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Abstract

In the Intensive and Intermediate Care Units of health-
care centres, many sensors are connected to patients
to measure high frequency physiological data. In or-
der to analyse the state of a patient, the medical staff
requires both appropriately presented and easily ac-
cessed information. As most medical devices do not
support the extraction of digital data in known for-
mats, medical staff need to fill out forms manually.
The traditional methodology is prone to human errors
due to the large volume of information, with variable
origins and complexity. The automatic and real-time
detection of changes in parameters, based on known
medical rules, will make possible to avoid these errors
and, in addition, to detect deterioration early. In this
article, we propose and discuss a high-level system ar-
chitecture, an embedded system that extracts the elec-
trocardiogram signal from an analog output of a med-
ical monitor, and a real-time Big Data infrastructure
that integrate Free Software products. We believe that
the experimental results, obtained with a simple pro-
totype of the system, demonstrate the viability of the
techniques and technologies used, leaving solid foun-
dations for the construction of a reliable system for
medical use, able to scale and support an increasing
number of patients and captured data.
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Resumen

En las unidades de cuidados intensivos e intermedios
de centros de salud, muchos sensores están conecta-
dos a los pacientes para medir datos fisiológicos de
alta frecuencia. Para analizar el estado de un pa-
ciente, el personal médico requiere información pre-
sentada de manera apropiada y de fácil acceso. Como
la mayoría del equipamiento médico no admite la ex-
tracción de datos digitales en formatos conocidos, el
personal médico completa formularios manualmente.
Esta metodología es propensa a errores humanos de-
bido al gran volumen de información, con orígenes y
complejidad variable. La detección automática y en
tiempo real de cambios en los parámetros, basados
en reglas médicas conocidas, permitirá evitar estos er-
rores y, además, detectar el deterioro de forma tem-
prana. En este artículo, proponemos una arquitectura
de alto nivel del sistema, un sistema embebido que
extrae la señal del electrocardiograma de una salida
analógica de un monitor médico, y una infraestruc-
tura Big Data de tiempo real que integra productos
Software Libre. Creemos que los resultados experi-
mentales, obtenidos con un prototipo, demuestran la
viabilidad de las técnicas y tecnologías utilizadas, de-
jando sólidas bases para la construcción de un sistema
confiable para uso médico, y capaz de escalar para so-
portar un número creciente de pacientes y datos cap-
turados.

Palabras claves: Unidad de Cuidados Intensivos, Sis-
tema de soporte a la decición clínica, Procesamiento
de reglas médicas, Big Data, Sistema embebido.

1 Introduction

In health centres, the Intensive Care Unit (ICU) pro-
vides comprehensive, rigorous, and continuous care
for adult persons who are critically ill and who can
benefit from treatment, providing a good die for unre-
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coverable patients. Some health institutions, in turn,
have an Intermediate Care Unit (IMCU) that, unlike
the ICU, provides care to patients who do not require
life-sustaining therapeutic treatments, but to monitor-
ing and control.

In both units, all patients are connected to a moni-
tor that measures their vital signs and issues alerts that
indicate a risk to their health. These alerts are deter-
mined under criteria based on the standard population.
In the case of the ICU, patients could additionally be
connected to other medical equipment. Some of them,
such as mechanical respirators, also issue risk alerts.
Almost all alerts issued by a medical equipment are
only based on parameters that it measures. Exception-
ally, one device can be interconnected with another
to issue alerts based on parameters measured by both
devices.

In order to analyse the state of a patient, the medi-
cal staff require both appropriately presented and eas-
ily accessed information. As most medical devices
do not support the extraction of digital data in known
formats, medical staff need to fill out forms manually.
These forms are used to record data observed in each
equipment at hourly intervals, and to record data re-
lated to medical studies (as laboratory tests). At the
end of each day, the physician analyse the data of the
forms and produce indications for the nurses, such as
modifications in the medication, practices to be per-
formed on patients, etc.

Our objective is to develop a computer system that
allows the automatic and early detection of deterio-
ration of patients hospitalised in ICUs and IMCUs,
through the real-time processing and analysis of dig-
ital health data. The data are acquired from different
sources, including the real-time data extraction from
medical equipment.

The traditional methodology is prone to human er-
rors due to the large volume of information, with vari-
able origins and complexity, that the medical staff
must analyse. The automatic and real-time detec-
tion of changes in parameters (from multiple digital
sources: software systems and medical equipment),
based on known medical rules, will make it possible
to avoid these errors and, in addition, to detect deterio-
ration early. The latter will give physicians the ability
to plan and begin treatments without delays, possibly
increasing their effectiveness (and consequently re-
ducing mortality) and decreasing their economic cost.
Additionally, the accuracy of the diagnoses could be
increased by contemplating the totality of the data
generated by the medical equipment connected to the
system, instead of a few manually registered. In the
long term, the historical record of data will be ex-
tremely valuable for conducting studies to discover
patterns in the data that can predict pathologies, such
as septic shock [1].

In the literature, few systems of this type are found,
some of them are [2, 3, 4, 5, 6, 7]. However, its au-

thors have not exposed, to the community, accurate
information on how they have addressed the different
challenges inherent to the system and/or the perfor-
mance achieved by their solutions, or they use pro-
prietary software or hardware (for data acquisition),
or they do not meet the requirements of: scalability,
fault tolerance, and interoperability.

In this paper we discuss challenges related to the
construction of the system and propose solutions that
were implemented in our prototype. It is designed to
be deployed at the Francisco Lopez Lima Hospital,
a public hospital with relatively high financial con-
straints, located in the city of General Roca, Río Ne-
gro, Argentina.

The main contributions of this work are focused on
the proposal of:

1. A high-level system architecture, which support
multiple hospitals with integrated data storage
and knowledge extraction, considering hospitals
without Internet leased lines. It uses a mix of lo-
cal computing and a public cloud (to reduce eco-
nomic cost). An initial approach was proposed
in [8].

2. An embedded device that extracts the electrocar-
diogram (ECG) signal from an analog output of
a medical monitor, performs an analog-digital
conversion, and transmits it via WiFi to the plat-
form that process the signal. This device seeks
to be an alternative to the problem of digital
data extraction of medical equipment produced
by the use of different communication interfaces,
mostly proprietary, and whose specifications are
not published by the manufacturers.

3. A real-time Big Data infrastructure that, based
on streams of signals data and other health data,
allows to process rules to determine and issue
alerts indicating risk in the health of patients. A
distributed, scalable, fault tolerant and interoper-
able solution is proposed, based on the integra-
tion of software products under Free Software li-
censes. It is included a web system that allows
user interfaces with visualisation of signals and
alerts in real-time.

The rest of this paper is organised as follows. Section
2 describes the high-level architecture of the system.
Section 3 presents the embedded system that acquire
the ECG signal from a medical monitor. Section 4
discusses the Big Data infrastructure that support real-
time processing, analysis, and visualisation of health
data. Finally, section 6 presents the conclusions and
future works.

2 High-level System Architecture

Figure 1 shows the high-level system architecture pro-
posed. In this figure it is observed several Hospitals
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Figure 1: High-level System Architecture

connected to a Public Cloud. As we are considering
hospitals with unreliable Internet access, the critical
part of the system requires to perform on a dedicated
computing system placed inside each hospital. In a
hospital, the component Data Acquisition is in charge
of the connection between our system and external
health data sources: Medical Equipment and the Elec-
tronic Health Record (EHR) System. The Data Acqui-
sition module streams the data to a processing infras-
tructure. The infrastructure must be capable of pro-
cessing, in real time, a large volume of data per unit
of time. For that reason it receives the name of "Real-
time Big Data Infrastructure". This large volume of
data per unit of time comes mainly from signals pro-
duced by medical equipment. For example, one of
these signals is the electrocardiogram (ECG), a test
that records the electrical activity of the heart over a
period of time using electrodes placed on the pacient
skin, and is used to detect cardiac problems. A typ-
ical vital signs monitor takes 1,000 samples per sec-
ond, and advanced converters can sample at 10,000 to
15,000 per second or even higher [9].

The Real-time Big Data Infrastructure must man-
age Temporal Data (see Figure 1), which are health
data relevant to the system, corresponding to patients
currently hospitalised. All data acquired from the
time of the patient’s admission to the ICU/IMCU are
considered. When the patient leaves the inpatient unit,
some data may be recorded in the EHR system.

Some data are useful by themselves, and other data
may need to be analysed to produce new data. For ex-
ample, the signals obtained from medical equipment
could be interpreted through a process of Data Anal-
ysis (see figure 1), generating meta-data, that is, new
health data of patients. This is the case of parameters
such as heart rate, which comes from the analysis of
the ECG. The system also performs another type of
data analysis: the processing of medical rules. In the
figure 2 two example rules are shown. Each rule de-
fines the conditions, relating parameters and values,

which must be met to generate an alert indicating risk
in the patient’s health. Each patient can be associated
with a particular set of rules. Alerts are classified ac-
cording to a risk coefficient that determines their im-
portance; the lower the value, the greater the risk to
patient health and, therefore, the greater the impor-
tance of the alert. Each alert has a description, possi-
bly different, for physicians and nurses. One of both
alert descriptions could be null, allowing to support
alerts directed to a single group, physicians or nurses.
Optionally, each of these groups is associated with a
treatment plan to be carried out. The rule also de-
termines the activation or deactivation of other rules
(including itself), possibly after a certain time. Once
an episode of deteriorating patient health is overcome,
certain rules are re-activated.

The User Interface allows nurses and physician to
receive alerts, and to visualise any Temporal Data
such as raw data (signals, vital signs, etc.) or statis-
tical processed data (tables, charts, etc.). It is possible
to view current raw data (in real-time) and to explore
previous data.

Our system includes the storage of Historical Data
for Knowledge Extraction, useful for future medical
research and the discovery of patterns for predicting
pathologies. The Knowledge Extraction is directed
by physicians, and the output of this component are
clinical rules and data specifically tailored to enable
physicians to perform clinical research. The new rules
are then incorporated to the set of rules used for Data
Analysis at each hospital.

The Historical Data includes all acquired inpatient
data from any hospital. This data is saved in a per-
sistent way in a Public Cloud. It must be observed
that the temporal storage on hospitals needs to save
only data of current inpatients. This means the storage
does not need to scale simply by the passing time, but
only when grows the amount of beds or the number
of considered health parameters (possibly with new
acquired data from medical equipment). Instead, the
persisting storage requires to scaling with the pass-
ing time because it must save the new medical data
that are received from hospitals. Therefore, the scal-
able storage offered by a public cloud is very useful.
The computing resources of the public cloud can be
used to perform the Knowledge Extraction. As inten-
sive computation for Knowledge Extraction need to
be done sporadically, a Public Cloud will be effective
in cost (avoiding the high costs of a dedicated system
and technicians).

3 Data acquisition

The acquisition of data from an EHR system does not
present significant technological problems because
they are normally prepared for interoperability. The
challenge is in the data acquisition from medical
equipment, the lowest level component (hardware and
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RULE 1

IF (RR > 30 per minute)

and (Hyperlataidemia: > 3 mmol/L)

and (Arterial Hypotension: SBP < 90 mmHg or MAP < 70 mmHg)

and (Fever > 38 ‰)

THEN

Risk oeffiient: 2

Nurse alert: Probable Septi Shok

Nurse treatment: Infuse fluid 20 ml/Kg

Physiian alert: Probable Septi Shok

Physiian treatment: Two blood ultures and start antibioti therapy

Ativate rules: 2 after 30 minutes

Deativate rules: 1

RULE 2

IF (Arterial Hypotension: SBP < 90 mmHg or MAP < 70 mmHg)

THEN

Risk oeffiient: 1

Nurse alert: Septi Shok

Nurse treatment: Start noradrenaline infusion: 16mg/250 dextrose 5% 21ml/Hour ⇒ Objetive MAP 70 mmHg

Physiian alert: Septi Shok

Physiian treatment: no

Ativate Rules: 3

Deativate Rules: 2

Referenes:

RR = Respiratory Rate

SBP = Systoli Blood Pressure

MAP = Mean Arterial Pressure

Figure 2: Examples of medical rules

software) of the whole system presented on this work.
It must collect signals from medical monitors (IN-
PUT), and send the digital information (OUTPUT) to
the Real-time Big Data Infrastructure, to be processed.
If analog signals exist a conversion to a proper digital
representation is required before the transfer.

Interfacing with the complete set of equipments is
the long term goal for this level. Unfortunately, the
hospital keep using a wide and complex variete of an-
cient and newer monitoring equipments, so different
INPUT/OUTPUT interfaces exist. In some cases, two
models from a same manufacturer (but different year
of production) do not use identical hardware ports
and/or software protocols for the output signals. Thus
the data extraction from medical equipment raises a
research topic previous to the design of an embedded
system for data acquisition, because internal specifica-
tions for those variety of interfaces are not always pub-
lished by the manufacturers. Either since it uses propi-
etary protocols, or the proper documentation might
not available (if, e.g. an ancient equipment is not
supported anymore). As a consequence, the data ac-
quisition might not be completely possible for all the
equipments.

Many monitors uses the RS-232 standard, for the
electrical and mechanical characteristics of outputs.
Differences here ocurres on the internal data level.
RS-232 is commonly used for serial communication
betweens systems, but some equipment might work
internally with other different protocols, for intercon-
necting devices from the same vendor only.

In order to develop and test our first data acquisi-
tion embedded system prototype we choose, for inter-
facing, the Life Scope LC, BSM-3101, from Nihon
Kohden. The BSM-3101 is a medical monitor, with

an analog interface for continuos ECG data output.
Since it features a non-digital output (which requires
to be converted) this equipment is suitable for testing
the longest use case (list of actions) of our data ac-
quisition prototype. Interfacing other digital outputs
monitors might be straighforward (if the correct doc-
umentation is available).

3.1 Embedded ECG Signal Acquisition Sys-
tem

The data acquisition system prototype architecture is
shown on figure 3. It comprises a microcontroller and
a single board computer (SBC). The former is a 8-bit
CPU (AVR architecture) with several low level I/O
lines, set for interfacing with monitors. It also fea-
tures 2KB SRAM, 32KB flash memory, a 6-channel
10-bit analog-to-digital converter, SPI serial port, a
two-wire serial interface, and a serial programmable
USART. The selected SBC includes a Wi-SOC from
Atheros (32-bit 400Mhz MIPS CPU, 32MB RAM,
4MB flash memory) with low power consumption and
reliable Wi-Fi interface. The Wi-SOC is the wireless
communication bridge between the whole data acqui-
sition device and a central server.

The two components communicate using the Uni-
versal Asynchronous Receiver/Transmitter (UART).
The maximum bits/baud rate per second is 115,200,
which represents almost 100kbits per second. In case
of there is an excessive continous data input, the
UART would be the limiting hardware on this archi-
tecture. However, it is planified to use just one of this
low cost data acquisition device per patient/bed, so
there should not be greater input data than the limit
imposed by the UART.

On the software level, a custom firmware for the
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Real-time Big Data Infrastructure

Data Acquisition Embedded System

Microcontroller (AVR) Single Board Computer

Atheros SOC (MIPS CPU)

A/D converter

I/O lines

USART UART

Analog output

Wireless

TCP/IP packets

Serial

Comm.

Figure 3: Data Acquisition Embedded System Archi-
tecture
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microcontroller was developed. It reads the analog
signal from ECG using an analog-to-digital converter
driver. Then, after the conversion, the MCU transfers
the 10-bit resolution digital value to the SBC using
an UART driver. Since there is not other software
tasks so far, the INPUT action is accomplished using
polling programming, inside an infinite loop. When
some input data is available, the infinite loop calls the
send procedure, which is part of the UART driver.

It was observed (when studying the ECG monitor
internals) that the analog output has positive and neg-
ative voltages (-5v to 5v range). In view of the fact
that the choosen MCU is not able to read the negative
voltage (the ADC works on 0v to 5v range) the analog
signal was mounted on a unipolar positive signal gen-
erator little circuit, which is achieved using a voltage
divisor and a operational amplifier (OpAmp). Figure
4 shows this circuit.

The software in the SBC includes two main com-
ponents: a custom Linux kernel (featuring UART and
wireless drivers, and TCP/IP software layers), and the
userspace software. The latter was built using build-
root project, which is suitable for small Linux devices
with low memory. On userspace there is also a cus-
tom application, which uses the Linux UART driver
to read for incoming digital data from MCU. When
digital data bytes are read the userspace application
transfers those to the central server, using a TCP/IP
connection.
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Figure 5: ECG prototype validation

3.2 ECG Signal Acquisition System Valida-
tion

Several measurement tests of rate and precision were
performed in a real environment at the hospital. It
is known that thousand samples per second from the
ECG are an adequate amount for describing the pa-
tient condition on real-time. This rate of data was
taken for several hours on this actual environment
with no lost of information, and a wireless TCP/IP
online communication during the whole test.

The most important validation is about the preci-
sion of data acquired. For this purpose a comparison
between results obtained by the prototype and a real
oscilloscope (PicoScope 2203) was made. Many sam-
ples for several seconds were taken using both data
acquisition systems, at the same moment. All the sam-
ples were saved, and a script was used to graphically
show the representative curves (useful for medical di-
agnosis, and for our validation). When both curves
were overlapped it was demostrated that the prototype
is acquiring the data from ECG correctly. Figure 5
shows the ECG over 2 sec, with the two set of sam-
ples graphically overlapping. The green curve (on top
of the violet curve) are the samples taken by our pro-
totype. The violet curve the samples gotten by the
PicoScope.

4 Real-time Big Data Infrastructure

The Real-time Big Data Infrastructure, whose func-
tionality was described in section 1, is implemented
using the architecture shown in figure 6. Data are or-
ganised in a central platform, the Streaming Data Plat-
form, which receives data streams and makes them
available to other components to be consumed in
real time. It works as a messaging system or mes-
sage queue, under the publication-subscription pat-
tern. This organisation of the data allows to sim-
plify the flow of communications between the differ-
ent components, producing a low coupling between
them.

The Data Acquisition module extracts data from
the EHR System and the Medical Equipment, and
sends them in the form of streams to the central plat-
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(User Interface)

Data 

Acquisition

Signal

Analysis

Rules

Processing

Streaming Data Processing

(Data Analysis)

NoSQL Database

(Temporal Data)

Client

(User Interface)

Streaming Data Platform

Figure 6: Architecture of the Real-time Big Data In-
frastructure

form. Most of data received by the platform comes
from the Data Acquisition.

Streaming Data Processing consumes data from the
central platform, and is responsible for performing a
Data Analysis, that is, the analysis of physiological
signals and the processing of medical rules. The re-
sults of the processing/analysis are returned to the cen-
tral platform.

The NoSQL Database allows the storage of Tem-
porary Data. This type of database (NoSQL) are
designed to store and process big data, with high-
performance reading and writing operations [10]. The
NoSQL Database consumes data from the central plat-
form (raw data produced by the Data Acquisition and
data generated by Streaming Data Processing) and
writes them to secondary storage.

Finally, the User Interface module presents the data
(signals, vital signs, etc.) to the physicians and nurses,
possibly making a small prior processing of them
when statistical data are required. This module can
receive data from the Streaming Data Platform or
NoSQL Database, depending on whether the required
data are real time or past time, respectively.

The figure 7 shows the software products, with Free
Software licenses, selected for the implementation of
the Real-time Big Data Infrastructure. The following
sections describe the operation of each used software,
and how they are integrated into our prototype.

4.1 Streaming Data Patform

The Streaming Data Platform is implemented by
Apache Kafka, a distributed streaming platform that
handles data streams in real time [11]. Kafka was
originally developed at LinkedIn and now is part of
the Apache Software Foundation.

The platform allows scaling to multiple nodes of a

Web-Server

Data 

Acquisition

Streaming Data ProcessingNoSQL Database

Client

Figure 7: Technologies of the Real-time Big Data In-
frastructure

Kafka Cluster

Consumer ConsumerConsumer

Producer ProducerProducer

Figure 8: Kafka Producers and Consumers

cluster, allowing us to easily support the increase in
the number of patients and in the volume of data per
patient (especially when new signals will be acquired
from medical equipment). In addition, it is tolerant to
failures, an essential property for a critical application
of the health field.

The interaction with Kafka is carried out through
subscriptions/publications of "streams of records"
(representing data streams). Thus, there are produc-
ers who make publications, to send streams of records
to the platform, and consumers who make subscrip-
tions to receive streams of records from the platform.
This is exemplified in figure 8. Specifically for our
prototype, the Data Acquisition module is a producer,
Apache Flink is both consumer and producer, and Cas-
sandra and the web server are consumers.

Each record (of a stream) consists of a key and a
value. The streams of records are stored in categories
called topics. For each topic there is a log, which
stores the records of the topic. A topic can subscribe
zero, one or more consumers, who will read the de-
sired records (the most recent or past) from a single
shared log. The logs are maintained persistently, and
are deleted after a specified time of life (whether their
records have been consumed or not). The use of writ-
ing in the filesystem does not involve a loss of perfor-
mance because Kafka has pagecache-centric design.
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A log can be partitioned. Each partition can be
stored in a different node of the cluster, and a parti-
tion will only be in one node. Partitioning allows to
use the storage of more than one node for the same
log. In addition, it allows to increase the performance
of the system by means of parallel access to the log
(from multiple nodes). Kafka only provides a total
order over records within a partition, not between dif-
ferent partitions in a topic. A global order of topic
records can be achieved using a single partition topic.
However, if the use of multiple partitions are required,
a solution can be found by determining which records
are assigned to each partition (based on the key) at the
producer.

Kafka replicates its partitions over multiple nodes
for fault-tolerance. Each partition has one node acting
as leader and zero or more nodes acting as followers.
The leader handles all read and write requests for the
partition. At the same time, the followers passively
replicate the leader. If the leader fails, one of the fol-
lowers will automatically become the leader. For load
balance purpose, each server acts as a leader for some
of its partitions and a follower for others.

In our prototype, on the one hand, a unique alert
topic has been created for all patients. Thus, each
consumer of alerts (the web server and Cassandra)
will make a single subscription to Kafka to receive all
alerts, whatever the patient. On the other hand, each
bed is identified with a number ranging from 1 to the
total number of beds. The following topics are de-
fined per bed: a topic for the ECG signal and a topic
for the Vital Signs. In table 1 the content of each topic
implemented in our prototype are shown, where n is
the maximum bed id. All topics have been defined
with a single partition. This allows to preserve, in a
simple way and without any detriment, the global or-
der of the records of the streams.

The criterion for determining topics for data com-
ing from the Data Acquisition module, is as follows.
A topic groups different parameters when two condi-
tions occur: the measurements of the parameters are
made at low frequency, and normally the parameters
are required together (by Apache Flink, Cassandra, or
the web server).

4.2 Stream Data Processing

Stream Data Processing performs two activities: sig-
nal analysis and medical rule processing. This mod-
ule is implemented by Apache Flink [12], a stream
processing framework to create distributed, scalable,
low latency, and fault tolerant applications. Other
frameworks offer similar solutions but using micro-
batching techniques (like the well-known Apache
Spark with Spark Streaming). Unlike them, Flink was
created with Streaming Processing in mind, allowing
the processing of individual elements of a stream with
very low latencies.

Topic Key Value

Alerts <bed_id>

<patient_id>

<timestamp>,

<risk_coefficient>,

<nurse_alert>,

<nurse_treatement>,

<physician_alert>,

<physician_treatement>

ECG_1 <patient_id>
<timestamp>,

<sample>

VitalSigns_1 <patient_id>

<type>,

<timestamp>,

<sample>

...
...

...

ECG_n <patient_id>
<timestamp>,

<sample>

VitalSigns_n <patient_id>

<type>,

<timestamp>,

<sample>

Table 1: Kafka topics of our prototype

Flink works only with data in main memory. There-
fore, it is necessary that all data fit in this memory.
Fortunately, Flink implements its own memory man-
agement inside the Java Virtual Machine (JVM), with
less garbage collection overhead. Furthermore, Flink
can scale to several nodes of a Cluster (or Cloud), al-
lowing the use of more main memory, and the perfor-
mance improvement through parallel computing.

Flink supports fault tolerance through checkpoint-
restart mechanism to consistently recover the state of
the distributed streaming dataflow under failures. The
checkpoint can be stored in a configurable place, pos-
sibly using a distributed file system. In case of a
program failure (due to a failure in software, in com-
puter hardware, or in the network), Flink stops the dis-
tributed streaming dataflow. The system then restarts
from the last successful checkpoint. As our applica-
tion has a small state, the checkpoint is very light-
weight and can be done frequently with low impact
on performance. It is necessary that the checkpoint
interval of Flink be consistent with the retention time
configured for the Kafka logs. In another case, the
recovery will not be complete.

Currently, in our prototype, signal analysis is done
with an application written in C language and its inte-
gration into Apache Flink is under development. So,
at this time, we use Appache Flink only for the pro-
cessing of medical rules.

Basically, Flink programs are composed of the fol-
lowing 3 parts. Data source is the incoming data to
be processed. Transformations is the processing step,
that is, the modifications on the incoming data. Fi-
nally, Data sink is where Flink sends data after pro-
cessing.

Particularly to our system, each part is performed
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as following:

Data source: Flink makes a subscription to Kafka
for each patient id (from 1 to the maximum num-
ber of inpatients) in the topics ECG_id and Vital-
Signs_id.

Transformations: As data is received from Kafka,
Flink analyses if conditions specified in rules (as-
sociated with each patient id) are met.

Data sink: When conditions of a rule are met, an
alert is issued by producing a new record in the
Alerts topic of Kafka.

Flink is natively prepared for integration with Kafka,
so it is not necessary to add a special connector be-
tween both platforms.

Flink supports the kind of processing required for
different types of medical rules, being able to contem-
plate the following situations:

1. one or more parameters meet a condition (con-
sidering their most current values).

2. one or more parameters meet a condition during
a time window (possibly different for each pa-
rameter).

3. events happen in a certain order.

The types of rules 1 and 2 are implemented using state
abstractions native of FLINK. The type of rule 3 are
possible to be implemented through Flink’s Complex
Events Processing library (CEP).

4.3 NoSQL Database

During the time that a patient is hospitalised, it is vi-
tal to store all your health data (including alerts) to be
consulted by nurses and doctors. These data need to
be written in secondary storage and without any com-
pression for quick access. Once a patient leaves the in-
patient unit (ICU/IMCU), their data are removed from
the local system. However, before being eliminated,
data need to be stored (possibly compressed) in the
Public Cloud. This Historical Data will be used for
Knowledge Extraction. In addition, some data may
be recorded in the EHR system.

A database is needed to store medical data gener-
ated for each patient during his hospitalisation. The
high-frequency of signal data (such as the ECG), mul-
tiplied by the number of patients, will produce a very
high number of insertions in the database. In turn, as
they occur, it is required to respond quickly to queries
originated by the web server. The NoSQL databases
are appropriate for these requirements and, within ex-
isting ones, we choose Cassandra [13].

Regarding the data model, Cassandra’s philosophy
is to create optimised tables for certain queries and to
not implement expensive operations such as joins. In-
stead, it opts for data redundancy. Cassandra works in

a distributed manner and is fault-tolerant. Replication
in different nodes allows low latency operations.

Cassandra does not have native connection with
Kafka. However, Kafka provides Kafka Connect, a
means for integration with other systems through the
creation of connectors. There are two types of connec-
tors: the Source Connectors, which import data of a
system and insert them into one or more topics (acting
in a similar way as a producer) and the Sink Connec-
tors, which export Kafka information to a target sys-
tem. The latter allows Cassandra to be connected with
Kafka, and to be updated as data from the Kafta top-
ics (Alerts, and ECG and VitalSigns for each patient)
are ingested.

4.4 Web Server

The User Interface module presents patient data to
doctors and nurses. The data involves: alerts, signals,
vital signs, and any other medical data. The data can
be presented in real time, and in that case the data
need to be extracted from Kafka. In addition, it may
be necessary to present past-time data. For example,
a doctor or nurse might check a patient’s ECG and
temperature curves, which occurred minutes ago, or
at night. In this case, data need to be extracted from
Cassandra.

The User Interface is implemented by a web server
and web or app clients. The server connects to Kafka
(using a Kafka API) and subscribes to the topics of in-
terest, to receive data in real time. When it is required
to access past time data, the web server queries Cas-
sandra.

The data from the client interfaces should be up-
dated as the server receives data from Kafka. The typ-
ical polling technique (in which each required data
need to be requested) is not appropriate for this situ-
ation. On the contrary, once a client has requested a
certain data stream to the web server, data should flow
continuously. To carry out this type of client-server
communication, the WebSockets protocol (defined in
RFC 6455) can be used. This provides full-duplex
communication channels over a single TCP connec-
tion. Through a channel, the client can make requests
or send data to the server. In turn, by another chan-
nel, the server can send data to clients, without re-
quest for them constantly. In our prototype we use
the Socket.IO library [14], an implementation of Web-
Sockets with extra features.

4.5 Experimentation

The objective of the experimentation is to determine
if a server of modest characteristics could support the
processing for patients at the ICU (with 7 beds) and
IMCU (with 5 beds) of the Francisco Lopez Lima
Hospital. The prototype implements the Real-time
Big Data Infrastructure using a single node.

A support node is used for:
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System Node Support Node

Processor
1 x Intel Xeon E5-2630 1 x Intel Core 2 Quad Q6600

6 cores, 12 threads 4 cores, 4 threads
Main Memory 16 GB 8 GB
kernel version Linux Debian 4.9.18-1 Linux Debian 4.9.82-1

Table 2: Characteristics of the experimental platform

8 patients 20 patients

Minimum (msec) 18 29
Average (msec) 154 167

Maximum (msec) 290 323

Table 3: Alert issue latency

• Emulate the Data Acquisition module: data
streams are generated by Python scripts.

• Capture the alerts: a consumer of Kafka, imple-
mented in Python, receives the alerts.

• Take measures for performance evaluation.

The performance evaluation of our prototype consists
of determining the minimum, maximum and average
latency to issue alerts. The latency time of an alert
is measured from the moment the last necessary data
that causes the alert is sent by the additional node, un-
til the alert reaches the additional node.

The characteristics of each node used for experi-
mentation are shown in table 2. Both nodes are con-
nected to a local network of 1 Gbps.

Experiments were performed for 8 and 20 patients.
For each patient it is generated an ECG signal with
a frequency of 1 sample per millisecond, and 5 vital
signs with a frequency of 1 sample per second. Each
experiment runs for 5 minutes, and every 15 seconds
an alert per patient occur. Table 3 shows the mini-
mum, average and maximum latency required to issue
alerts. The result obtained allows to determine that
the prototype, running on a modest server, is suitable
for use in the FLLH. However, it is necessary to use
more than one node for the system to be faul tolerant.

5 Conclusions and Future Works

Our objective is to develop a computer system that
allows the automatic and early detection of deterio-
ration of patients hospitalised in ICUs and IMCUs,
through the real-time processing and analysis of dig-
ital health data. In this article the challenges and the
proposal of solutions that we implemented in a pro-
totype were discussed. The prototype was developed
and evaluated to be used in a public hospital of Ar-
gentina.

The general problem of ICUs/IMCUs was pre-
sented. We have described a high-level system archi-
tecture which supports multiple hospitals without In-
ternet leased lines. The solution uses a computing sys-
tem at each hospital and a Public Cloud, used to store

historical data and for knowledge extraction. The dif-
ficulty of extracting data from medical equipment us-
ing unknown interfaces (hardware and software) was
discussed. We have presented a solution based on an
embedded system that we develop for acquire the elec-
trocardiogram (ECG) signal from an analog output of
a medical monitor, performs an analog-digital conver-
sion, and transmits it via WiFi to the platform that
process the signal. We have detailed a real-time Big
Data infrastructure that, based on streams of signals
and other health data, allows to process rules to de-
termine and issues alerts indicating risk in the health
of patients. The infrastructure is distributed, scalable,
fault tolerant and interoperable, based on Free Soft-
ware products.

We believe that experimental results demonstrate
the feasibility of the techniques and technologies
used, leaving solid foundations for the construction
of a reliable system for medical use, able to scale and
support an increasing number of patients and captured
data.

As future works, different fault tolerance configu-
rations will be evaluated. The detection of QRS com-
plexes of ECG signals is expected to be integrated
into the prototype. Furthermore, it is planned to incor-
porate the detection of anomalies in ECG signals to
avoid the contamination of the system with erroneous
data. It is necessary to acquire new signals: oxygen
saturation in blood, body temperature and blood pres-
sure. Interconnection with mechanical respirators is
also of interest. Finally, the research will be directed
to the knowledge extraction module, used to define
rules for pathologies prediction.
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