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Abstract

After disaster strikes, emergency response teams need

to work fast. In this context, crowdsourcing has

emerged as a powerful mechanism where volunteers

can help to process different tasks such as processing

complex images using labeling and classification tech-

niques. In this work we propose to address the prob-

lem of how to efficiently process large volumes of

georeferenced images using crowdsourcing in the con-

text of high risk such as natural disasters. Research on

citizen science and crowdsourcing indicates that vol-

unteers should be able to contribute in a useful way

with a limited time to a project, supported by the re-

sults of usability studies. We present the design of

a platform for real-time processing of georeferenced

images. In particular, we focus on the interaction be-

tween the crowdsourcing server and the volunteers

connected to a P2P network.

Keywords: Geo-referenced images, support plat-

forms for natural disaster, P2P network.

Resumen

En situaciones de desastres naturales, los equipos

de respuesta a emergencia deben actuar con rapi-

dez. En este contexto, el crowdsourcing emerge como

un mecanismo poderoso donde voluntarios pueden

ayudar a realizar diferentes tareas como procesar

imágenes complejas usando técnicas de clasificación

y etiquetado. En este trabajo proponemos abordar el

problema de cómo procesar eficientemente grandes

volúmenes de imágenes georreferenciadas usando

crowdsourcing en un contexto de alto riesgo como de-

sastres naturales. La investigación en ciencia ciuda-

dana y crowdsourcing indica que los voluntarios de-

berı́an ser capaces de contribuir de manera eficiente

en un tiempo limitado a un proyecto, con soporte

de los resultados de estudio de usabilidad. Presenta-

mos el diseño de una plataforma en tiempo real para

el procesamiento de imágenes georreferenciadas. En

particular, nos enfocamos en la interacción entre el

servidor de crowdsourcing y los voluntarios conecta-

dos a una red P2P.

Palabras claves: Imágenes georreferenciadas,

plataformas de soporte para desastres naturales, redes

P2P

1 Introduction

During the last years, Big Data has become a strong

focus of global interest, attracting more and more

attention from academia, industry, government and

other organizations. The growing flow of data, which

comes from different types of sensors, messaging sys-

tems and social networks, in addition to more tradi-

tional measurement and observation systems, has al-

ready invaded many aspects of our daily existence.

Large data, including large geo-referenced data, have

great potential to benefit many social applications

such as climate change, health, surveillance, disaster

response, critical infrastructure monitoring, transport,

etc. Geo-referenced data describe elements in relation

to the geographical space — location, often with loca-

tion coordinates in a spatial reference system. The

term commonly used for systems that use this type

of data is known as GIS — Geographic Information

System. The geo-tagged contents of the web, volun-

tary geographic information (VGI), satellite naviga-

tion, etc. are traditionally collected through sensors

[1]. The authors in [2] claim that geo-referenced data

from social networks is another form of VGI data.

The information that is posted on social networks

can be very useful in case of a natural disaster. As

direct witnesses of the situation, people share pho-

tos, messages and videos about events that get their

attention. In an emergency operations center, these
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data can be collected and integrated into the manage-

ment process to improve the general understanding of

the situation or rescue actions. This type of volunteer

participation is known as crowdsourcing. Digital vol-

unteers have helped to collect pertinent information

much faster than officials or people in charge of coor-

dination activities in natural disasters could do alone,

with huge potential impacts on the responsibilities of

officials in the management of the information. Emer-

gency search and rescue teams already use pre-event

remote sensing data when planning operations [3].

In general, the increasing volume and variable for-

mat of the large georeferenced data collected pose ad-

ditional challenges in storage, management, process-

ing, analysis, visualization and verification of data

quality. The authors in [4] state that the size, vari-

ety and update rate of data sets exceed the capacity of

spatial computing technologies and spatial databases

commonly used to learn, manage and process data

with a reasonable effort.

This paper describes the design of a distributed

platform that combines algorithms, processing tech-

niques and associated software tools to efficiently

label large volumes of georeferenced images from

different sources (satellite images, captured by un-

manned aerial vehicles, originated in social networks),

to optimize the work of digital volunteers in situations

of natural disasters in order to build status maps in

real time. In particular, we focus on the interaction be-

tween the crowdsourcing server receiving new images

to be analyzed and the users inter-connected in a P2P

network. The crowdsourcing server sends tasks to the

peer-volunteers which tags the images or just vote for

an option from a given option list. The crowdsourcing

server gathers all the votes from the peers and evalu-

ate their contributions. If there is an agreement in the

voting (e.g. most of the volunteers vote for the same

option), the task is finished, and the results are saved

in a database for statistic purposes. Otherwise, the

server selects volunteers with a high reputation and

sends the task again.

The remaining of this paper is organized as fol-

lows. Section 2 presents previous works. In Sec-

tion 3 we present the design of our proposed platform

and the simulation model for the interaction between

the crowdsourcing server and the volunteers. Sec-

tion 4 presents experimental results and Section 5 con-

cludes.

2 Previous Works

New forms of georeferenced data collection have

emerged that have given rise to completely new data

sources and data types of a geographical nature. The

data acquired by the public -VGI-, and the data from

the geo-sensor networks have led to a greater avail-

ability of spatial information. Whereas until recently,

the authoritarian data sets dominated the topographic

domain, these new types of data expand and enrich

geographic data in terms of thematic variation and the

fact that they are more user-centered. The latter is es-

pecially true for VGI compiled by social media [5].

Some authors claim that ”80% of the data is geo-

graphical in nature” [6]. Much of the data in the world

can be georeferenced, which indicates the importance

of georeferenced large data management. The georef-

erenced data describe objects and things in relation to

the geographical space —location— often with coor-

dinates of location in a spatial reference system. The

term commonly used for systems that use this type of

data is known as GIS —Geographic Information Sys-

tem.

The work in [7] presents a study of how to find

out the current locations of users by tracking their

mobile devices, such as smartphones. That study

mentions services of geo-social networks such as

Foursquare used to locate friends and to find nearby

shops and restaurants, where many users register in

several places and reveal their current location. In

other words, it proposes to solve queries using infor-

mation from different individuals through its mobile

devices.

The work presented in [8], describes some exam-

ples of how the Department of Defense of the United

States uses crowdsourcing to give answers to prob-

lems of natural disasters. The authors conclude that

there is a great benefit in taking advantage of the

power of the crowd, ”a process that will continue to

mature, evolve and define the way we help others to-

day, tomorrow and in the future.”

Barrington et al. [9] presents a review of the state

of the art on the use of crowdsourcing and analysis

of images, particularly high resolution aerial. This

work describes the experiences obtained in the cases

of the earthquake in Haiti and in 2008 in China. Lee

and Kang [10] describe the impact of georeferenced

data in different applications such as marketing and

propose a three layers platform to index and analyze

images. But this proposal does not consider the col-

laboration of volunteers.

Ofli et al. [11] propose a hybrid scheme based on

automatic techniques and crowdsourcing for aerial im-

age processing. In this case, manual annotations are

used to train a supervised learning system. However,

this work does not describe the platform used and

does not consider the interaction with information col-

lected by people who are in the place of the event.

There are some platforms such as Tomnod

(http://www.tomnod.com), GeoTag-X [12], and some

research works that address the problem of using

volunteers for the processing of georeferenced im-

ages [9][13][14][15][16]. In particular, Tomnod of

the company DigitalGlobe is using Artificial Intel-

ligence (AI) driven by crowdsourcing to automati-

cally identify the characteristics of interest in satel-

lite and aerial images. Tomnod runs crowdsourcing
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campaigns, where volunteers support data mapping

by validating the results of an image mining algo-

rithm. GeoTag-X is a research project aimed at re-

searching and evaluating collaborative on-line envi-

ronments and software tools for creative learning.

3 Proposed Methodology

In this section, we present our platform design for pro-

cessing large number of georeferenced images. Our

design focused on real-time applications devised for

natural disasters which require a low latency and short

response time.

Fig. 1 shows the general components of our pro-

posed platform and how they communicate to each

other. Upon a natural disaster, images are captured

through different devices such as a drone and smart-

phones (Image acquisition). Then, these images are

sent to the Object detection and scene labeling compo-

nent –the black box at the top of the figure. For each

incoming image we create a task which will be sent to

the crowdsourcing server or to the Machine Learning

server. The task contains metadata associated with the

image like the GPS coordinates, the image identifier,

and a list of options to vote or to label the image. If the

machine learning server is not trained for the region

where the images come from, the task is sent to the

crowdsourcing server. This server will request to dif-

ferent volunteers to help to tag the images. It allows

different users to classify images manually, in order

to generate new classifiers in real time. Classifiers

can detect emerging needs at the time of a disaster.

The results obtained from the crowdsourcing server

are used to train the machine learning server. Once

this last server is trained, it can start receiving incom-

ing tasks. In this way, we can reduce the amount of

work sent to volunteers.

The results achieved by the object detection and

scene labeling component are sent to the high-

resolution registration component. This last, estab-

lishes a correspondence between the image been an-

alyzed and the geographical coordinates to create a

situation map. The information inside the situation

map is stored in a NoSQL database like MongoDB

and can be later use for emergency management and

help for victims.

At the bottom of the figure, we show the com-

ponents deployed in our proposed platform for text

messages crawled from Tweeter or others social net-

works. Relevant data is extracted from these texts The

Geo-Tagging Platform uses the Gazetteer which is a

geographic dictionary to parse the tweets to identify

which coordinates they belong to.

3.1 Modelling the crowdsourcing server

Fig.2 shows the general scheme of our model for

the crowdsourcing server and the P2P network. Our

model considers a group of users who execute the

tasks delivered by the crowdsourcing server. Each

task has information related to the incoming image

like the time to live (TTL) of the task, the priority, the

image identifier, and the list of options. If the priority

feature is on, the priority task is high and should be

processed immediately.

Peers build an overlay network managed by the In-

ternet service providers (ISP). In particular, our model

follows a P2P Distributed Hash Table —DHT [17].

Internet service providers (ISPs) are responsible for

delivering Internet access to clients from a given ge-

ographic area. To communicate with other ISPs, it is

necessary to access the Internet backbone. The back-

bone is a shared network which enables communica-

tion among ISPs of the world. To make use of the net-

work, ISPs must respect a Service Level Agreement

(SLA) contract in which they commit to regulate their

traffic to not compromise another ISPs communica-

tion.

Each peer holds two task queues. The first queue

stores tasks with the priority feature off. In this case,

the priority is given by the TTL. The second task

queue keeps tasks with the priority featured on. These

tasks should be quickly process in order of arrival. In

general, the sequence of steps executed by our model

is as follows:

1. The crowdsourcing server receives incoming

tasks from the platform.

2. A peer becomes visible to the server indicating

that he wants to be a volunteer.

3. The server sends a list of tasks to the peer.

4. The peer agrees to start processing the tasks and

request the first image.

5. The server sends the first image to the peer and

set a time-to-live (TTL).

6. The peer executes the task and sends the result

to the server.

7. If a total of H answers were received for a task,

the server evaluates if there is an agreement in

the voting.

(a) If so, the task is finished, and the data is

sent to a data base server like MongoDB or

Casandra.

(b) Otherwise, the server selects new peers

with high reputation to send the task again.

8. If the peer wants to continue collaborating, re-

turn to step 4 for the next images.

To reduce the communication between the crowd-

sourcing server and the P2P network, each peer has

an LRU cache memory with images received from the

server. Thus, the next time a peer requests an image
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Figure 1: Proposed distributed platform

Figure 2: General scheme of our model for Crowd-

sourcing and P2P network

form the same task list, the peer will search for that

image inside the P2P network using the DHT before

sending a request to the server.

More precisely, as the whole space of images is di-

vided among the peers, each peer is responsible for a

particular set of images. As shown in Fig. 3, each peer

is responsible for a different set of images (square, cir-

cle and the three types of stars). In this example, the

peer 1 request a square image of color blue. Then it

sends a message to peer 3 which is selected by the

DHT. Due to peer 3 does not have the requested im-

age, it sends the message to the next hop in the P2P

network. In this case, the message reaches to peer

4, which is the peer responsible for this kind of im-

ages. As peer 4 does not have the blue square image,

it sends a request to the crowdsourcing server. The

server sends the requested image to the peer 4, which

is the responsible. Peer 4 insert this new image into its

LRU cache memory. Finally, peer 4 sends the image

to the requesting peer 1.

If the TTL of a given task expires, the server sends

the results achieved at the moment to the database

server. Additionally, some volunteers can offer to con-

tinue helping with the voting/tagging tasks. In this

case, the value of H –number of expected answers per

task- can be increased. This helps to improve the qual-

ity of the results and get a more adequate consensus

of the tasks of voting/tagging.

The server applies two policies for the TTL of each

task. (1) If the TTL of a given task expires and there

are at least H results received from the peers, the

server ranks the results. (2) Otherwise, if the TTL

expires and there are less than H results, the server ex-

tends the TTL and sends additional request with high

priority (the priority featured turned-on) to frequently

active volunteers.

4 Experimental results

In this work, we evaluate the performance of the

crowdsourcing server and its interaction with the net-

work of volunteer forming a P2P network. We have

built a simulator that implements a transport layer, a

Journal of Computer Science & Technology, Volume 18, Number 3, December 2018

-196-



Figure 3: Image space division among peers in the

P2P network

P2P overlay and our caching proposal. Pastry [17] has

been used as the overlay network in our experimenta-

tion. We have also simulated the Web crowdsourcing

server, a generator which creates the incoming tasks

and a database server which receives data form the

crowdsourcing server. The simulation is divided in

simulation time windows of 100 units of time.

4.1 Simulation approach

The simulation model of this work uses a processes

and resources approach. Processes represent the

crowdsourcing server, and the peers in charge of trans-

action processing. Resources are artifacts such as the

data of the incoming messages, global variables like

the input queue of each process and also the CPU and

the communication network. The simulation program

is implemented using LibCppSim [18], where each

process is implemented by a co-routine that can be

blocked and unblocked at will during simulation.

The operations hold(), passivate() and activate() are

used for this purpose. Thus, a coroutine Ci can be

paused for a given amount of time ∆t -which repre-

sents the duration a task. Once the simulation time

∆t has expired, the coroutine Ci activates itself if a

hold() operation was previously executed. Otherwise,

the coroutine Ci is activated by another coroutine C j

using the activate() operation. This last case allows to

represent the interaction among the different compo-

nents of the simulated platform.

The simulated architecture assumes a classical

DHT overlay composed by N physical nodes (or

peers) and K object-keys (task with images ids)

mapped onto a ring. Objects (images) stored in a DHT

such as Pastry [17], have a responsible peer in the net-

work that is the peer with the closest ID to the key of

the object. Thus, any given peer is responsible for a

fraction of these images and (on request) it must con-

tact the crowdsourcing server to get them.

4.2 Experiment Settings

First, we evaluate the communication cost between

the crowdsourcing server and the peers. We set the

parameters of our simulator as shown in Table 1.

Table 1: Parameters setting for the simulation.

Parameter Value

Network size (num. peers) 500, 1000, 1500

Cache size in each peer 50, 100, 150

Total answers expected by

the crowdsourcing server (H) 10, 15, 20, 25

Arrival rate (NR) 500, 1000, 2000

4.3 Gini Coefficient

To measure load balance among peers we use a met-

ric based on Lorenz curves called the Gini coefficient,

which is a metric commonly used on other fields like

economics and ecology.

If all peers have the same load, the Lorenz curve is

a straight diagonal line, called the line of equality or

the perfect load balancing. If there is any imbalance,

then the Lorenz curve falls below the line of unifor-

mity. The total amount of load imbalance can be sum-

marized by the Gini coefficient G, which is defined as

the relative mean difference, i.e. the mean of the dif-

ference between every possible pair of peers, divided

by their mean load. G values range from 1 to 0. The

value 0 is achieved when all peers have the same load.

The value 1 is achieved when one peer receives the

whole system load while the remaining peers receive

none. Therefore, when G approaches 0, global load

imbalance is small, and when G approaches 1 the im-

balance is large.

In Fig. 4, the y-axis shows the Gini coefficient for

different configurations. The x-axis shows the values

of peers available to collaborate with the crowdsourc-

ing server. The experiment is performed with differ-

ent H values. That is, the number of peers receiving a

copy of the task to be solved. In Fig. 4 we vary the ar-

rival rate (NR) from 500 to 2000 requests per seconds

and the cache size from 5 to 150.

In most of the cases, the Gini coefficient is lower

than 50%, meaning that the workload tends to be bal-

ance among the peers. Only an H value of 10 shows

imbalance for numerous peers. Also, as we increase

the arrival rate among the peers, the Gini coefficient
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Figure 4: Gini coefficient for different cache size, number of peers, arrival rate and different values of H.

tends to be lower. That is, peers tends to be saturated

with almost the same amount of workload.

On the other hand, the arrival rate (NR) and the

cache size have very low impact on the Gini coeffi-

cient reported by the peers. However, if we increase

the number of peers and keep H low, the workload

tends to be less balanced. Mainly because, the tasks

are not sufficiently well distributed among the peers

tending to produce different queue size inside each

peer.

4.4 Number of Hops

Fig. 5 shows the average number of hops that a mas-

sage has to go thought, inside the P2P network, before

reaching the requested image. The x-axis shows the

number of peers selected by the crowdsourcing server

to send the tasks. We show the results obtained for a

cache size ranging from 5 to 150 and an arrival rate

of 500, 1000 and 2000 tasks per second. Again, we

perform this experiment with different values of the

H parameter.

As expected, the number of hops tends to increase

with a larger number of peers in the network. On

the other hand, the H value impacts on the number

of hops. A larger H value tends to reduce the num-

ber of hops required to find the image inside the P2P

network. That’s because, as more peers are involved

in the process of solving a task (e.g. voting or tag-

ging), the images for those tasks are going to be used

by more peers, and therefore a new peer requesting

an image would probably find that image in a nearby

peer.

4.5 Latency

In Fig. 6, we show the average latency reported by

sending messages inside the P2P network. We show

results for different arrival rates (NR) and cache sizes

of 5, 50, 100 and 150. The x-axis shows different

values of H. This experiment is performed with a P2P

community formed with 500, 1000 and 1500 peers.

A larger arrival rate tends to increase the commu-

nication latency inside the P2P network, due to more

messages are present in the network at the same time

and those messages compete for the network resource.

Notice that the cache size does not drastically impact

on the communication latency among the peers.

As we increase the arrival rate, small P2P networks

with 500 peers tends to report a larger communication

latency, because the same small group of peers has to

request the same tasks and images to process (figures
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at right). These requests are messages traversing the

P2P network.

5 Conclusions

In this work, we presented a new platform to support

decision-making in cases of natural disasters, through

the processing of information such as georeferenced

images in real time. We presented the components

of our proposal and how they communicate to each

other.

We also modeled the interaction between the

crowdsourcing server and the volunteers forming a

P2P network. We simulated this model to analyze

possible bottlenecks and the benefits of using cache

memories in the peers to avoid accessing the crowd-

sourcing server for each new requested task.

Furthermore, we evaluated different metrics to an-

alyze the effect of communication and the number of

peers volunteers on the performance of the platform.

Results show that the number of selected peers as vol-

unteers affects the latency of the communication in

the P2P network as the number of peers increases.

As future work we plan to evaluate the communi-

cation among the P2P network and the crowdsourc-

ing server. Also, we plan to evaluate different ap-

proaches to select the experts peers which are going

to re-evaluate a task when there is a tie in the voting

operation executed by the crowdsourcing server.
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Figure 5: Average number of hops achieved by different parameters of our simulated platform.
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Figure 6: Latency reported by the P2P network for different arrival rates
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