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Abstract. By means of the present work, the production scheduling and the lot 

streaming problems are simultaneously addressed at flexible manufacturing 

environments. The proposal is based on a Constraint Programming (CP) 

formulation that can efficiently tackle the scheduling of manufacturing 

operations and the splitting of lots into smaller sublots. The approach is capable 

to define the number of sublots for each lot and the number of parts belonging to 

each sublot, as well as the assignment of the operations on sublots to machines, 

with their corresponding start and completion times. The CP model can be easily 

adapted to cope with different problem issues and several operational policies, 

which constitutes the main novelty of the contribution. A set of case studies were 

solved in order to validate the proposal and good quality solutions were found 

when minimizing the makespan. 
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1. Introduction  

The manufacturing companies are facing a challenging era, where product life cycles 
are getting shorter over time and customers’ demands constantly change. In this context, 
having an agenda of operations and knowing the availability of resources at the shop 
floor, have turned into crucial concerns. Thus, the production scheduling (PS) activity 
has been getting increasing attention from practitioners at industrial environments. PS 
allows the schedulers or shop managers to define an agenda for a set of production orders 
or jobs, which optimizes one or more performance criteria while it satisfies a set of 
constraints. Most academic contributions addressing the PS problem at manufacturing 
environments represent a job as an indivisible entity, where job splitting during the 
process is not permitted. However, this assumption does not always reflect what happens 
in practice. 

At industrial facilities, a job demands to manufacture products that can be elaborated 
by means of one or more lots. A lot (or batch) consists of a set of similar items or parts, 
which require an ordered sequence of manufacturing operations to be processed (i.e. the 
product manufacturing route). In many real industries, lots that were predefined at the 
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planning level are split when facing the manufacturing process. The operational decision 
of dividing the lots into smaller sublots (or transfer batches) is known as lot streaming 
(LS) in the literature. The streaming of lots is a practice aimed at achieving an anticipated 
completion of smaller sets of parts. It is an operational procedure that satisfies those 
internal or external customers by enabling sooner deliveries of elaborated products. The 
time savings are due to the parallel processing of two or more consecutive operations 
required by a lot [1]. 

By solving the LS problem, the number of sublots for each lot of product and the size 
of those sublots are determined. The LS is normally tackled simultaneously with 
production scheduling. Therefore, scheduling decisions have to be extended for each 
sublot, turning the joined solving of PS and LS problems into a more complex issue to 
cope with. The PS-LS problem has many variants, depending on the characteristics being 
addressed. In [2], Sarin and Jaiprakash summarize PS-LS main issues:  

• Single product/Multiple products. Either a single product or multiple products are 
considered. 

• Fixed/Equal/Consistent/Variable sublots. Fixed sublots refer to the case when all 
sublots of all lots (of all products) have the same size for all the operations. Equal 
sublots mean that the number of items of each sublot is fixed for each lot. When 
each sublot of a lot must maintain its size during the entire processing route, the 
sublot is termed consistent. Instead, variable sublots can differ in size during the 
manufacturing process.  

• Discrete/Continuous sublots. At manufacturing industries that produce discrete 
parts, such as cars, valves, and gears, the number of items of a sublot must be an 
integer. Instead, at process facilities such as pharmaceutical, paint, and gas, 
sublots (batches) may take either integer or continuous sizes.   

• Non-idling/Intermitted idling. On the one hand, under a non-idling policy, the 
sublots of a lot must be processed one after the other without idle time between 
their processing. On the other hand, with intermitted idling, the idle time between 
the processing of two consecutive sublots on a machine is allowed.  

• No-Wait/Wait schedules. Under a no-wait policy, when a sublot of a lot needs to 
be transferred to another machine for the next operation, it must be done without 
any delay after it has finished the preceding operation. In a wait schedule mode, a 
sublot may wait for processing between consecutive operations on different 
machines.  

• Attached/Detached/No setups. If the setups cannot begin until the sublot is 
available at a machine, attached setups are required. Detached setups occur when 
the setup is independent of the availability of the sublot. In some cases, there are 
no setups or they are neglected.  

• Intermingling/Non-intermingling sublots. In a multiproduct facility, if 
intermingling is allowed, the sequence of sublots of a lot j, on a given machine, 
can be interrupted by sublots of a lot k, with j ≠ k. On the contrary, no interruption 
in the sequence of sublots of a lot is allowed at non-intermingling sublots settings.  

 During the last decades, the number of research works addressing the PS-LS 

problem has increased. It has been studied using diverse methodologies, such as 

mathematical models, heuristics, and meta-heuristics. The Constraint Programming 

(CP) [3] techniques are also a promising technology to tackle it. Mostly, the PS-LS 
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problem has been faced on flow-shops (FS), hybrid flow-shops (HFS), and job-shops 

(JS) environments, as in [1,4-6], [7-9] and [10-12], respectively. 

To the knowledge of the author, there are just a few research works addressing the 

problem at flexible job-shops (FJS). The FJS environment is one of the more 

challenging plant configurations, which is an extension of the classical JS problem. In 

FJS, each job has a flexible processing route; i.e. each operation of a job needs to be 

assigned to a machine among a set of alternative resources. Concerning the FJS problem 

with LS (FJSP-LS), some authors [13], authors developed a multi-objective particle 

swarm optimization algorithm. Particularly, they tackled the consistent sublots 

problem. In [14], an approach for scheduling jobs at virtual manufacturing cells was 

presented. The authors cope with transport times and consistent sublots. A MILP model 

was presented, while a genetic-based algorithm was developed to solve medium size 

instances. In [15], authors extended their previous proposal by formalizing the problem 

as a MILP model and developing an island-model parallel genetic algorithm. Relevant 

features such as sequence-dependent setups, attached/detached setups, machine ready 

times and lag times were considered. A job can be split in unequal sublots. Later, in 

[16], an evolutionary algorithm to address the batch splitting in a dyeing facility was 

proposed. The approach deals with equipment capacity constraints and transition times 

between jobs, while a cost-based performance measure is optimized. 

As it has been described, most contributions have used heuristics or metaheuristics 

to address the PS-LS problem and, some works, have also formalized the problem by 

means of a mathematical formulation. To the knowledge of the author, there are no 

contributions that extensively describe an approach based on CP to cope with the 

problem. CP techniques have received increasing attention from researchers during last 

years since they can efficiently solve constraint satisfaction problems (CSP) and handle 

combinatorial problems, especially scheduling ones [17, 18].  

In the present contribution, the flexible job-shop scheduling problem and the lot 

streaming problem are simultaneously addressed by means of a novel CP approach. 

The proposal can easily handle, just by the implementation of small changes on the CP 

model, a variety of different FJSP-LS problems. Thus, features such as non-idling or 

intermitted idling, intermingling or non-intermingling sublots, no-wait or wait 

schedules, can be tackled. The rest of the work is organized as follows. In section II, 

the problem characteristics are described. Section III presents the CP model, while 

section IV shows the computational results when solving a set of test case studies. 

Finally, section V concludes and posts future challenges.   

2. Problem statement  

There is a set of orders requiring different products to be elaborated in an FJS 

environment. Each product order is associated with a lot or batch of similar parts. The 

number of parts that each lot contains, the lot size, has already been defined at a 

planning level. Each product has its manufacturing route; therefore, the parts belonging 

to a lot follow an ordered set of machining operations, in order to become an elaborated 
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product. The number and type of operations that are required to be executed on each 

lot also depend on the demanded product. 

Lots are allowed to be split into smaller sublots of parts. An operation on a sublot 

can be processed on a machine that belongs to a set of alternative multipurpose 

machines. Thus, the processing time to execute an operation on a single part of a sublot, 

depends on the product being elaborated and the machine where the sublot is allocated, 

while the required time to process the complete sublot also depends on its size. 

Fig. 1 illustrates the main difference between agendas for an FJS without LS and an 

FJS with LS consideration. In Fig. 1(a), a possible solution for two lots requiring three 

operations each, is depicted. Different arrow types represent the selected manufacturing 

route for each lot.  Lots are not permitted to be divided. A Gantt chart shows the agenda 

for this case, where the label x.y stands for the number of the lot and the operation, 

respectively. Fig. 1(b) represents a solution for the same illustrative environment but 

considering lot splitting. In this case, both lots are divided into two sublots. Each sublot 

follows its assigned manufacturing route to turn into sublots of final products. By means 

of the Gantt chart it can be easily observed how a lot splitting policy leads to a better 

makespan (label x.y.z stands for a lot, operation and sublot). This is caused by the 

parallel processing of operations of sublots created from the same lot. For instance, the 

first operation of lot L1 is executed simultaneously over its two sublots, on machines 

M1 and M3.  

On the one hand, the main benefits of LS, besides a shorter makespan, are: (i) 

products can be delivered sooner in partial quantities since sublots are fully processed 

in shorter periods of time than the case with no lot splitting, allowing a more agile 

response to customer demands (as it is illustrated in Fig.1); (ii) better use of production 

resources, i.e. reduction of machines idle time; (iii) reduction of work-in-process (WIP) 

since, generally, a lower number of parts will be waiting to be processed and these 

sublots will wait less time, compared to the no splitting case, (v) decrease of mean flow 

time. On the other hand, splitting the lots has its associated drawbacks, such as 

increasing setup costs and demand of transport devices.  
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Fig. 1. (a) An FJS processing two lots without lot splitting. (b) Same FJS processing two lots 

with lot streaming. 

(a) 

(b) 
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The approach presented in this work is able to handle the FJSP-LS problem 

considering multiple products, consistent and discrete sublots. It also copes with 

opposite policies by simple adjustments in the formulation, such as non-idling and 

intermitted idling, wait and no-wait schedule, intermingling and non-intermingling 

sublots. Sequence-dependent detached setups, a characteristic that turns the addressed 

problem into a more complex one, are taken into consideration too.  

The following assumptions are taken into account: (i) lots/sublots of parts are 

independently from each other, (ii) the demand of final products, and therefore the size 

of the lots, are known in advance, (iii) pre-emption is not allowed, (iv) transfer times 

between machines are neglected, (v) machines are capable of processing one operation 

at a time, (vi) machines do not receive maintenance during the scheduling horizon, (vii) 

disruptive events, such as rush orders or machine failures, are not taken into 

consideration. 

When solving the FJSP-LS problem, it is required to: (i) determine the number of 

sublots for each lot, (ii) determine the size of each sublot, defined as the number of 

parts that it comprises, (iii) assign to a single machine each operation demanded by a 

sublot, (iv) sequence at each machine all the assigned operations, (v) determine the start 

and completion time of each machining operation needed by sublots. All the previous 

goals must be accomplished while satisfying the domain features and constraints. In 

this proposal, makespan was considered as the performance measure to minimize.  

3. CP Formulation  

3.1 Nomenclature 

Set/Index  

J/j Lots (or jobs) 

O/o Operations 

M/m Machines 

Oj Operations required by lot j 

Mj,o Machines that can process operation o of lot j 

Sj Instantiable sublots of lot j. The cardinality of this set represents the 

maximum possible number of sublots for j. 

Parameters  

ptj,o,m The processing time of operation o on a part belonging to lot j, when it 

is executed on machine m 

zj Size of lot j 

sDS Set of triplets <j,j’,s> representing the sequence-dependent detached 

setup times s, between lot j and j’. 

Cumulative Function  

mUm Represents the usage profile of machine m 
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Variables  

cmax Makespan 

tj,o,s Interval variable that represents the machining operation o on sublot s 

of lot j 

tmj,o,s,m Optional interval variable that represents the operation o on sublot s of 

lot j, executed on machine m 

uj,o,s Size of sublot s of lot j on operation o 

spLotj,o,m Interval variable used to span over all sublots of lot j under operation 

o on machine m 

mSpLotSm Sequence variable on machine m, which represents the arrangement of 

spanned lot interval variables (spLot) allocated in m  

mSm Sequence variable on machine m, which represents the arrangement of  

task interval variables (t) allocated in m 

3.2 CP model  

The CP formulation relies on the ILOG-IBM OPL language and the CP Optimizer, 

which underlies the CPLEX Optimization Studio [19]. These tools provide some 

constraints, functions, and type of variables that are used to model scheduling domain 

issues. Some OPL keywords, such as alternative, span, endBeforeStart, among others, 

are OPL built-in functions. Some of them were introduced and illustrated by the authors 

in [18] and are not explained here because of lack of space. The expressions used by 

the proposed model are: 

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑡𝑗,𝑜,𝑠 , 𝑡𝑚 𝑗,𝑜,𝑠,𝑚 ) ;   ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 , ∀𝑠 ∈ 𝑆𝑗 , ∀𝑚 ∈ 𝑀𝑗,𝑜 (1) 

𝑚𝑈𝑚 = ∑ 𝑝𝑢𝑙𝑠𝑒(𝑡𝑚 𝑗,𝑜,𝑠,𝑚 , 1)

∀𝑗∈𝐽,∀𝑜∈𝑂𝑗,∀𝑠∈𝑆𝑗

 ;      ∀𝑚 ∈ 𝑀𝑗,𝑜 (2) 

𝑚𝑈𝑚  ≤  1 ;      ∀𝑚 ∈ 𝑀 (3) 

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑡𝑗,𝑜,𝑠 , 𝑡𝑗,𝑜′,𝑠 );      ∀𝑗 ∈ 𝐽, ∀𝑜, 𝑜’ ∈ 𝑂𝑗: 𝑜’ = 𝑜 + 1, ∀𝑠 ∈ 𝑆𝑗 (4) 

𝑒𝑛𝑑𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝑡𝑗,𝑜,𝑠 , 𝑡𝑗,𝑜′,𝑠 );     ∀𝑗 ∈ 𝐽, ∀𝑜, 𝑜’ ∈ 𝑂𝑗: 𝑜’ = 𝑜 + 1, ∀𝑠 ∈ 𝑆𝑗 (4’) 

𝑠𝑖𝑧𝑒𝑂𝑓(𝑡𝑚 𝑗,𝑜,𝑠,𝑚) = 𝑝𝑡𝑗,𝑜,𝑚 ∗  𝑢𝑗,𝑜,𝑠 ∗  𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑡𝑚 𝑗,𝑜,𝑠,𝑚); 

∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 , ∀𝑠 ∈ 𝑆𝑗 , ∀𝑚 ∈ 𝑀𝑗,𝑜 
(5) 

𝑠𝑝𝑎𝑛(𝑠𝑝𝐿𝑜𝑡𝑗,𝑜,𝑚, 𝑎𝑙𝑙(𝑠 𝑖𝑛 𝑆𝑗)𝑡𝑚 𝑗,𝑜,𝑠,𝑚);  ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 , , ∀𝑚 ∈ 𝑀𝑗,𝑜 (6) 

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑚𝑆𝑝𝐿𝑜𝑡𝑆𝑚);   ∀𝑚 ∈ 𝑀 (7) 

𝑠𝑖𝑧𝑒𝑂𝑓( 𝑠𝑝𝐿𝑜𝑡𝑗,𝑜,𝑚) ≤  ∑ 𝑠𝑖𝑧𝑒𝑂𝑓(𝑡𝑚 𝑗,𝑜,𝑠,𝑚)

𝑠 ∈𝑆𝑗

;       ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 , ∀𝑚 ∈ 𝑀𝑗,𝑜 (8) 

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑚𝑆𝑚, 𝑠𝐷𝑆);   ∀𝑚 ∈ 𝑀 (9) 
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∑ 𝑢𝑗,𝑜,𝑠 

𝑠∈𝑆𝑗

= 𝑧𝑗  ;      ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 (10) 

∑ 𝑢𝑗,𝑜,𝑠 

𝑠∈𝑆𝑗

≥ 𝑧𝑗   ;      ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗  (10’) 

𝑢𝑗,𝑜,𝑠 = 𝑢𝑗,𝑜′,𝑠 ;      ∀𝑗 ∈ 𝐽, ∀𝑜, 𝑜′ ∈ 𝑂𝑗: 𝑜 ≠ 𝑜′, ∀𝑠 ∈ 𝑆𝑗  (11) 

𝑚𝑖𝑛 𝑐𝑚𝑎𝑥  ; (12) 

𝑐𝑚𝑎𝑥 ≥ 𝑒𝑛𝑑𝑂𝑓(𝑡𝑎𝑠𝑘𝑗,𝑜,𝑠);    ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 , ∀𝑠 ∈ 𝑆𝑗 (13) 

The assignment of sublots to machines, at each required operation, is modeled by 

(1). This expression ensures that an operation o executed on a sublot s of a lot j, is 

assigned to exactly one machine m, belonging to Mj,o. The alternative construct 

synchronizes each tj,o,s with just one instance of the optional interval variable tmj,o,s,m, 

which is present in the solution. 

Expressions (2) and (3) are formulated to constraint the number of operations that a 

machine can process simultaneously. In expression (2), the usage profile of each 

machine is modeled by a cumulative function. Each time an instance of the variable tm 

is present in the solution, the pulse construct enforces the mUm function to increase its 

value by one unit, at the beginning of the period and returns to zero when the task 

associated with tm finishes. Expression (3), jointly with (2), ensures that only one sublot 

is processed at each unit of time on machine m.   

Expression (4) defines the precedence relationships between consecutive operations 

required by each sublot of each lot. The endBeforeStart construct is used, which forces 

that the operation o on a sublot s of a lot j, to end before the start of the next operation 

o’ required by the same sublot. This accounts for the wait schedule operational mode. 

If a no-wait policy is considered, then the expression (4’) must be replaced by the 

expression (4). By (4’), the endAtStart construct ensures that the later operation starts 

without any delay after the preceding task has finished. 

Expression (5) uses the construct sizeOf to define the duration each task. The 

processing time of the activity tmj,o,s,m depends on the processing time required by an 

individual part of the original lot j on machine m, when executing o, ptj,o,m, and the 

number of parts that constitutes the sublot s, uj,o,s. The duration of tmj,o,s,m can adopt a 

zero value when (i) the instance of that variable is not present in the solution, 

presenceOf(tmj,o,s,m) = 0, which means that task tj,o,s is not assigned to machine m, or 

(ii) the sublot is not instantiated, meaning that it is empty, uj,o,s = 0. Otherwise, the size 

of the task is greater than zero. 

Previous constraints (1-5) are used to address the FJSP-LS under the intermitted 

idling policy, by which the idle time between the machining of two consecutive sublots 

on a machine is allowed. It is also permitted the processing, on different machines, of 

the same operation on different sublots.  

Under an intermitted idling policy, intermingling can be allowed or forbidden. 

Constraints (1-5) also permit the intermingling policy, by means of which a sequence 
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of sublots of a lot on a machine can be interrupted by sublots of a different lot. On the 

contrary, under a non-intermingling policy, the expressions (6-7) have to be considered. 

These expressions enforce that a sequence of sublots of a lot is not interrupted by any 

sublot from a different lot. While by (6) an auxiliary task spLotj,o,m is instantiated to 

comprise all sublots of lot j on machine m under operation o, expression (7) ensures 

that those spLot intervals do not overlap each other, i.e. an operation o of a sublot of a 

lot k cannot be scheduled between tasks on sublots corresponding to another lot j, with 

j ≠ k.  

If no-idling policy is required to be modeled, then expressions (1-7) has to be 

considered and expression (8) must be added. By a no-idling mode, different sublots of 

a lot must be processed consecutively when they are allocated to the same machine, 

without idle time between tasks. The expression (8) forces the spLotj,o,m interval to have 

the same size as the sum of the durations of operations o, on all sublots belonging to j, 

on machine m. Thus, no idle time can exist between to tmj,o,s,m intervals. 

The expression (9) accounts for the sequence-dependent detached setup times. A 

setup time interval exists every time two consecutive sublots in a machine sequence, 

belong to different lots (in this work it is assumed that lots pertain to different products). 

The duration of the setup depends on which product is being elaborated previously and 

which is processed next on a machine. To model this feature, the noOverlap construct 

is used. It enforces tasks assigned to machine m to not overlap each other and, when 

sublots are from different lots, imposes a period of time between those tasks that 

represent the predefined setup time. 

A sublot s belonging to Sj can be either empty or not, that is a CP model decision to 

make. Not all declared elements in the set Sj will necessarily have a positive value, i.e. 

not all sublots s of lot j will be instantiated in the solution, some of them can be empty. 

The number of declared sublots for each j instantiated and the number of parts 

belonging to it (size of s), are decisions addressed by the CP model. Note that the 

cardinality of Sj defines the maximum number of sublots in which lot j can be split. 

By means of (10), it is ensured that the sum of all the sublots sizes belonging to a lot 

must be equal to the size of that original lot. In some practical situations, this equality 

needs to be relaxed, as in expression (10’), in order to obtain feasible solutions. For 

instance, when there is a minimum requirement on the number of parts belonging to a 

sublot and the size of the lot is not a multiple of that parameter. Expression (11) enforces 

sublots of each lot to be consistent. This means that, even when sublots of a lot can 

have different sizes, each sublot maintains the same size during the whole 

manufacturing route. 

In the present CP model, makespan has been chosen as the performance measure to 

minimize. Then, expressions (12) and (13) must be included in the formulation. Other 

objective functions, such as total tardiness or multi-objective functions, can be easily 

considered in the model and will be discussed in future works. 
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4. Computational results 

4.1 Data and scenarios 

The CP formulation presented in Section 3 has been tested with several case studies 

of different size and characteristics. To the best of the author’s knowledge, there is a 

lack of benchmark problem instances in the literature for the FJSP-LS problem (with 

its corresponding complete set of data). Hence, the test instances addressed in this work 

have been generated adapting several of the FJSP without LS case studies introduced 

in [20], whose main characteristics are summarized in Table 1.  

In [20], the processing times are expressed in terms of job, operation and machine. 

In this work, those values are considered as the processing time that requires an 

operation on a single part belonging to a lot, on a given machine. Therefore, the duration 

of an operation depends also on the size of the sublot being manufactured. 

The problems in Table 1 were extended to consider the LS issue, by defining the 

maximum number of sublots for each lot (Sj) and the size of each lot (zj). The size zj 

was randomly generated between 5 and 50. Three sets of data per problem instance 

were defined by varying the values of zj. Each of these instances is identified as Px-z, 

where x-z are the problem and the data set identifiers, respectively. The value of the Sj 

parameter was defined as 4 and 6, for small and medium-size problems, respectively, 

except for the case when a different value is explicitly indicated.  

Table 1.  Number of lots, operations, shop machines, and alternative machines per 
lot-operation  

ID ID in [20] #J #O #M #Mj,o 

P1 SFJS7 3 3 5 2 

P2 SFJS8 3 3 4 2 

P3 SFJS9 3 3 3 2 

P4 SFJS10 4 3 5 1 - 2 

P5 MFJS7 8 4 7 2 - 3 

P6 MFJS8 9 4 8 2 - 3 

P7 MFJS9 11 4 8 2 - 3 

P8 MFJS10 12 4 8 2 - 3 

 

A main contribution of this approach is its capability to address several FJSP-LS 

types of problems. With the aim of addressing these variants, a set of 10 possible 

scenarios were defined as FJSP-LS problems at shops operating under different 

operational characteristics and policies. Thus, a scenario is related to a precise set of 

constraints that models its features. Table 2 presents a classification of the scenarios, 

the features that typify them, and the associated expressions that must be considered in 

the formulation. Group A scenarios represent the possible combinations of the LS 

problem characteristics identified in the literature and enumerated in Section 1. The 
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scenarios of group B result from the combination of any scenario from group A, and 

constraint (9). For instance, S1.6 addresses a problem characterized by intermitted 

idling, wait schedule, intermingling sublots, and sequence-dependent setup times.  

The case studies were solved to a maximum time limit that depends on its size. A 

desktop computer consisting of an Intel i7-7700 CPU, 3.60 GHz processor with 16 Gb 

of RAM was used.  

Table 2.  Set of the addressed scenarios 

Group Scenario      

ID 

Operational features Expressions 

A S1 Intermitted idling/Wait schedule/ 

Intermingling policy  

1,2,3,4,5,10,11,12,13 

S2 Intermitted idling/No-wait schedule/ 

Intermingling policy     

1,2,3,4',5,10,11,12,13 

S3 No-idling/ Wait schedule/ 

Non-intermingling policy     

1,2,3,4,5,6,7,8,10,11,12,13 

S4 No-idling/No-wait schedule/ 

Non-intermingling policy    

1,2,3,4',5,6,7,8,10,11,12,13 

S5 Intermitted idling/Wait schedule/ 

Non-intermingling     

1,2,3,4,5,6,7,10,11,12,13 

B SA.6. Sequence Dep. Setup  any from A & 9 

4.2 Results 

Table 3 shows the solutions when addressing the entire group A scenarios, for 4 

medium size problem instances. A CPU time limit of 5000 seconds was imposed. 

The solutions for S1 scenarios reach the lower makespan among all other scenarios 

for each problem instance, while the scenarios S4 are the ones with the highest 

makespan value. This behavior is related to the fact that S4 is the most constrained 

scenario since it forbids any idle time between consecutive operations on sublots and 

between sublots of a job in a given machine. On the contrary, the S1 scenario is the 

most flexible, allowing idle time among operations and sublots sequences. For all the 

test problems solved, the performance of the agenda degrades between 29% and a 33%, 

when solutions from S1 and S4 are compared.  

The first solutions for the whole set of problems were instantiated in less than 2 

seconds of CPU time. Before the imposed time limit of 5000 seconds, all solutions 

improve its first instantiation between 17% and 57%, with an average of 33%. In most 

problems, good solutions are found in short CPU times. Problems reach good quality 

solutions before 500 seconds. After that point, the ratio of improvement gets shorter 

with the time. In most cases, the later in time a new solution is found, the smaller the 

improvement of the solution is. This behavior replicates in all the problems and 

scenarios.   
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Table 3.  Solutions for different medium-size problems with diverse lot streaming 
characteristics 

ID Scenario First solution Best solution 

Makespan a Makespan CPU time (s)b 

P5.3 S1 35631 25142 3480 

 S2 34684 28797 2660 

 S3 46468 25594 3098 

 S4 43177 32337 1435 

 S5 62348 26911 4756 

P6.3 S1 37444 27478 3342 

 S2 52196 30561 3110 

 S3 49981 28699 4623 

 S4 50080 35192 2697 

 S5 57561 31072 3393 

P7.3 S1 38156 29939 4377 

 S2 44967 34880 4111 

 S3 52646 32712 3910 

 S4 56436 39901 4354 

 S5 56670 32700 4781 

P8.3 S1 40592 30267 2850 

 S2 47658 37344 1411 

 S3 47828 30725 4861 

 S4 66417 40310 662 

 S5 44039 32864 4856 
a All first solutions were found in less than 2 seconds of CPU time 

b Time required to instantiate the solutions within the 5000 CPU seconds 

 

The CP approach allows considering sequence-dependent detached setup times. 

When this feature is addressed, the impact on the obtained solutions depends on the 

relation between the setup times and the duration of manufacturing tasks, which in turn 

depends on the size of the sublot being processed. An extended analysis of test instances 

considering setups is not included in this contribution. As an illustrative example, 

solution for problem P8.3, scenario 5, when the setup issue is present (S5.6), shows a 

Makespan of 42950 units of time. This solution was the best found within 5000 seconds 

of CPU, and it was instantiated at 2839 seconds. As it can be observed, in this particular 

case, the setups considerably degrade the Makespan value obtained when they are 

missed. 

For two of the solved problem instances, Table 4 compares their solutions when 

addressing the problem with and without lot streaming consideration.  In the P3.1-S2 

case, the makespan reached considering LS outperforms the objective value when it is 

not permitted, in a 28%. If the processing times are assumed to be in seconds, as they 
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are in [20], then, by allowing the splitting of lots the saved time for the P3.1-S2 problem 

was 28 minutes. For P5.1-S1, the improvement is of 29%, representing 124 minutes in 

that case. Furthermore, the first delivery (first sublot completed) corresponds to the j4 

at time 3782, while without LS, the first completion corresponds to j1 at time 13260. 

This situation clearly shows one of the main advantages of LS, which is the sooner 

finishing of some sublots of parts. Fig. 2 shows the Gantt charts of the obtained 

solutions for the P5.1 S1 case. In Fig. 2 (a), lot streaming is forbidden and there is a 

single lot per demanded product. In Fig. 2 (b), lot streaming is allowed and there are 

several sublots per lot of product.  

Table 4.  Comparison of solutions for problems that allow or forbid LS 

ID Scenario LSb First solution Best solution 

Makespan  CPU time (s) Makespan CPU time (s) a 

P3.1 S2 A 7660 1 5986 665 

  F 7680* 1 NI - 

P5.1 S1 A 33368 1 25389 632 

  F 32852* 1 NI - 
a Time required to instantiate the solutions within the 1500 CPU seconds 
b A-Lot streaming is allowed / F-Lot streaming is forbidden 

* A single solution was found within the time limit 

NI No improvement in the already found solution. 

 

 

 
Fig. 2. Gantt charts representing the obtained schedules for instance P5.1 S1, when (a) lot 

streaming is forbidden, and when (b) lot streaming is allowed. There are 8 lots to be manufactured 

in a shop with 7 machines. Each lot (with different colors) requires 4 operations, each of which 

can be processed in a set of 2 or 3 alternative machines. 
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Notice that the approach does not set a lower bound on the number of parts that each 

sublot can comprise. A strategy to cope with this issue is part of the future research 

work. 

5. Conclusions and future directions 

A novel CP formulation that addresses the complex FJSP-LS problem has been 

presented. The approach is able to easily cope with the complexity of the FJSs and, by 

means of few changes, it can address many different characteristics of the lot streaming 

problem. Several operational policies such as idling/ intermitted idling, wait/no-wait 

schedules, etc., can be handled by the proposal. The model has been tested with several 

problem instances adapted and extended from the literature of FJSP without LS. Good 

quality solutions were found for small- and medium-size case studies when minimizing 

makespan.  

There are several challenges related to the scheduling and lot streaming problem that 

are going to be tackled as part of future research activities. The use of multi-objective 

performance measures will be discussed. Also, different methods to handle real large-

size problems will be studied, such as MILP/CP integrated approaches or heuristics. 

Some rules observed in practice will also be analyzed.  

At some manufacturing settings the lots are streamed at some point in the 

manufacturing route and, downstream, consolidated again. This is a complex issue to 

efficiently cope with and, therefore, an interesting research challenge to tackle as part 

of future activities. 
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