.4%) in the Ti/

PBA samples induced important morphological changes,

showing shrinkage, smaller and pyknotic cells, and loss of

cytoplasmic processes, suggesting cytotoxic effects (Fig. 1D

and E).



Fig. 1 – Effect of different Ti samples on UMR106 cell

morphology. Cells were seeded in standard tissue culture

wells in presence of Ti (A), Ti/PBA (B), Ti/PBA-0.35 (C),

Fig. 2 – Effect of the substrate on the number of surviving

cells (A) and ALP activity (B). UMR106 cells were cultured in

presence of different substrates for 24 h. Values are shown

as the mean W SEM. *p < 0.05 versus Ti sample; #p < 0.05

versus Ti/PBA sample.
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To further confirm the effect of CHX, the number of

surviving cells in culture after 24 h incubation under different

conditions was counted (Fig. 2A). When cells were cultured in

presence of the Ti/PBA samples, a small but statistically

significant decrease (80% of control) in the cell number was

found in comparison with the Ti control. Furthermore, a dose-

dependent inhibition of CHX on the cell number was observed

in comparison with Ti and Ti/PBA cultures ( p < 0.05). Fig. 2B

shows ALP activity; this marker of osteoblastic phenotype was

not affected by the incubation in presence of Ti/PBA and Ti/

PBA-0.35 samples. However, highest concentrations of CHX

(0.7 and 1.4%) in the samples induced a significant decrease in

ALP activity (Fig. 2B).
Ti/PBA-0.7 (D), and Ti/PBA-1.4 (E), and cultured for 24 h.

After this incubation period, cells were stained with

Giemsa, observed, and photographed. Mitotic figures

(arrow) and vacuolated cells (arrow head) are indicated.



Fig. 3 – Bacterial adhesion to Ti (A), Ti/PBA (B), and Ti/PBA-0.35 (C). Percentage of bacterial adhesion to Ti (A), Ti/PBA (B), and

Ti/PBA-0.35 (C). Ti is the control surface (100%) (D).

Fig. 4 – Percentage of chlorhexidine released from Ti/PBA-

0.35 coating. Release study was carried out in PBS buffer at

37 8C. Inset indicates the fit according to Eq. (1).
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3.2. Bacterial adhesion

Because of its better compatibility with cells, we evaluated

bacterial adhesion on the Ti/PBA sample containing the lowest

CHX concentration (Ti/PBA-0.35). Fig. 3A–C shows epifluores-

cence microscopy images corresponding to Ti, Ti/PBA, and

Ti/PBA-0.35 respectively. As observed, the number of bacteria

decreased in the order Ti > Ti/PBA > Ti/PBA-0.35. Significant

differences between Ti and Ti/PBA ( p < 0.001), Ti and Ti/PBA-

0.35 ( p < 0.001), and Ti/PBA and Ti/PBA-0.35 ( p < 0.01) were

found.

3.3. Chlorhexidine release kinetics

A kinetic study was carried out to evaluate the rate of CHX

release from the Ti/PBA samples. Fig. 4 shows the time course

of the percentage of drug released from 0.35% CHX-coated Ti/

PBA. The kinetic profile showed an initial fast release rate

followed by a monotonic increase of mass delivery over 36 h.

In order to analyze experimental data, the diffusion of the drug

from a polymeric film of L thickness was considered and a
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power law model was applied.38,39 The following expression

was used to fit data:

Mt

M1
¼ 4

Dt

pL2

� �n

¼ ktn (1)

where Mt is the cumulative mass of drug released at time t; M1
is the mass of drug in the film; D is the diffusion coefficient;

and n is an exponent which indicates the nature of the release

mechanism. In this study, fitting values were n = 0.497 � 0.027,

and D = 3.3 � 10�9 cm2 s�1 (R2 = 0.986).Results are presented in

the inset of Fig. 4.

3.4. Bacterial adhesion on Ti/PBA-0.35 after partial
release of CHX

In order to determine the grade of inhibition in bacterial

adherence on Ti/PBA-0.35 after 48 h wash-out phase, bacterial

adherence test was repeated in samples previously immersed

in PBS for 48 h (Ti/PBA-0.35-48 h). Ti-48 h and Ti/PBA-48 h were

used as controls. Ti-48 h, Ti/PBA-48 h, and Ti/PBA-0.35-48 h

samples were subsequently immersed in the culture media

inoculated with bacteria, and bacterial adherence was

quantified after 2 and 7 days immersion (Ti-48 h–2 d, Ti/

PBA-48 h–2 d, Ti/PBA-0.35-48 h–2 d, and Ti-48 h–7 d, Ti/PBA-

48 h–7 d, Ti/PBA-0.35-48 h–7 d, respectively).

Fig. 5 shows bacterial adhesion for Ti-48 h–2 d, Ti/PBA-

48 h–2 d, and Ti/PBA-0.35-48 h–2 d. Indeed, though a high

percent of the CHX had been released from the Ti/PBA-0.35-

48 h during immersion in PBS, bacterial adherence was notably

reduced in relation to Ti-48 h after 2 days immersion in the

culture medium. Additionally, comparison of the attachment

on Ti-48 h–2 d and Ti/PBA-48 h–2 d showed that PBA coating,

without CHX addition, also hinders bacterial attachment

considerably. Highly significant differences ( p < 0.001) between

Ti-48 h–2 d and both Ti/PBA-48 h–2 d and Ti/PBA-0.35-48 h–2 d

were found.

Experiments with a 7-day immersion period in the culture

medium were also assayed (Ti/PBA-0.35-7 d). Higher bacterial

adherence on all samples was observed with respect to 2 days
Fig. 5 – Percentage of bacterial adhesion to Ti (A), Ti/PBA (B),

and Ti/PBA-0.35 (C) after immersion in PBS for 48 h

(washing up period) and then in the culture medium for 2

days. Ti is the control surface (100%). Values are shown as

the mean W SEM.
exposure for Ti-48 h–7 d, Ti/PBA-48 h–7 d, Ti/PBA-0.35-48 h–

7 d (403/field (100%); 116.3/field (29%); 110.2/field (27%). Again,

the number of bacteria shows the following decreasing order:

Ti-48 h–7 d � Ti/PBA-48 h–7 d > Ti/PBA-0.35-48 h–7 d, with

significant differences between Ti-48 h–7 d and both Ti/PBA-

48 h–7 d and Ti/PBA-0.35-48 h–7 d ( p < 0.05).

4. Discussion

Titanium (Ti) and its alloys have proved to be very suitable as

dental implant materials.40–42 However, two main aspects

should be improved: increase of the rate of bone healing and

inhibition of bacterial adherence. In this study a PBA-coating

on Ti substrate was developed in order to explore its efficacy to

inhibit the initial streptococci adhesion on osteoblast cultures

without cytotoxic effects. PBA has been already employed in

coatings of different materials, but not for biological applica-

tions.27 Our results showed a promising future for the

application of this polymer since only a small decrease in

cell proliferation on Ti/PBA was observed, without affecting

the cell morphology or ALP activity. Moreover, according to our

results, the addition of a low dose of CHX in PBA/Ti samples

implied a slight decrease in the cell number without

significant alterations in the cell morphology or ALP activity.

In agreement, surfaces coated with other polymers have been

reported to attach cells such as fibroblasts and osteoblasts

whilst showing reduced S. aureus adhesion. This selective

biointeraction pattern may be quite useful for osteosynthesis,

orthopaedic, and dental implantology43 applications.

CHX is an effective antimicrobial agent because of its

several advantages: high antimicrobial action (effective

against a wide variety of Gram-positive and Gram-negative

organisms), and ability to inhibit gycosydic and proteolytic

activities and reduce matrix metal-proteinase activities in

most oral bacteria10 as well as fungi.11 Moreover, it is retained

by the dentine hard tissues and is an effective irrigator to

prevent root canal reinfection due to coronal leakage.11,12

Nevertheless, several studies demonstrated that this com-

pound may induce adverse effects.14 Giannelli et al.15

suggested that direct application of CHX during regenerative

therapy for the treatment of peri-implant diseases could exert

serious toxic effects on gingival fibroblast, endothelial cells,

and especially on alveolar osteoblasts, thus negatively

interfering the early healing phase of these oral infections.

Our studies demonstrated that the biocidal effect is dose

dependent. In fact, when 1.4% and 0.7% CHX loads were

employed, harmful signals were found, including morpholog-

ical changes, shrinkage, smaller and pyknotic cells, and loss of

cytoplasmic processes which suggest cytotoxic effects. Con-

versely, assays with 0.35% CHX did not show such effects.

The analysis of the CHX release profile from Ti/PBA

coating indicated that the main mechanism regulating drug

delivery at short times is diffusion (n � 0.5), whilst at longer

times a monotonic increase of the accumulative release CHX

suggested that the release process is affected by comple-

mentary effects. In this last case, polymer swelling (dynamic

expansion) involving the transition from a semi-rigid to a

more flexible state is surely the process that accompanies

and favours CHX release.39 Our results showed that CHX
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inhibits streptococci attachment and the subsequent biofilm

formation.

It has been demonstrated that initial colonizers play a key

role in biofilm formation, preparing the surroundings for later

colonizers.4 Consequently, the inhibition of their adherence is

a hindrance for the growth of more demanding bacteria.

Biofilm structure protects bacteria against the action of

many antimicrobial agents. Consequently, studies on drug

delivery in planktonic cells should not be extrapolated to

bacterial biofilms. The mechanisms of resistance to antibiotics

in bacterial biofilms are beginning to be elucidated. They

include: slow penetration (antibiotics fail to penetrate beyond

the surface layers of biofilm), resistant phenotype (some of the

bacteria may differentiate into a protective phenotypic state),

and altered microenvironments (antibiotic action may be

antagonized in zones of nutrient depletion or waste product

accumulation).44 Thus, preventing the adhesion and aggrega-

tion of bacteria prior to biofilm formation on the surface seems

to be a better strategy than treating the mature biofilm.

Biofilm development is initiated by planktonic bacteria that

attach to the surface first reversibly and then irreversibly.

Adhesion is usually promoted by the previous adsorption of

organic substances onto the surface (forming a thin layer

known as ‘‘conditioning film’’). Pioneer microorganisms may

adapt their attachment strategies according to the nature of the

surface. At this stage, bacteria are still susceptible to antibiotics.

Subsequently, aggregation occurs, and the production of

extracellular polymeric materials by bacteria changes the

physicochemical characteristics of the surface. Thus, the

growth of bacterial biofilm on non-toxic substrates is largely

independent of their composition but dependent on micro-

roughness.45–47

In order to prevent early bacterial adhesion, the correlation

of surface properties (surface charge, roughness, and energy) of

the substrate and bacteria must be assessed. However, this is

still a controversial matter. Li and Logan,48 working with 8

bacterium strains and 11 surfaces of different composition,

observed much greater correlation of adhesion with surface

energy (based on three liquid contact angles) than surface

charge for the different surfaces. Other researchers reported

that surface properties do not seem to correlate with the grade

of adhesion of Streptococcus Mutans on dental materials.49 Müller

et al.,50 demonstrated that proteins adsorbed from physiologi-

cal fluids, such as serum and saliva, are able to significantly alter

the physicochemical properties of underlying surfaces, which

in turn greatly influences subsequent early bacterial aggrega-

tion. Protein layers generated by adsorption from physiological

fluid increased or decreased Streptoccocus adhesion depending

on the type of protein film and bacterial strain examined.

Contact angles of coatings prepared with aliphatic and

aromatic methacrylates with methyl methacrylate (MMA)

were found between 558 and 798, showing similar or higher

hydrophobia than titanium (538).51 Thus, according to some

authors, a higher bacterial adhesion may be expected for the

most hydrophobic PBA surface than for bare titanium.52

However, our results showed lower adhesion when titanium

was covered by the polymer. This supports the assumption

that there is no simple relationship to correlate bacterial

properties and surface energy of a substratum immersed in a

protein-containing medium with bacterial adhesion.46
There are two main approaches to prevent foreign body

infections from affecting the interaction between biomaterial

and bacterium: (1) development of polymers or polymer

surfaces with antiadhesive properties; (2) development of

polymers or polymer surfaces with antimicrobial properties.22

Our results demonstrated that during the first two days, the

effect of antimicrobial release and polymer antiadhesive

properties are additive. After 48 h, the effect of the surface

properties of the polymer is dominant.

To explain this behaviour it should be considered that

several properties of the polymer, such as the glass transition

temperature (Tg), molecular mobility of the drug, miscibility

between the drug and excipients, and the rate and extent of

drug crystallization, may influence bacterial adherence.53

Amongst them, Tg is the characteristic temperature above

which the mobility of the polymer chains is markedly increased,

leading to much higher mass transfer rates of water and drug. In

our case, Tg for PBA is 6 8C, indicating that the polymer is in

rubbery state and so, a significant amount of water diffuses

slowly into the hydrophobic membrane. This effect could lead

to the formation of channels resulting from changes in the

polymer free volume, facilitating water diffusion. These

changes in the structure of the film could explain the decrease

in the bacterial adherence observed after the 48 h washing up

period. Similar behaviour has been observed in other systems in

which a hydrophobic membrane was studied.54

After immersion periods in the culture medium longer than

2 days, bacterial adherence increased on Ti-PBA-48 h and Ti-

PBA-0.35-48 h, probably due to the production of extracellular

polymeric substances by the bacteria which made the surface

more compatible.

5. Conclusion

Overall, CHX delivery system from titanium/polybenzyl

acrylate coating was designed and evaluated as inhibitor of

early streptococci adhesion on healing cups and abutments.

Results showed that the lowest concentration assayed (0.35%,

w/w) was an effective antibacterial system without cytotoxic

effects, particularly useful for these devices. A diffusion

mechanism allowed the controlled delivery of the drug.

The inhibition of bacterial adherence was associated to two

factors: the antimicrobial effect of the released CHX and the

antiadhesive properties of the polymer. Our results demon-

strated additive effects of these two factors during the first two

days. However, after this period, the effect of the surface

properties of the polymer is dominant.

Inhibition of the adhesion of early colonizers of the dental

plaque is relevant because it prevents the attachment of later

colonizers that require more demanding growth conditions.

Consequently, the reduction of pioneer bacterial attachment

impacts on the successive stages of biofilm formation with an

overall effect on the oral health of the host.
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