

 An approach for the production scheduling problem

when lot streaming is enabled at the operational level

Juan M. Novas1,2

1CIEM (UNC-CONICET)

Medina Allende s/n – Cdad. Universitaria

5000, Córdoba, Argentina
2CIDS (UTN Córdoba)

Maestro Lopez esq. Cruz Roja Argentina – Cdad. Universitaria

5000, Córdoba, Argentina
jmnovas@famaf.unc.edu.ar

Abstract. By means of the present work, the production scheduling and the lot

streaming problems are simultaneously addressed at flexible manufacturing

environments. The proposal is based on a Constraint Programming (CP)

formulation that can efficiently tackle the scheduling of manufacturing

operations and the splitting of lots into smaller sublots. The approach is capable

to define the number of sublots for each lot and the number of parts belonging to

each sublot, as well as the assignment of the operations on sublots to machines,

with their corresponding start and completion times. The CP model can be easily

adapted to cope with different problem issues and several operational policies,

which constitutes the main novelty of the contribution. A set of case studies were

solved in order to validate the proposal and good quality solutions were found

when minimizing the makespan.

Keywords: lot streaming; scheduling; flexible job shop; constraint programming

1. Introduction

The manufacturing companies are facing a challenging era, where product life cycles
are getting shorter over time and customers’ demands constantly change. In this context,
having an agenda of operations and knowing the availability of resources at the shop
floor, have turned into crucial concerns. Thus, the production scheduling (PS) activity
has been getting increasing attention from practitioners at industrial environments. PS
allows the schedulers or shop managers to define an agenda for a set of production orders
or jobs, which optimizes one or more performance criteria while it satisfies a set of
constraints. Most academic contributions addressing the PS problem at manufacturing
environments represent a job as an indivisible entity, where job splitting during the
process is not permitted. However, this assumption does not always reflect what happens
in practice.

At industrial facilities, a job demands to manufacture products that can be elaborated
by means of one or more lots. A lot (or batch) consists of a set of similar items or parts,
which require an ordered sequence of manufacturing operations to be processed (i.e. the
product manufacturing route). In many real industries, lots that were predefined at the

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 97

planning level are split when facing the manufacturing process. The operational decision
of dividing the lots into smaller sublots (or transfer batches) is known as lot streaming
(LS) in the literature. The streaming of lots is a practice aimed at achieving an anticipated
completion of smaller sets of parts. It is an operational procedure that satisfies those
internal or external customers by enabling sooner deliveries of elaborated products. The
time savings are due to the parallel processing of two or more consecutive operations
required by a lot [1].

By solving the LS problem, the number of sublots for each lot of product and the size
of those sublots are determined. The LS is normally tackled simultaneously with
production scheduling. Therefore, scheduling decisions have to be extended for each
sublot, turning the joined solving of PS and LS problems into a more complex issue to
cope with. The PS-LS problem has many variants, depending on the characteristics being
addressed. In [2], Sarin and Jaiprakash summarize PS-LS main issues:

• Single product/Multiple products. Either a single product or multiple products are
considered.

• Fixed/Equal/Consistent/Variable sublots. Fixed sublots refer to the case when all
sublots of all lots (of all products) have the same size for all the operations. Equal
sublots mean that the number of items of each sublot is fixed for each lot. When
each sublot of a lot must maintain its size during the entire processing route, the
sublot is termed consistent. Instead, variable sublots can differ in size during the
manufacturing process.

• Discrete/Continuous sublots. At manufacturing industries that produce discrete
parts, such as cars, valves, and gears, the number of items of a sublot must be an
integer. Instead, at process facilities such as pharmaceutical, paint, and gas,
sublots (batches) may take either integer or continuous sizes.

• Non-idling/Intermitted idling. On the one hand, under a non-idling policy, the
sublots of a lot must be processed one after the other without idle time between
their processing. On the other hand, with intermitted idling, the idle time between
the processing of two consecutive sublots on a machine is allowed.

• No-Wait/Wait schedules. Under a no-wait policy, when a sublot of a lot needs to
be transferred to another machine for the next operation, it must be done without
any delay after it has finished the preceding operation. In a wait schedule mode, a
sublot may wait for processing between consecutive operations on different
machines.

• Attached/Detached/No setups. If the setups cannot begin until the sublot is
available at a machine, attached setups are required. Detached setups occur when
the setup is independent of the availability of the sublot. In some cases, there are
no setups or they are neglected.

• Intermingling/Non-intermingling sublots. In a multiproduct facility, if
intermingling is allowed, the sequence of sublots of a lot j, on a given machine,
can be interrupted by sublots of a lot k, with j ≠ k. On the contrary, no interruption
in the sequence of sublots of a lot is allowed at non-intermingling sublots settings.

 During the last decades, the number of research works addressing the PS-LS

problem has increased. It has been studied using diverse methodologies, such as

mathematical models, heuristics, and meta-heuristics. The Constraint Programming

(CP) [3] techniques are also a promising technology to tackle it. Mostly, the PS-LS

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 98

problem has been faced on flow-shops (FS), hybrid flow-shops (HFS), and job-shops

(JS) environments, as in [1,4-6], [7-9] and [10-12], respectively.

To the knowledge of the author, there are just a few research works addressing the

problem at flexible job-shops (FJS). The FJS environment is one of the more

challenging plant configurations, which is an extension of the classical JS problem. In

FJS, each job has a flexible processing route; i.e. each operation of a job needs to be

assigned to a machine among a set of alternative resources. Concerning the FJS problem

with LS (FJSP-LS), some authors [13], authors developed a multi-objective particle

swarm optimization algorithm. Particularly, they tackled the consistent sublots

problem. In [14], an approach for scheduling jobs at virtual manufacturing cells was

presented. The authors cope with transport times and consistent sublots. A MILP model

was presented, while a genetic-based algorithm was developed to solve medium size

instances. In [15], authors extended their previous proposal by formalizing the problem

as a MILP model and developing an island-model parallel genetic algorithm. Relevant

features such as sequence-dependent setups, attached/detached setups, machine ready

times and lag times were considered. A job can be split in unequal sublots. Later, in

[16], an evolutionary algorithm to address the batch splitting in a dyeing facility was

proposed. The approach deals with equipment capacity constraints and transition times

between jobs, while a cost-based performance measure is optimized.

As it has been described, most contributions have used heuristics or metaheuristics

to address the PS-LS problem and, some works, have also formalized the problem by

means of a mathematical formulation. To the knowledge of the author, there are no

contributions that extensively describe an approach based on CP to cope with the

problem. CP techniques have received increasing attention from researchers during last

years since they can efficiently solve constraint satisfaction problems (CSP) and handle

combinatorial problems, especially scheduling ones [17, 18].

In the present contribution, the flexible job-shop scheduling problem and the lot

streaming problem are simultaneously addressed by means of a novel CP approach.

The proposal can easily handle, just by the implementation of small changes on the CP

model, a variety of different FJSP-LS problems. Thus, features such as non-idling or

intermitted idling, intermingling or non-intermingling sublots, no-wait or wait

schedules, can be tackled. The rest of the work is organized as follows. In section II,

the problem characteristics are described. Section III presents the CP model, while

section IV shows the computational results when solving a set of test case studies.

Finally, section V concludes and posts future challenges.

2. Problem statement

There is a set of orders requiring different products to be elaborated in an FJS

environment. Each product order is associated with a lot or batch of similar parts. The

number of parts that each lot contains, the lot size, has already been defined at a

planning level. Each product has its manufacturing route; therefore, the parts belonging

to a lot follow an ordered set of machining operations, in order to become an elaborated

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 99

product. The number and type of operations that are required to be executed on each

lot also depend on the demanded product.

Lots are allowed to be split into smaller sublots of parts. An operation on a sublot

can be processed on a machine that belongs to a set of alternative multipurpose

machines. Thus, the processing time to execute an operation on a single part of a sublot,

depends on the product being elaborated and the machine where the sublot is allocated,

while the required time to process the complete sublot also depends on its size.

Fig. 1 illustrates the main difference between agendas for an FJS without LS and an

FJS with LS consideration. In Fig. 1(a), a possible solution for two lots requiring three

operations each, is depicted. Different arrow types represent the selected manufacturing

route for each lot. Lots are not permitted to be divided. A Gantt chart shows the agenda

for this case, where the label x.y stands for the number of the lot and the operation,

respectively. Fig. 1(b) represents a solution for the same illustrative environment but

considering lot splitting. In this case, both lots are divided into two sublots. Each sublot

follows its assigned manufacturing route to turn into sublots of final products. By means

of the Gantt chart it can be easily observed how a lot splitting policy leads to a better

makespan (label x.y.z stands for a lot, operation and sublot). This is caused by the

parallel processing of operations of sublots created from the same lot. For instance, the

first operation of lot L1 is executed simultaneously over its two sublots, on machines

M1 and M3.

On the one hand, the main benefits of LS, besides a shorter makespan, are: (i)

products can be delivered sooner in partial quantities since sublots are fully processed

in shorter periods of time than the case with no lot splitting, allowing a more agile

response to customer demands (as it is illustrated in Fig.1); (ii) better use of production

resources, i.e. reduction of machines idle time; (iii) reduction of work-in-process (WIP)

since, generally, a lower number of parts will be waiting to be processed and these

sublots will wait less time, compared to the no splitting case, (v) decrease of mean flow

time. On the other hand, splitting the lots has its associated drawbacks, such as

increasing setup costs and demand of transport devices.

 M1
L1

M2

M3

L2

P1

P2

M1
L1

M2

M3
L2

s1

s2

s1

s2

p1

p1

p2

p2

M1

M2

M3 1.1

1.2

1.3

2.1

2.2

2.3

M1

M2

M3 1.1.1

1.2.1

1.3.11.1.2

1.2.2

1.3.22.1.1

2.2.1

2.3.12.1.2

2.2.2

2.3.2

Fig. 1. (a) An FJS processing two lots without lot splitting. (b) Same FJS processing two lots

with lot streaming.

(a)

(b)

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 100

The approach presented in this work is able to handle the FJSP-LS problem

considering multiple products, consistent and discrete sublots. It also copes with

opposite policies by simple adjustments in the formulation, such as non-idling and

intermitted idling, wait and no-wait schedule, intermingling and non-intermingling

sublots. Sequence-dependent detached setups, a characteristic that turns the addressed

problem into a more complex one, are taken into consideration too.

The following assumptions are taken into account: (i) lots/sublots of parts are

independently from each other, (ii) the demand of final products, and therefore the size

of the lots, are known in advance, (iii) pre-emption is not allowed, (iv) transfer times

between machines are neglected, (v) machines are capable of processing one operation

at a time, (vi) machines do not receive maintenance during the scheduling horizon, (vii)

disruptive events, such as rush orders or machine failures, are not taken into

consideration.

When solving the FJSP-LS problem, it is required to: (i) determine the number of

sublots for each lot, (ii) determine the size of each sublot, defined as the number of

parts that it comprises, (iii) assign to a single machine each operation demanded by a

sublot, (iv) sequence at each machine all the assigned operations, (v) determine the start

and completion time of each machining operation needed by sublots. All the previous

goals must be accomplished while satisfying the domain features and constraints. In

this proposal, makespan was considered as the performance measure to minimize.

3. CP Formulation

3.1 Nomenclature

Set/Index

J/j Lots (or jobs)

O/o Operations

M/m Machines

Oj Operations required by lot j

Mj,o Machines that can process operation o of lot j

Sj Instantiable sublots of lot j. The cardinality of this set represents the

maximum possible number of sublots for j.

Parameters

ptj,o,m The processing time of operation o on a part belonging to lot j, when it

is executed on machine m

zj Size of lot j

sDS Set of triplets <j,j’,s> representing the sequence-dependent detached

setup times s, between lot j and j’.

Cumulative Function

mUm Represents the usage profile of machine m

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 101

Variables

cmax Makespan

tj,o,s Interval variable that represents the machining operation o on sublot s

of lot j

tmj,o,s,m Optional interval variable that represents the operation o on sublot s of

lot j, executed on machine m

uj,o,s Size of sublot s of lot j on operation o

spLotj,o,m Interval variable used to span over all sublots of lot j under operation

o on machine m

mSpLotSm Sequence variable on machine m, which represents the arrangement of

spanned lot interval variables (spLot) allocated in m

mSm Sequence variable on machine m, which represents the arrangement of

task interval variables (t) allocated in m

3.2 CP model

The CP formulation relies on the ILOG-IBM OPL language and the CP Optimizer,

which underlies the CPLEX Optimization Studio [19]. These tools provide some

constraints, functions, and type of variables that are used to model scheduling domain

issues. Some OPL keywords, such as alternative, span, endBeforeStart, among others,

are OPL built-in functions. Some of them were introduced and illustrated by the authors

in [18] and are not explained here because of lack of space. The expressions used by

the proposed model are:

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒(𝑡𝑗,𝑜,𝑠 , 𝑡𝑚 𝑗,𝑜,𝑠,𝑚) ; ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 , ∀𝑠 ∈ 𝑆𝑗 , ∀𝑚 ∈ 𝑀𝑗,𝑜 (1)

𝑚𝑈𝑚 = ∑ 𝑝𝑢𝑙𝑠𝑒(𝑡𝑚 𝑗,𝑜,𝑠,𝑚 , 1)

∀𝑗∈𝐽,∀𝑜∈𝑂𝑗,∀𝑠∈𝑆𝑗

 ; ∀𝑚 ∈ 𝑀𝑗,𝑜 (2)

𝑚𝑈𝑚 ≤ 1 ; ∀𝑚 ∈ 𝑀 (3)

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑡𝑗,𝑜,𝑠 , 𝑡𝑗,𝑜′,𝑠); ∀𝑗 ∈ 𝐽, ∀𝑜, 𝑜’ ∈ 𝑂𝑗: 𝑜’ = 𝑜 + 1, ∀𝑠 ∈ 𝑆𝑗 (4)

𝑒𝑛𝑑𝐴𝑡𝑆𝑡𝑎𝑟𝑡(𝑡𝑗,𝑜,𝑠 , 𝑡𝑗,𝑜′,𝑠); ∀𝑗 ∈ 𝐽, ∀𝑜, 𝑜’ ∈ 𝑂𝑗: 𝑜’ = 𝑜 + 1, ∀𝑠 ∈ 𝑆𝑗 (4’)

𝑠𝑖𝑧𝑒𝑂𝑓(𝑡𝑚 𝑗,𝑜,𝑠,𝑚) = 𝑝𝑡𝑗,𝑜,𝑚 ∗ 𝑢𝑗,𝑜,𝑠 ∗ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑂𝑓(𝑡𝑚 𝑗,𝑜,𝑠,𝑚);

∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 , ∀𝑠 ∈ 𝑆𝑗 , ∀𝑚 ∈ 𝑀𝑗,𝑜
(5)

𝑠𝑝𝑎𝑛(𝑠𝑝𝐿𝑜𝑡𝑗,𝑜,𝑚, 𝑎𝑙𝑙(𝑠 𝑖𝑛 𝑆𝑗)𝑡𝑚 𝑗,𝑜,𝑠,𝑚); ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 , , ∀𝑚 ∈ 𝑀𝑗,𝑜 (6)

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑚𝑆𝑝𝐿𝑜𝑡𝑆𝑚); ∀𝑚 ∈ 𝑀 (7)

𝑠𝑖𝑧𝑒𝑂𝑓(𝑠𝑝𝐿𝑜𝑡𝑗,𝑜,𝑚) ≤ ∑ 𝑠𝑖𝑧𝑒𝑂𝑓(𝑡𝑚 𝑗,𝑜,𝑠,𝑚)

𝑠 ∈𝑆𝑗

; ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 , ∀𝑚 ∈ 𝑀𝑗,𝑜 (8)

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑚𝑆𝑚, 𝑠𝐷𝑆); ∀𝑚 ∈ 𝑀 (9)

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 102

∑ 𝑢𝑗,𝑜,𝑠

𝑠∈𝑆𝑗

= 𝑧𝑗 ; ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 (10)

∑ 𝑢𝑗,𝑜,𝑠

𝑠∈𝑆𝑗

≥ 𝑧𝑗 ; ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 (10’)

𝑢𝑗,𝑜,𝑠 = 𝑢𝑗,𝑜′,𝑠 ; ∀𝑗 ∈ 𝐽, ∀𝑜, 𝑜′ ∈ 𝑂𝑗: 𝑜 ≠ 𝑜′, ∀𝑠 ∈ 𝑆𝑗 (11)

𝑚𝑖𝑛 𝑐𝑚𝑎𝑥 ; (12)

𝑐𝑚𝑎𝑥 ≥ 𝑒𝑛𝑑𝑂𝑓(𝑡𝑎𝑠𝑘𝑗,𝑜,𝑠); ∀𝑗 ∈ 𝐽, ∀𝑜 ∈ 𝑂𝑗 , ∀𝑠 ∈ 𝑆𝑗 (13)

The assignment of sublots to machines, at each required operation, is modeled by

(1). This expression ensures that an operation o executed on a sublot s of a lot j, is

assigned to exactly one machine m, belonging to Mj,o. The alternative construct

synchronizes each tj,o,s with just one instance of the optional interval variable tmj,o,s,m,

which is present in the solution.

Expressions (2) and (3) are formulated to constraint the number of operations that a

machine can process simultaneously. In expression (2), the usage profile of each

machine is modeled by a cumulative function. Each time an instance of the variable tm

is present in the solution, the pulse construct enforces the mUm function to increase its

value by one unit, at the beginning of the period and returns to zero when the task

associated with tm finishes. Expression (3), jointly with (2), ensures that only one sublot

is processed at each unit of time on machine m.

Expression (4) defines the precedence relationships between consecutive operations

required by each sublot of each lot. The endBeforeStart construct is used, which forces

that the operation o on a sublot s of a lot j, to end before the start of the next operation

o’ required by the same sublot. This accounts for the wait schedule operational mode.

If a no-wait policy is considered, then the expression (4’) must be replaced by the

expression (4). By (4’), the endAtStart construct ensures that the later operation starts

without any delay after the preceding task has finished.

Expression (5) uses the construct sizeOf to define the duration each task. The

processing time of the activity tmj,o,s,m depends on the processing time required by an

individual part of the original lot j on machine m, when executing o, ptj,o,m, and the

number of parts that constitutes the sublot s, uj,o,s. The duration of tmj,o,s,m can adopt a

zero value when (i) the instance of that variable is not present in the solution,

presenceOf(tmj,o,s,m) = 0, which means that task tj,o,s is not assigned to machine m, or

(ii) the sublot is not instantiated, meaning that it is empty, uj,o,s = 0. Otherwise, the size

of the task is greater than zero.

Previous constraints (1-5) are used to address the FJSP-LS under the intermitted

idling policy, by which the idle time between the machining of two consecutive sublots

on a machine is allowed. It is also permitted the processing, on different machines, of

the same operation on different sublots.

Under an intermitted idling policy, intermingling can be allowed or forbidden.

Constraints (1-5) also permit the intermingling policy, by means of which a sequence

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 103

of sublots of a lot on a machine can be interrupted by sublots of a different lot. On the

contrary, under a non-intermingling policy, the expressions (6-7) have to be considered.

These expressions enforce that a sequence of sublots of a lot is not interrupted by any

sublot from a different lot. While by (6) an auxiliary task spLotj,o,m is instantiated to

comprise all sublots of lot j on machine m under operation o, expression (7) ensures

that those spLot intervals do not overlap each other, i.e. an operation o of a sublot of a

lot k cannot be scheduled between tasks on sublots corresponding to another lot j, with

j ≠ k.

If no-idling policy is required to be modeled, then expressions (1-7) has to be

considered and expression (8) must be added. By a no-idling mode, different sublots of

a lot must be processed consecutively when they are allocated to the same machine,

without idle time between tasks. The expression (8) forces the spLotj,o,m interval to have

the same size as the sum of the durations of operations o, on all sublots belonging to j,

on machine m. Thus, no idle time can exist between to tmj,o,s,m intervals.

The expression (9) accounts for the sequence-dependent detached setup times. A

setup time interval exists every time two consecutive sublots in a machine sequence,

belong to different lots (in this work it is assumed that lots pertain to different products).

The duration of the setup depends on which product is being elaborated previously and

which is processed next on a machine. To model this feature, the noOverlap construct

is used. It enforces tasks assigned to machine m to not overlap each other and, when

sublots are from different lots, imposes a period of time between those tasks that

represent the predefined setup time.

A sublot s belonging to Sj can be either empty or not, that is a CP model decision to

make. Not all declared elements in the set Sj will necessarily have a positive value, i.e.

not all sublots s of lot j will be instantiated in the solution, some of them can be empty.

The number of declared sublots for each j instantiated and the number of parts

belonging to it (size of s), are decisions addressed by the CP model. Note that the

cardinality of Sj defines the maximum number of sublots in which lot j can be split.

By means of (10), it is ensured that the sum of all the sublots sizes belonging to a lot

must be equal to the size of that original lot. In some practical situations, this equality

needs to be relaxed, as in expression (10’), in order to obtain feasible solutions. For

instance, when there is a minimum requirement on the number of parts belonging to a

sublot and the size of the lot is not a multiple of that parameter. Expression (11) enforces

sublots of each lot to be consistent. This means that, even when sublots of a lot can

have different sizes, each sublot maintains the same size during the whole

manufacturing route.

In the present CP model, makespan has been chosen as the performance measure to

minimize. Then, expressions (12) and (13) must be included in the formulation. Other

objective functions, such as total tardiness or multi-objective functions, can be easily

considered in the model and will be discussed in future works.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 104

4. Computational results

4.1 Data and scenarios

The CP formulation presented in Section 3 has been tested with several case studies

of different size and characteristics. To the best of the author’s knowledge, there is a

lack of benchmark problem instances in the literature for the FJSP-LS problem (with

its corresponding complete set of data). Hence, the test instances addressed in this work

have been generated adapting several of the FJSP without LS case studies introduced

in [20], whose main characteristics are summarized in Table 1.

In [20], the processing times are expressed in terms of job, operation and machine.

In this work, those values are considered as the processing time that requires an

operation on a single part belonging to a lot, on a given machine. Therefore, the duration

of an operation depends also on the size of the sublot being manufactured.

The problems in Table 1 were extended to consider the LS issue, by defining the

maximum number of sublots for each lot (Sj) and the size of each lot (zj). The size zj

was randomly generated between 5 and 50. Three sets of data per problem instance

were defined by varying the values of zj. Each of these instances is identified as Px-z,

where x-z are the problem and the data set identifiers, respectively. The value of the Sj

parameter was defined as 4 and 6, for small and medium-size problems, respectively,

except for the case when a different value is explicitly indicated.

Table 1. Number of lots, operations, shop machines, and alternative machines per
lot-operation

ID ID in [20] #J #O #M #Mj,o

P1 SFJS7 3 3 5 2

P2 SFJS8 3 3 4 2

P3 SFJS9 3 3 3 2

P4 SFJS10 4 3 5 1 - 2

P5 MFJS7 8 4 7 2 - 3

P6 MFJS8 9 4 8 2 - 3

P7 MFJS9 11 4 8 2 - 3

P8 MFJS10 12 4 8 2 - 3

A main contribution of this approach is its capability to address several FJSP-LS

types of problems. With the aim of addressing these variants, a set of 10 possible

scenarios were defined as FJSP-LS problems at shops operating under different

operational characteristics and policies. Thus, a scenario is related to a precise set of

constraints that models its features. Table 2 presents a classification of the scenarios,

the features that typify them, and the associated expressions that must be considered in

the formulation. Group A scenarios represent the possible combinations of the LS

problem characteristics identified in the literature and enumerated in Section 1. The

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 105

scenarios of group B result from the combination of any scenario from group A, and

constraint (9). For instance, S1.6 addresses a problem characterized by intermitted

idling, wait schedule, intermingling sublots, and sequence-dependent setup times.

The case studies were solved to a maximum time limit that depends on its size. A

desktop computer consisting of an Intel i7-7700 CPU, 3.60 GHz processor with 16 Gb

of RAM was used.

Table 2. Set of the addressed scenarios

Group Scenario

ID

Operational features Expressions

A S1 Intermitted idling/Wait schedule/

Intermingling policy

1,2,3,4,5,10,11,12,13

S2 Intermitted idling/No-wait schedule/

Intermingling policy

1,2,3,4',5,10,11,12,13

S3 No-idling/ Wait schedule/

Non-intermingling policy

1,2,3,4,5,6,7,8,10,11,12,13

S4 No-idling/No-wait schedule/

Non-intermingling policy

1,2,3,4',5,6,7,8,10,11,12,13

S5 Intermitted idling/Wait schedule/

Non-intermingling

1,2,3,4,5,6,7,10,11,12,13

B SA.6. Sequence Dep. Setup any from A & 9

4.2 Results

Table 3 shows the solutions when addressing the entire group A scenarios, for 4

medium size problem instances. A CPU time limit of 5000 seconds was imposed.

The solutions for S1 scenarios reach the lower makespan among all other scenarios

for each problem instance, while the scenarios S4 are the ones with the highest

makespan value. This behavior is related to the fact that S4 is the most constrained

scenario since it forbids any idle time between consecutive operations on sublots and

between sublots of a job in a given machine. On the contrary, the S1 scenario is the

most flexible, allowing idle time among operations and sublots sequences. For all the

test problems solved, the performance of the agenda degrades between 29% and a 33%,

when solutions from S1 and S4 are compared.

The first solutions for the whole set of problems were instantiated in less than 2

seconds of CPU time. Before the imposed time limit of 5000 seconds, all solutions

improve its first instantiation between 17% and 57%, with an average of 33%. In most

problems, good solutions are found in short CPU times. Problems reach good quality

solutions before 500 seconds. After that point, the ratio of improvement gets shorter

with the time. In most cases, the later in time a new solution is found, the smaller the

improvement of the solution is. This behavior replicates in all the problems and

scenarios.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 106

Table 3. Solutions for different medium-size problems with diverse lot streaming
characteristics

ID Scenario First solution Best solution

Makespan a Makespan CPU time (s)b

P5.3 S1 35631 25142 3480

 S2 34684 28797 2660

 S3 46468 25594 3098

 S4 43177 32337 1435

 S5 62348 26911 4756

P6.3 S1 37444 27478 3342

 S2 52196 30561 3110

 S3 49981 28699 4623

 S4 50080 35192 2697

 S5 57561 31072 3393

P7.3 S1 38156 29939 4377

 S2 44967 34880 4111

 S3 52646 32712 3910

 S4 56436 39901 4354

 S5 56670 32700 4781

P8.3 S1 40592 30267 2850

 S2 47658 37344 1411

 S3 47828 30725 4861

 S4 66417 40310 662

 S5 44039 32864 4856
a All first solutions were found in less than 2 seconds of CPU time

b Time required to instantiate the solutions within the 5000 CPU seconds

The CP approach allows considering sequence-dependent detached setup times.

When this feature is addressed, the impact on the obtained solutions depends on the

relation between the setup times and the duration of manufacturing tasks, which in turn

depends on the size of the sublot being processed. An extended analysis of test instances

considering setups is not included in this contribution. As an illustrative example,

solution for problem P8.3, scenario 5, when the setup issue is present (S5.6), shows a

Makespan of 42950 units of time. This solution was the best found within 5000 seconds

of CPU, and it was instantiated at 2839 seconds. As it can be observed, in this particular

case, the setups considerably degrade the Makespan value obtained when they are

missed.

For two of the solved problem instances, Table 4 compares their solutions when

addressing the problem with and without lot streaming consideration. In the P3.1-S2

case, the makespan reached considering LS outperforms the objective value when it is

not permitted, in a 28%. If the processing times are assumed to be in seconds, as they

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 107

are in [20], then, by allowing the splitting of lots the saved time for the P3.1-S2 problem

was 28 minutes. For P5.1-S1, the improvement is of 29%, representing 124 minutes in

that case. Furthermore, the first delivery (first sublot completed) corresponds to the j4

at time 3782, while without LS, the first completion corresponds to j1 at time 13260.

This situation clearly shows one of the main advantages of LS, which is the sooner

finishing of some sublots of parts. Fig. 2 shows the Gantt charts of the obtained

solutions for the P5.1 S1 case. In Fig. 2 (a), lot streaming is forbidden and there is a

single lot per demanded product. In Fig. 2 (b), lot streaming is allowed and there are

several sublots per lot of product.

Table 4. Comparison of solutions for problems that allow or forbid LS

ID Scenario LSb First solution Best solution

Makespan CPU time (s) Makespan CPU time (s) a

P3.1 S2 A 7660 1 5986 665

 F 7680* 1 NI -

P5.1 S1 A 33368 1 25389 632

 F 32852* 1 NI -
a Time required to instantiate the solutions within the 1500 CPU seconds
b A-Lot streaming is allowed / F-Lot streaming is forbidden

* A single solution was found within the time limit

NI No improvement in the already found solution.

Fig. 2. Gantt charts representing the obtained schedules for instance P5.1 S1, when (a) lot

streaming is forbidden, and when (b) lot streaming is allowed. There are 8 lots to be manufactured

in a shop with 7 machines. Each lot (with different colors) requires 4 operations, each of which

can be processed in a set of 2 or 3 alternative machines.

(a)

1

2

3

4

5

6

7

(b)

1

2

3

4

5

6

7

0

0
Mk=32852

Mk=25389

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 108

Notice that the approach does not set a lower bound on the number of parts that each

sublot can comprise. A strategy to cope with this issue is part of the future research

work.

5. Conclusions and future directions

A novel CP formulation that addresses the complex FJSP-LS problem has been

presented. The approach is able to easily cope with the complexity of the FJSs and, by

means of few changes, it can address many different characteristics of the lot streaming

problem. Several operational policies such as idling/ intermitted idling, wait/no-wait

schedules, etc., can be handled by the proposal. The model has been tested with several

problem instances adapted and extended from the literature of FJSP without LS. Good

quality solutions were found for small- and medium-size case studies when minimizing

makespan.

There are several challenges related to the scheduling and lot streaming problem that

are going to be tackled as part of future research activities. The use of multi-objective

performance measures will be discussed. Also, different methods to handle real large-

size problems will be studied, such as MILP/CP integrated approaches or heuristics.

Some rules observed in practice will also be analyzed.

At some manufacturing settings the lots are streamed at some point in the

manufacturing route and, downstream, consolidated again. This is a complex issue to

efficiently cope with and, therefore, an interesting research challenge to tackle as part

of future activities.

Acknowledgments

The author wishes to acknowledge the financial support received from ANPCyT
(PICT-2015-3743) and UTN (PID-4526).

References

[1] A.A Kalir and S.C. Sarin, “Evaluation of the potential benefits of lot streaming in flow-shop

systems”, International Journal of Production Economics, 66, pp. 131-142, 2000.

[2] S.C. Sarin and P. Jaiprakash, Flow Shop Lot Streaming, Springer US, 2007.

[3] K. Marriot and P. Stuckey, “Programming with constraints. An introduction.” Cambridge,

Massachusetts: The MIT Press, 1999.

[4] Q-K. Pan and R. Ruiz, “An estimation of distribution algorithm for lot-streaming flow shop

problems with setup times”, Omega, 40, pp. 166-180, 2012.

[5] D. Davendra, R. Senkerik, I. Zelinka, M. Pluhacek, and M. Bialic-Davendra, “Utilising the

chaos-induced discrete self organising migrating algorithm to solve the lot-streaming

flowshop scheduling problem with setup time”, Soft Computing, 18, pp. 669-681, 2014.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 109

[6] D. Rossit, F. Tohmé, M. Frutos, J. Bard, and D. Broz, “A non-permutation flowshop

scheduling problem with lot streaming: A Mathematical model”, International Journal of

Industrial Engineering Computations, 7, pp. 507-516, 2016.

[7] M. Cheng and S.C. Sarin, “Two-stage, Multiple-lot, Lot Streaming Problem for a 1 + 2

Hybrid Flow Shop”, in IFAC Proceedings Volumes. 7th IFAC Conference on Manufacturing

Modelling, Management, and Control, 46, 448-453,2013.

[8] M. Nejati, I. Mahdavi, R. Hassanzadeh, N. Mahdavi-Amiri, and M. Mojarad, “Multi-job lot

streaming to minimize the weighted completion time in a hybrid flow shop scheduling

problem with work shift constraint”, Int. J. Adv. Manuf. Technol, 70, 501-514,2014.

[9] L.C. Wang, Y. Y. Chen, T.L. Chen, C.Y Cheng, and C.W. Chang, “A hybrid flowshop

scheduling model considering dedicated machines and lot-splitting for the solar cell

industry”, International Journal of Systems Science,45, 2055-2071,2014.

[10] T.C. Wong, F.T.S. Chan, and L.Y. Chan, “A resource-constrained assembly job shop

scheduling problem with Lot Streaming technique”, Computers & Industrial Engineering,

57, pp. 983-995,2009.

[11] D. Lei and X. Guo, “Scheduling job shop with lot streaming and transportation through a

modified artificial bee colony”, International Journal of Production Research, 51, 4930-

4941,2013.

[12] X.Q. Xu and D.M. Lei, “Research on swarm intelligence algorithm with an artificial bee

colony algorithm for lot streaming problemin job shop”, Advanced Materials Research, 951,

239-244,2014.

[13] B. Jun-Jie, G. Yi-Guang, W. Ning-Sheng, and T. Dun-Bing, “An Improved PSO Algorithm

for Flexible Job Shop Scheduling with Lot-Splitting”, International Workshop on Intelligent

Systems and Applications, Wuhan, 23-24 May 2009, 1-5,2009.

[14] S.E. Kesen and Z. Güngör, “Job scheduling in virtual manufacturing cells with lot-

streaming strategy: a new mathematical model formulation and a genetic algorithm

approach”, Journal of the Operational Research Society, 63, 683-695,2012.

[15] F. M. Defersha and M. Chen, “Jobshop lot streaming with routing flexibility, sequence-

dependent setups, machine release dates and lag time”, International Journal of Production

Research, 50, 2331-2352,2012.

[16] X. Xu, L. Li, L. Fan, J. Zhang, X. Yang, and W. Wang, “Hybrid Discrete Differential

Evolution Algorithm for Lot Splitting with Capacity Constraints I n Flexible Job

Scheduling,” Mathematical Problems in Engineering, vol. 2013, Article ID 986218, 10

pages, 2013.

[17] P. Baptiste, C. Le Pape, and W. Nuijten, “Constrained-Based Scheduling: Applying

Constraint Programming to Scheduling Problems”. Springer, New York, 2005.

[18] F. Novara, J.M. Novas, and G.P. Henning, “A novel constraint programming model for

large-scale scheduling problems in multiproduct multistage batch plants: Limited resources

and campaign-based operation", Computers & Chemical Engineering Journal, 93, 101-117,

2016.

[19] IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/products/ilog-cplex-

optimization-studio. Last access: 30/04/2018.

[20] P. Fattahi, M. Saidi Mehrabad, and F. Jolai, “Mathematical modeling and heuristic

approaches to flexible job shop scheduling problems”, Journal of Intelligent

Manufacturing, 18, pp. 331-342, 2007.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

47JAIIO - SIIIO - ISSN: 2618-3277 - Página 110

http://www.sciencedirect.com/science/journal/14746670

