

UNIVERSIDAD NACIONAL DE LA PLATA

Facultad de Ciencias Exactas Departamento de Química

Trabajo de Tesis doctoral

Estudio de reactividad de iso(tio)natos para la obtención de (tio)ureidos

Qco. Elizabeth Contreras Aguilar

Dirección Prof. Dr. Sonia E. Ulic Prof. Dr. Jorge L. Jios

La Plata, Argentina 2018

El presente trabajo de Tesis Doctoral se desarrolló en el CEQUINOR, Centro de Química Inorgánica "Dr. Pedro J. Aymonino" del Departamento de Química (Cat. A219/99 CONEAU), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, bajo la dirección de los Profesores Dr. Sonia Elizabeth Ulic y Dr. Jorge Luis Jios, el cual elevo a consideración de las autoridades correspondientes para optar al título de Doctor de la Facultad de Ciencias Exactas, Orientación en Química. Esta etapa de mi vida te la dedico a ti Candelaria Aguilar Jiménez, te amo mi madre hermosa, gracias por todo lo que me has dado y enseñado.

Agradecimientos

Mis agradecimientos especialmente van dirigidos a las instituciones que permitieron el desarrollo de este trabajo de tesis. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) por la beca otorgada y los fondos necesarios para llevar a cabo las tareas de investigación. Al instituto de química inorgánica "Dr. Pedro J. Aymonino" - (CEQUINOR) por la infraestructura, servicios, equipamientos necesarios y lugar de trabajo, a la Universidad nacional de la plata (UNLP) universidad pública y gratuita.

Agradezco de manera especial a mis directores y sus familias, Dr. Jorge Jíos y Dra. Sonia Ulic, por haberme dado la oportunidad de realizar éste trabajo bajo su tutoría, por compartir conmigo sus conocimientos, el asesoramiento científico y sobre todo su amistad.

Un agradecimiento muy especial a dos personas que me acompañaron incondicionalmente desde el primer momento, gracias Yeimi Franco y Miguel Tovar, muchas gracias, definitivamente son y han sido personas muy importantes y fundamentales en este proceso.

Al Prof. Dr. Oscar Piro y al Prof. Dr. Gustavo Echeverría por su buena disposición siempre para realizar las medidas de DRX de monocristal.

A Elizabeth, Anita, Bea, Jorge, Betty, Patricia, Evelina, Carlitos F., Lucas, Ignacio, Ana, Luciana y Nohelia por el apoyo, por la buena disposición siempre, por la amistad brindada.

Un especial saludos a mis queridos amigos de "allá", Kelly Ruth, Sandra, Jesús David, Jaime Luis, Jhon Jairo Díaz, Lisset Hernandez, Carolina Amaya, Andrés Beltrán, Angie Gallego, Angie Cerinza.... Tantos, un fuerte abrazo.

A mis compañeros y amigos Zuly Delgado, Efrén Ramos, Nasly, Ricardo, Carolina, Fernando, Christian Alcívar, Cristian Rojas, Cristian Villa, Juan Cadavid, Diana Nossa, Lizet, Eliana, Helen, María Rosa, Ruth, Edeimis, Yacelis, Carolina Ruiz, Lucía Balsa, Mariana Rocha, Jorge Galván y muchos más.

Mis más sinceros agradecimientos a las personas maravillosas que conocí en Chile, gracias al Dr. Marcelo Vilches por abrirle las puestas en su laboratorio y a la fundación AUGM y la UNLP por financiar esta estadía.

A la Dra. María Eugenia Tuttolomondo y a la Dra. Aida Ben Altabef por la pasantía realizada en su instituto en la ciudad de Tucumán.

Gracias a familiares, amigos y demás conocidos que no menciono pero que formaron parte de este proceso de manera directa o indirecta por todo su apoyo.

Gracias Argentina por ser mi hogar todo este periodo, amarte como mí país de origen son pocas palabras para expresar lo mucho que te quiero y agradezco.

"un hogar no es un edificio, ni una calle ni una ciudad, no tiene nada que ver con cosas tan materiales como los ladrillos y el cemento. Un hogar es donde está tu familia". ¿Entiendes? John Boyne

"Nunca volverás a estar totalmente en casa, porque parte de tu corazón siempre estará en otra parte. Ese es el precio que pagas por la riqueza de amar y conocer gente en más de un lugar". (Miriam Adeney).

Tabla de contenido

Tabla de c	ontenido	1
MÉTODOS	S EXPERIMENTALES, TÉCNICAS Y EQUIPAMIENTO	6
Sistema	de vacío	6
Cromato	grafía de capa fina	6
Punto de	e fusión	7
Espectro	oscopia infrarroja con transformada de Fourier (FTIR)	7
Espectro	oscopia Raman	7
Espectro	oscopia de resonancia magnética nuclear, (RMN)	7
Espectro	oscopia UV – visible	7
Obtenció	ón de cristales para difracción de rayos X	8
Difracció	on de rayos X, (DRX)	8
Métodos	computacionales	8
Superfic	ie de Hirshfeld	
Actividad	d biológica	14
Bibliogra	fía	16
		10
	5010N	10
CAPITULC) 1	25
Iso(tio)cian	atos	25
1.1.	Isocianatos e isotiocianatos	25
1.2.	Síntesis	26
1.2.2.	Isocianato de 1-naftilcarbonilo, (NNCO)	28
1.2.3.	Isotiocianatos de 1-naftilcarbonilo, (NNCS) y 4-hidroxibenzoilo, (BNCS)	29
1.3.	Estudio conformacional mediante métodos químico-cuánticos	29
1.3.1.	Isocianato de 1-naftilcarbonilo, (NNCO)	31
1.3.2.	Isotiocianato de 1-naftilcarbonilo, (NNCS).	31
1.3.3.	Isotiocianato 4-hidroxibenzoilo, (BNCS)	32
1.4.	Espectroscopia infrarroja	33
1.4.1.	Isocianato de 1-naftilcarbonilo, (NNCO).	33
1.4.2.	Isotiocianatos de 4-hidroxibenzoilo y 1-naftilcarbonilo	34
1.5.	Espectroscopia UV-Visible	35
1.5.1.	Isocianato de 1-naftilcarbonilo, (NNCO).	35

1.5.2.	Isotiocianato de 1-naftilcarbonilo, (NNCS).	
1.5.3.	Isotiocianato de 4-hidroxibenzoilo, (BNCS)	
1.6.	Resonancia magnética nuclear	41
1.7.	Conclusiones	44
1.8.	Bibliografía	46
CAPÍTUL	O 2	49
Tioureas	1-(1-naftilcarbonil)-3-alquil sustituidas	49
2.1.	Introducción	49
2.2.	Síntesis	51
2.3.	Estudio teórico químico cuántico	
2.3.1.	N-butilcarbamotioil naftaleno-1-carboxamida, (NBt).	53
2.3.2.	N-etilcarbamotioil naftaleno-1-carboxamida, (NEt).	57
2.3.3.	N-isopropilcarbamotioil naftaleno-1-carboxamida, (NIs).	61
2.4.	Espectroscopia vibracional	63
2.4.1.	N-butilcarbamotioil naftaleno-1-carboxamida, (NBt).	64
2.4.2.	N-etilcarbamotioil naftaleno-1-carboxamida, (NEt).	65
2.4.3.	N-isopropilcarbamotioil naftaleno-1-carboxamida, (NIs).	66
2.5.	Espectroscopia UV-visible	68
2.5.1.	N-butilcarbamotioil naftaleno-1-carboxamida, (NBt).	68
2.5.2.	N-etilcarbamotioil naftaleno-1-carboxamida, (NEt).	69
2.5.3.	N-isopropilcarbamotioil naftaleno-1-carboxamida, (NIs).	72
2.6.	Espectroscopia de Resonancia Magnética Nuclear (RMN)	73
2.6.1.	N-butilcarbamotioil naftaleno-1-carboxamida, (NBt).	74
2.6.2.	N-etilcarbamotioil naftaleno-1-carboxamida, (NEt).	75
2.6.3.	N-isopropilcarbamotioil naftaleno-1-carboxamida, (NIs).	76
2.7.	Difracción de rayos X	78
2.7.1.	N-butilcarbamotioil naftaleno-1-carboxamida, (NBt).	80
2.7.2.	N-etilcarbamotioil naftaleno-1-carboxamida, (NEt).	83
2.7.3.	N-isopropilcarbamotioil naftaleno-1-carboxamida, (NIs)	86
2.8.	Ensayos biológicos	
2.8.1.	Crecimiento bacterial y formación de biopelículas	
2.8.2.	Quorum sensing, QS	90
2.8.3.	Ensayo de actividad metabólica del biofilm	91
2.9.	Conclusiones	92
2.10.	Bibliografía	94
CAPÍTUL	O 3	

Tioureas 4-metoxibenzoil N'-sustituidas			
3.1.	Introducción	98	
3.2. Sí	ntesis		
3.3.	Estudio teórico químico cuántico	99	
3.3.1.	N-butilcarbamotioil-4-metoxibenzamida, (MBt).	99	
3.3.2.	N-Isopropilcarbamotioil-4-metoxibenzamida, (MIs)	102	
3.3.3.	N-[(3-cloro-2-metilfenil)carbamotioil]-4-metoxibenzamida, (MMCf)	104	
3.4.	Espectroscopia infrarroja y Raman	108	
3.4.1.	N-butilcarbamotioil-4-metoxibenzamida, (MBt).	109	
3.4.2.	N-Isopropilcarbamotioil-4-metoxibenzamida, (MIs)	110	
3.4.3.	N-[(3-cloro-2-metilfenil)carbamotioil]-4-metoxibenzamida, (MMCf)	111	
3.5.	Espectroscopia electrónica UV-visible	112	
3.5.1.	N-butilcarbamotioil-4-metoxibenzamida, (MBt).	112	
3.5.2.	N-isopropilcarbamotioil-4-metoxibenzamida, (MIs).	114	
3.5.3.	N-[(3-cloro-2-metilfenil)carbamotioil]-4-metoxibenzamida, (MMCf)	115	
3.6.	Espectroscopia de Resonancia Magnética Nuclear (RMN).	117	
3.6.1.	N-butilcarbamotioil-4-metoxibenzamida, (MBt).	120	
3.6.2.	N-isopropilcarbamotioil-4-metoxibenzamida, (MIs).	121	
3.6.3.	N-[(3-cloro-2-metilfenil)carbamotioil]-4-metoxibenzamida, (MMCf)	122	
3.7.	Difracción de rayos X	124	
3.8.	Actividad biológica	128	
3.8.1.	Crecimiento celular y formación del biofilm	128	
3.8.2.	Quorum sensing, QS.	129	
3.8.3.	MMT	130	
3.9.	Conclusiones	131	
3.9.1.	Bibliografía	133	
1.	CAPÍTULO 4	135	
Tiourea	as N',N'-sustituidas	135	
4.1.	Introducción	135	
4.2.	Síntesis		
4.3.	Estudio teórico químico cuántico		
4.3.1.	N-[di(isopropil)carbamatiol]-4-metoxibenzamida, (MIso2).		
4.3.2.	N-[di(metil)-carbamatiol]-4-metoxibenzamida, (Mm2)	140	
4.3.3.	N-(etilcarbamotioil)-2,2-difenilacetamida, (DifEt)	142	
4.3.4.	N-butilcarbamotioil-9-antracencarboxamida, (AntBu).	143	
		3	

4.3.5.	N-[di(feni)l-carbamatiol]-4-metoxibenzamida, (Mf2).	146
4.4.	Espectroscopia infrarroja y Raman	147
4.5.	Espectroscopia electrónica UV-visible	152
4.5.1.	N-[di(isopropil)carbamatiol]-4-metoxibenzamida, (MIso2).	153
4.5.2.	N-[di(metil)-carbamatiol]-4-metoxibenzamida, (Mm2)	155
4.5.3.	N-(etilcarbamotioil)-2,2-difenilacetamida, (DifEt)	157
4.5.4.	N-butilcarbamotioil-9-antracencarboxamida, (AntBu).	158
4.5.5.	N-[di(fenil)-carbamatiol]-4-metoxibenzamida, (Mf2).	161
4.6.	Espectroscopia de Resonancia Magnética Nuclear, RMN.	162
4.6.1.	N-[di(isopropil)carbamatiol]-4-metoxibenzamida, (MIso2).	165
4.6.2.	N-[di(metil)-carbamatiol]-4-metoxibenzamida, (Mm2)	166
4.6.3.	N-(etilcarbamotioil)-2,2-difenilacetamida, (DifEt)	167
4.6.4.	N-butilcarbamotioil-9-antracencarboxamida, (AntBu).	168
4.6.5.	N-[di(fenil)-carbamatiol]-4-metoxibenzamida, (Mf2)	169
4.7.	Difracción de rayos X	170
4.7.1.	N-[di(isopropil)carbamatiol]-4-metoxibenzamida, (MIso2).	171
4.7.2.	N-[di(metil)-carbamatiol]-4-metoxibenzamida, (Mm2)	174
4.7.3.	N-(etilcarbamotioil)-2,2-difenilacetamida, (DifEt)	177
4.7.4.	N-butilcarbamotioil-9-antracencarboxamida, (AntBu).	179
4.8	Ensayos biológicos	182
4.8.1.	Crecimiento bacteriano y formación de biopelículas	183
4.8.2.	Quorum sensing, QS	183
4.8.3.	Ensayo de actividad metabólica del biofilm	184
4.9	Conclusiones	185
4.10	Bibliografía	186
CAPÍTULO 5	5	187
Ureidos		187
5.1.	Introducción	187
5.2.	Síntesis	188
5.3.	Estudio teórico cuántico	189
5.3.1.	N-butilcarbamoil-4-metoxibenzamida, (UDO-MBt)	189
5.3.2.	N-isopropilcarbacarbamoil naftaleno-1-carboxamida, (UDO-NIs).	190
5.3.3.	N-[3-cloro-2-metilfenil)carbamoil]-4-metoxibenzamida, (UDO-MMCf)	191
5.4.	Espectroscopia infrarroja y Raman	193
5.4.1.	N-butilcarbamoil-4-metoxibenzamida, (UDO-MBt).	194
5.4.2.	N-isopropilcarbacarbamoil naftaleno-1-carboxamida, (UDO-NIs).	195

5.4.3.	N-[3-cloro-2-metilfenil)carbamoil]-4-metoxibenzamida, (UDO-MMCf)	196
5.5.	Espectroscopia electrónica UV-visible	197
5.5.1.	N-butilcarbamoil-4-metoxibenzamida, (UDO-MBt)	197
5.5.2.	N-isopropilcarbamoil naftaleno-1-carboxamida, (UDO-NIs)	198
5.5.3.	N-[3-cloro-2-metilfenil)carbamoil]-4-metoxibenzamida, (UDO-MMCf)	201
5.6.	Espectroscopia de Resonancia Magnética Nuclear, (RMN).	202
5.6.1.	N-butilcarbamoil-4-metoxibenzamida, (UDO-MBt)	203
5.6.2.	N-isopropilcarbacarbamoil naftaleno-1-carboxamida, (UDO-NIs).	204
5.6.3.	N-[3-cloro-2-metilfenil)carbamoil]-4-metoxibenzamida, (UDO-MMCf)	205
5.7.	Difracción de rayos X, (DRX).	206
5.8.	Ensayos biológicos	210
5.9.	Conclusiones	212
5.10.	Bibliografía	213
ANEXOS		215
ANEXO 1		215
ANEXO 2		219
ANEXO 3		230
ANEXO 4		238
ANEXO 5		261

MÉTODOS EXPERIMENTALES, TÉCNICAS Y EQUIPAMIENTO

La sección experimental de este trabajo doctoral se realizó en las instalaciones del centro de Química Inorgánica, CEQUINOR, de la Facultad de Ciencias Exactas, Universidad Nacional de La Plata.

Sistema de vacío

En algunos casos fue particularmente necesario utilizar técnicas de alto vacío para la síntesis de sustancias que son sensibles a las condiciones ambientales de temperatura, presión y/o humedad (en especial los isocianatos e isotiocianatos). La línea de vacío que se empleó (Figura a), tiene una estructura principal de vidrio (Pyrex) dentro de la cual se genera vacío mediante el uso de una bomba mecánica (Edward modelo RV3, 3,3 m³/h). Posee además tres trampas o reservorios en forma de U para facilitar el proceso de destilación y varias posibilidades de conexión al exterior mediante válvulas especialmente diseñadas para estos fines con sistema PTFE (Young, Londres, Reino Unido), a través de las cuales se conectan trampas, balones, celdas de IR o de UV-Vis, entre otras. Este sistema fue utilizado para la separación de mezclas de reacción mediante destilación fraccionada a presión reducida (trampa a trampa) y para transferir y/o almacenar muestras por diferencia de temperaturas. La presión en la línea se controló con un manómetro calibrado 280 E Transducer, Setra, MA USA. Además, para la operación adecuada de estas líneas, es necesario contar permanentemente con el suministro de gases licuados a muy bajas temperaturas, como nitrógeno líquido (-196 °C) y de termos para su almacenamiento, transporte y manipulación.

Figura a. Línea de vacío.

Cromatografía de capa fina

Para el monitoreo y seguimiento de las reacciones se emplearon placas cromatográficas de gel de sílice 60 con diferentes mezclas como eluyente (fase móvil). El revelado del cromatograma se realizó con luz ultravioleta de 254 nm.

Punto de fusión

La determinación de los puntos de fusión se hizo en un equipo Karl Kolb, que permite medir puntos de fusión desde temperatura ambiente hasta 370 °C, con control de temperatura y termómetro digital TC-207.

Espectroscopia infrarroja con transformada de Fourier (FTIR)

Las medidas experimentales de IR se hicieron en el Centro de Química Inorgánica (CEQUINOR) en un espectrofotómetro Bruker modelo Equinox 55, equipado con un detector DLATGS en un intervalo de medida entre 4000 a 400 cm⁻¹. Se utilizaron diferentes resoluciones dependiendo del tipo de muestra a analizar.

Para las muestras sólidas se utilizó la técnica de dilución en bromuro de potasio (KBr), para muestras liquidas se empleó celdas con ventanas de AgCl en las cuales se deposita una gota del compuesto. Para los espectros en fase gaseosa a temperatura ambiente se usó una celda de vidrio de 10 cm de camino óptico, equipada con ventanas de silicio de 0,5 mm de espesor.

Espectroscopia Raman

Los espectros de dispersión Raman en fase sólida fueron medidos en un espectrofotómetro Thermoscientific DXR equipado con un microscopio (resolución espectral de 4 cm⁻¹) utilizando la radiación de 532 nm de un láser de estado sólido, en el rango de 3500 a 100 cm⁻¹ (CCT-CONICET-Tucumán).

Espectroscopia de resonancia magnética nuclear, (RMN).

Los espectros se obtuvieron empleando algunos de los servicios disponibles en la región o en equipos del exterior. La mayoría de las muestras se midieron en un espectrómetro de la Facultad de Bioquímica y Farmacia (UBA) Bruker Avance III 600 empleando un magneto Bruker UltraShield 14.1 tesla con sistema shim BOSS II, frecuencia de resonancia de 600,13 MHz para ¹H y 150,91 MHz para ¹³C operado a 25°C. Las muestras se colocaron en tubos de 5 mm de diámetro interno y 20 cm de largo, disueltas en distintos solventes deuterados. En una muestra se empleó un equipo Bruker; ARX 300; perteneciente al Instituto de Química, de la Universidad de Rostock, Alemania.

Espectroscopia UV - visible

Para medir los espectros ultravioleta - visible se prepararon soluciones de los compuestos en acetonitrilo utilizando un espectrofotómetro ChromTech CT-5700 UV-visible con 2,0 nm de ancho de banda espectral, obtenido con el subsidio PROMEI de la Facultad de Ingeniería de la

Universidad Nacional de La Plata (Dr. Jorge Güida). Las mediciones se llevaron a cabo en el intervalo de 190 a 1100 nm en celdas de cuarzo de 10 mm de paso óptico.

Obtención de cristales para difracción de rayos X

La obtención de monocristales, para los compuestos en los que fue posible, se realizó mediante el método de evaporación lenta y controlada del respectivo solvente empleado a partir de soluciones diluidas y filtradas de cada compuesto purificado previamente por recristalizaciones sucesivas.¹

Difracción de rayos X, (DRX).

Las mediciones se realizaron en un difractómetro CCD de Oxford Xcalibur, Eos, Gemini con radiación MoK α (λ = 1.54184 Å) monocromada con grafito perteneciente al Instituto de Física La Plata (IFLP) de la UNLP. Se recolectaron las intensidades de difracción de rayos X (ω exploraciones con desplazamientos ϑ y κ), integradas y escaladas con el conjunto de programas CrysAlisPro.² Los parámetros de las celdas unitarias se obtuvieron mediante refinamiento de mínimos cuadrados (basado en los ajustes angulares para todas las reflexiones recogidas con intensidades mayores a siete veces la desviación estándar de los errores de medida) usando CrysAlisPro. Los datos fueron corregidos empíricamente para la absorción, empleando el método de exploración múltiple implementado en CrysAlisPro.

Las estructuras se resolvieron mediante métodos directos con SHELXS del conjunto de programas SHELX.³ El modelo molecular se refinó mediante el procedimiento de mínimos cuadrados de matriz completa con SHELXL.

La descripción para los contactos intermoleculares del empaquetamiento cristalino se realizaron de acuerdo a la notación de Etter.⁴ Esta notación nos permite definir patrones geométricos presentes en la red cristalina. Se representa de la forma: $R_d^a(r)$, donde R = patrón geométrico de anillo, r = número de átomos en el anillo o en la unidad repetida de una cadena, d = átomos dadores y a = átomos aceptores participantes del anillo.

Métodos computacionales

Para los cálculos teóricos se empleó el paquete de programas de Gaussian 03 para Windows⁵ y para la visualización de los resultados se utilizó el programa Gauss View 5.0. Se utilizó el modelo B3LYP de la Teoría del Funcional de la Densidad (DFT) y los conjuntos de funciones base usadas en estos cálculos fueron las llamadas funciones de Pople.

El procedimiento general utilizado para realizar los cálculos está detallado a continuación, los cuales se llevaron a cabo para cada uno de los compuestos estudiados. Más adelante, se describen otros métodos computacionales usados en esta tesis.

• j.1 Análisis conformacional

1. Esquematizar la molécula propuesta en el visualizador del programa GaussView. Llevar a cabo una optimización inicial de la geometría de dicha molécula con el modelo B3LYP y el conjunto de bases 6-31G.

2. Identificar, con la estructura obtenida luego del cálculo, los enlaces de la molécula que presentan libre rotación y resultan de interés para su estudio conformacional.

3. Seleccionar, a partir de estos enlaces, los ángulos diedros sobre los cuales se realizará el cálculo de energía potencial de las torsiones (0-360°) utilizando el método B3LYP/ y la base 6-31g (d). De esta forma se obtienen por la variación de dichos ángulos (cada 30°) las curvas de energía potencial.

4. Ubicar, en cada curva de energía potencial, el mínimo global (punto de mínima energía) y los mínimos locales que corresponden a ángulos cuya diferencia de energía es inferior a 2 kcal/mol con respecto al mínimo global.

5. Generar, a partir de los valores de ángulos diedros que surgen de cada mínimo global y local, los confórmeros de la molécula combinando todos los ángulos diedros identificados en las diferentes curvas de energía potencial para cada torsión estudiada.

6. Optimizar la geometría molecular de cada confórmero generado y calcular posteriormente sus frecuencias vibracionales, empleando en ambos casos el método B3LYP y la base 6-311G++(d,p), de manera de comprobar la inexistencia de frecuencias negativas y confirmar que los confórmeros obtenidos son verdaderos mínimos.

7. Seleccionar la conformación optimizada de menor energía y todas aquellas cuya diferencia con la más estable no supere las 2 kcal/mol.

8. Calcular, a partir de esta selección, la abundancia poblacional para cada confórmero. Al finalizar este proceso, las conformaciones elegidas son las que se toman en cuenta para estudios químico-cuántico posteriores tales como valores de desplazamientos químicos de ¹H y ¹³C en RMN (GIAO: Gauge-Independent Atomic Orbital),^{6–10} las energías de las transiciones electrónicas, NBO (Orbital Natural de Enlace) y AIM (Atoms In Molecules), cuyos fundamentos se describen más adelante.

• j.2. Determinación teórica poblacional de los confórmeros

Para la determinación del equilibrio conformacional entre dos o más especies se toma en cuenta la función termodinámica de energía libre de Gibbs, G°, obtenida en el cálculo de

frecuencias. A partir de la Ecuación 1, ecuación de Boltzmann, se determina la población relativa porcentual entre dos o más conformaciones. Para los cálculos se seleccionarán los confórmeros en los cuales la diferencia de energía sea menor a 2,0 kcal/mol respecto al mínimo de los confórmeros obtenidos.

$$P_n = \frac{A_n * e^{\left(\frac{-G^\circ n}{RT}\right)}}{\sum_i A_i * e^{\left(\frac{-G^\circ i}{RT}\right)}}$$
 Ecuación 1

Donde, P_n es la concentración de cada confórmero en el equilibrio a la temperatura T, A_n es la degeneración de cada estructura, G° es la energía libre de Gibbs en cal/mol, R es la constante de los gases ideales (R=1,9872 cal/mol K) y T es la temperatura absoluta en grados Kelvin.

• j.3. Cálculos de los desplazamientos químicos de RMN

Para los cálculos de los desplazamientos químicos de los núcleos de ¹H y ¹³C se empleó el método GIAO (Gauche Including Atomic Orbital),^{8,11} utilizando el nivel de teoría B3LYP/6-311+G(2d,p). Los resultados experimentales se compararon con los calculados. Los cálculos se hacen de la siguiente manera.

- Optimizar la energía y realizar el cálculo de los parámetros isotrópicos de ¹H y ¹³C para el tetrametilsilano (Si(CH3)4, TMS), con el método y base B3LYP/6-311+G(2d,p).
- Con los resultados del TMS, se toma el valor isotrópico que corresponde al desplazamiento químico absoluto con valores de 31,9792 y 184,144 para 1H y 13C respectivamente.
- Para la molécula en estudio, se realizó el cálculo de los desplazamientos químicos absolutos, los valores isotrópicos, empleando la geometría de la molécula optimizada y la misma base que se utilizó para el TMS.
- Para convertir los desplazamientos químicos a valores en ppm, a los valores obtenidos con el TMS se le restó el valor isotrópico (ubicado en el archivo de salida del cálculo) de los diferentes carbonos e hidrógenos del compuesto.

δi = valor isotrópico (TMS) – valor isotrópico (i)

• j.4. Potencial electrostático molecular (MEP)

El potencial electrostático molecular (MEP)¹² se emplea para predecir e interpretar el comportamiento reactivo de sistemas químicos en reacciones electrofílicas, nucleófilicas e interacciones de enlaces de hidrógeno. Por ejemplo, un fármaco receptor y la interacción enzima-sustrato son especies que se reconocen principalmente a través de su potencial, por lo que el MEP es útil para el estudio del proceso de identificación de esta reacción. Como propuso Politzer et al,¹³ el MEP puede ser una herramienta útil para predecir e interpretar

procesos nucleofílicos. Otro enfoque es el dado por la Teoría de Átomos en Moléculas de Bader,¹⁴ en la que se reformulan conceptos químicos como átomos, moléculas, pares de electrones o reactividad desde el punto de vista de la densidad electrónica, $\rho(r)$. Al igual que el MEP, ésta es una magnitud física observable independiente de cualquier partición arbitraria del espacio orbital molecular. Este concepto está de acuerdo con la esencia de la teoría funcional de la densidad, que establece que la densidad electrónica total es una magnitud fundamental para cualquier sistema electrónico.¹⁵

• j.5. Orbitales naturales de enlace (NBO) y análisis topológico del enlace (AIM)

Un orbital natural de enlace (NBO)¹⁶ corresponde a enlaces localizados y pares libres como unidades básicas de la estructura molecular. Los cálculos se realizan con el fin de estudiar las poblaciones de los orbitales naturales de enlace y para describir y fundamentar los factores de estabilización de las conformaciones de mínima energía. Los NBO permiten obtener información directamente relacionada con el enlace químico y una interpretación en línea con los conceptos clásicos de enlace en química orgánica (estructuras de Lewis, enlaces, pares libres, hibridación, deslocalización, etc).

Adicionalmente, como complemento, se hizo un análisis topológico de enlace para algunos compuestos con el programa Atoms In Molecules (AIM) fundamentado en la teoría desarrollada por Bader,^{17,18} que permite evaluar la densidad electrónica (ρ) de las conformaciones de menor energía y establecer si la interacción intermolecular es estabilizante o no estabilizante.

Con este estudio se obtienen valores para los parámetros de densidad electrónica (ρ), la función Laplaciana de la densidad de carga ($\nabla 2\rho$) y la elipticidad (ε). Con ellos se pueden evaluar las posibles interacciones inter o intramoleculares. Estos descriptores toman en cuenta las siguientes consideraciones:

- La densidad electrónica (ρ) está conectada directamente con la fuerza del enlace. Los valores usuales de ρ están en el intervalo 0,0 – 0,5. Este parámetro adquiere valores máximos en la posición de cada núcleo y decae rápidamente al alejarse del mismo.

- La función Laplaciana es la segunda derivada de la densidad electrónica (ρ) y el signo indica regiones de concentración o disminución local de carga electrónica respecto a los alrededores. Los valores $\nabla 2\rho > 0$ se asocian a una reducción de carga, como la que puede existir en la proximidad de enlaces iónicos, o interacciones del tipo enlaces de hidrógeno y de van der Waals. En cambio, si $\nabla 2\rho < 0$ es un indicio que hay concentración de carga que puede asociarse con enlaces covalentes.¹⁹

- La elipticidad (ε) se define como $|\lambda 1/\lambda 2| - 1$, donde $\lambda 1$ y $\lambda 2$ son valores propios de la matriz Hessiana de signo negativo, derivados del análisis de la densidad electrónica al formar un BCP (Bond Critical Point por sus siglas en inglés), punto de enlace crítico.²⁰

Esta mide la simetría de la acumulación de carga, determinando las direcciones preferenciales. Es una propiedad de enlace que siempre es positiva ($\varepsilon > 0$), dando una estimación del carácter π de un enlace, donde la elipticidad de un sistema aromático es aproximadamente 0,23 para el benceno, en comparación con un valor de 0,45 para el enlace doble en el etileno.²¹ Los valores usuales se encuentran entre 0,0 – 0,5, aquellos muy elevados evidencian inestabilidad.²²

Superficie de Hirshfeld

Las energías de red y las interacciones intermoleculares asociadas a diferentes pares moleculares se calculan para determinar los componentes energéticos que contribuyen a la estabilización del cristal.^{23,24} El análisis de superficies de Hirshfeld^{25,26} se utiliza para la exploración de los modos de empaquetamiento cristalino y la visualización de las interacciones intermoleculares. Las contribuciones de los contactos intermoleculares, incluyendo el porcentaje relativo de cada tipo de interacción, se obtienen de los diagramas de huellas digitales y sus descomposiciones.^{27,28}

Estas superficies recopilan información sobre todas las interacciones intermoleculares que tienen lugar simultáneamente en una molécula, a través de un mapeo bidimensional que resume cuantitativamente la naturaleza y el tipo de interacción experimentada por la misma. Las superficies de Hirshfeld y los gráficos de descomposición bidimensional de la huella dactilar 2D-*fingerprint plot*²⁹ se realizaron con ayuda del programa Crystal Explorer 3.1.³⁰

Para estos cálculos se parte de los parámetros experimentales de la estructura cristalina obtenida por difracción de rayos X del compuesto a estudiar. La superficie de Hirshfeld se construye considerando, por regiones, la densidad electrónica (ρ) de la molécula en interrelación con las moléculas vecinas en el empaquetamiento periódico cristalino. A la suma de las densidades electrónicas esféricas de los átomos que forman la molécula se le da el nombre de promolécula ($\rho_{promolécula}$) y la densidad electrónica de los átomos en el cristal es llamada procristal ($\rho_{procristal}$). La función ponderada w (r) para una determinada molécula en el punto r.

$W(r) = \rho_{promolécula} (r) / \rho_{procristal} (r)$ Ecuación 2

La (*r*) es una densidad electrónica atómica esféricamente promediada, centrada en el núcleo A. La densidad de la promolécula y el procristal se suman sobre los átomos que pertenecen a la molécula y al cristal, respectivamente (Ecuación 3).

$$w(r) = \sum_{A \in mol \, \acute{e}cula} \rho A(r) / \sum_{A \in crist \, al} \rho A(r) \quad \text{Ecuación 3}$$

El volumen dentro del cual la promolécula domina la densidad electrónica del procristal es la región dónde $(r) \ge 0.5$ y la superficie de Hirshfeld está definida por (r) = 0.5. El valor de corte supone la máxima cercanía de los volúmenes moleculares contiguos, minimizando el espaciado entre moléculas adyacentes. La región que excede la contribución de la promolécula a la densidad electrónica del procristal permite analizar las proximidades del empaquetamiento cristalino (interacciones intermoleculares). Por consiguiente, la interrelación densidad electrónica de la molécula y el cristal real da como consecuencia una buena descripción de la correlación entre densidad electrónica de la promolécula y el procristal.

La superficie del cristal contiene información de los contactos intermoleculares del empaquetamiento en la estructura cristalina. La superficie de Hirshfeld es única y esta particularidad es la que sugiere la posibilidad de lograr una perspectiva adicional sobre la interacción intermolecular de los cristales moleculares. Para cada punto de esa isosuperficie se establecen dos distancias: *de* distancia desde un punto de la superficie hasta el núcleo más cercano fuera de la superficie y *di* distancia desde un punto en la superficie hasta el núcleo más cercano dentro de la superficie de Hirshfeld.

$$dnorm = \frac{di - ri^{vdW}}{ri^{vdW}} + \frac{de - ri^{vdW}}{ri^{vdW}}$$
 Ecuación 4

La distancia de contacto normalizada (*dnorm*) basada en el radio *de*, *di*, y el radio de van der Waals (vdW) del átomo, permite el reconocimiento de regiones de importancia para las interacciones intermoleculares. Esta función simétrica de las distancias es descripta por la Ecuación 4.

En la superficie de Hirshfeld de y di producen un dibujo tridimensional de los contactos intermoleculares cercanos en un cristal. De forma ilustrativa, en la Figura k.1 se visualizan los resultados obtenidos con el método de Hirshfeld para uno de los compuestos estudiados en este trabajo de tesis. Las distancias antes definidas son usadas también para generar un gráfico bidimensional de huella dactilar (2D-*fingerprint plot*) (Figura k.1.a.), que contiene un resumen preciso de interacciones intermoleculares en el cristal. La cercanía de los contactos está codificada en la superficie de Hirshfeld por una escala de colores (Figura k.1.c.), que va desde el azul (contactos más largos que la suma de los radios de van der Waals (ri vdW), pasando por el blanco (alrededor de la separación de los ri vdW) a rojo (más corto que la suma de los ri vdW).

Por consiguiente, las zonas de color rojo son los contactos cercanos independientemente del tipo de átomo que interactúe. Así mismo, las *dnorm* evidencian donantes y aceptores en la superficie e interacciones débiles tales como interacciones de apilamiento (stacking) $\pi \cdots \pi$ o C=O $\cdots \pi$.³¹ El índice de curvatura (*curvedness index*) y el índice de forma (*shape index*), que

están definidos por la forma de la molécula en el entorno de la red cristalina, también evidencian este tipo de interacciones.

Estos índices, *curvedness index* y *shape index* son complementarios, los cuales se emplean para identificar modos de empaquetamiento característicos, en particular disposiciones de apilamiento planas e incluso las formas en que las moléculas adyacentes están en contacto entre sí, ayudando así a la visualización de las interacciones.

Figura k.1. (a) Grafico de huella dactilar de la superficie de Hirshfeld 2D-*fingerprint,* (b) Superficie de Hirshfeld evaluada con la propiedad *dnorm,* (c) Escala de colores que define la superficie de Hirshfeld (d) Índice de forma (*shape index*) (e) Índice de curvatura (*curvedness index*).

Actividad biológica

• I.1 Cepas y crecimiento bacteriano

Las cepas empleadas en este trabajo fueron *Chromobacterium violaceum* 026 y *Pseudomonas aeruginosa* 01. Antes de los experimentos ambas cepas se inocularon en el caldo de cultivo Luria Bertani (LB) y se cultivaron 16 hs con agitación a 26 y 37 °C, respectivamente. El autoinductor N-hexanoil homoserina lactona (HHL) de Sigma-Aldrich se disolvió en etanol absoluto, mientras que los compuestos a analizar se disolvieron en DMSO.

• I.2. Ensayo antibacteriano

La actividad antibacteriana se determinó usando el método de microdilución en medio LB en las placas de microtitulación de poliestireno de 96 pocillos.³² Se diluyó las bacterias cultivadas durante la noche (**D**ensidad **Ó**ptica, DO560: 0,08 +/- 0,02) en medio de LB (10⁶ CFU/mL), se

mezcló luego con los compuestos a analizar y se incubaron a 37 °C durante 18 – 24 horas. Se evaluó la inhibición del crecimiento bacteriano que contiene los compuestos por comparación con el crecimiento en los pocillos de control con DMSO (dimetilsulfóxido, 1% de concentración final). La bacteria empleada en este ensayo fue la *Pseudomona aeruginosa* 01.

• I.3. Ensayo de biosensor

La detección de la inhibición de QS por los compuestos se llevó a cabo mediante un ensayo biosensor utilizando la cepa *Chromobacterium violaceum* 026.^{33,34}

El QS (Quorum Sensing) es un mecanismo que regula la expresión de los genes en función de la densidad celular, este mecanismo tiene lugar gracias a la liberación de moléculas señal llamadas autoinductores, denominadas así porque pueden actuar sobre la misma célula que los libera. El autoinductor empleado en este ensayo es el HHL (N-hexanoil homoserina lactona).

• I.4. Ensayo de MTT

Este es un ensayo de viabilidad celular (actividad metabólica) por reducción del bromuro de 4,5-dimetiltiazol-2,5-difeniltetrazoliol (MTT) (Figura XII.1), un compuesto perteneciente a la familia de sales de tetrazolio,³⁵ soluble en agua y de color amarillo. La finalidad de este ensayo es la reducción del MTT, el cual se convierte en un compuesto de la familia de los formazanos (azul de formazan, Figura I.1) de color violeta e insoluble en agua.

Este último se cuantifica disolviendo el mismo en DMSO y midiendo la A_{570} (se mide la absorbancia a λ = 570 nm). La bacteria empleada en este ensayo fue la *Pseudomona aerguginosa* 01.

Figura I.1. Reducción del MTT

Bibliografía

- 1 M. A. M. Grau and A. G. Csák, *Técnicas experimentales en síntesis orgánica*, Síntesis, illustrate., 1998.
- 2 O. D. L. version 1. 171. 33. 4. (release 15-09-2009 C. N. CrysAlisPro, .
- 3 G. M. Sheldrick, *Acta Crystallogr. Sect. A Found. Crystallogr.*, 2008, **64**, 112–122.
- 4 M. C. Etter, J. C. MacDonald and J. Bernstein, *Acta Crystallogr. Sect. B*, 1990, **46**, 256–262.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
 J. A. Montgomery Jr, T. Vreven, K. N. Kudin and J. C. Burant, *Gaussian Inc., Pittsburgh, PA*, 2003.
- 6 F. London, J. Phys. le Radium, 1937, **8**, 397–409.
- 7 R. McWeeny, *Phys. Rev.*, 1962, **126**, 1028–1034.
- 8 J. R. Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, *J. Chem. Phys.*, 1996, **104**, 5497–5509.
- 9 K. Wolinski, J. F. Hinton and P. Pulay, *J. Am. Chem. Soc.*, 1990, **112**, 8251–8260.
- 10 R. Ditchfield, *Mol. Phys.*, 1974, **27**, 789–807.
- P. Pulay and J. F. Hinton, in *Encyclopedia of Magnetic Resonance*, John Wiley & Sons, Ltd, Chichester, UK, 2007, pp. 1–6.
- P. A. Carrupt, N. El Tayar, A. Karlén and B. Testa, *Methods Enzymol.*, 1991, 203, 638–677.
- 13 P. Politzer, S. J. Landry and T. Waernheim, *J. Phys. Chem.*, 1982, **86**, 4767–4771.
- 14 R. F. W. Bader, *Chem. Rev.*, 1991, **91**, 893–928.
- 15 Frank Jensen, in *Introduction to computational chemistry*, John Wiley & Sons, Second Edi., 2007, pp. 232–267.
- 16 E. D. Glendening, C. R. Landis and F. Weinhold, *Wiley Interdiscip. Rev. Comput. Mol. Sci.*, 2012, **2**, 1–42.
- 17 R. F. W. Bader, *Atoms in Molecules A Quantum Theory*, University of Oxford Press: Oxford, 1990.
- 18 R. F. W. Bader, *Acc. Chem. Res.*, 1985, **18**, 9–15.
- 19 N. Trendafilova, G. Bauer and T. Mihaylov, *Chem. Phys.*, 2004, **302**, 95–104.

- 20 C. Silva López, O. Nieto Faza, F. P. Cossió, D. M. York and A. R. De Lera, *Chem. A Eur. J.*, 2005, **11**, 1734–1738.
- 21 R. F. W. Bader, T. S. Slee, D. Cremer and E. Kraka, *J. Am. Chem. Soc.*, 1983, **105**, 5061–5068.
- D. Cremer, E. Kraka, T. T. Nguyen-Dang, T. S. Slee, R. F. W. Bader, C. D. H. Lau and P. J. MacDougall, *J. Am. Chem. Soc.*, 1983, **105**, 5069–5075.
- 23 J. D. Dunitz and A. Gavezzotti, *Chem. Soc. Rev.*, 2009, **38**, 2622–2633.
- A. Gavezzotti, G. N. Lewis, W. J. Hehre, R. Ditchfield, J. A. Pople, J. van de Streek, W.
 A. Herrebout, M. A. Suhn, C. B. Aakeroy, C. L. Spartz, S. Dembowski, S. Dwyre, J.
 Desper, F. H. Allen, R. S. Rowland, R. Taylor, A. Gavezzotti, A. Gavezzotti, J. D. Dunitz,
 D. W. D. Cruickshank, G. A. DiLabio, M. Koleini, J. Bernstein, S. Chen, I. A. Guzei, L. Yu,
 A. L. Bingham, D. S. Hughes, M. B. Hursthouse, R. W. Lancaster, S. Tavener, T. L.
 Threlfall, C. R. Groom and A. M. Reilly, *New J. Chem.*, 2016, **40**, 6848–6853.
- 25 S. K. Seth, D. Sarkar, A. D. Jana and T. Kar, *Cryst. Growth Des.*, 2011, **11**, 4837–4849.
- 26 S. K. Seth, I. Saha, C. Estarellas, A. Frontera, T. Kar and S. Mukhopadhyay, *Cryst. Growth Des.*, 2011, **11**, 3250–3265.
- 27 A. Saeed, M. Bolte, M. F. Erben and H. Pérez, *CrystEngComm*, 2015, **17**, 7551–7563.
- 28 M. Owczarek, I. Majerz and R. Jakubas, *CrystEngComm*, 2014, **16**, 7638–7648.
- 29 M. A. Spackman and J. J. McKinnon, *CrystEngComm*, 2002, **4**, 378–392.
- 30 S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka and M. A. Spackman, 2012.
- 31 S. R. Salpage, M. D. Smith and L. S. Shimizu, *J. Chem. Crystallogr.*, 2016, **46**, 170–180.
- 32 I. Wiegand, K. Hilpert and R. E. W. Hancock, *Nat. Protoc.*, 2008, **3**, 163–175.
- K. H. McClean, M. K. Winson, L. Fish, A. Taylor, S. R. Chhabra, M. Camara, M. Daykin,
 J. H. Lamb, S. Swift, B. W. Bycroft, G. S. a B. Stewart and P. Williams, *Microbiology*, 1997, 143, 3703–3711.
- 34 J. H. Choo, Y. Rukayadi and J. K. Hwang, *Lett. Appl. Microbiol.*, 2006, **42**, 637–641.
- 35 T. Aoyama, S. Yamano, P. S. Guzelian, H. V Gelboin and F. J. Gonzalez, *Proc. Natl. Acad. Sci.*, 1990, **87**, 4790–4793.

INTRODUCCIÓN

En este trabajo de tesis doctoral se sintetizaron y caracterizaron cuatro familias de compuestos, las que se pueden describir como: i) carbonil isocianatos, ii) carbonil isotiocianatos, iii) carbonil ureidos y iv) carbonil tioureidos. Sus estructuras se muestran en el esquema I, donde R es, en general, un sustituyente aromático y R^{1}/R^{2} puede ser un resto alifático o aromático.

El grupo isocianato está compuesto por enlaces dobles acumulados N=C y C=O. Gran parte de la reactividad de este grupo radica en la alta electronegatividad del oxígeno y del nitrógeno, lo cual hace que el carbono central sea altamente electrofílico, a la vez que el grupo concentra una alta densidad electrónica en sus enlaces π (Esquema II).

Esquema II. Estructuras de resonancia contribuyentes del grupo isocianato.

La alta reactividad química en solución acuosa de los isocianatos los hace particularmente tóxicos que se refleja en el efecto irritante directo sobre los pulmones, los ojos, la piel y la mucosa expuesta. Los efectos directos pueden ser instantáneos como en el caso de MIC (metilisocianato) o manifestarse después de un tiempo.¹ Los polímeros derivados de isocianatos, que incluyen poliureas, poliisocianuratos y poliuretanos, resultan una de las aplicaciones más importantes. Esto se debe a la alta reactividad del grupo isocianato con cualquier molécula que contenga un hidrogeno activo, como por ejemplo alcoholes, aminas, agua y tioles.² Las principales reacciones de los isocianatos se muestran en el Esquema III.

Esquema III. Principales reacciones de los isocianatos.

La reacción comercialmente más importante es la de los isocianatos con alcoholes, para la formación de los uretanos (o carbamatos) y poliuretanos (Esquema IV). Los carbamatos presentan diferentes aplicaciones como principios activos para la industria farmacéutica, insecticidas,³ conservantes para comidas y cosméticos, etc.

Esquema IV. Formación de poliuretanos.

A su vez los isocianatos también reaccionan entre sí, dando lugar a otro tipo de compuestos como los uretdionas, isocianuratos y poliisocianuratos, productos de reacciones de dimerización.

Esquema V. Reacciones competitivas entre isocianatos.

Análogamente, el grupo isotiocianato está formado por dos dobles enlaces acumulados de N=C y C=S y en general actúan como electrófilos. La polarización del NCS (Esquema VI) resulta similar a la del grupo NCO.⁴ Si bien los isocianatos e isotiocianatos participan en el mismo tipo de reacciones, estos grupos de compuestos difieren en su reactividad.

$$\begin{bmatrix} \mathsf{R}\text{-}\mathsf{N}\text{=}\mathsf{C}\text{-}\mathsf{S} & \longleftrightarrow & \mathsf{R}\text{-}\check{\mathsf{N}}\text{-}\check{\mathsf{C}}\text{-}\mathsf{S} \\ & & \uparrow \\ & & \mathsf{R}\text{-}\check{\mathsf{N}}_{\equiv}\mathsf{C}\text{-}\check{\mathsf{S}} \end{bmatrix}$$

Esquema VI. Estructuras resonantes del grupo isotiocianato.

Los isotiocianatos resultan reactivos o intermediarios de especial importancia por el potencial que ellos tienen en la construcción de una amplia variedad de heterociclos⁵ y, en la química preparativa, para la producción de compuestos moleculares mayores. A pesar del interés que estos compuestos tienen como precursores de moléculas de acción anticancerígena probada,⁶ es muy poco lo que se conoce sobre estudios estructurales de isotiocianatos simples.

De los iso(tio)cianatos simples, las moléculas de 2-cloroetil isocianato (1) y 2-cloroetil isotiocianato (2) han suscitado un gran interés debido a que fueron ampliamente empleadas en la preparación de ureidos y tioureidos de variada acción biológica. Sin embargo, a pesar de su importancia desde el punto de vista de sus propiedades fisicoquímicas, sólo se ha reportado un estudio sobre los productos de pirolisis de 1 y 2 por espectrometría de masas y espectroscopia de microondas. El mismo permitió establecer mecanismos de pirolisis y postular que el enlace C-N en el isotiocianato es, en términos relativos, más débil que el correspondiente en el isocianato.⁷

Desde el punto de vista de su acción biológica, además de constituir reactivos de partida, los isocianatos se forman durante la descomposición de las CENUs (cloroetil nitrosourea) al pH fisiológico.⁸

Se sabe que los isocianatos actúan como especies carbamoilantes (-C(O)-NH2) debido a las reacciones que éstos producen con aminoácidos y proteínas. Además, la porción haloalquílica en **1** y **2** juega un rol fundamental en la alquilación de proteínas y su efecto anticancerígeno.⁹

La obtención de nuevos carbonil iso(tio)cianatos, donde el grupo carbonilo ocupa la posición alfa, permite la obtención de carbonil (tio)ureidos por simple adición nucleofílica de aminas. Esta reactividad frente a aminas resulta particularmente interesante ya que produce, por combinación directa de ambos reactivos, los carbonil (tio)ureidos que presentan actividad antibacteriana y acción tuberculostática, entre otras.¹⁰

Los derivados de ariltiourea han demostrado actividad contra la infección por el virus de la hepatitis C (VHC)¹¹ y contra el fungo patógeno.¹² Las aroiltioureas relacionadas (Ar-CO-NH-CS-NRR ') también muestran bioactividad contra tres parásitos de relevancia humana y toxicidad

selectiva en células de cáncer de colon¹³ ya que estos últimos compuestos son potentes inhibidores de la ureasa.^{14,15} También actuaron como co-ligandos en complejos de Pd (II) los que mostraron propiedades de cristal líquido¹⁶ y se han utilizado ampliamente para la extracción de metales, como paladio (II) y oro (III),^{17,18} debido a su capacidad para formar complejos de coordinación.¹⁹ Estos compuestos también se utilizan como portadores en el transporte de metales preciosos a través de una membrana de polímero líquido inmovilizado (PILM),²⁰ de gran relevancia por ejemplo para la recuperación de oro de soluciones diluidas.

Para testear la potencial bioactividad de los nuevos (tio)ureidos estudiados en este trabajo, algunos de los compuestos obtenidos fueron evaluados por su inhibición de Quorum Sensing (QS) en *Pseudomonas aeruginosa y Chromobacterium violaceum.*

El QS es un sistema de comunicación entre microorganismos que controla el comportamiento de virulencia de un amplio espectro de patógenos bacterianos, participando también en el desarrollo de biofilms que son responsables de la ineficacia de los antibióticos en muchas infecciones.²¹

Desactivar la producción de biofilms es de suma importancia dado que éstos constituyen una comunidad microbiana caracterizada por células que están adheridas a una superficie, encerradas en una matriz de sustancias poliméricas extracelulares (EPS) que ellas han producido, y que exhiben un fenotipo alterado en relación con la tasa de crecimiento y trascripción génica.²²

En este trabajo se sintetizaron los compuestos presentados en el Esquema VII.

Esquema VII.	Diagrama	general	de	síntesis
--------------	----------	---------	----	----------

Compuesto	R ¹	R ²	R ³
NNCO	1-Naftilo		
NNCS	1-Naftilo		
BNCS	4-Hidroxifenilo		
NBt	1-Naftilo	Н	Butilo
NEt	1-Naftilo	Н	Etilo
NIs	1-Naftilo	Н	Isopropilo
MBt	4-Metoxifenilo	Н	Butilo
MIs	4-Metoxifenilo	Н	Isopropilo

MMCf	4-Metoxifenilo	Н	2-Metil-3-clorofenilo
MIso2	4-Metoxifenilo	Isopropilo	Isopropilo
Mm2	4-Metoxifenilo	Metilo	Metilo
Mf2	4-Metoxifenilo	Fenilo	Fenilo
AntBu	9-Antrilo	Н	Butilo
DifEt	Difenilmetilo	Н	Etilo
UDO-MBt	4-Metoxifenilo	Н	Butilo
UDO-NIs	1-Naftilo	Н	Isopropilo
UDO-MMCf	4-Metoxifenilo	Н	2-Metil-3-clorofenilo

Bibliografía

- 1. Varma, D. R. & Mulay, S. in *Handbook of Toxicology of Chemical Warfare Agents:* Second Edition 287–299 (Elsevier Inc., 2015). doi:10.1016/B978-0-12-800159-2.00022-1
- Heath, R. in *Brydson's Plastics Materials* 799–835 (Elsevier, 2017). doi:10.1016/B978-0-323-35824-8.00028-1
- 3. Eddleston, M. Pesticides. *Med. (United Kingdom)* **44**, 193–196 (2016).
- Dale L. Boger, S. M. W. in *Hetero Diels—Alder Methodology in Organic Synthesis* 220– 253 (1967). doi:10.1016/B978-0-12-395751-1.50009-X
- 5. Mukerjee, A. K. & Ashare, R. Isothiocyanates in the chemistry of heterocycles. *Chem. Rev.* **91**, 1–24 (1991).
- Conaway, C., Yang, Y. & Chung, F. Isothiocyanates as Cancer Chemopreventive Agents: Their Biological Activities and Metabolism in Rodents and Humans. *Curr. Drug Metab.* 3, 233–255 (2002).
- Sakaizumi, T., Sekiya, R., Kuze, N. & Ohashi, O. Mass and microwave spectroscopic studies of pyrolysates and pyrolysis mechanism of 1,1,2-trichloronitrosoethane. *J. Anal. Appl. Pyrolysis* 53, 177–184 (2000).
- 8. Gnewuch, C. T. & Sosnovsky, G. A Critical Appraisal of the Evolution of N -Nitrosoureas as Anticancer Drugs. *Chem. Rev.* **97**, 829–1014 (1997).
- 9. Lown, J. W., Joshua, A. V. & McLaughlin, L. W. Novel Antitumor Nitrosoureas and Related Compounds and their Reactions with DNA. *J. Med. Chem.* **23**, 798–805 (1980).
- Lin, Q., Zhang, Y.-M., Li, M.-L. & Wei, T.-B. Novel and Efficient Cyclization Procedure for the Synthesis of 2,5-Disubstituted-1,3,4-thiadiazoles Without Using Any Ring-Closing Reagents. *Synth. Commun.* 42, 3251–3260 (2012).
- 11. Kang, I.-J. *et al.* Design and efficient synthesis of novel arylthiourea derivatives as potent hepatitis C virus inhibitors. *Bioorg. Med. Chem. Lett.* **19**, 6063–8 (2009).
- 12. del Campo, R. *et al.* Thiourea derivatives and their nickel(II) and platinum(II) complexes: antifungal activity. *J. Inorg. Biochem.* **89**, 74–82 (2002).
- 13. Müller, J. *et al.* Thioureides of 2-(phenoxymethyl)benzoic acid 4-R substituted: A novel class of anti-parasitic compounds. *Parasitol. Int.* **58**, 128–135 (2009).
- Rauf, M. K. *et al.* Solution-phase microwave assisted parallel synthesis of N,N'disubstituted thioureas derived from benzoic acid: Biological evaluation and molecular docking studies. *Eur. J. Med. Chem.* **70**, 487–496 (2013).
- Rauf, M. K. *et al.* Solution-phase microwave assisted parallel synthesis, biological evaluation and in silico docking studies of N,N'-disubstituted thioureas derived from 3chlorobenzoic acid. *Bioorg. Med. Chem.* 24, 4452–4463 (2016).
- 16. Tenchiu, A. C., Iliş, M., Dumitraşcu, F., Whitwood, A. C. & Cîrcu, V. Synthesis, characterization and thermal behaviour of ortho-metallated Pd(II) complexes containing

N-benzoylthiourea derivatives. Polyhedron 27, 3537-3544 (2008).

- El Aamrani, F. Z., Kumar, A., Cortina, J. L. & Sastre, A. M. Solvent extraction of copper(II) from chloride media using N-(thiocarbamoyl)benzamidine and Nbenzoylthiourea derivatives. *Anal. Chim. Acta* 382, 205–213 (1999).
- Domínguez, M. *et al.* Liquid–liquid extraction of palladium(II) and gold(III) with N-benzoyl-N',N'-diethylthiourea and the synthesis of a palladium benzoylthiourea complex. *Polyhedron* 21, 1429–1437 (2002).
- 19. Koch, K. R. New chemistry with old ligands: N-alkyl- and N,N-dialkyl-N'- acyl(aroyl)thioureas in co-ordination, analytical and process chemistry of the platinum group metals. *Coord. Chem. Rev.* **216–217**, 473–488 (2001).
- 20. El Aamrani, F. Z., Kumar, A., Beyer, L., Cortina, J. L. & Sastre, A. M. liquid-liquid extraction of gold(III) and its separation over copper(II), iron(III), and zinc(II) using thiourea derivatives from chloride media. *Solvent Extr. Ion Exch.* **16**, 1389–1406 (1998).
- 21. D'Almeida, R. E. *et al.* Comparison of seven structurally related coumarins on the inhibition of Quorum sensing of Pseudomonas aeruginosa and Chromobacterium violaceum. *Bioorg. Chem.* **73**, 37–42 (2017).
- 22. Donlan, R. M. Biofilms: Microbial Life on Surfaces. *Emerg. Infect. Dis.* 8, 881–890 (2002).

CAPÍTULO 1

lso(tio)cianatos

1.1. Isocianatos e isotiocianatos

En el presente capítulo se describe la síntesis y el estudio mediante espectroscopia vibracional (IR) y electrónica (UV-Visible) de los siguientes iso(tio)cianatos: isocianato de 1-naftilcarbonilo (**NNCO**), isotiocianato de 1-naftilcarbonilo (**NNCS**) e isotiocianato de 4-hidroxibenzoilo (**BNCS**). Los resultados se complementan con cálculos computacionales químico-cuánticos.

Los isocianatos constituyen una clase importante de compuestos en química orgánica debido a que experimentan una serie de reacciones para generar una variedad interesante de productos tales como ureidos¹ y triazolinas.² Se preparan a gran escala en la industria de polímeros para la fabricación de poliuretano,³ participan en la síntesis de productos agroquímicos y farmacéuticos,⁴ reaccionan con alcoholes y fenoles para dar carbamatos, isocianuratos⁵ y alofanatos (R¹OCO-NR²-CO-NR³R⁴). Estos últimos son esteres del ácido alofánico.⁶

En el grupo isocianato (-N=C=O) los átomos de nitrógeno y oxígeno, fuertemente electronegativos, deslocalizan la densidad de electrones hacia sí, provocando un incremento en la reactividad de este grupo.⁷

Se caracterizan por tener olor penetrante, en fase liquida son incoloros o amarillentos mientras que en fase sólida tienen bajo punto de fusión, son muy sensibles a la humedad^{8,9} y de alta complejidad en su síntesis debido a su toxicidad.^{1,10}

Por otra parte, los alquil isotiocianatos (R-NCS) de bajo peso molecular han sido empleados exhaustivamente en la química preparativa para la producción de compuestos moleculares mayores. Naturalmente, los isotiocianatos los percibimos en algunos de los alimentos que se consumen cotidianamente, ya que son responsables de los olores picantes de la mostaza, rábano y wasabi.¹¹ La obtención de nuevos isotiocianatos permite el acceso a reactivos de partida para la obtención de tioureidos, con potencial bioactividad, por simple adición de aminas nucleofílicas. Esta reactividad frente a aminas resulta particularmente interesante, ya que los tioureidos presentan actividad antibacteriana^{12–14} y acción tuberculostática,¹⁵ entre otras. De igual manera, se ha reportado actividad antibacteriana también para los isotiocianatos precursores.^{16–18}

Los isotiocianatos están presentes en las verduras crucíferas¹⁹ como el brócoli,²⁰ el repollo, el berro, etc., y se los identifica como los principales componentes activos. Estudios epidemiológicos demostraron una fuerte correlación inversa entre el consumo dietético de vegetales crucíferos y la incidencia de cáncer, demostrando así actividad quimiopreventiva y

quimioterapéutica ante varios tipos de tumores mediante la supresión de diversas características críticas del cáncer como la proliferación celular, la angiogénesis, la apoptosis, la metástasis, etc.^{21–25}

Los isocianatos e isotiocianatos comparten la interesante capacidad de formar heterociclos,²⁶ siendo reacciones muy importantes en el campo de la química orgánica.

Los carbonil isocianatos (R-C(O)-NCO) e isotiocianatos (R-C(O)-NCS) constituyen un subgrupo dentro de esta clase de compuestos que son interesantes de estudiar, ya que el grupo carbonilo vecino le aporta diferencias en la reactividad química. Varios de ellos son de difícil manipulación debido a su alta reactividad frente a la humedad o al oxígeno ambiental.

1.2. Síntesis

La síntesis de los compuestos isocianato de 1-naftilcarbonilo (**NNCO**), isotiocianato de 1naftilcarbonilo (**NNCS**) e isotiocianato de 4-hidroxibenzoilo (**BNCS**), expuestos en el presente capítulo, se describe en el Esquema 1.2.1. El isocianato se preparó en dos pasos (**I** y **II**), mientras que los isotiocianatos **NNCS** y **BNCS** se obtuvieron en un sólo paso (**III**).

1.2.1. Obtención de cloruros de ácido

Los cloruros de ácido necesarios para la síntesis de los iso(tio)cianatos se obtuvieron según el siguiente procedimiento general: se colocó en un balón de 100 mL, 11,6 mmol de ácido 1-naftoico (para **NNCO** y **NNCS**) y 11,6 mmol de ácido 4-hidroxibenzoico (para **BNCS**); posteriormente se agregó 11,5 mmol de pentacloruro de fosforo (PCI₅), Esquema 1.2.2 (reacción en fase sólida). El balón se calentó a 70 °C por 1 hora hasta que los sólidos estuvieron totalmente fundidos y homogeneizados, resultando una mezcla con apariencia viscosa de color translucido ligeramente amarillo.²⁷ Una vez transcurrido el tiempo indicado, se verificó mediante cromatografía en capa fina (CCF) la ausencia del ácido de partida y la presencia de una única mancha, con un Rf mayor, adjudicada al producto deseado. La CCF se eluyó con hexano/acetato de etilo 7:3. Adicionalmente, se detectó mediante espectroscopia FT-IR la presencia de bandas características del producto de interés, el cloruro de ácido.

Esquema 1.2.1. Reacción general de síntesis de isocianatos (etapas I y II) e isotiocianatos (etapa III).

Para separar los productos de descomposición del PCI₅ (POCI₃ y HCI) del cloruro de ácido, el balón de reacción se conectó a la línea de vacío a través de una trampa en U sumergida en un baño de nitrógeno líquido para retener los productos volátiles y subproductos de reacción. Los residuos obtenidos en la trampa, después de aplicar vacío dinámico a la muestra, se analizaron mediante espectroscopia infrarroja la cual indicó la presencia de HCI (cloruro de hidrógeno) gaseoso. En el balón de reacción quedó un líquido muy viscoso, transparente de un color ligeramente amarillento.

$$\begin{array}{c} O \\ R \\ OH \end{array} + PCI_{5} \\ \Delta \\ R \\ CI \end{array} + POCI_{3(I)} + HCI_{(g)}$$

Esquema 1.2.2. Formación de cloruro de ácido a partir del pentacloruro de fosforo (PCI₅).

Inicialmente, la preparación de los cloruros de ácido se llevó a cabo empleando cloruro de tionilo (SOCl₂) como reactivo acilante. Este método tenía la ventaja de que los subproductos de reacción son más fácilmente separables de la mezcla de reacción (se volatilizan en el proceso de reacción, Esquema 1.2.3).

Esquema 1.2.3. Formación de cloruro de ácido a partir de un ácido carboxílico y cloruro de tionilo.

Debido a problemas asociados al peligro en su transporte y su toxicidad, el cloruro de tionilo fue retirado del mercado, siendo reemplazado por pentóxido de fosforo en las sucesivas preparaciones de los cloruros de ácido.

Los resultados obtenidos en la preparación de cloruro de 1-naftoilo con SOCl₂ y PCl₅ fueron evaluados por espectroscopia infrarroja mostrados en la Figura 1.2.1.

Figura 1.2.1. Espectro IR de cloruro de 1-naftoilo, líquido. **a.** Crudo de reacción obtenido con PCl₅, **b.** crudo de reacción obtenido con SOCl₂ y **c.** PCl₅+SOCl₂ es la mezcla de los productos obtenidos con PCl₅ y SOCl₂ luego de la eliminación de los subproductos volátiles con línea de vacío.

1.2.2. Isocianato de 1-naftilcarbonilo, (NNCO).

<u>1-Naftilamida (Etapa I).</u> El cloruro de 1-naftoilo (11,6 mmol) obtenido como se indica en 1.2.1., sin aislar, se adiciona por goteo mediante una pipeta Pasteur de vidrio y con agitación constante a una solución de 8 mL de hidróxido de amonio (NH₄OH)²⁸ contenida en un erlenmeyer, el cual se mantiene sumergido en un baño de hielo con el fin de controlar la temperatura. La velocidad de la adición se regula de manera tal que la temperatura de la reacción no supere los 0°C, debido a que el proceso es exotérmico. Una vez finalizada la adición del cloruro de 1-naftoilo, se ajusta el pH a valores entre 7 y 8 agregando HCl 3M y agitando continuamente por 20 minutos.

Se obtiene una mezcla viscosa de color blanco en todo su volumen, la cual se trasvasa a un embudo de separación y se procede a su extracción con acetato de etilo. En cada extracción se emplean 10 mL de acetato de etilo y se repite hasta comprobar mediante CCF (eluyente: hexano/acetato de etilo 7:3) que no se extrae más producto (ausencia de mancha en CCF).

La fase acuosa se desecha y se elimina el acetato de etilo en un evaporador rotatorio obteniéndose un sólido blanco, el cual se lleva a peso constante por calentamiento a 40°C en una estufa. El producto se analizó por espectroscopia IR, observándose las bandas características de la función amida (3340, 3200 y 1660 cm⁻¹).²⁹

<u>Isocianato de 1-naftilcarbonilo (etapa II).</u> En un balón de reacción de 100 mL se coloca 1,17 mmol de 1-naftilamida disuelta en 15 mL de CH_2CI_2 seco. Este balón con la solución es conectado a una línea de vacío para adicionarle, por condensación, 1,10 mmol de $(COCI)_2$.³⁰⁻³² Una vez que la mezcla homogeneizada ha alcanzado la temperatura ambiente, el balón se retira de la línea y se calienta a reflujo por 3 horas en atmosfera de nitrógeno.

Una vez finalizada la reacción, el producto obtenido se caracteriza en solución de diclorometano.⁸ Se realizaron varios intentos de eliminar el solvente para estudiar el compuesto puro, pero se observó que en el sólido aislado siempre se detectaba la amida de partida o productos de descomposición, a pesar de que en los espectros IR en solución se observaba la señal característica del grupo isocianato. Luego de todas estas infructuosas experiencias se decidió evaluar la cantidad de solvente necesaria para estabilizar el producto y lograr así una solución con la mayor concentración del isocianato. Esta experiencia se realizó midiendo la evolución de la intensidad de la banda IR a 2245 cm⁻¹.

1.2.3. Isotiocianatos de 1-naftilcarbonilo, (NNCS) y 4-hidroxibenzoilo, (BNCS).

Etapa III. En un balón de tres bocas de 250 mL se disuelven en caliente y con agitación constante 17,4 mmoles de tiocianato de potasio (KSCN) en 25 mL de acetonitrilo seco; posteriormente se adiciona gota a gota el cloruro de ácido correspondiente (Sección 1.1.2).

Cuando se inicia el agregado del cloruro de ácido a la solución de KSCN, ésta cambia su apariencia de translucida incolora a un color amarillo pálido con una ligera turbidez. Finalizado el agregado, la reacción se lleva a reflujo durante una hora, tornándose de color naranja. Al enfriar la mezcla de reacción se observa un precipitado que luego se filtra a través un papel filtro y se desecha. El filtrado contiene el isotiocianato de interés. De manera similar a lo ocurrido con el isocianato de 1-naftoilo, los intentos de aislar el producto de la solución por evaporación del solvente fueron infructuosos, obteniéndose en todos los casos productos de descomposición, por lo que se lo caracterizó en solución por espectroscopia IR y UV-Vis.³³ Uno de los intentos de purificación de NNCS a partir del producto obtenido luego de la evaporación del solvente, permitió obtener una muestra para análisis de RMN, la cual se describe en la sección 1.6. RMN más adelante.

1.3. Estudio conformacional mediante métodos químico-cuánticos

Para el estudio teórico conformacional de los compuestos **NNCO**, **NNCS** y **BNCS** se exploraron particularmente las torsiones τ_1 y τ_2 , como se muestran en el Esquema 1.3.1., debido a que corresponden a enlaces que tienen libre rotación. A partir de las curvas de energía potencial alrededor de ambos enlaces simples (R-CO y OC-N) obtenidas mediante cálculos computacionales (B3LYP/6-31g(d)), se determinó la geometría molecular de mínima energía.

Esquema 1.3.1. Torsiones (τ_1 y τ_2) empleadas para el estudio conformacional **NNCO**, **NNCS** y **BNCS**.

El resultado de las curvas de energía potencial calculadas para la torsión alrededor de los enlaces simples R-CO y OC-N, descriptos en este estudio como τ_1 y τ_2 , se presentan en la Figura 1.3.1. Para el análisis conformacional de los compuestos **NNCO**, **NNCS** y **BNCS** que conduce a la determinación de las conformaciones de mínima energía, se empleó el procedimiento detallado en la sección X-Métodos computacionales (Métodos experimentales), por lo tanto, solo se presentarán aquí los resultados y su discusión.

Figura 1.3.1. Curvas de energía potencial relativas, correspondiente a las torsiones τ_1 y $\tau_{2,}$ calculadas para **NNCO**, **NNCS** y **BNCS**, al nivel B3LYP/6-31g(d).

La numeración de los átomos de **NNCO**, **NNCS** y **BNCS** se presenta en las Figuras 1.3.2., 1.3.3. y 1.3.4. Al examinar los resultados obtenidos para τ_2 (segunda columna de la figura 1.3.1.) se detecta una diferencia en el ángulo de mínima energía calculado para el compuesto **NNCS**. Esto se debe a que en esta molécula τ_2 está conformado por átomos distintos a los definidos en **NNCO** y **BNCS**. En un principio se realizaron los cálculos tomando los átomos OC-NC de manera análoga a lo realizado con los otros dos compuestos, pero en todos los intentos ensayados, el proceso de cálculo se interrumpe o no converge. Por lo tanto, se decidió realizar el cálculo alrededor del enlace CC-NC logrando con este cambio completar la curva de energía potencial de manera exitosa. Por este motivo, en **NNCS** el mínimo no coincide con los encontrados para **NNCO** y **BNCS**.

1.3.1. Isocianato de 1-naftilcarbonilo, (NNCO).

Las curvas de energía potencial relativa para **NNCO**, resultantes de las torsiones τ_1 (C3C2-C18O21) y τ_2 (O21C18-N19C20) presentan dos mínimos a 0° y 360° (Figura 1.3.1.). Al analizar los confórmeros en ambos puntos se determinó que son idénticos. La optimización de la geometría obtenida mediante la combinación de los mínimos de ambas curvas dió como resultado una única conformación presentada en la Figura 1.3.2.

El grupo carbonilo y el -NCO se encuentran en el mismo plano de los anillos aromáticos, mostrando la molécula una total planaridad. Los ángulos diedros calculados para la molécula son: ϕ (C3C2C18O21) = 0,0°; ϕ (O21C18N19C20) = 0,0°; ϕ (C2C18N19C20) = -180°, mientras que el ángulo predicho para el grupo N=C=O es de 173,3°.³⁴

Figura 1.3.2. Geometría optimizada de NNCO (B3LYP/6-311++g(d,p)).

1.3.2. Isotiocianato de 1-naftilcarbonilo, (NNCS).

Para la molécula **NNCS** la curva de energía potencial relativa para τ_1 (C4C5-C18O21) presenta dos mínimos a 0° y 360°. Para τ_2 , cuando se utiliza el ángulo diedro entre los mismos átomos elegidos para los otros dos compuestos, el O21C18N19C20, el cálculo no procede como ya se explicó anteriormente, por lo tanto, surgió la necesidad de cambiarlo por el ángulo diedro C5C18-N20C19, diferente al usado en las otras estructuras. El ángulo C5C18-N20C19 genera un único mínimo y al combinar con los mínimos de τ_1 y optimizar da como resultado un único confórmero. La geometría obtenida es prácticamente igual a la de **NNCO** y difiere principalmente en el ángulo N=C=S (175,7°), es decir presenta una diferencia de 2 grados.

La geometría optimizada del compuesto **NNCS** se presenta en la Figura 1.3.3. en la cual se evidencia la planaridad de la molécula.

Figura 1.3.3. Geometría optimizada de NNCS (B3LYP/6-311++g(d,p)).

1.3.3. Isotiocianato 4-hidroxibenzoilo, (BNCS).

Comparando las curvas mostradas en la Figura 1.3.1., **BNCS** presenta un mínimo adicional de energía para $\tau_1 = 180^\circ$, además de los localizados a 0 y 360° (también observados en **NNCO** y **NNCS**). Dado que el anillo aromático es un grupo *p*-hidroxifenil sustituido, se observa que el sustituyente O-H se dispone coplanar al anillo. Cuando $\tau_1 = 0/360^\circ$, el O-H se ubica *syn* al grupo carbonilo, mientras que para $\tau_1 = 180^\circ$ la geometría molecular dispone al grupo O-H *anti* al carbonilo. Este cambio no genera mayores diferencias en la energía ni en la geometría molecular, por lo que se va a considerar solo el mínimo para $\tau 1 = 0^\circ$ teniendo en cuenta los objetivos del estudio teórico para estos compuestos.

De manera análoga a lo observado para **NNCO** y **NNCS**, la entidad C(=O)-NCS es coplanar al anillo aromático, como se muestra en la Figura.1.3.4. y los ángulos diedros calculados son: ϕ (C3C4C13O14) = 0,0°; ϕ (O14C13N15C16) = 0,0°; ϕ (C4C13N15C16) = -180°.

El grupo isotiocianato, de manera similar al isocianato, no es completamente lineal y los cálculos teóricos predicen un ángulo N=C=S de 175,7°.

Figura 1.3.4. Geometría optimizada de BNCS (B3LYP/6-311++g(d,p)).

1.4. Espectroscopia infrarroja

1.4.1. Isocianato de 1-naftilcarbonilo, (NNCO).

El espectro infrarrojo de isocianato de 1-naftilcarbonilo, en solución de diclorometano, se muestra en la Figura 1.4.1. En la Tabla 1.4.1. se presentan las frecuencias observadas y calculadas (B3LYP/6-311++G(d,p)) y la asignación tentativa de los principales modos de vibración. La numeración utilizada es la descripta en la Figura 1.3.1.

Figura 1.4.1. Espectros de isocianato de 1-naftilcarbonilo **a**) experimental **b**) calculado (B3LYP/6-311++G(d,p)). *Banda correspondiente al CH₂Cl₂.

Las bandas en 3091 y 3054 cm⁻¹ (calc. 3250 y 3192 cm⁻¹) se asignan a los estiramientos C-H de los anillos aromáticos. Las absorciones localizadas en 2245, 1397 y 611 cm⁻¹ (calc. 2287, 1446 y 760 cm⁻¹) se atribuyen a los estiramientos antisimétrico, simétrico y a la deformación angular del –NCO.

El estiramiento característico del grupo carbonilo se asigna a la banda observada en 1698 cm⁻¹ (calc. 1702 cm⁻¹) en concordancia con moléculas anteriormente reportadas.

Tabla 1.4.1. Frecuencias observadas y calculadas (B3LYP/6-311++G(d,p)) y asignación de algunos modos normales de vibración característicos de isocianato de 1-naftilcarbonilo.

Experimental ^[a]	Calculado ^[b]	Asignación ^[c]
3091(md)	3250 (11)	ν C9-H
3054(md)	3192 (32)	v C10-H, C13-H, C14-H; v C6-H, C1-H

2245(mf)	2287 (2949)	v _{as} NCO
1698(d)	1702(597)	ν CO
1574(d)	1603 (118)	v C13-C14; v C4-C3; v C6-C1
1513(md)	1543 (92)	v C13-C14
1397(md)	1446 (449)	v _s NCO
1228(m)	1243 (97)	δ C2-C1-H; C3-C9-H; v C2-C18
1177(d)	1200 (126)	δ C9-C14-H ; C1-C6-H
611(md)	760 (119)	δΝCΟ

^[a] mf, muy fuerte; m, medio; d, débil; md, muy débil. ^[b] Intensidad calculada, entre paréntesis, en Km mol⁻¹. ^[c] v_s , $v_{as} \delta$, representan estiramiento simétrico, antisimétrico y deformación angular, respectivamente.

1.4.2. Isotiocianatos de 4-hidroxibenzoilo y 1-naftilcarbonilo.

Los espectros IR de **NNCS** y **BNCS** en solución, usando CH_2CI_2 como solvente, se muestran en la Figura 1.4.2. Para el compuesto **NNCS**, la banda muy intensa a 1958 cm⁻¹ se asigna al estiramiento antisimétrico del grupo NCS y el estiramiento simétrico NCS a la absorción en 885 cm⁻¹, mientras que la banda localizada en 1691 cm⁻¹ corresponde al estiramiento carbonílico. Estos mismos modos se observan en **BNCS** a 1945 cm⁻¹ (v_{as} (NCS)), 881 cm⁻¹ (v_s (NCS)) y 1698 cm⁻¹ (v (C=O)).

Figura 1.4.2. Espectros experimentales de los isotiocianatos **a)** 1-naftilcarbonilo (**NNCS**), **b)** 4-hidroxibenzoilo (**BNCS**). *Bandas correspondientes a CH₂Cl₂.

1.5. Espectroscopia UV-Visible

Para los espectros electrónicos observados y calculados se utilizó CH₃CN como solvente. La asignación de las bandas de absorción se llevó a cabo con la ayuda de los orbitales moleculares HOMO (Highest Occupied Molecular Orbital) y LUMO (Lowest Unoccupied Molecular Orbital), describiendo solo las transiciones con contribuciones mayores al 20% y fuerza del oscilador (f) mayor a 0,2.

La concentración de las soluciones no pudo determinarse, debido a que los compuestos no se pudieron aislar, dada la inestabilidad que presentan frente a la humedad y el aire (ver sección Síntesis 1.2.).

1.5.1. Isocianato de 1-naftilcarbonilo, (NNCO).

En la Figura 1.5.1. se presenta el espectro electrónico experimental de **NNCO**, el cual muestra tres absorciones en 232, 322 y 404 nm y un hombro en 247 nm. La asignación tentativa se presenta en la Tabla 1.5.1.

Figura 1.5.1. Espectros UV-vis de isocianato de **NNCO**, experimental (trazo continuo en negro) y calculado (trazo discontinuo en rojo, B3LYP/6-311 G(d,p)).

Tabla 1.5.1. Espectros electrónicos observado y calculado de **NNCO** en solución de CH₃CN y su asignación tentativa.

Experimental ^a	Calculado ^b	f ^c	Asignado	%

232	221	0,9686	HOMO-1 →LUMO+1	85
247 ^H	252	0 2054	HOMO → LUMO+2	50
247	205	0,2954	HOMO-3 → LUMO	24
	260	0.2601	HOMO-3 → LUMO	72
322	200	0,2091	HOMO → LUMO+2	24
	263	0,2767	HOMO →LUMO+1	90
404	400	0,3375	HOMO →LUMO	100

^a en nm. ^b Transiciones electrónicas calculadas más relevantes (B3LYP/6-311G(d,p)). ^c Fuerza del oscilador de las transiciones calculadas en unidades atómicas. ^H Hombro.

La banda de 232 nm (calc. 221 nm) se origina por la contribución de transiciones electrónicas entre HOMO-1 y LUMO +1. El hombro a 247 nm (calc. 253 nm) corresponde mayoritariamente a excitaciones HOMO \rightarrow LUMO +2 mientras que la absorción a 322 nm (calc. 260 y 263 nm) a HOMO-3 \rightarrow LUMO y HOMO \rightarrow LUMO +1. La banda a 404 nm se debe a una única transición dominante HOMO \rightarrow LUMO.

De acuerdo con los orbitales moleculares graficados en la Figura 1.5.2., se concluye que HOMO, HOMO - 1 y HOMO - 3 involucran orbitales π de los anillos aromáticos. HOMO cuenta además con contribuciones de orbitales no enlazantes del oxígeno del grupo C=O y nitrógeno y oxígeno del N=C=O, mientras que HOMO - 3 sólo del oxígeno del carbonilo.

Los orbitales LUMO, LUMO + 1 y LUMO + 2 exhiben carácter π^* extendido en ambos anillos del naftaleno. En LUMO y LUMO + 1 contribuyen también orbitales π^* del C=O del grupo isocianato y no enlazantes del oxígeno carbonílico.

Por lo descripto anteriormente, se puede inferir que la banda de 232 nm se debe a transiciones $\pi \rightarrow \pi^*$ en los anillos aromáticos con participación de orbitales π^* del grupo isocianato. Las absorciones de 247, 253, 322, y 400 nm están originadas por excitaciones en los anillos fusionados y hacia los π^* del grupo N=C=O.

Figura 1.5.2. Orbitales moleculares involucrados en las transiciones electrónicas del isocianato de **NNCO**. La escala de energía es sólo cualitativa y no representa la energía real en los orbitales moleculares.

1.5.2. Isotiocianato de 1-naftilcarbonilo, (NNCS).

En la Figura 1.5.3. se presentan los espectros experimental y calculado de **NNCS** y la Tabla 1.5.2. contiene además la asignación tentativa de las bandas observadas. En la Figura 1.5.4. se muestran los principales OM que participan en las transiciones observadas.

Figura 1.5.3. Espectros UV-Vis de **NNCS**, experimental (trazo continuo en negro) y calculado (trazo discontinuo en rojo, B3LYP/6-311 G(d,p)).

Tabla	1.5.2.	Espectros	electrónicos	de NN	S obse	rvado y	y calculado	en s	olución	de	CH ₃ CN
junto	con su	asignación	tentativa.								

Experimental ^a	rimental ^a Calculado ^b		Asignado	%
214 224		1 2720	HOMO-1 → LUMO+1	69
214	224	1,3739	HOMO → LUMO+3	28
	256	0 1727	HOMO -1 \rightarrow LUMO+1	32
250	200	0,1737	HOMO → LUMO+3	51
	263	0,2611	HOMO-4 → LUMO	80
312	300	0,2008	HOMO-3 → LUMO	91
334	424	0,4395	HOMO → LUMO	100

^a en nm. ^b Transiciones electrónicas calculadas más relevantes (B3LYP/6-311G(d,p)). ^c Fuerza del oscilador de las transiciones calculadas en unidades atómicas. ^H Hombro.

Las bandas observadas en 214 nm (HOMO-1 \rightarrow LUMO +1) y 250 nm (HOMO-4 \rightarrow LUMO) fueron atribuidas principalmente a transiciones desde orbitales π a orbitales π^* de ambos anillos y a orbitales no enlazantes del oxígeno y del grupo isotiocianato.

La absorción en 312 nm se genera principalmente por excitaciones HOMO -3 \rightarrow LUMO (calc.: 300 nm) y se asigna a transiciones desde orbitales π de los anillos a orbitales π^* de toda la molécula. La banda en 334 nm se origina únicamente por transiciones HOMO \rightarrow LUMO (calc.:

424 nm) y se puede inferir que se debe a excitaciones entre orbitales no enlazantes del nitrógeno, azufre y el oxígeno a orbitales π^* de toda la molécula.

Figura 1.5.4. Orbitales moleculares involucrados en las transiciones electrónicas de **NNCS** (escala de energía cualitativa).

1.5.3. Isotiocianato de 4-hidroxibenzoilo, (BNCS).

Los espectros UV-vis experimentales y calculados de **BNCS** se presentan en la Figura 1.5.5. y la Tabla 1.5.3. contiene además la asignación tentativa de las bandas observadas. En la Figura 1.5.6. se muestran los principales OM que participan en las transiciones observadas.

Figura 1.5.5. Espectros UV-Vis de **BNCS**, experimental (trazo continuo en negro) y calculado (trazo discontinuo en rojo, B3LYP/6-311 G(d,p)).

Tabla 1.5.3. Espectros electrónicos observado y calculado de **BNCS** en solución de CH₃CN y su asignación tentativa.

Experimental ^a	Calculado ^b	f°	Asignado	%
198	197	0,097	HOMO -5 → LUMO	83
208 ^H	207	0,2966	HOMO-4 → LUMO+1	54
223	224	0 5088	HOMO-2 → LUMO+1	31
225	224	0,5066	HOMO \rightarrow LUMO+3	61
257	240	0,1402	HOMO \rightarrow LUMO+2	84
288	355	0,6487	HOMO → LUMO	100

^a en nm. ^b Transiciones electrónicas calculadas más relevantes (B3LYP/6-311G(d,p)). ^c Fuerza del oscilador de las transiciones calculadas en unidades atómicas. ^H Hombro.

La banda observada en 198 nm (calc.197 nm) se origina principalmente por transiciones HOMO-5 -> LUMO desde orbitales π del anillo a orbitales no enlazantes del oxígeno del carbonilo y π^* del grupo NCS.

El hombro en 208 nm (calc. 207 nm) es generado por contribuciones desde HOMO-4 a LUMO+1 y se atribuye a excitaciones entre orbitales no enlazantes principalmente del oxígeno del carbonilo y del azufre, al π^* del NCS.

Por otro lado, la absorción en 223 nm (calc. 224 nm) se origina mayoritariamente por la contribución HOMO \rightarrow LUMO+3 atribuida a transiciones $\pi \rightarrow \pi^*$ en el anillo y a π^* del grupo NCS. La banda de 257 nm se debe a una excitación dominante HOMO \rightarrow LUMO+2 asignada fundamentalmente a transiciones $\pi \rightarrow \pi^*$ en el anillo aromático.

La banda observada en 288 nm (calc. 355 nm) corresponde a excitaciones HOMO \rightarrow LUMO, entre orbitales π del anillo y orbitales π^* del grupo NCS.

Figura 1.5.6. Orbitales moleculares involucrados en las transiciones electrónicas de **BNCS** (escala de energía cualitativa).

1.6. Resonancia magnética nuclear

Con el objetivo de obtener una muestra del compuesto **NNCS** para análisis de RMN, se realizaron las etapas de aislamiento y purificación del mismo mediante procesos rápidos y procurando disolver inmediatamente el compuesto purificado en el solvente deuterado para estabilizarlo.

<u>Procedimiento</u>: La solución de NNCS obtenida en 1.2.3. se sometió a evaporación del solvente a presión reducida. El aceite obtenido (3 manchas en CCF, hexano/acetato de etilo 7:3) se

disolvió en una pequeña cantidad de acetonitrilo y se sometió a cromatografía en columna (silica gel, 230-400 Mesh, hexano/acetato de etilo 7:3). Se colectaron las fracciones del compuesto que eluye primero. Luego de la eliminación del solvente se obtuvo un aceite viscoso de color amarillo-naranja, el cual fue inmediatamente disuelto en CDCl₃. Una fracción de este aceite se dejó sin solvente por más tiempo, obteniéndose un sólido blanco, el cual fue disuelto también en CDCl₃. Ambas soluciones fueron analizadas por 1H RMN (Figura 1.6.1. y Figura 1.6.2.). La muestra conteniendo el producto sólido resultó la de mayor concentración por lo que también se obtuvo el espectro de ¹³C RMN (Figura 1.6.3.).

Figura 1.6.1. Zona ampliada del espectro de 1H RMN del solido obtenido de **NNCS Sólido NNCS** ¹H RMN (400 MHz, CDCl₃) δ = 9,1 (d, 1H, H11 *J* = 9 Hz); 8,4 (dd, H, *J* = 7 y 1 Hz, 1H); 8,1 (d, *J* = 8 Hz, 1H); 7,9 (d, 1H, *J* = 8 Hz); 7,7 (ddd, *J* = 8, 7, 1 Hz, 1H); 7,6 – 7,6 (m, 1H); 7,6 – 7,5 (m, 1H).

Figura 1.6.2. Zona ampliada del espectro de 1H RMN del aceite obtenido de **NNCS**. **Aceite NNCS** ¹H RMN (400 MHz, CDCl₃) δ = 9,1 (d, 1H, H11, *J* = 8 Hz); 8,3 (d,1H, H6, *J* = 7 Hz); 8,1 (d,1H, H2, *J* = 8 Hz); 7,9 (d, 1H, H10, *J* = 8 Hz); 7,7 (t, 1H, H13, *J* = 8 Hz); 7,6 (t, 1H, H14, *J* = 7 Hz); 7,5 (t, 1H, H1, *J* = 8 Hz).

Figura 1.6.3. Zona ampliada del espectro de 13C RMN del solido obtenido de **NNCS**. **Sólido NNCS** ¹³C RMN (101 MHz, CDCl₃) δ = 161,7 (C=O); 147,9 (C=S); 136,4 (C2); 134,0 (C3); 133,9 (C6); 131,6 (C4); 129,3 (C10); 128,9 (C13); 127,0 (14); 126,1 (5); 125,6 (11); 124,5 (1).

Los espectros de RMN de ¹H del aceite y del sólido blanco evidencian corresponder al mismo producto, es decir **NNCS**, mostrando todas las señales correspondientes al anillo de 1-naftilo con la diferencia que el espectro correspondiente al aceite muestra menor contenido de impurezas y ponen de manifiesto la inestabilidad de estos compuestos cuando se exponen al aire. El espectro de RMN de ¹³C es relevante para caracterizar esta familia de compuestos. Los desplazamientos químicos a 147,9 y 161,7 ppm indican la presencia de C=S y C=O, respectivamente. Valores similares fueron reportados por Dzurilla para este mismo compuesto (δ C=S 147,89 ppm, δ C=O 161,52 ppm).³³ A pesar de que en esta publicación se describe el aislamiento y purificación por cristalización en hexano de **NNCS**, los intentos de aplicar un procedimiento similar para obtener muestras para análisis de RMN de **NNCO** y **BNCS** no dieron resultados. En todos los casos los productos aislados mostraron una fuerte descomposición, probablemente favorecidos por la humedad del ambiente, por lo que el estudio por esta técnica no es favorable.

Se hicieron intentos de aplicar un procedimiento similar para obtener muestras para análisis de RMN de **NNCO** y **BNCS** pero los productos aislados mostraron una fuerte descomposición, por lo que el estudio por esta técnica no fue posible.

1.7. Conclusiones

- Si bien los compuestos estudiados en este capítulo no pudieron ser aislados puros, puede afirmarse que la espectroscopia infrarroja resulta una técnica esencial para detectar la presencia de los isocianatos e isotiocianatos, confirmando la identidad de los mismos. Por otro lado, los cálculos computacionales se corresponden adecuadamente con los datos espectroscópicos obtenidos.
- La geometría optimizada mediante cálculos teóricos para las moléculas NNCO, NNCS y BNCS muestran que los grupos C=O y NCO/NCS están en orientación *syn* y coinciden con el plano de los anillos aromáticos, presentando todas estructuras planaridad.
- Los ángulos NCO/NCS predichos resultan de 173,3° para NNCO (N=C=O) y de 175,7° (N=C=S) para NNCS y BNCS.
- Para realizar la síntesis de los iso(tio)cianatos es de suma importancia llevarla a cabo en condiciones totalmente anhídridas debido a la reactividad e inestabilidad presentada por los mismos frente a las condiciones ambientales.
- La espectroscopia infrarroja es herramienta idónea para la caracterización e identificación de los iso(tio)cianatos, ya que las bandas de absorción características y su intensidad evidencian inequívocamente la presencia de los grupos NCS/NCO.

1.8. Bibliografía

- Mukerjee, A. K. & Ashare, R. Isothiocyanates in the chemistry of heterocycles. *Chem. Rev.* 91, 1–24 (1991).
- Deng, J. Z. & Burgey, C. S. A novel and efficient synthesis of 2,5-substituted 1,2,4-triazol-3-ones. *Tetrahedron Lett.* 46, 7993–7996 (2005).
- 3. Richter, R. & Ulrich, H. Syntheses and preparative appl icat ions of isocyanates. *Chem. Cyanates their Thio Deriv.* **678,** 619 (1977).
- 4. Braunstein, P. & Nobel, D. Transition-metal-mediated reactions of organic isocyanates. *Chem. Rev.* **89**, 1927–1945 (1989).
- Schwetlick, K. & Noack, R. Kinetics and catalysis of consecutive isocyanate reactions. Formation of carbamates, allophanates and isocyanurates. *J. Chem. Soc. Perkin Trans.* 2 1, 395 (1995).
- 6. Blohm, H. W. & Becker, E. I. Allophanates. *Chem. Rev.* **51**, 471–504 (1952).
- Delebecq, E., Pascault, J.-P., Boutevin, B. & Ganachaud, F. On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane. *Chem. Rev.* **113**, 80–118 (2013).
- 8. Singh, A. K., Chawla, R. & Yadav, L. D. S. In situ slow release of isocyanates: synthesis and organocatalytic application of N-acylureas. *Tetrahedron Lett.* **54**, 5099–5102 (2013).
- Liptrot, D., Alcaraz, L. & Roberts, B. New synthesis of aryl and heteroaryl N-acylureas via microwave-assisted palladium-catalysed carbonylation. *Adv. Synth. Catal.* 352, 2183– 2188 (2010).
- Bjerglund, K., Lindhardt, A. T. & Skrydstrup, T. Palladium-catalyzed N -acylation of monosubstituted ureas using near-stoichiometric carbon monoxide. *J. Org. Chem.* 77, 3793–3799 (2012).
- Burow, M., Bergner, A., Gershenzon, J. & Wittstock, U. Glucosinolate hydrolysis in Lepidium sativum—identification of the thiocyanate-forming protein. *Plant Mol. Biol.* 63, 49–61 (2006).
- 12. Zhong, Z. *et al.* Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. *Carbohydr. Res.* **343**, 566–570 (2008).
- Han, T., Cho, J.-H. & Oh, C.-H. Synthesis and biological evaluation of 1βmethylcarbapenems having cyclic thiourea moieties and their related compounds. *Eur. J. Med. Chem.* **41**, 825–832 (2006).
- Mohamed, N. A. & Abd El-Ghany, N. A. Preparation and antimicrobial activity of some carboxymethyl chitosan acyl thiourea derivatives. *Int. J. Biol. Macromol.* 50, 1280–1285 (2012).
- 15. Recio, R., Vengut-Climent, E., Borrego, L. G., Khiar, N. & Fernández, I. in *Studies in Natural Products Chemistry* **53**, 167–242 (2017).

- Kurepina, N., Kreiswirth, B. N. & Mustaev, A. Growth-inhibitory activity of natural and synthetic isothiocyanates against representative human microbial pathogens. *J. Appl. Microbiol.* **115**, 943–954 (2013).
- Singh, R. K. *et al.* Effect of indole ethyl isothiocyanates on proliferation, apoptosis, and MAPK signaling in neuroblastoma cell lines. *Bioorganic Med. Chem. Lett.* **17**, 5846–5852 (2007).
- 18. Sovcíková, A., Mikulásová, M., Horáková, K. & Floch, L. Antibacterial and mutagenic activities of new isothiocyanate derivatives. *Folia Microbiol. (Praha).* **46,** 113–7 (2001).
- 19. Manchali, S., Chidambara Murthy, K. N. & Patil, B. S. Crucial facts about health benefits of popular cruciferous vegetables. *J. Funct. Foods* **4**, 94–106 (2012).
- 20. Herr, I. & Büchler, M. W. Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. *Cancer Treat. Rev.* **36**, 377–383 (2010).
- 21. Fofaria, N. M., Ranjan, A., Kim, S.-H. & Srivastava, S. K. in *Enzymes* **37**, 111–137 (Elsevier Inc., 2015).
- 22. Block, G., Patterson, B. & Subar, A. Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. *Nutr. Cancer* **18**, 1–29 (1992).
- 23. Boggs, D. A. *et al.* Fruit and Vegetable Intake in Relation to Risk of Breast Cancer in the Black Women's Health Study. *Am. J. Epidemiol.* **172**, 1268–1279 (2010).
- HIGDON, J., DELAGE, B., WILLIAMS, D. & DASHWOOD, R. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. *Pharmacol. Res.* 55, 224–236 (2007).
- 25. Tang, L., Paonessa, J. D., Zhang, Y., Ambrosone, C. B. & McCann, S. E. Total isothiocyanate yield from raw cruciferous vegetables commonly consumed in the United States. *J. Funct. Foods* **5**, 1996–2001 (2013).
- 26. Sharma, S. Isothiocyanates in Heterocyclic Synthesis. *J. Sulfur Chem.* **8**, 327–454 (1989).
- 27. Roger Adams, R. L. J. p-NITROBENZOYL CHLORIDE. Org. Synth. 3, 75 (1923).
- 28. Kent, R. E. & McElvain, S. M. ISOBUTYRAMIDE. Org. Synth. 25, 58 (1945).
- 29. Peng, Y. & Song, G. AMIDES BY MICROWAVE-ASSISTED DEHYDRATION OF AMMONIUM SALTS OF CARBOXYLIC ACIDS. *Org. Prep. Proced. Int.* **34**, 95–97 (2002).
- Salmon, R. & Efremov, I. V. Oxalyl Chloride. *Encycl. Reagents Org. Synth.* 1–5 (2008). doi:10.1002/047084289X.ro015.pub2
- 31. Ozaki, S. Recent Advances in Isocyanate Chemistry. Chem. Rev. 72, 457–496 (1972).
- Watanabe, Y., Shiozaki, M. & Kamegai, R. Synthesis and biological activity of. **335**, 283– 289 (2001).
- 33. Dzurilla, M., Kutschy, P., Imrich, J. & Brtoš, S. Hugershoff Reaction of N-1- or N-2-Naphthoyl-N'-monosubstituted and N',N'-Disubstituted Thiourea Derivatives. *Collect.*

Czechoslov. Chem. Commun. 59, 2663–2676 (1994).

34. Tonannavar, J., Prasannakumar, S., Savanur, J. & Yenagi, J. Vibration and DFT analysis of 2-methyl-3-nitrophenyl isocyanate and 4-methyl-2-nitrophenyl isocyanate. *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.* **95**, 120–127 (2012).

CAPÍTULO 2

Tioureas 1-(1-naftilcarbonil)-3-alquil sustituidas

2.1. Introducción

Se sintetizaron tres nuevos derivados de carboniltiourea, en donde la función carbonilo (C=O) está unida directamente a uno de los nitrógenos de la porción tiourea (-NHCSNH-). Dicho de otra manera, se puede interpretar a estos compuestos como formados por la función amida (carboxamida) y tioamida enlazadas en serie, -C(=O)-NH-C(=S)-NH-, que conecta por el extremo del carbonilo un anillo de naftilo y por el NH terminal una cadena alifática. La nomenclatura IUPAC de las tioureas analizadas en este capítulo (código interno entre paréntesis) es: N-butilcarbamotioil naftaleno-1-carboxamida (**NBt**), N-etilcarbamotioil naftaleno-1-carboxamida (**NIs**).

Los compuestos obtenidos se estudiaron por difracción de rayos X (DRX), espectroscopia vibracional (IR y Raman), electrónica (UV-Vis) y de RMN (¹H y ¹³C). El análisis estructural y espectroscópico se complementó con la ayuda de cálculos teóricos (análisis de interacciones conformacionales, topológicas e hiperconjugativas).

Las tioureas son compuestos que tienen la funcionalidad >NC(=S)N< y de acuerdo a la sustitución de los hidrógenos pueden ser mono-, di-, tri- o tetra-sustituidas,¹⁻³ (Esquema 2.1.1.). Cuando en alguna de las posiciones $R^{1/4}$ y $R^{2/3}$ hay átomos de hidrógeno, las tioureas forman fácilmente enlaces de hidrógeno intermoleculares, que se pueden aprovechar en la construcción de estructuras supramoleculares.⁴

Esquema 2.1.1. Función tiourea.

Estos compuestos se encuentran en casi toda las ramas de la industria química, se emplea en colorantes, plásticos, películas fotográficas, textiles, insecticidas, antifúngicidas, conservantes, rodenticidas, productos farmacéuticos, productos agrícolas para el control de insectos entre muchos otros usos.^{1,2,5} Algunos de los principios activos presentes en el mercado conteniendo tiourea, se presentan en el Esquema 2.1.2.

Esquema 2.1.2. Principios activos presentes en productos comerciales conteniendo tiourea.

La *N*-sustitución por grupos 1-acilo/aroilo implica la inclusión de un grupo carbonilo unido al núcleo de tiourea. El primer ejemplo que se conoció de esta clase de moléculas fue la acetiltiourea, CH₃C(O)NHC(S)NH₂, sintetizada por E. Neucki.⁶ Cuando la sustitución también ocurre en el segundo átomo de nitrógeno, se obtienen tioureas 1-(acil/aroil)-3-(monosustituidas) que corresponden a los casos del presente capitulo.

Una de las formas de analizar las diferentes conformaciones en las carbonil tioureas es a través de los valores de los ángulos diedros **OC**—**NC**(S), SC—NR²/R³ y (O)**CN**—**CS**. De acuerdo a la nomenclatura propuesta por Woldu and Dillen,⁷ las cuatro conformaciones más representativas se describen con letras *U*, *M*, *S* y *Z* que simulan la forma que describe la cadena de átomos OCNCS. Las mismas están resaltadas en negritas tal como se muestran en el Esquema 2.1.3.

Esquema 2.1.3. Conformaciones relevantes posibles para las tioureas 1-acil/aril-3-sustituidas.

En particular, las tioureas del tipo 1-(acil/aroil)-3-(monoalquil) sustituidas, con R^4 = H, poseen como una de las conformaciones más estables, la cadena central -C(O)-NH-C(S)-NH-R contenida en un mismo plano, con los enlaces dobles **C=O** y **C=S** en orientación antiperiplanar dando lugar a la forma de **S**. La estabilidad de esta configuración se debe a las interacciones intramoleculares de puentes de hidrogeno C=O HN-R, formando un pseudo anillo de 6 miembros.⁸

La geometría anticlinal o forma de U, es más probable que la S cuando R² y R³ son diferentes de hidrógeno, ya que en este caso no existe la estabilización por formación de puentes de hidrógenos como se mencionó anteriormente para la forma S.^{9,10}

Las carbonil tioureas son moléculas polidentadas con centros nucleófilos ubicados sobre los átomos de S, N, y O. Estos son donores de carga (base de Lewis) disponibles para coordinar con iones metálicos (ácido de Lewis) y por lo tanto tienen la posibilidad de formar complejos con metales de transición, metaloides y del bloque p, tales como: Ni(II), Cu(II / I), Co(III), Zn (II), Re(III), Tc(III), Pb(II), Sb(III), Pd(II) y Bi(III).^{11,12} A los tioureidos se los puede llamar agentes quelantes, ya que cuando se unen a un ion metálico forman un anillo de 5 ó 6 miembros.¹³

En la porción estructural de carbonil tiourea, los efectos específicos causados por la estereoisomería conformacional, el impedimento estérico, la presencia de sitios donores en los grupos sustituyentes o la existencia de interacciones inter e intramoleculares le otorgan una gran versatilidad y reactividad química. Esto genera la posibilidad de nuevas aplicaciones en el campo de la química, la física y la biología como sensores químicos,¹⁴ en la determinación voltamétrica de Pd (II),¹⁵ sensores selectivos de aniones,¹⁶ membranas selectivas de cationes,¹⁷ determinación del potencial ionóforo¹⁴ en electrodos selectivos de iones (ISE),^{9,18} como los sintetizados L1 y L2, para la detección de iones de Cu (II).¹⁹

N-piridil-N-(bifenil-4-carbonil)tiourea (L1)

N-piridil-N-(3,5-dimetoxibenzoil)tiourea (L2)

2.2. Síntesis

En esta sección se presenta la síntesis de los compuestos N-butilcarbamotioil naftaleno-1carboxamida (**NBt**), N-etilcarbamotioil naftaleno-1-carboxamida (**NEt**), y N-isopropilcarbamotioil naftaleno-1-carboxamida (**NIs**). La estrategia de síntesis se describe en el Esquema 2.2.1, donde el isotiocianato de 1-naftilcarbonilo (II) se condensa con alquilaminas para formar las carboniltioureas de interés (III). La obtención de los isotiocianatos del tipo II se detalló en el Capítulo 1, Sección 1.2. Síntesis.^{20–22}

Compuesto	R
NBt	Butilo
NEt	Etilo
NIs	Isopropilo

Esquema 2.2.1. Estrategia general de síntesis de NBt, NEt, NIs.

Procedimiento general: La síntesis de 1-naftilcarbonil isotiocianato (II) fue descripta en el Capítulo 1. En un Erlenmeyer conteniendo una solución de 11,5 mmol de 1-naftilcarbonil isotiocianato (II) en acetonitrilo y mantenido en un baño entre -5 °C y 0°C, se adiciona gota a gota y con agitación constante 11,5 mmol de n-butilamina, etilamina e isopropilamina, para la obtención de **NBt**, **NEt** y **NIs**, respectivamente. Finalizado el agregado, la mezcla se calienta a reflujo por dos horas, luego se agrega hielo y agua destilada formándose un sólido y un aceite color amarillo-naranja. El sólido es filtrado y lavado con agua mientras que el aceite formado es extraído con diclorometano.²³

Para la carbonil tiourea **NBt**, el sólido formado luego de la adición de hielo-agua se purificó por recristalización en etanol. En el caso de **NEt** y **NIs** se formó un aceite viscoso de color amarillonaranja que se extrajo con diclorometano en un embudo de decantación. Finalmente se reunieron los extractos orgánicos, se agregó sulfato de sodio anhidro para eliminar el agua residual, se filtró y eliminó el solvente en un rotavapor, obteniéndose un sólido de color amarillo pálido impregnado de un aceite color naranja. El producto se sometió a cromatografía en columna (hexano/acetato de etilo, 7:3). Las fracciones conteniendo los compuestos puros se dejaron evaporar lenta y controladamente (hexano/acetato de etilo, 7:3) hasta la aparición de solido cristalino abundante. Los cristales se separaron por filtración. Punto de Fusión: **NBt** (etanol): 150 - 152 °C, **NEt** (Hexano/acetato de etilo): 145 - 147 °C, y **NIs** (Hexano/acetato de etilo): 173 - 175 °C.

2.3. Estudio teórico químico cuántico

Para establecer los confórmeros de mínima energía de los compuestos **NBt**, **NEt** y **NIs** se estudiaron las curvas de energía potencial relativa de todos aquellos enlaces en los cuales la molécula tiene libre rotación. Una vez obtenidos los mínimos globales, se siguió el procedimiento descripto en la sección de Métodos computacionales del Capítulo de Métodos Experimentales Técnicas y Equipamiento.

A continuación se analiza cada uno de los compuestos.

2.3.1. N-butilcarbamotioil naftaleno-1-carboxamida, (NBt).

Los ángulos de torsión tenidos en cuenta para hacer el análisis de las curvas de energía potencial se presentan en la Figura 2.3.1 y las curvas resultantes de las torsiones en los enlaces con libre rotación en **NBt** se muestran en la Figura 2.3.2.

Figura 2.3.1. Enlaces seleccionados y designación de los ángulos de torsión para NBt.

Figura 2.3.2. Curvas de energía potencial en función de la variación de los ángulos diedros τ_1 . τ_8 para **NBt**, calculados con el nivel de teoría B3LYP/6-31g(d).

De cada curva de energía potencial se consideraron los puntos mínimos locales con energías menores de 2,0 kcal/mol por encima del mínimo global. Estos mínimos locales de cada ángulo diedro se combinaron entre sí, generándose 8 posibles confórmeros, los que fueron optimizados con el nivel de teoría B3LYP/6-311++g(d,p), como se muestra en la Tabla 2.3.1.

De las 8 conformaciones optimizadas se analizaron solo 4 de ellas: **NBt2**, **NBt4**, **NBt6** y **NBt8**, teniendo en cuenta que las 3 últimas tienen una diferencia de energía de < 2 kcal/mol respecto al confórmero de menor energía, **NBt2**.

Estos cuatro confórmeros adoptan la forma **S** en la porción -C(O)-NH-C(S)-NH- de acuerdo a la nomenclatura propuesta por Woldu and Dillen⁷ (Esquema 2.1.3.).

Los confórmeros **NBt2** y **NBt8** difieren entre sí solo en la orientación del grupo naftilo respecto del plano de la porción carbonil tiourea (el anillo aromático se ubica 41° por encima y por debajo de este plano) y son muy similares en energía. Algo semejante ocurre entre **NBt4** y **NBt6**, donde el naftilo esta 136° por encima y por debajo del plano mencionado; por lo que se decidió tomar a estos pares de confórmeros como equivalentes entre sí y analizar **NBt2** y **NBt6** como confórmeros de mínima energía.

	Confórmero	¹ E (kcal/mol)	²∆E (kcal/mol)
NBt1		-755354,36	14,36
NBt2		-755368,72	0,00
NBt3		-755354,12	14,60
NBt4		-755367,93	0,80
NBt5		-755353,68	15,04
NBt6		-755368,00	0,72

Tabla 2.3.1. Confórmeros optimizados y energías calculadas (B3LYP/6-311++g(d,p))generados por combinación de los mínimos de las curvas de energía potencial para NBt.

¹Energía de cada confórmero. ²Es la diferencia de energía relativa al confórmero más estable.

En síntesis, las optimizaciones de los confórmeros generados mediante la combinación de los mínimos de las curvas de energía potencial predicen la existencia de dos confórmeros designados como **NBt2** y **NBt6**, con una relación de abundancia poblacional de 72% para **NBt2** y 28 % para **NBt6**, aplicando la ecuación de Boltzmann.

Se observa que la porción -C(O)NHC(S)NH- se encuentra en un mismo plano en ambos confórmeros, con la cadena interatómica que une el oxígeno y el azufre adoptando la forma de S, lo que favorece la formación de un puente de hidrógeno intramolecular C=O····H-N. La distancia de enlace N2-H2A····O1 es de 1,880 Å y 1,877 Å para los confórmeros **NBt2** y **NBt6**, respectivamente.

La principal diferencia entre los confórmeros se presenta en el ángulo de torsión (τ 1) del enlace que une el anillo de naftilo con la función carboxamida, C10C1-C=O, siendo de 41,29° en el confórmero de menor energía **NBt2** y de -135,97° en **NBt6**.

El análisis de los Orbitales Naturales de Enlace (NBO) es utilizado para interpretar la deslocalización electrónica desde un orbital ocupado (donor) a un orbital desocupado (aceptor). Para analizar con mayor detalle las diferencias entre ambas conformaciones se hicieron cálculos de NBO con el nivel de teoría B3LYP/6-311++g(d,p), que permite analizar cuantitativamente el rol que juegan las interacciones que estabilizan las conformaciones. Las interacciones más relevantes se detallan en la Tabla 2.3.2.

En ambos confórmeros, la mayor contribución observada corresponde a la deslocalización LPN1 $\rightarrow \pi^*C11-O$ con una energía de 49,42 y 53,01 kcal/mol para **NBt2** y **NBt6**, respectivamente. La existencia de la interacción LPO $\rightarrow \sigma^*N2-H2A$ refuerza el enlace de puente de hidrogeno a través de un pseudo anillo de 6 miembros y resulta prácticamente equivalente para ambas formas.

Deslocalización NBO Donante (i) – Aceptor (j)	NBt2 kcal/mol	NBt6 kcal/mol
LP O $\rightarrow \sigma^*$ C1 – C11	19,02	19,20
LP O → σ* C11– N1	25,56	25,52
LP O → σ* N2 – H2A	10,27	10,45
LP N1 → σ* C11 – O	1,19	0,72
LP N1 $\rightarrow \pi^*$ C11 – O	49,42	53,01
LP N2 \rightarrow σ^* C13 – H13A	1,59	1,57
LP N2 \rightarrow σ^* C13 – H13B	1,62	1,66
LP N2 \rightarrow σ^* C13 – C14	6,02	6,02
LP N2 \rightarrow σ^* C14 – C15	0,75	0,75
LP S $\rightarrow \sigma^*$ N1 – C12	14,24	14,25
LPS $\rightarrow \sigma^*$ C12 – N2	15,03	15,06

Tabla 2.3.2. Análisis de NBO de las conformaciones NBt2 y NBt6.

2.3.2. N-etilcarbamotioil naftaleno-1-carboxamida, (NEt).

El análisis de las curvas de energía potencial se hizo a partir de los ángulos presentados en la Figura 2.3.3. y las curvas resultantes de las torsiones para los enlaces con libre rotación de **NEt** se muestran en la Figura 2.3.4.

Figura 2.3.3. Enlaces seleccionados y designación de los ángulos de torsión para NEt.

Las estructuras de los posibles confórmeros se generaron a partir de la combinación de los mínimos locales de las curvas de energía potencial, con energías \leq a 2 kcal/mol con respecto al mínimo global de cada una de ellas. Una vez diseñadas las estructuras de los posibles confórmeros, se optimizaron con el nivel de teoría B3LYP/6-311++g(d,p).

A partir del análisis de las curvas se postularon 8 posibles confórmeros. Los resultados de la geometría molecular luego de la optimización (B3LYP/6-311++g(d,p)) se muestran en la Tabla 2.3.3.

Tabla 2.3.3. Confórmeros optimizados y energías calculadas (B3LYP/6-311++g(d,p)) generados por combinación de los mínimos de las curvas de energía potencial para **NEt**.

Confórmeros	¹ E (kcal/mol)	²∆E (kcal/mol)
-------------	---------------------------	----------------

NEt1		-706001,9215	14,0
NEt2		-706015,9206	0,0
NEt3		-706006,6987	9,2
NEt4		-706015,7578	0,2
NEt5		-706006,1557	9,8
NEt6		-706015,1631	0,8
NEt7	ن <u>مناجع</u> المحمد الم المحمد المحمد ا	-706006,1557	9,8,
NEt8		-706015,0147	0,9

¹Energía de cada confórmero. ²Es la diferencia de energía relativa al confórmero más estable.

De los 8 confórmeros calculados, 4 de ellos: **NEt2**, **NEt4**, **NEt6** y **NEt8** están en un rango de energía menor a 2 kcal/mol, siendo **NEt2** el de menor energía. La relación de abundancia poblacional determinada por la ecuación de Boltzmann resultó de 44%, 34%, 12% y 10% para **NEt2**, **NEt4**, **NEt6** y **NEt8**, respectivamente.

Tabla 2.3.4. Ángulos de torsión (°) y distancias interatómicas (Å) para las conformaciones más estables de **NEt**.

Parámetro	NEt2	NEt4	NEt6	NEt8
φC14C1-C2O1	-41,0	-41,2	136,3	135,8
φC2N1-C3N2	0,9	1,5	1,6	1,5
φO1C3-N2C4	-4,1	-4,1	-4,2	-3,6
∮SC3-N2C4	0,2	1,5	0,3	1,3
rN2-H2…O1C2	1,888	1,877	1,886	1,875
rN2…O1	2,700	2,698	2,699	2,697

De acuerdo a la Tabla 2.3.4., la desviación de la porción -C(O)NHC(S)NH- respecto del plano del anillo aromático se puede analizar a través del ángulo de torsión C14C1-C2O1 los cuales son de -41,0°, -41,2°, 136,3° y 135,8° para **NEt2**, **NEt4**, **NEt6** y **NEt8** respectivamente.

En los cuatro confórmeros mostrados en la Tabla 2.3.3., la porción -C(O)NHC(S)NH- se encuentra en un mismo plano, siendo la disposición entre el C=O y el C=S *antiperiplanar*, con un ángulo de pseudo-torsión S-C···C-O de 178, 178, 179 y 179° para **NEt2**, **NEt4**, **NEt6** y **NEt8** respectivamente. Esta disposición sumado a la elevada coplanaridad favorece la formación de puentes de hidrógeno O···H intramoleculares. Las distancias calculadas de enlace de puente de hidrógeno H···O intramolecular están comprendidas entre 1,888 y 1,875 Å, mientras que la distancia entre O y N es de 2,700 y 2,697 Å, evidenciando una interacción fuerte.

Los cálculos de NBO se realizaron con el nivel de teoría B3LYP/6-311++g(d,p) y los datos relevantes se detallan en la Tabla 2.3.5. Los confórmeros **NEt2** y **NEt4** se tomaron como los más representativos para el análisis por NBO, **NEt2** por ser el de mínima energía y **NEt4** porque es el que reproduce la estructura cristalina descripta más adelante (sección 2.7.2.). Los mismos se ven estabilizados principalmente por las interacciones LPO $\rightarrow \sigma^*$ C1–C2, LPO $\rightarrow \sigma^*$ C2–N1 y LPN1 $\rightarrow \pi^*$ C2–O. De manera similar a lo observado para **NBt**, la formación del pseudo anillo mediante enlace de hidrógeno intramolecular se ve favorecida por la interacción LPO $\rightarrow \sigma^*$ N2–H2.

Deslocalización NBO	NEt2	NEt4
Donante (i) – Aceptor (j)	kcal/mol	kcal/mol
LP O $\rightarrow \sigma^*$ C1 – C2	19,01	23,57
LP O $\rightarrow \sigma^*$ C2 – N1	25,48	38,67
LP O $\rightarrow \sigma^*$ N2 – H2	10,05	9,23
LP N1 $\rightarrow \sigma^*$ C2 – O	1,18	1,99
LP N1 $\rightarrow \pi^*$ C2 – O	50,26	50,46
LP N2 $\rightarrow \pi^*$ C4 – H6	4,8	
LP N2 $\rightarrow \sigma^*$ C4 – H4B	5,24	
LPS $\rightarrow \sigma^* N1 - C3$	14,68	
LPS $\rightarrow \sigma^*$ C3 – N2	14,28	15,18

Tabla 2.3.5. Análisis de NBO de las conformaciones NEt2 y NEt4.

2.3.3. N-isopropilcarbamotioil naftaleno-1-carboxamida, (NIs).

Los ángulos de torsión considerados para hacer el análisis de las curvas de energía potencial se presentan en la Figura 2.3.5. y las curvas resultantes de las torsiones para los enlaces con

libre rotación de NIs se muestran en la Figura 2.3.6.

Figura 2.3.5. Enlaces seleccionados y designación de los ángulos de torsión para NIs.

En la curva de energía potencial en torno a τ 1 se observan 4 mínimos (Figura 2.3.6.) a 40°, 140°, 220° y 320°, los mínimos a 40°/320° y 140°/220° son confórmeros que difieren únicamente en la disposición del anillo aromático por encima (40° y 220°) o por debajo (140° y 320°) del plano de la función carbonil tiourea. Dado que las diferencias estructurales son poco significativas, se tomaron en cuenta para el análisis solo los mínimos a 40° y 140°. Para τ 2 se evidencian dos mínimos a 0° y 360° que son representaciones de la misma estructura, considerando solamente el ángulo de 0°. Se combinaron los mínimos de todos los τ generándose de esta forma dos posibles confórmeros ($\Delta E \le 2$ kcal/mol): **NIs1** y **NIs2**, los que se optimizaron con el nivel de teoría B3LYP3-11++g(d,p) (Figura 2.3.7.).

La relación de abundancia determinada por la ecuación de Boltzmann resultó de 78% para **NIs1** y 22% para **NIs2**, y **NIs1** es el de menor energía.

Las interacciones intermoleculares formadas por puentes de hidrogeno, O···H, están favorecidas en ambos confórmeros debido a la planaridad de la porción -C(O)NHC(S)NH. Para el confórmero de menor energía, **NIs1**, se observa que esta porción de la molécula presenta una desviación de 41° con respecto al plano de los anillos, mientras que para **NIs2** el ángulo es de 136°.

Figura 2.3.7. Confórmeros optimizados (B3LYP/6-311++g(d,p)) generados por combinación de los mínimos de las curvas de energía potencial para **NIs**.

Los cálculos de NBO se realizaron con el nivel de teoría B3LYP/6-311++g(d,p) y las principales contribuciones estabilizantes se presentan en la Tabla 2.3.6.

Las contribuciones LPO $\rightarrow \sigma^*$ C1–C11, LPN2 $\rightarrow \sigma^*$ C11–O y LPS $\rightarrow \sigma^*$ C11–O presentes en el confórmero **NIs1** ratifica la mayor estabilidad del confórmero. La contribución LPO $\rightarrow \sigma^*$ N2–H2 en **NIs1** es tres veces mayor que en el confórmero **NIs2**, sugiriendo así una mayor estabilidad en el pseudo anillo formado en esta porción de la molécula.

Deslocalización NBO Donante (i) – Aceptor (j)	NIs1 kcal/mol	NIs2 kcal/mol
LP 0 $\rightarrow \sigma^*$ C11 – 0	17,23	20,02
LP O $\rightarrow \sigma^*$ C11 – N1	24,97	24,30
LP O $\rightarrow \sigma^*$ N2 – H2	33,23	10,66
LP O $\rightarrow \sigma^*$ C1 – C11	17,19	
LP N1 $\rightarrow \sigma^*$ C11 – O	6,36	0,77
LP N1 $\rightarrow \pi^*$ C11 – O	47,77	49,13
LP N2 $\rightarrow \sigma^*$ C11 – O	0,92	
LP N2 $\rightarrow \sigma^*$ C13 – C15	5,67	5,54
LP S $\rightarrow \sigma^*$ C11 – O	68,11	
LP S → σ* N1 – C12	14,05	14,05
LP S \rightarrow σ^* C12 – N2	10,98	15,41

 Tabla 2.3.6.
 Análisis de NBO de las conformaciones NIs1 y NIs2.

2.4. Espectroscopia vibracional

Los espectros IR y Raman de **NBt**, **NEt** y **NIs** se muestran en las Figuras 2.4.1. - 2.4.3., respectivamente. En las Tablas 2.4.1. - 2.4.3. se detallan las principales frecuencias observadas y calculadas para los confórmeros de mínima energía de cada uno de los compuestos. Las tablas completas de las asignaciones de IR y Raman se encuentran en el Anexo 2.

2.4.1. N-butilcarbamotioil naftaleno-1-carboxamida, (NBt).

Las bandas de estiramiento N-H se observan en 3327 y 3227 cm⁻¹. La primera se atribuyó a la vibración de N1-H1 (N unido al átomo de carbono carbonílico) y la segunda al estiramiento N2-H2. El N2-H2A (donor) forma enlaces de hidrógeno intramoleculares con el átomo de oxígeno (aceptor), observándose el desplazamiento de la banda a frecuencias menores y el aumento de su intensidad (calc. 3612 y 3452 cm⁻¹ para **NBta** y 3607 y 3440 cm⁻¹ para **NBtb**).

El estiramiento C=O se asignó a la banda en 1669 cm⁻¹ en IR y 1671 cm⁻¹ en Raman, siendo esta última la banda más intensa del espectro (calc. 1709 cm⁻¹ (**NBta**) y 1714 cm⁻¹ (**NBtb**)). Las absorciones localizadas a 1537 y 1118 cm⁻¹ en IR y a 1576 y 1115 cm⁻¹ en Raman se atribuyeron a los estiramientos C-N (butilo y carbonilo), respectivamente. La diferencia entre las frecuencias observadas para ambos enlaces C-N se debe al carácter parcial doble del enlace C-N con el grupo butilo.

Las bandas en 734 (IR) y 731 (Raman) cm⁻¹ se asignaron al estiramiento C-S. La localización de esta banda sugiere el carácter simple de este enlace (calc. 744, **NBta** y 746, **NBtb** cm⁻¹).

Figura 2.4.1. Espectros IR (superior) y Raman (inferior) experimentales de N-butilcarbamotioil naftaleno-1-carboxamida.

Tabla 2.4.1. Frecuencias experimentales, calculadas y asignación tentativa de los modos de vibración más relevantes para **NBta** y **NBtb**.

Experimental ^a B3LYP/6-311++g(d,p) ^c	Asignación ^d
--	-------------------------

IR⁵	Raman [♭]	NBta	NBtb	
3327 md		3612 (36)	3607(38)	v(N1-H1)
3227 m	3184(1)	3452 (277)	3440(260)	v(N2-H2A)
1669 m	1671 (100)	1709(194)	1714(263)	v(C=O)
1537 f	1576 (59)	1594(348)	1597(401)	ν(C-N2) _{But}
	1568 ^н (40)	1542(580)	1548(50)	δ(N2-H2A) + δ(N1-H1)
1118 md	1115 (5)	1125 (24)	1126(39)	ν(C-N1) _{C=O}
734 md	731 (8)	744(11)	746(13)	v(C-S)

^a en cm⁻¹. ^b f, fuerte; m, medio; d, débil; md, muy débil; H, Hombro. ^c Frecuencias IR calculadas e intensidades entre paréntesis (km mol⁻¹). ^d v y δ representa estiramientos y deformaciones, respectivamente.

2.4.2. N-etilcarbamotioil naftaleno-1-carboxamida, (NEt).

Los espectros de IR y Raman en fase sólida de **NEt** se presentan en la Figura 2.4.2. y en la Tabla 2.4.2. las frecuencias experimentales y calculadas más representativas junto con la asignación tentativa para el confórmero de mínima energía. La tabla con la asignación completa se encuentra en el Anexo 2.

Figura 2.4.2. Espectros IR (superior) y Raman (inferior) experimentales de N-etilcarbamotioil naftaleno-1-carboxamida.

La absorción localizada en 3219 cm⁻¹ en el espectro IR corresponde al estiramiento N2-H2 y el ensanchamiento observado puede deberse a la interacción intramolecular con el oxígeno carbonílico, N2H2···O=C. Los estiramientos C3-N2 y C3-N1 fueron asignados a las bandas en

1562 y 1152 cm⁻¹ en el espectro IR (calc. 1581 y 1132 cm⁻¹), respectivamente, mientras que en Raman estos modos no fueron detectados.

El estiramiento del grupo carbonilo se asoció con la banda muy intensa en 1671 cm⁻¹ (IR) y con la dispersión a 1676 cm⁻¹ en Raman, (calc. 1709 cm⁻¹). La disminución en el número de ondas, en comparación con la absorción típica del C=O, se debe a la resonancia conjugada con el anillo naftilo y a la formación de puentes de hidrogeno con el enlace N2H2.^{24,25}

La banda IR de mediana intensidad observada en 733 cm⁻¹ (calc. 748 cm⁻¹) fue asignada al estiramiento C-S.

 Tabla 2.4.2. Frecuencias experimentales, calculadas y asignación tentativa de los modos de vibración más relevantes para NEt2.

Experi IR ^b	mental ^a Raman ^b	B3LYP/6-311++G(d,p) ^c	Asignación ^d	
3219(mf)	3248(<1)	3451(244)	ν(N2-H)	
3043(m)	3195(<1)	3188(21)	v(C-H) aromático	
2975(d)	2976(8)	3030(18)	v(C-H) alifático	
1671(mf)	1676(37)	1709(197)	v(C=O)	
1562(mf)	1576(66)	1581(352)	v(C3-N2)	
	1532(<1)	1546(184)	δ(N1-H) + δ(N2-H)	
1527(mf)		1541(630)	δ(N-H)	
1152(f)	1152(8)	1132(10)	v(C3-N1)	
733(m)	730(7)	748(24)	v(C3-S)	

^a en cm⁻¹. ^b mf, muy fuerte; f, fuerte; m, medio; d, débil. ^c Frecuencias IR calculadas e intensidades entre paréntesis (km mol⁻¹). ^d v y δ representa estiramientos y deformaciones, respectivamente.

2.4.3. N-isopropilcarbamotioil naftaleno-1-carboxamida, (NIs).

Los espectros de IR y Raman en fase sólida de **NIs** se presentan en la Figura 2.4.3. y las frecuencias experimentales y calculadas más representativas con la respectiva asignación tentativa del confórmero de mínima energía en la Tabla 2.4.3. La tabla con la asignación completa se encuentra en el Anexo 2.

Figura 2.4.3. Espectros IR (superior) y Raman (inferior) experimentales de N-isopropilcarbamotioil naftaleno-1-carboxamida.

La banda IR en 3193 cm⁻¹ (calc. 3439 cm⁻¹) se atribuyó al estiramiento N2-H2. Los estiramientos C12-N2 y C12-N1 fueron asignados a las absorciones en 1551 y 1127 cm⁻¹ en el espectro IR (calc. 1581 y 1121 cm⁻¹), respectivamente, las cuales no fueron observadas en el espectro Raman. La diferencia entre las frecuencias sugiere que la distancia de enlace en C12-N2 es menor que en la C12-N1, debido al mayor carácter doble del enlace C12-N2.

El estiramiento del grupo (C=O) se asoció con la banda muy intensa en 1673 cm⁻¹ (IR) y con la dispersión Raman de intensidad media en 1673 cm⁻¹ (calc. 1709 cm⁻¹).

Tabla 2.4.3. Frecuencias ex	xperimentales,	calculadas y	asignación	tentativa	de los	modos	de
vibración más relevantes par	ra NIs1.						

Experi	mental ^a	$-\mathbf{R}_{21}\mathbf{V}_{\mathbf{D}}\mathbf{C}_{244++\alpha}(\mathbf{d}_{\mathbf{D}})^{\mathbf{C}}$	Acianceián ^d	
IR⁵	Raman ^b	- D3L1P/6-311++g(u,p)	Asignation	
3193(f)	3191(md)	3439(247)	ν(N2-H2)	
3043(d)	3064(m)	3188(21)	v(C-H) aromático	
2978(m)		3099(41)	$v_{as}(CH_3)_2$	
1673(mf)	1673(mf)	1709(194)	v(C=O)	
1551(mf)		1581(382)	v(C12- N2)	
1522(mf)		1546(194)	v(CC) aromático	
1552(111)		1541(615)	δ(N1-H1)	
1127(m)		1121(45)	v(C12-N1)	
720(md)	729(md)	743(33)	v(C-S)	

^a en cm⁻¹. ^b mf, muy fuerte; f, fuerte; m, medio; d, débil; md, muy débil. ^c Frecuencias IR calculadas e intensidades entre paréntesis (km mol⁻¹). ^d v y δ representa estiramientos y deformaciones, respectivamente.
2.5. Espectroscopia UV-visible

Los espectros electrónicos experimentales y calculados y los orbitales moleculares de **NBt**, **NEt** y **NIs** se muestran en las Figuras 2.5.1. - 2.5.6., respectivamente. En las Tablas 2.5.1. - 2.5.3. se asignaron las principales absorciones en comparación con los espectros calculados (B3LYP/6-311G(d,p)), considerando implícitamente el efecto del solvente (acetonitrilo en todos los casos). Para la asignación se tomaron en cuenta sólo las contribuciones mayores al 30% y f > 0,05 (f= fuerza del oscilador).

2.5.1. N-butilcarbamotioil naftaleno-1-carboxamida, (NBt).

En la Figura 2.5.1 se presentan los espectros experimental y calculado de NBt.

Figura 2.5.1. Espectros UV-Vis de **NBt** a) experimental (2,96x10⁻⁴ M); b) calculado (B3LYP/6-311G(d,p)).

En la Figura 2.5.2. se representan los principales orbitales moleculares involucrados en las transiciones electrónicas de **NBt**. El hombro observado a 204 nm se debe a transiciones HOMO \rightarrow LUMO+4 (calc. 226 nm) originado por excitaciones desde orbitales no ligantes del átomo de azufre a orbitales π^* de los anillos aromáticos y del carbonilo. La banda a 218 nm corresponde a excitaciones HOMO-5 \rightarrow LUMO, desde los orbitales no enlazantes del átomo de azufre a los orbitales π^* de los anillos aromáticos. La absorción localizada a 236 nm (calc. 259 nm) se atribuye principalmente a excitaciones monoelectrónicas HOMO-2 \rightarrow LUMO+1. La banda se genera básicamente por la contribución de orbitales π del naftilo, no ligantes de los

68

átomos de oxígeno, nitrógeno y azufre a orbitales π^* de los anillos aromáticos. La banda centrada a 284 nm está dominada por transiciones de HOMO-1 a LUMO (92%) correspondientes a excitaciones $\pi \to \pi^*$ dentro del esqueleto aromático.

Tabla 2.5.1. Espectros electrónicos experimental y calculado de **NBt** en solución de acetonitrilo y asignación tentativa de las transiciones más relevantes.

Experimental ^a	calculado ^b	fc	Asignación	%
204 ^H	226	0,0612	HOMO \rightarrow LUMO+4	68
218	238	0,2927	HOMO-5 \rightarrow LUMO	87
236	259	0,1434	HOMO-2 \rightarrow LUMO+1	100
284	327	0,212	HOMO-1 \rightarrow LUMO	92

^a en nm. ^b Transiciones electrónicas calculadas (B3LYP/6-311G(d,p). ^c Fuerza del oscilador de las transiciones calculadas en unidades atómicas. ^H Hombro.

2.5.2. N-etilcarbamotioil naftaleno-1-carboxamida, (NEt).

En la Figura 2.5.3. se presentan los espectros electrónicos observado y calculado de **NEt** y en la Tabla 2.5.2. se describe la asignación de los mismos. La representación de los orbitales moleculares involucrados en las transiciones electrónicas se muestra en la Figura 2.5.4.

Figure 2.5.3. Espectros UV-Vis de **NEt** a) experimental (2,13x10⁻⁵ M); b) calculado (B3LYP/6-311G(d,p)).

La absorción localizada en 205 nm (calc. 238 nm) se atribuye principalmente a excitaciones HOMO-5 \rightarrow LUMO con una contribución de 88%. La banda en 223 nm (calc. 247 nm) se correlaciona con la transición monoelectrónica HOMO-2 \rightarrow LUMO+1 y la absorción en 272 nm (calc. 324 nm) está asociada a las transiciones electrónicas HOMO-1 \rightarrow LUMO y HOMO \rightarrow LUMO.

HOMO, HOMO-1 y HOMO-2 presentan la contribución de orbitales no ligantes del átomo de azufre mientras que en HOMO y HOMO-1 aportan también los orbitales π del naftilo. A HOMO-4 y HOMO-5 contribuyen orbitales no ligantes de los átomos de nitrógeno y de oxígeno. LUMO y LUMO+1 muestran el aporte de orbitales π^* del naftilo, mientras que LUMO+1 presenta además orbitales π^* de la porción tiourea.

Tabla 2.5.2. Espectros electrónicos experimental y calculado de **NEt** en solución de acetonitrilo y asignación tentativa de las transiciones más relevante.

Experimental ^a	Calculado ^b	f°	Asignado	%
	216	0,2842	HOMO-4 \rightarrow LUMO+1	35
205	238	0,2326	$HOMO-5 \rightarrow LUMO$	88
223	247	0,2259	$\text{HOMO-2} \rightarrow \text{LUMO+1}$	100
070	224	0 2000	$\text{HOMO-1} \rightarrow \text{LUMO}$	55
212	324	0,2099	$HOMO\toLUMO$	45

^a en nm. ^b Transiciones electrónicas calculadas (B3LYP/6-311G(d,p). ^c Fuerza del oscilador de las transiciones calculadas en unidades atómicas.

Figura 2.5.4. Orbitales moleculares involucrados en las transiciones electrónicas de **NEt**. La escala de energía es solo cualitativa.

2.5.3. N-isopropilcarbamotioil naftaleno-1-carboxamida, (NIs).

Figura 2.5.5. Espectros UV-Vis de **NIs**. a) experimental (2,36x10⁻⁶ M) b) calculado (B3LYP/6-311 G(d,p)).

La banda en 206 nm (calc. 238 nm) corresponde principalmente a transiciones HOMO-5 \rightarrow LUMO (92%) desde orbitales no enlazantes del nitrógeno y del oxígeno hacia los orbitales π^* de los anillos aromáticos. La absorción en 223 nm (calc. 246 y 251 nm) se origina esencialmente por excitaciones HOMO-3 \rightarrow LUMO+1 y HOMO-2 \rightarrow LUMO+1 desde orbitales π del naftilo y no enlazantes de los átomos de nitrógeno, oxígeno y azufre hacia los orbitales π^* de los anillos aromáticos y de la tiourea. La banda localizada en 273 nm (calc. 306 y 324 nm) se genera fundamentalmente por transiciones HOMO-2 \rightarrow LUMO y HOMO-1 \rightarrow LUMO desde orbitales π de los anillos condensados y no enlazantes de la tiourea hacia los orbitales π^* del naftilo.

Tabla 2.3.3. Espectios electronicos experimentar y calculado de Mis en solución de aceton	
y asignación tentativa de las transiciones más relevantes.	

atránicas experimental y calculado de NIC en calución de acotonitrilo

Experimental ^a	Calculado ^b	fc	Asignado	%
206	217	0,2339	HOMO-4 \rightarrow LUMO+1	45
200	238	0,2603	HOMO-5 \rightarrow LUMO	92
			$HOMO-3 \rightarrow LUMO$	21
222	246	0,1423	HOMO-3 \rightarrow LUMO+1	42
223			$\text{HOMO} \rightarrow \text{LUMO+2}$	29
	251	0,1699	HOMO-2 \rightarrow LUMO+1	100

	306	0,0472	$HOMO-2 \to LUMO$	100
273	204	0.0100	HOMO-1 \rightarrow LUMO	75
	324	0,2122	$HOMO \rightarrow LUMO$	25

^a en nm. ^b Transiciones electrónicas calculadas (B3LYP/6-311G(d,p)). ^c La fuerza del oscilador de las transiciones calculadas en unidades atómicas.

Figura 2.5.6. Orbitales moleculares involucrados en las transiciones electrónicas de **NIs**. La escala de energía es sólo cualitativa.

2.6. Espectroscopia de Resonancia Magnética Nuclear (RMN)

Se midieron los espectros de RMN ¹H y ¹³C de los compuestos **NBt**, **NEt** y **NIs**, los cuales se muestran en las Figura 2.6.1. – 2.6.6. En esta sección se describe la asignación de las señales y se discuten someramente los resultados obtenidos. Para la asignación de las señales correspondiente al anillo aromático se empleó la numeración mostrada en las Figuras 2.6.1. – 2.6.3. La multiplicidad de las señales se denota como: s, d, dd, dt, br d, t, q, octupl y m, para describir a: singlete, doblete, doble doblete, doble triplete, doblete ancho, triplete, quintete, octuplete y multiplete, respectivamente. Todos los compuestos de este capítulo se midieron en solución de deuterocloroformo (CDCl₃).

2.6.1. N-butilcarbamotioil naftaleno-1-carboxamida, (NBt).

Figura 2.6.1. Espectros de RMN de ¹H del compuesto NBt.

¹**H RMN** (300 MHz, CDCl₃) δ = 10,74 (br,s, 1H, Bu-NH); 8,99 (s, 1H, O=C-NH); 8,31 (dd, 1H, H9, *J* = 8 y 1 Hz); 8,02 (d, 1H, H2, *J* = 8 Hz); 7,91 (dd, 1H, H4, *J* = 7 y 2 Hz); 7,74 (dd, 1H, H6, *J* = 7 y 1 Hz); 7,60 (m, 2H, H8/H7); 7,50 (dd, 1H, H3, *J* = 8 y 7 Hz); 3,74 (dt, 2H, N-CH₂, *J* = 7 y 5 Hz); 1,75 (q, 2H, NCH₂CH₂, *J* = 7 Hz); 1,49 (sext, 2H, CH₃CH₂, *J* = 7 Hz); 1,01 ppm (t, 3H, CH₃, *J* = 7 Hz) ppm.

Figura 2.6.2. Espectros de RMN de ¹³C del compuesto NBt.

¹³C RMN (63 MHz, CDCl₃) δ=179,9 (C=S); 169,1 (C=O); 133,9 (C1); 133,0 (C2); 131,0 (C10); 129,9 (C4); 128,9 (C5); 128,3 (C6); 127,1 (C7); 126,3 (C3); 124,7 (C9); 124,6 (C8); 45,8 (N-CH₂); 30,4 (NCH₂<u>C</u>H₂); 20,3 (CH₃<u>C</u>H₂); 13,9 ppm (CH₃) ppm.

2.6.2. N-etilcarbamotioil naftaleno-1-carboxamida, (NEt).

Figura 2.6.3. Espectros de RMN de ¹H de **NEt**.

¹**H RMN** (600 MHz, CDCl₃) δ = 10,69 (s, 1H, Et-NH); 9,06 (s, 1H, O=C-NH); 8,29 (d,1H, H13, J = 8 Hz); 8,00 (d, 1H, H6, J = 8 Hz); 7,89 (d, 1H, H8, J = 8 Hz); 7,72 (d, 1H, H10, J = 7 Hz); 7,60 (t, 1H, H12, J = 7 Hz); 7,56 (t, 1H, H11, J = 7 Hz); 7,47 (t, 1H, H7, J = 8 Hz); 3,83 – 3,73 (m, 2H, CH₂); 1,37 (t, 3H, CH₃, J = 7 Hz) ppm.

Figura 2.6.4. Espectros de RMN de ¹³C del compuesto NEt.

¹³C RMN (151 MHz, CDCl₃) δ=179,8 (C=S); 169,1 (C=O); 133,9 (C1); 132,9 (C6), 131,0 (C14); 129,9 (C9); 128,8 (C8); 128,1 (C10); 127,0 (C11); 126,3 (C7); 124,7 (C13); 124,6 (C12); 40,8 (CH₂); 13,6 (CH₃) ppm.

2.6.3. N-isopropilcarbamotioil naftaleno-1-carboxamida, (NIs).

¹**H RMN** (600 MHz, CDCl₃) δ = 10,62 (s, 1H, ⁱPr-NH); 8,90 (s, 1H, O=C-NH); 8,33 (d, 1H, H9, J = 8 Hz); 8,03 (d, 1H, H2, J = 8 Hz); 7,91 (d, 1H, H4, J = 8 Hz); 7,75 (d,1H, H6, J = 7 Hz); 7,63 (dd, 1H, H8, J = 7 Hz); 7,58 (dd, 1H, H7, J = 7 Hz); 7,51 (t, 1H, H3, J = 8 Hz); 4,59 (octupl, 1H, CH, J = 6,6 Hz); 1,40 (d, 6H, CH₃ J = 6,6 Hz) ppm.

Figura 2.6.6. Espectros de RMN de ¹³C de NIs.

¹³C RMN (151 MHz, CDCl₃) δ=178,7 (C=S); 169,1 (C=O); 133,9 (C1); 133,0 (C2); 131,1 (C10); 129,9 (C5); 128,9 (C4); 128,2 (C6); 127,1 (C7); 126,3 (C3); 124,8 (C9); 124,7 (C8); 48,1 (CH); 21,9 (CH₃) ppm.

Los desplazamientos químicos evidenciados por los compuestos expuestos en este Capítulo concuerdan con los reportados para estructuras similares ^{25,26} de igual forma la región aromática se encontró en la región esperada, 8,33–7,47 ppm para ¹H.²⁷ Los desplazamientos químicos de la función carbonilo y tiocarbonilo y de los hidrógenos acídicos unidos a nitrógeno se presentan en la Tabla 2.6.1.

El espectro de RMN de ¹H de **NBt** fue medido en un equipo de 300 MHz, las señales de H7 y H8, se describen como multipletes porque el solapamiento impidió encontrar los valores de las constantes de acoplamiento. En un estudio hecho a moléculas que presentan un naftilo en sus estructuras,²⁷ estos hidrógenos son reportados con multiplicidad ddd (constantes de acoplamiento 8Hz, 7 Hz y 1 Hz), y con desplazamientos químicos muy similares. Estos mismos núcleos muestran señales resueltas en los espectros de **NEt** y **NIs** medidos en un equipo de 600 MHz.

Computeda	δ (ppm)					
Compuesto	C=S	C=O	N1 <u>H1</u>	N2 <u>H2</u>		
NBt	179,9	169,1	8,99	10,74		
NEt	179,8	169,1	9,06	10,69		
NIs	178,7	169,1	8,90	10,62		
Bibliog ^{25,28,29}	178,8	170,1	8,29	9,19		

 Tabla 2.6.1. Desplazamientos químicos de la función carbonil tioureas NBt, NEt y NIs.

Los sustituyentes alquilos presentan señales con desplazamientos químicos por debajo de 3,8 y 48,1 ppm para ¹H y ¹³C, respectivamente.

En el grupo isopropilo (**NIs**) se observa para el metino (-C<u>H</u>(CH3)2), un desdoblamiento correspondiente a un octuplete en el espectro ¹H RMN con una constante de 6,6 Hz. Dicha observación es solo posible si se presume que el acoplamiento con el hidrogeno de N-H vecino tiene un valor de *J* similar a los 6,6 Hz, y por lo tanto el hidrogeno de metino muestra un desdoblamiento que es el resultado de un acoplamiento a 7 núcleos cuasi equivalentes (6 hidrógenos de metilo y un hidrógeno de N-H). Cuando se observa el desplazamiento químico de N-H el ensanchamiento de esta señal,³⁰ impide observar el acoplamiento vecinal. En base a esta última observación, la asignación mostrada más arriba se la describió como octuplete (octupl). Un estudio experimental que podría corroborar la suposición realizada antes, consiste en el intercambio isotópico de hidrógeno por deuterio (H/D). En este estudio, la muestra

disuelta en deuterocloroformo se mezcla con agua deuterada de manera de forzar el intercambio de los hidrógenos acídicos por deuterio. Como consecuencia de este intercambio, la medición de un nuevo espectro debería mostrar que las señales originales de N-H desaparecen mientras que el octuplete debería reducirse a un septuplete. Estos experimentos no fueron realizados en este trabajo, principalmente por cuestiones presupuestarias.

2.7. Difracción de rayos X

Por recristalizaciones cuidadosas de muestras purificadas de **NBt**, **NEt** y **NIs** se obtuvieron monocristales con calidad suficiente para la elucidación de la estructura por difracción de rayos X. La Tabla 2.7.1. detalla resultados del refinamiento estructural. En la Tabla 2.7.2. describe los principales parámetros estructurales experimentales y calculados. La tabla completa de los parámetros estructurales se encuentra en el Anexo 2.

Identificación	NBt	NEt	NIs
Formula empírica	$C_{16}H_{18}N_2OS$	$C_{14}H_{14}N_2OS$	$C_{15}H_{16}N_2OS$
Peso molecular	286,38	258,33	272,36
Temperatura/K	293(2)	293(2)	293(2)
Sistema cristalino	Triclínico	Triclínico	Monoclínico
Grupo espacial	P-1	P-1	P2₁/n
a/Å	6,4045(6)	5,6791(4)	5,9388(2)
b/Å	10,8469(5)	10,8708(6)	21,2022(7)
c/Å	11,8669(9)	11,0126(7)	11,6303(4)
α/°	104,895(5)	97,675(5)	90
β/°	99,550(7)	91,277(6)	101,112(3)
γ/°	92,139(5)	96,251(5)	90
Volumen/Å ³	782,87(10)	669,31(7)	1436,98(9)
Z	2	2	4
ρ _{calc} g/cm ³	1,215	1,282	1,259
Coeficiente de absorción mm ⁻¹	1,806	0,231	0,219
F(000)	304,0	272,0	576,0
Radiación	CuKα (λ = 1,54184)	ΜοΚα (λ = 0,71073)	ΜοΚα (λ = 0,71073)
2O rango para colección de datos/°	7,84 a 144,68	7,224 a 57,38	6,782 a 58,17
	-7 ≤ h ≤ 7,	-7 ≤ h ≤ 4,	-7 ≤ h ≤ 7,
Rango de los índices	-8 ≤ k ≤ 13,	-13 ≤ k ≤ 13,	-18 ≤ k ≤ 26,
	-14 ≤ I ≤ 14	-14 ≤ I ≤ 14	-14 ≤ I ≤ 12
Reflexiones colectadas	5274	5196	6868
Reflexiones	3031	2891	3110
independientes	$[R_{int} = 0.0254, -0.0370]$	$[R_{int} = 0.0219,$	$[R_{int} = 0.0331, -0.0500]$
Datas/restricciones/pará	$R_{sigma} = 0,0370$	$R_{sigma} = 0,0349$	$R_{sigma} = 0,0009$
metros	3031/0/182	2891/0/164	3110/0/236
Bondad de ajustes F ²	1,041	1,015	1,014
Índices R Final ^a [I>=20	R ₁ = 0,0566,	R ₁ = 0,0453,	R ₁ = 0,0429,

Tabla 2.7.1. Resultados del refinamiento estructural y datos de los cristales de NBt, NEt y NIs.

(1)]	wR ₂ = 0,1665	wR ₂ = 0,1146	wR ₂ = 0,0855
Índices R final [todos los	R ₁ = 0,0670,	R ₁ = 0,0635,	R ₁ = 0,0758,
datos]	wR ₂ = 0,1837	wR ₂ = 0,1294	wR ₂ = 0,1009
Mayor diferencia de pico/valle (e Å⁻³)	0,52/-0,30	0,29/-0,17	0,18/-0,20
$P = \sum E + E /\sum E + w P = \sum w P $	$(E ^2 E ^2)^2 / \sum u (E ^2)^2$	21/2	

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, \ wR_{2} = [\sum w(|F_{o}|^{2} - |F_{c}|^{2})^{2} / \sum w(|F_{o}|^{2})^{2}]^{1/2}$

Tabla 2.7.2. Distancias de enlace (Å), ángulos de enlaces y ángulos de torsión (°), experimentales y calculados (B3LYP/6-311++g(g,p)) de **NBt**, **NEt** y **NIs**.

Darámatras	NBt NIs		5	Dorámotroo	NEt		
Parametros	Ехр	Calc	Ехр	Calc	Parametros	Ехр	Calc
r(C1-C11)	1,497(3)	1,500	1,486(2)	1,499	r(C1-C2)	1,493(3)	1,499
r(C11-N1)	1,371(3)	1,383	1,373(2)	1,383	r(C2-N1)	1,374(2)	1,383
r(C11-O1)	1,220(3)	1,227	1,223(2)	1,227	r(C2-O)	1,217(2)	1,227
r(C12-N1)	1,392(3)	1,408	1,393(2)	1,409	r(C3-N1)	1,390(2)	1,408
r(C12-N2)	1,318(3)	1,336	1,320(2)	1,336	r(C3-N2)	1,316(2)	1,336
r(C12-S1)	1,675(2)	1,677	1,6678(1)	1,678	r(C3-S)	1,6757(1)	1,675
r(C13-N2)	1,461(3)	1,460	1,464(2)	1,469	r(C4-N2)	1,463(2)	1,461
∠(C2-C1-C11)	118,7(2)	118,8	118,98(1)	118,89	∠(C6-C1-C2)	119,67(1)	118,90
∠(N1-C11-C1)	114,40(1)	114,3	115,22(1)	114,27	∠(N1-C2-C1)	115,29(1)	114,34
∠(01-C11-C1)	122,40(1)	123,1	122,52(1)	123,11	∠(O-C2-C1)	122,10(1)	123,13
∠(O1-C11-N1)	123,16(1)	122,6	122,25(1)	122,61	∠(O-C2-N1)	122,59(1)	122,53
∠(N1-C12-S1)	118,10(1)	117,8	124,70(1)	126,68	∠(N1-C3-S)	118,53(1)	118,26
∠(N2-C12-N1)	117,07(1)	115,7	116,29(1)	115,75	∠(N2-C3-N1)	116,76(1)	116,00
Ф(C1-C11-N1-C12)	-174,8(2)	-175,0	176,03	-174,3	Φ (C1-C2-N1-C3)	-178,02(1)	175,3
Ф(C2-C1-C11-N1)	49,6(3)	43,2	-47,26	42,9	Φ (C5-C4-N2-C3)	100,2(3)	179,7
Ф(С10-С1-С11-О1)	47,1(3)	41,3	-43,35	41,1	Φ (C14-C1-C2-N1)	-133,24(1)	139,7
Ф(N1-C12-N2-C13)	178,2(2)	179,9	178,92	178,5	Ф (С14-С1-С2-О)	48,2(3)	-41,0
Ф(O1-C11-N1-C12)	3,2(4)	4,4	-2,45	5,0	Φ (N2-C3-N1-C2)	9,6(3)	0,9

Los valores calculados corresponde al confórmero de mínima energía que se estableció para cada compuesto: **NBt2**, **NEt2** y **NIs1**. La numeración a tener en cuenta para esta tabla es la descripta en la Figura 2.7.1. para **NBt** y **NIs** y la Figura 2.7.5. para **NEt** de manera de facilitar la comparación de los resultados obtenidos.

La longitud del enlace C11/2–O1, varía entre 1,217 y 1,223 Å y es típica de un doble enlace carbonilo (C=O) mientras que las distancias para C12/3–S1 van de 1,668 a 1,676 Å. El alargamiento de esta última distancia interatómica revela que la interacción π , que es determinante en la función carbonilo, es poco relevante en el tiocarbonilo como consecuencia de un solapamiento ineficaz entre los orbitales p de átomos de carbono y azufre de tamaño muy diferente.^{31–33}

Es interesante observar que de los tres enlaces C–N presentes en cada compuesto, la longitud más corta pertenece al enlace tioamida que une el tiocarbonilo con el resto alquilo, -C(S)-NHR,

seguido por el enlace de amida -C(O)-NH y finalizando con el segundo enlace tioamida que conecta el tiocarbonilo con el átomo de nitrógeno puente amida/tioamida, N-C(S). Los valores encontrados son: C12/3–N2; 1,318(3), 1,316(2), 1,320(2) Å, C11/2–N1; 1,371(3), 1,374(2), 1,373(2) Å y C12–N1; 1,392(3), 1,390(2), 1,393(2) Å, para **NBt**, **NEt** y **NIs**, respectivamente. Las diferencias significativas entre ellos sugieren un mayor carácter de doble enlace para la unión C12/3–N2 producto de una fuerte deslocalización electrónica desde el par libre del átomo de nitrógeno (N2) hacia el átomo de carbono (C12/3). Esta deslocalización resulta en un aumento de la densidad de electrones en los átomos de carbono y azufre de la función tioamida (forma II en el Esquema 2.7.1).³⁴ La formación de un pseudo doble enlace entre el C12/3 y N2, en los 3 compuestos está favorecida por la ineficiencia de solapamiento π entre C12/3 y S (forma I). Es probable que dicha ineficiencia sea la responsable de incrementar el peso de la forma II dentro de los contribuyentes de resonancia, haciendo que el carácter parcial de doble enlace C-N de la porción tioamida sea aún superior al observado en el enlace C-N de amida.

X= O, S

A continuación se detallan cada una de las estructuras cristalinas de los compuestos expuestos en este capítulo.

2.7.1. N-butilcarbamotioil naftaleno-1-carboxamida, (NBt).

En el siguiente segmento se discutirán los resultados estructurales obtenidos por la resolución de las estructuras cristalinas. La Figura 2.7.1. muestra el diagrama ORTEP obtenido por difracción de rayos X para el compuesto **NBt**.

Figura 2.7.1. Diagrama ORTEP de **NBt**, con la respectiva numeración atómica y con elipsoides de desplazamiento en el nivel del 30% de probabilidad.

La conformación observada en la estructura cristalina presenta un ángulo de torsión entre el anillo de naftilo y el plano de carbonilo (C2C1-C11O) de 47,15°. Una comparación con los confórmeros calculados muestra que la estructura cristalina tiene mayor concordancia con **NBt4**, un confórmero 0,80 kcal/mol más energético que el más estable calculado, Sección 2.3.1. Esto sugiere que las interacciones intermoleculares en el cristal resultan relevantes en la estabilización de la estructura cristalina.

La planaridad observada del grupo carboniltiourea C(O)NHC(S)NH está favorecida por la interacción de puente de hidrogeno NH···O con d(N···O), d(H···O) y \angle (NH···O) de 2,672(2) Å, 1,991 Å y 135,4°. La intersección entre el plano mencionado y el del anillo de naftilo es de 53,81(8)° tal como se ilustra en la Figura 2.7.2.

Figura 2.7.2. Planos del naftilo (en rojo) y carbonil tiourea (en verde) de NBt.

Como se muestra en la Figura 2.7.3., las moléculas están dispuestas en la red cristalina como dímeros simétricos $R_2^2(12)$, dispuestos de manera antiparalela unidos a través de enlaces NH····O intermoleculares [d(N····O)=3,113(2) Å, \angle (NH····O)=134,8°]. Los dímeros están

además, conectados entre sí por interacciones intermoleculares de puente de hidrogeno NH···S en donde el átomo de azufre actúa como aceptor [d(N····S)=3,391(2) Å, \angle (NH····S)=158,2°] dando lugar a cintas poliméricas, $R_{\frac{2}{2}}^2(8)$ que se extienden a lo largo del eje b del cristal. Tabla 2.7.3.

Figura 2.7.3. Empaquetamiento cristalino de **NBt** mostrando las interacciones intra e intermoleculares en el cristal.

Las longitudes de enlace de los grupos carbonilo (C=O) y tiocarbonilo (C–S) son 1,220(3) Å y 1,675(2) Å, respectivamente. Estos valores concuerdan con la diferencia estructural encontrada entre los grupos carbonilo y tiocarbonilo, una longitud de enlace C–S (~1,6 Å) considerablemente más larga que C=O (~1,25 Å).³³

Tabla 2.7.3. Distancias y ángulos (Å, °) de enlaces de hidrógeno intra e intermoleculares relevantes en **NBt**.

-	D-H···A	d(D-H)	d(H…A)	d(D…A)	∠(DHA)
_	N(1)-H(1) ⋯S(1)#1	0,86	2,58	3,391(2)	158,2
	N(2)-H(2A) ⋯O(1)	0,86	1,99	2,672(2)	135,4
_	N(2)-H(2A) ··O(1)#2	0,86	2,45	3,113(2)	134,8

Códigos de simetría: (#1) -x+2, -y, -z+1; (#2) -x+2, -y+1, -z+1

Para una mejor comprensión del empaquetamiento cristalino de los compuestos estudiados, se ha realizado una descripción completa de las principales interacciones intermoleculares

utilizando el análisis de superficie de Hirshfeld, descripta en el capítulo de Materiales y Métodos (Métodos Computacionales, sección k.). Las Figuras 2.7.4.a y 2.7.4.b muestran superficies evaluadas sobre la propiedad d_{norm} .

Figura 2.7.4. Vistas de las superficies de Hirshfeld de **NBt** mapeado con d_{norm} en dos orientaciones: (a) vista frontal, (b) vista posterior (girada 180° alrededor del eje vertical de la superficie). El diagrama bidimensional completo de huella dactilar se muestra en (c). Los contactos cercanos están etiquetados como: (1) S····H, (2) O····H, (3) C····H y (4) H····H. **NBt**.

Los principales contactos, marcados como **1** de color rojo en la Figura 2.7.4. (a) y (b), son dominantes en el mapa de *dnorm* y representan los contactos H····S/S···H atribuidos a los enlaces de hidrógeno N1-H1···S1 de acuerdo con el diagrama Ortep de empaquetamiento, Figura 2.7.3. Un par de puntos grandes y rojos etiquetados como **2** muestran los contactos H···O/O···H asociados a enlaces de hidrógeno N2-H2A···O1, mientras que dos pequeñas regiones rojas, marcadas como **3** en la superficie (Figura 2.7.4.a), corresponden a contactos H···C/C···H asociados a enlaces de hidrógeno C13-H13B···C9 débiles. Vale la pena indicar que los contactos H····H (marcados con **4**) representan la interacción más débil. Aunque los contactos H····H también están presentes en las estructuras restantes, no son visibles debido a que las distancias son mayores que la suma de los radios van der Waals.

2.7.2. N-etilcarbamotioil naftaleno-1-carboxamida, (NEt).

La Figura 2.7.5. muestra el empaquetamiento molecular del compuesto **NEt** y en la Tabla 2.7.2. se presentan los parámetros más relevantes. Como se esperaba para el grupo naftilo, las distancias de enlace C-C están en el rango de 1,342(5) a 1,430(3) Å, que corresponde a estructuras de enlace resonante. Los grupos carbonilo (C=O) y tiocarbonilo (C-S) presentaron longitudes de enlace 1,217(2) y 1,675(2) Å respectivamente.

Figura 2.7.5. Diagrama ORTEP de **NEt**, con la respectiva numeración atómica y con elipsoides de desplazamiento en el nivel del 30% de probabilidad.

Un enlace intramolecular relativamente fuerte NH···O [d (N···O) = 2,656(2) Å, \angle (NH···O) = 134,1° favorece la planaridad de la porción carboniltiourea, C(O)NHC(S). El plano de la carbonil tiourea tiene un ángulo de intersección de 56,90(6)° con el plano naftilo.

Como se muestra en el empaquetamiento cristalino de la Figura 2.7.6. y Tabla 2.7.4., las moléculas vecinas están dispuestas como dímeros centro simétricos, mantenidos por enlaces intermoleculares NH···S [d(N···S) = 3,460(2) Å, \angle (NH···S) = 165,9°]. Los dímeros vecinos, a su vez, están vinculados entre sí a través de enlaces NH···O intermoleculares relativamente débiles [d(N···O) = 3,048(2) Å, \angle (NH···O) = 138,9°] dando lugar a una cadena, en forma de cinta, que se extiende a lo largo del eje b del cristal (Figura. 2.7.6.). Este empaquetamiento es similar al reportado para **NBt** y cristaliza en el mismo grupo espacial triclínico P-1, con constantes de celda unitaria equivalentes³⁵ (Tabla 2.7.1.).

Figura 2.7.6. Empaquetamiento cristalino de **NEt** mostrando las interacciones intra e intermoleculares.

Tabla 2.7.4. Distancias y ángulos (Å, °) de enlaces de hidrógeno intra e intermoleculares relevantes en **NEt.**

D-H…A	d(D-H)	d(H…A)	d(D…A)	∠(DHA)
N(1)-H(1) ··S(1)#2	0,86	2,62	3,460	165,9
N(2)-H(2) ··O(1)	0,86	1,98	2,656	134,1
N(2)-H(2) ··O(1)#1	0,86	2,35	3,048	138,9

Códigos de simetría: (#1) -x+1, -y+1, -z+1; (#2) -x+1, -y, -z+1

La Figura 2.7.7. ilustra a) las interacciones intermoleculares y b) el grafico de descomposición 2D (*fingerprint*) de **NEt** en la red cristalina. Los puntos más intensos son interacciones $H \cdots O/O \cdots H$, marcadas como **2** en la superficie de Hirshfeld y, al girar la molécula 180°, se observan interacciones $S \cdots H/H \cdots S$ marcadas como **4** en la Figura 2.7.7.a.

De igual manera, las contribuciones encontradas a la estabilización de la red cristalina en el análisis de la superficie de Hirshfeld fueron: S…H 13,9%, O…H de 7,7 %, H…H 45,8% y C…H 26,5%, Figura. 2.7.7.b.

Figura 2.7.7. (**a**) Vista de la superficie de Hirshfeld de **NEt** evaluada con el descriptor d_{norm} (distancia de contacto normalizada) mostrando los contactos C···H, O···H H···H y S···H. (**b**) Gráfico de descomposición 2D de los principales contactos.

2.7.3. N-isopropilcarbamotioil naftaleno-1-carboxamida, (NIs).

La Figura 2.7.8. exhibe el empaquetamiento molecular del compuesto **NIs** y la Tabla 2.7.2. muestra los parámetros geométricos más relevantes. Los grupos carbonilo (C=O) y tiocarbonilo (C–S) presentaron longitudes de enlace 1,223(2) y 1,668(2) Å, respectivamente y las distancias de enlace C-C del naftilo están en el rango de 1,348(3) a 1,426(2) Å.

Figura 2.7.8. Diagrama ORTEP de **NIs**, con la respectiva numeración atómica y con elipsoides de desplazamiento en el nivel del 30% de probabilidad.

Un enlace intramolecular relativamente fuerte [d(N···O) = 2,647(2) Å, \angle (NH···O) = 140(2)°], Tabla 2.7.5., es lo que se le atribuye la planaridad de la porción C(O)NHC(S)NH presenta un

ángulo de intersección de 49,89(5)° con el plano del naftilo. Como se muestra en la Figura.2.7.9., las moléculas vecinas están dispuestas como dímeros centro-simétricos enlazados por interacciones intermoleculares NH···S de fuerza intermedia [d (N···S) = 3,450(2) Å, \angle (NH···S) = 166(2)°], Tabla 2.7.5.

Figura 2.7.9. Empaquetamiento cristalino de **NIs** mostrando las interacciones intra e intermoleculares.

Tabla 2.7.5. Distancias y ángulos (Å, °) de enlaces de hidrógeno intra e intermoleculares relevantes en **NIs**.

D-H···A	d(D-H)	d(H…A)	d(D…A)	∠(DHA)
N(1)-H(1) ·· S#1	0,83	2,64	3,450	165,7
N(1)-H(1) ⋯S	0,83	2,64	2,641	81,4
N(2)-H(2) ··O	0,81	1,97	2,647	140,2
almost (a. (HA)	4 -10			

Códigos de simetría: (#1) -x+1, -y+1, -z+2

En el análisis de las superficies de Hirshfeld, solo se detectaron dos interacciones intermoleculares marcadas como **1** (Figura 2.7.10.a.) que corresponde al contacto C12S····H2N (2,637 Å, \angle = 116,61°) y la interacción marcada como **2** al C12S····C2 (3,361 Å, \angle = 150,67°). Las principales contribuciones se muestran en la Figura. 2.7.10.b. S···H 12,3%, O···H de 6,9 %, H···H 49,6% y C···H 25,9%.

Figura 2.7.10. (a) Vista de la superficie de Hirshfeld de **NIS** evaluada con el descriptor d_{norm} (distancia de contacto normalizada) mostrando los contactos, S…H y S…C marcados como **1** y **2**, respectivamente. (b) Gráfico de descomposición 2D de los principales contactos.

2.8. Ensayos biológicos

Como parte de los objetivos propuestos en el plan de trabajo de esta tesis doctoral, se realizaron estudios *in vitro* de bioactividad sobre alguno de los compuestos sintetizados.

Las bacterias son los microorganismos más abundantes del planeta, encontrándose tanto en hábitats acuáticos como terrestres, aún en las condiciones más inhóspitas incluyendo desechos radioactivos,³⁶ presentando una capacidad vertiginosa de adaptarse a los cambios en los ambientes en los que existen.³⁷

Cuando se somete una población de bacterias a cambios bruscos del ambiente que las rodea, éstas segregan sustancias que les ayuda a fijarse a otras bacterias, células u objetos. Este mecanismo de defensa se llama formación de biopelículas o biofilm, el cual ayuda también a las bacterias a protegerse de los antibióticos.

Se define como biofilm o biopelícula, a un grupo de microorganismos inmersos en una matriz polimérica extracelular adhesiva protectora, elaborada por las bacterias que se adhieren a una superficie. Esta matriz polimérica es una estructura compleja que reacciona y actúa como un organismo único, por esta razón se la clasifica como organismo multicelular,³⁷ está formada mayoritariamente por agua, bacterias y exopolisácaridos (EPS)³⁸ y, en menor proporción, por otras macromoléculas como ADN, proteínas, etc. Las mismas presentan canales que permiten el flujo de agua, nutrientes y oxígeno y su estructura puede variar de acuerdo a la naturaleza del microorganismo.³⁹

Se ha reportado que alrededor del 60% de las infecciones humanas son el resultado de la formación de biofilms.⁴⁰ En la industria alimentaria, la presencia de biofilms causa serios

problemas de ingeniería, afectando el flujo de calor a través de una superficie, el aumento de la resistencia a la fricción del fluido entre las superficies y la tasa de corrosión de las superficies que conduce a pérdidas de energía y de producción.⁴¹

Se define como Quorum sensing a un mecanismo de comunicación entre bacterias mediante el cual éstas controlan procesos específicos como por ejemplo la formación de un biofilm. Esta comunicación se da a través de autoinductores que tienen la capacidad de controlar el ambiente bacteriano conforme a la densidad de la población, de allí la importancia de estudiar compuestos que puedan inhibir el QS en bacterias patógenas.

El sistema de QS es un mecanismo de regulación de la expresión de los genes en función de la densidad celular.⁴² Debido a que QS interviene en un amplio espectro de fenotipos, que incluyen virulencia y formación de biopelículas, la inhibición de QS es un método terapéutico alternativo para tratamientos contra infecciones microbianas, teniendo en cuenta que las células en la biopelícula son más resistentes a los antibióticos o sistemas desinfectantes.^{43,44}

El diseño de sustancias antipatogénicas podría ser una estrategia importante para evitar el deterioro de los alimentos industriales. Los compuestos antipatogénicos no matan las bacterias ni detienen su crecimiento; sino controlan la formación de biopelículas y evitan el desarrollo de cepas resistentes.⁴⁵ La interrupción de QS, o comunicación bacteriana de célula a célula, es un ejemplo de efectos antipatogénicos y puede hacer que las bacterias patógenas (o de descomposición) no sean virulentas.⁴⁶

A continuación se presentan los ensayos y resultados realizados al compuesto Netilcarbamotioil naftaleno-1-carboxamida, (**NEt**).

2.8.1. Crecimiento bacterial y formación de biopelículas

Los cultivos overnight de *Pseudomonas aeruginosa* PAO1 se diluyeron hasta alcanzar una DO (densidad óptica) $0,100 \pm 0,005$ a 560 nm en medio Luria Bertani (LB). Se colocaron 180 mL en los pocillos de una microplaca de poliestireno. Posteriormente, se agregaron 20 µL de soluciones de **NEt** para alcanzar las concentraciones 10 y 100 µg/mL (8 réplicas). Como control negativo se empleó el disolvente DMSO/agua (1:1) con un volumen total de 200 mL. El control positivo empleado fue Ciprofloxacina (CIP) a una concentración de 1 µg/mL. Después de 24 h de incubación a 37°C, el crecimiento se midió espectrofotométricamente a 560 nm utilizando un lector de placas de microtitulación (Power Wave XS2) Biotek, Vermont, EE. UU.

Para la cuantificación de biopelículas, se empleó un método basado en un protocolo informado anteriormente por O'Toole y Kolter, 1998.⁴⁷ Después de 24 h de incubación de la bacteria *P. aeruginosa* PAO1 a 37°C, la biopelícula formada se determinó espectrofotométricamente

mediante tinción con cristal violeta (0,1% p/v). El control fue el mismo que el utilizado para el crecimiento bacteriano, DMSO/agua (1:1).

Los resultados obtenidos de estos ensayos se presentan en la Figura 2.8.1. El crecimiento bacteriano fue débilmente inhibido (menos del 5%) por **NEt** en ambas concentraciones. Sin embargo, **NEt** inhibió la formación de biopelículas en 59 y 62% a 10 y 100 μ g/mL, respectivamente.

La inhibición del biofilm podría llevarse a cabo de dos maneras. En primer lugar, puede afectarse debido a que disminuye el número de bacterias capaces de formar el biofilm (que es el modo de acción habitual de los antibióticos, pero con el riesgo de que las bacterias desarrollen resistencia y puedan crecer incluso en presencia del antibiótico). En segundo lugar, puede provocarse la inhibición de biopelícula producida por cada bacteria, afectándose la detección de QS. Como el porcentaje de inhibición del biofilm por **NEt** fue mayor que el del crecimiento, se investigó la inhibición del QS en el siguiente ensayo.

Figura 2.8.1. Efecto de **NEt** sobre el crecimiento (\Box) y la formación de biofilm (**■**) en cultivos de *Pseudomonas aeruginosa* PAO1, a diferentes concentraciones. Control del inhibidor empleado fue 1µg/mL de CIP (Ciprofloxacina).

2.8.2. Quorum sensing, QS.

La determinación del efecto de **NEt** en el sistema QS se realizó mediante un ensayo de difusión sobre la cepa *Chromobacterium violaceum* CV026.^{48,49} Las placas de agar LB (Luria Bertani) fueron previamente inoculadas con *C. violaceum* CV026 suplementado con 5 µg de los autoinductores QS, N-hexanoil-L-homoserina lactona (HHL, Sigma). Posteriormente, se realizó un pocillo en la placa y estos se cargaron con 50 µL de 2 soluciones de mg/mL y 20 mg/mL de **NEt** en DMSO para obtener soluciones con concentraciones de 100 y 1000 µg por pocillo e

incluyendo DMSO como control de solvente. Después de 18 horas de incubación a 28°C, los compuestos adicionados en los pocillos pueden: 1) inhibir el crecimiento de *C. violaceum* CV026, con lo cual se forma un halo traslucido o bien 2) pueden inhibir la producción de violaceína, pero permitiendo el crecimiento bacteriano, halos turbios sin pigmento.

En el bioensayo realizado con *C. violaceum* CV026 (Figura 2.8.2), la presencia de halos turbios en un fondo violeta indicó una inhibición de QS sin afectar el crecimiento microbiano. El ensayo se llevó a cabo a 100 y 1000 µg/mL de **NEt** según lo informado anteriormente para otros compuestos.⁴⁹ El compuesto fue capaz de inhibir la producción del pigmento asociada con el sistema QS, lo que sugiere que podría modular el efecto sobre la interacción del HHL con el receptor CviR (sistema de regulación, Cvil/CviR). Los compuestos antagonistas capaces de unirse al sitio del ligando de AHL previenen la unión del ADN al factor de transcripción que activa la expresión génica e induce la virulencia bacteriana.⁵⁰

Figura 2.8.2. A. NEt 100 μ g/mL (5,2 ± 0,2 mm); B. NEt 1000 μ g/mL (6,3 ± 0,2 mm); DMSO 2,5% control.

La reducción del biofilm observada en cultivos bacterianos tratados con **NEt** podría ser el resultado de la inhibición del crecimiento celular o la inhibición de la producción de AHL (acil homoserin lactona). Con respecto a la primera hipótesis, se observó que el crecimiento microbiano no fue modificado, sin embargo se demostró que **NEt** inhibió el QS.

2.8.3. Ensayo de actividad metabólica del biofilm

La actividad metabólica de las células sésiles, que viven en la biopelícula, se detectó utilizando un ensayo de reducción de bromuro de 3-[4, 5-dimetiltiazol-2-il]-2,5-difeniltetrazolio (MTT) con modificaciones.⁴¹ Al biofilm formado después de 24 h de incubación se le añadió 180 μ L de PBS (solución salina regulada con fosfato, pH 6,5) y 20 μ L del compuesto disuelto a 100 y 10 μ g/mL (8 réplicas). Transcurridas otras 24 h se desechó el sobrenadante y se introdujeron 100 μ L de solución de MTT (0,5 mg/mL) en cada pocillo incubándose en condiciones estériles durante 4 horas a 37°C. El formazán púrpura insoluble (obtenido de la hidrólisis enzimática de

MTT por la enzima deshidrogenasa que se encuentra en las células vivas) se disolvió en DMSO y la absorbancia se midió a 570 nm, utilizando el lector de microplacas.

Los resultados obtenidos de este ensayo se presentan en la Tabla 2.8.1.

Tabla 2.8.1. Efecto del compuesto **NEt** sobre la actividad metabólica de las células de biofilmPAO1 de *Pseudomonas aeruginosa.*

Compuestos	DO a 570 nm	% Inhibición Actividad Metabólica de bacterias en Biofilm
NEt 10 μg/mL	$1,\!087\pm0,\!042$	25
NEt 100 μg/mL	$\textbf{0,916} \pm \textbf{0,148}$	37
CIP 1 μg/mL	$0,164\pm0,009$	89
Control	$1,\!455\pm0,\!079$	

La viabilidad de las células bacterianas presentes en la biopelícula fue inhibida por **NEt** en 25% y 37% a 10 y 100 μ g/mL, respectivamente. El resultado indica que **NEt** podría utilizarse como agente preventivo para la contaminación de superficies, ya que evita la formación de biofilm. También podría usarse como desinfectante, ya que inhibe parcialmente la actividad metabólica de las células que forman el biofilm y, por lo tanto, lo hace más susceptible de ser eliminado.

Otro sitio de acción interesante que podría afectarse sería el biofilm formado previamente, ya que muchos de los sistemas de desinfección que se usan actualmente no son efectivos contra las células en biofilm.

2.9. Conclusiones

Las estructuras moleculares obtenidas por difracción de rayos X para los compuestos **NBt**, **NEt** y **NIs** muestran que en la estructura central, -C(O)-NH-C(S)-NH-, los grupos CO y CS se disponen en posición *antiperiplanar* dando lugar a la forma de S.^{7,8} Dicha forma adquiere estabilidad gracias a las interacciones intramoleculares de puente de hidrógeno C=O···H-N formando un pseudo anillo de 6 miembros, como se muestra en la Tabla 2.9.1. Estas distancias de enlace O···H están en el orden de ~1,88 Å y las interacciones intramoleculares se evidencian en los espectros de IR por la posición y forma de la banda de estiramiento N2-H, la cual está desplazada a menores números de ondas (exp. 3227, 3219 y 3193 cm⁻¹, respectivamente; calc. 3452, 3451 y 3439 cm⁻¹, respectivamente). La desviación entre los planos de la porción -C(O)-NH-C(S)-NH- y del anillo de naftilo varía entre 44,27° y 43,17° para los compuestos estudiados.

 Tabla 2.9.1. Resumen de los principales parámetros entre las estructuras.

Parámetro ^a	NBt	Net	NIs
Falametiu	INDL	INCL	1113

	C-S	1,675(2)	1,6757(1)	1,6678(1)
Distancia de	C-N2	1,318(3)	1,316(2)	1,320(2)
Enlaces (Å)	C-N1	1,392(3)	1,390(2)	1,393(2)
	O-H	1,99	1,98	1,97
	N2-H	3227	3219	3193
$\mathbf{ID} \cdots (\mathbf{am}^{-1})$	C=O	1699	1671	1673
ik, v (cm ⁻)	C-N2	1537	1562	1551
	C-N1	1118	1152	1127
	N1- <u>H1</u>	8,99	9,06	8,90
	N2- <u>H2</u>	10,74	10,69	10,62
RMN, δ (ppm)	C=S	179,9	179,8	178,8
	C=O	169,1	169,1	169,1

^a Datos Experimentales.

En el empaquetamiento cristalino de estos compuestos, los contactos intermoleculares de hidrógenos son dominantes con contribuciones mayores al 50% como se muestra en la Figura 2.9.1.

Los compuestos **NBt**, **NEt** y **NIs** presentan distancias de enlace, desplazamientos químicos y frecuencias de vibración similares, por lo que se concluye que la diferente sustitución alifática sobre la porción carboniltiourea no genera cambios importantes en las propiedades estructurales de la misma.

Los ensayos biológicos realizados con **NEt** indican que previene la formación de biopelículas e inhibe parcialmente la actividad metabólica de las células que lo forman. Por lo tanto, puede usarse como agente para evitar la contaminación de las superficies y como desinfectante.

2.10. Bibliografía

- 1. Schroeder, D. C. Thioureas. *Chem. Rev.* 55, 181–228 (1955).
- 2. Mertschenk, B., Beck, F. & Bauer, W. in *Ullmann's Encyclopedia of Industrial Chemistry* (Wiley-VCH Verlag GmbH & Co. KGaA, 2011). doi:10.1002/14356007.a26_803.pub2
- 3. Saeed, A. *et al.* Competing intramolecular NHOC hydrogen bonds and extended intermolecular network in 1-(4-chlorobenzoyl)-3-(2-methyl-4-oxopentan-2-yl) thiourea analyzed by experimental and theoretical methods. *Chem. Phys.* **431–432**, 39–46 (2014).
- Burrows, A. D., Menzer, S., Mingos, D. M. P., White, A. J. P. & Williams, D. J. The influence of the chelate effect on supramolecular structure formation: synthesis and crystal structures of zinc thiourea and thiosemicarbazide complexes with terephthalate. *J. Chem. Soc. Dalt. Trans.* 4237–4240 (1997). doi:10.1039/a703830e
- 5. Shakeel, A. Thiourea Derivatives in Drug Design and Medicinal Chemistry: A Short Review. *J. Drug Des. Med. Chem.* **2**, 10 (2016).
- Neucki, E. Zur kenntniss des sulfoharnstoffs. Berichte der Dtsch. Chem. Gesellschaft 6, 598–600 (1873).
- 7. Woldu, M. G. & Dillen, J. A quantum mechanical study of the stability and structural properties of substituted acylthiourea compounds. *Theor. Chem. Acc.* **121**, 71–82 (2008).
- 8. Okuniewski, A., Chojnacki, J. & Becker, B. 3,3'-Dibenzoyl-1,1'-dibenzyl-1,1'-(ethane-1,2diyl)dithiourea. *Acta Crystallogr. Sect. E Struct. Reports Online* **68**, o619–o620 (2012).
- Estévez-Hernández, O., Otazo-Sánchez, E., Hidalgo-Hidalgo De Cisneros, J. L., Naranjo-Rodríguez, I. & Reguera, E. A Raman and infrared study of 1-furoyl-3monosubstituted and 3,3-disubstituted thioureas. *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.* 62, 964–971 (2005).
- Pérez, H., Corrêa, R. S., Plutín, A. M., Álvarez, A. & Mascarenhas, Y. N -Benzoyl- N ', N '-dimethylthiourea. *Acta Crystallogr. Sect. E Struct. Reports Online* 67, o647–o647 (2011).
- 11. Koch, K. R. New chemistry with old ligands: N-alkyl- and N,N-dialkyl-N'- acyl(aroyl)thioureas in co-ordination, analytical and process chemistry of the platinum group metals. *Coord. Chem. Rev.* **216–217**, 473–488 (2001).
- Cârcu, V., Negoiu, M., Rosu, T. & Serban, S. SYNTHESIS, CHARACTERIZATION OF COMPLEXES OF N-BENZOYL-N ' -2-NITRO-4-METHOXYPHENYL- THIOUREA WITH Cu, Ni, Pt, Pd, Cd AND Hg. *J. Therm. Anal. Calorim.* **61**, 935–945 (2000).
- Plutín, A. M. *et al.* Alkylation of benzoyl and furoylthioureas as polydentate systems. *Tetrahedron* 56, 1533–1539 (2000).
- 14. Wilson, D., de los Ángeles Arada, M., Alegret, S. & del Valle, M. Lead(II) ion selective electrodes with PVC membranes based on two bis-thioureas as ionophores: 1,3-bis(N'-benzoylthioureido)benzene and 1,3-bis(N'-furoylthioureido)benzene. *J. Hazard. Mater.*

181, 140–146 (2010).

- Inamdar, G. S. *et al.* New insight into adenosine receptors selectivity derived from a novel series of [5-substituted-4-phenyl-1,3-thiazol-2-yl] benzamides and furamides. *Eur. J. Med. Chem.* 63, 924–34 (2013).
- Chen, H.-L., Guo, Z.-F. & Lu, Z. Controlling Ion-Sensing Specificity of N -Amidothioureas: From Anion-Selective Sensors to Highly Zn 2+ -Selective Sensors by Tuning Electronic Effects. Org. Lett. 14, 5070–5073 (2012).
- Otazo-Sánchez, E. *et al.* Aroylthioureas: new organic ionophores for heavy metal ion selective electrodes. A nuclear magnetic resonance study. *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.* 58, 2281–2290 (2002).
- Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamarro, J. Aroylthioureas: new organic ionophores for heavy-metal ion selective electrodes. *J. Chem. Soc. Perkin Trans.* 2 2211 (2001). doi:10.1039/b102029n
- 19. Teori, K., Sebagai, T. P., Ion, P. & Ii, C. theoretical and experimental investigation of pyridyl- thiourea derivatives as ionophores for Cu (II) ion detection. **20**, 73–84 (2016).
- Mukerjee, A. K. & Ashare, R. Isothiocyanates in the chemistry of heterocycles. *Chem. Rev.* 91, 1–24 (1991).
- 21. Drobnica, Ľ., Kristián, P. and Augustín, J. The chemistry of the NCS group. *Cyanates Their Thio Deriv. Vol. 2* 1003–1221 (1977). doi:10.1002/9780470771532
- Dzurilla, M., Kutschy, P., Imrich, J. & Brtos, S. ChemInform Abstract: Hugershoff Reaction of N-1- or N-2-Naphthoyl-N'-monosubstituted and N', N'-Disubstituted Thiourea Derivatives. *ChemInform* 26, no-no (1995).
- Zaib, S. *et al.* New aminobenzenesulfonamide-thiourea conjugates: Synthesis and carbonic anhydrase inhibition and docking studies. *Eur. J. Med. Chem.* **78**, 140–150 (2014).
- 24. G. Kavak, S. Özbey, G. Binzet, N. K. Synthesis and single crystal structure analysis of three novel benzoylthiourea derivatives. *Turkish J. Chem.* **33**, 857–868 (2009).
- Saeed, S., Rashid, N., Ali, M., Hussain, R. & Jones, P. G. Synthesis, spectroscopic characterization, crystal structure and pharmacological properties of some novel thiophene-thiourea core derivatives. *Eur. J. Chem.* 1, 221–227 (2010).
- Saeed, A. *et al.* Synthesis, X-ray crystal structure, thermal behavior and spectroscopic analysis of 1-(1-naphthoyl)-3-(halo-phenyl)-thioureas complemented with quantum chemical calculations. *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.* **150**, 409–418 (2015).
- Jios, J. L. & Duddeck, H. Synthesis, multinuclear (1H, 13C and 17O) magnetic resonance spectroscopy and conformational analysis of some substituted aryl naphthoates. *Zeitschrift fur Naturforsch. - Sect. B J. Chem. Sci.* 55, 189–192 (2000).
- 28. Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. Synthesis, characterization and

biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. *Eur. J. Med. Chem.* **45**, 1323–1331 (2010).

- Jasman, S. M. *et al.* Synthesis, Crystal Structure and Electrical Studies of Naphthoyl-Thiourea as Potential Organic Light Emitting Diode. *J. Chem. Crystallogr.* 45, 338–349 (2015).
- 30. Günther, H. *NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry*. (Wiley-VCH, 2013).
- 31. Wiberg, K. B. & Rablen, P. R. Why Does Thioformamide Have a Larger Rotational Barrier Than Formamide? *J. Am. Chem. Soc.* **117**, 2201–2209 (1995).
- 32. Hadad, C. M., Rablen, P. R. & Wiberg, K. B. C-O and C-S bonds: Stability, bond dissociation energies, and resonance stabilization. *J. Org. Chem.* **63**, 8668–8681 (1998).
- 33. Wiberg, K. B. & Wang, Y. A comparison of some properties of C=O and C=S bonds. *Arkivoc* **2011**, 45 (2010).
- 34. Wiberg, K. B. & Rush, D. J. Solvent effects on the thioamide rotational barrier: An experimental and theoretical study. *J. Am. Chem. Soc.* **123**, 2038–2046 (2001).
- Contreras Aguilar, E. *et al.* Weak and strong hydrogen bonds conducting the supramolecular framework of 1-butyl-3-(1-naphthoyl)thiourea: crystal structure, vibrational studies, DFT methods, Pixel energies and Hirshfeld surface analysis. *Mol. Phys.* **116**, 399–413 (2018).
- Fredrickson, J. K. *et al.* Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site , Washington State Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site , Washington State. *Appl. Environ. Microbiol.* **70**, 4230–4241 (2004).
- 37. Monds, R. D. & O'Toole, G. A. The developmental model of microbial biofilms: ten years of a paradigm up for review. *Trends Microbiol.* **17**, 73–87 (2009).
- Sutherland, I. W. Biofilm exopolysaccharides: A strong and sticky framework. *Microbiology* 147, 3–9 (2001).
- Branda, S. S., Vik, Å., Friedman, L. & Kolter, R. Biofilms: the matrix revisited. *Trends Microbiol.* 13, 20–26 (2005).
- 40. Costerton, J. W. & P.S. Stewart, E. P. G. Bacterial Biofilms: A Common Cause of Persistent Infections. *Science (80-.).* **284,** 1318–1322 (1999).
- Luciardi, M. C., Blázquez, M. A., Cartagena, E., Bardón, A. & Arena, M. E. Mandarin essential oils inhibit quorum sensing and virulence factors of Pseudomonas aeruginosa. *LWT - Food Sci. Technol.* 68, 373–380 (2016).
- 42. Miller, M. B. & Bassler, B. L. Quorum Sensing in Bacteria. *Annu. Rev. Microbiol.* **55**, 165–199 (2001).
- Zhang, L.-H. & Dong, Y.-H. Quorum sensing and signal interference: diverse implications. *Mol. Microbiol.* 53, 1563–1571 (2004).

- 44. Pan, J. & Ren, D. Quorum sensing inhibitors: a patent overview. *Expert Opin. Ther. Pat.* **19**, 1581–1601 (2009).
- 45. Otto, M. Quorum-sensing control in Staphylococci a target for antimicrobial drug therapy? *FEMS Microbiol. Lett.* **241**, 135–141 (2004).
- Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. *J. Bacteriol.* **176**, 269– 275 (1994).
- 47. O'Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. *Mol. Microbiol.* **30**, 295–304 (1998).
- McClean, K. H. *et al.* Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. *Microbiology* 143, 3703–3711 (1997).
- 49. D'Almeida, R. E. *et al.* Comparison of seven structurally related coumarins on the inhibition of Quorum sensing of Pseudomonas aeruginosa and Chromobacterium violaceum. *Bioorg. Chem.* **73**, 37–42 (2017).
- Skogman, M., Kanerva, S., Manner, S., Vuorela, P. & Fallarero, A. Flavones as Quorum Sensing Inhibitors Identified by a Newly Optimized Screening Platform Using Chromobacterium violaceum as Reporter Bacteria. *Molecules* 21, 1211 (2016).

CAPÍTULO 3

Tioureas 4-metoxibenzoil N'-sustituidas

3.1. Introducción

En este capítulo se describen los estudios experimentales y teóricos de tres nuevos compuestos de la familia de las acil tioureas (también denominadas carbonil tioureas). Se eligió nombrar a estos compuestos como derivados de la 4-metoxibenzamida (acrónimo entre paréntesis): N-butilcarbamotioil-4-metoxibenzamida (**MBt**), N-Isopropilcarbamotioil-4-metoxibenzamida (**MIs**) y N-[(3-cloro-2-metilfenil) carbamotioil]-4-metoxibenzamida (**MMCf**).

Los derivados de ariltiourea (Ar-NHC(S)NH-R) han demostrado actividad anti-infecciosa contra el virus de la hepatitis C (VHC)¹ y actividad antifúngica contra hogos patógenos de plantas,^{2,3} además de ser potentes inhibidores de la ureasa.⁴ Pueden actuar como co-ligandos en complejos de Pd (II), los que presentan propiedades de cristal líquido. Además, han sido ampliamente utilizados para la extracción de metales como cobre (II), paladio (II) y oro (III) a partir de sus soluciones acuosas,⁵ debido a su capacidad de coordinación para formar complejos metálicos. Derivados de ariltiourea también se han empleado como transportadores de oro (III) a través de una membrana líquida inmovilizada con polímeros.⁶

3.2. Síntesis

La síntesis general de los compuestos **MBt**, **MIs** y **MMCf** se muestra en el Esquema 3.2.1. Un método de síntesis para compuestos análogos ya fue descripto en el Capítulo 2, Sección 2.2.1.

En un balón de 100 mL se hacen reaccionar 1,8 gramos (11,5 mmol) de ácido 4metoxibenzoico, con 2,4 gramos (11,5 mmol) de pentacloruro de fósforo. Siguiendo el procedimiento descripto en la sección 1.2.1., Capítulo 1, se obtiene el cloruro de 4metoxibenzoilo, el cual es transferido a un balón de 250 mL que tiene disuelto 1,7 gramos (17,4 mmol) de tiocianato de potasio (KSCN) en 25 mL de acetonitrilo seco. A partir de esta solución se obtiene el carbonil isotiocianato correspondiente (ver sección 1.2., Capítulo 1).

La solución en acetonitrilo del carbonil isotiocianato obtenido se trasvasó a un erlenmeyer, el cual se sumerge en un baño frío controlando que la temperatura se mantenga entre -5°C y 0 °C. A continuación, se adicionó por goteo y con agitación constante, 11,5 mmol de la amina correspondiente: n-butilamina (1,1 mL), isopropilamina (0,8 mL) y 3-cloro-2-metilanilina (1,4 mL) para la obtención de **MBt**, **MIs** y **MMCf**, respectivamente.

Compuesto	R
MBt	Butilo
MIs	Isopropilo
MMCf	2-metil-3-clorofenilo

Esquema 3.2.1. Síntesis de tioureas 4-metoxibenzoil N'-sustituidas.

La mezcla se calentó a reflujo durante dos horas, transcurrido ese tiempo se adicionó hielo y agua destilada. En el caso de los compuestos **MIs** y **MMCf** se formó un sólido y un aceite color amarillo-naranja, mientras que para **MBt** solo se obtuvo un sólido color amarillo pálido, que fue posteriormente recristalizado en etanol. En todos los casos, el sólido se separó por filtración, se lavó con agua fría, se secó y se recristalizó en etanol. El aceite se extrajo de la fase acuosa con diclorometano en un embudo de decantación.

El aceite y el sólido formados en **MIs** y **MMCf** fueron analizados por cromatografía de capa fina (CCF) obteniéndose una única señal para cada uno de los sólidos, que se corresponde con el respectivo compuesto de interés. Sin embargo, el aceite de cada uno de los compuestos muestra en CCF señales que corresponden al compuesto de interés, al ácido de partida y a un producto que no pudo ser identificado (que se detecta en el punto de siembra). Para aislar **MIs** y **MMCf** de los respectivos aceites se realizó una cromatografía en columna (hexano/acetato de etilo 7:3) y, una vez colectadas las fracciones puras de la columna, se dejó evaporar el solvente de manera lenta y controlada hasta su cristalización y luego los cristales fueron separados por filtración. Los cristales obtenidos de esta manera en **MIs** y **MMCf** se reunieron con los provenientes de la recristalización del solido formado inicialmente. Punto de fusión: **MBt** (etanol): 70-72 °C, **MIs** (Hexano/acetato de etilo, 7:3): 87-88 °C, y **MMCf** (Hexano/acetato de etilo, 7:3): 166-167 °C.

3.3. Estudio teórico químico cuántico

Para establecer los confórmeros de mínima energía de los compuestos **MB**t, **MIs** y **MMCf**, se estudiaron las curvas de energía potencial relativa de todos aquellos enlaces en los cuales la molécula tiene libre rotación. Una vez obtenidos los mínimos globales, se siguió el procedimiento descripto en la sección Métodos computacionales, de Métodos Experimentales Técnicas y Equipamiento.

3.3.1. N-butilcarbamotioil-4-metoxibenzamida, (MBt).

El análisis conformacional se hizo alrededor de enlaces de libre rotación seleccionados, los que se presentan en la Figura 3.3.1. Las curvas de energía potencial sobre los mismos se presentan en la Figura 3.3.2.

Figura 3.3.2. Curvas de energía potencial en función de la variación de los ángulos diedros τ_{1-} τ_5 para **MBt**, calculados con el nivel de teoría B3LYP/6-31g(d).

A partir de las curvas de energía potencial se hicieron las siguientes observaciones:

La torsión $\tau 1$ corresponde a la orientación del enlace carbonilo (C8-O2) respecto del anillo naftilo (enlace C3-C4) y presenta mínimos a 30°/310° y 150°/220° con configuración *synclinal* y *anticlinal*, respectivamente.

Para las torsiones $\tau 2$, $\tau 3$ y $\tau 4$ solo se consideró el mínimo global, ya que los mínimos locales encontrados en las curvas de energía potencial están por encima de 2 kcal/mol. Los mismos están localizados a 0°, 230° y 180°, respectivamente. Las configuraciones adoptadas en estos puntos son *synperiplanar*, *anticlinal* y *periplanar* para 0°($\tau 2$), 230°($\tau 3$) y 180°($\tau 4$), respectivamente.

Finalmente, τ5 representa la disposición de la cadena alquílica respecto del plano del pseudo anillo –CO-NHCS-NH-, que corresponde al enlace C9N2-C10C11. Se observa un mínimo global a 130° indicando que el enlace C10-C11 se ubica en configuración *anticlinal* respecto al plano.

Teniendo en cuenta la información obtenida de las torsiones analizadas, se estudiaron las diferentes opciones conformacionales optimizadas con la base B3LYP/6-311++g(d,p), obteniendo así la estructura más estable, que se muestra en la Figura 3.3.3. El butilo adopta la forma habitual de una cadena alifática.⁷

Figura 3.3.3. Confórmero de mínima energía optimizado con nivel de teoría B3LYP/6-311++g(d,p) para **MBt**.

Se realizó el análisis de los Orbitales Naturales de Enlace (NBO) para el confórmero de mínima energía con el nivel de teoría B3LYP/6-311++(d,p). En la Tabla 3.3.1. se detallan las interacciones más relevantes. Se ha observado una interacción muy fuerte entre el par libre LP N1 y el π^* C8-O2 con una energía de 57,1 kcal/mol. El par libre LP O2 participa en las interacciones LP O2 $\rightarrow \sigma^*$ C4-C8, LP O2 $\rightarrow \sigma^*$ C8-N1 y LP O2 $\rightarrow \sigma^*$ N2-H2N con energías de 19,1, 25,0 y 10,4 kcal/mol, respectivamente.

	Tabla	3.3.1.	Análisis	de NBO	de MBt.
--	-------	--------	----------	--------	---------

Deslocalización NBO	MBt	
Donante (i) – Aceptor (j)	kcal/mol	
LP O2 $\rightarrow \sigma^*$ C4 – C8	19,1	
LP O2 $\rightarrow \sigma^*$ C8 – N1	25,0	
LP O2 $\rightarrow \sigma^*$ N2 – H2N	10,4	
LP N1 $\rightarrow \pi^*$ C8 – O2	57,1	
LP N1 $\rightarrow \pi^*$ C9 – S	33,8	
LP N2 $\rightarrow \pi^*$ C9 – S	55,7	

LP S	→ σ* N1 – C9	14,1
LP S	$\rightarrow \sigma^*$ C9 – N2	14,6
LP O1	$\rightarrow \pi^* C6 - C1$	40,1

3.3.2. N-Isopropilcarbamotioil-4-metoxibenzamida, (MIs).

En torno a los enlaces de libre rotación se hizo el análisis conformacional representado en la Figura 3.3.4., arrojando como resultado las curvas de energía potencial exhibidas en la Figura 3.3.5.

Figura 3.3.5. Curvas de energía potencial en función de la variación de los ángulos diedros τ_1 . τ_4 para **MIs**, calculados con el nivel de teoría B3LYP/6-31g(d).

Las curvas de energía potencial para las torsiones τ^2 (C4C8-N1C9), τ^3 (C8N1-C9S) y τ^4 (N1C9-N2C10) presentan un mínimo a 180° (configuración *anticlinal*).

La curva de energía potencial para $\tau 2$ se evaluó definiendo el ángulo de torsión entre los átomos C4C8-N1C9, diferente a los elegidos para **MBt** ($\tau 2 = O2C8-N1C9$), debido a que para dicha torsión el cálculo no finalizaba correctamente.

La torsión alrededor de τ 1 presenta cuatro mínimos a 40°, 140°, 220° y 330°, los cuales corresponden a las configuraciones *synclinal*, *anticlinal*, *anticlinal* y *synclinal*, respectivamente.

A partir de la información obtenida de las torsiones, se analizaron las distintas conformaciones optimizadas con la base B3LYP/6-311++g(d,p) presentadas en la Figura 3.3.6. De los cuatro posibles confórmeros encontrados, el confórmero **MIs.b** es el de menor energía. Los confórmeros **MIs.a**, **MIs.c** y **MIs.d** difieren de **MIs.b** en 0,046 kcal/mol, 0,004 kcal/mol y 0,058 kcal/mol, respectivamente.

Figura 3.3.6. Posibles confórmeros encontrados para MIs.

Los cuatro confórmeros obtenidos presentan energías similares y estructuralmente no se encuentran cambios importantes. La principal diferencia se encuentra en la orientación del grupo metoxilo con respecto al grupo carbonilo, este ángulo de torsión tiene los siguientes valores: -162°, -17°, 17° y 162° para MIs.a, MIs.b, MIs.c y MIs.d, respectivamente. La población determinada por la ecuación de Boltzmann fue de 24 (MIs.a), 26 (MIs.b), 26 (MIs.c) y 24 (MIs.d) % para cada una de las conformaciones, por lo que se eligió el confórmero MIs.b como el más estable (en base a las energías calculadas para los cuatro confórmeros) que se observa en la Figura 3.3.7.

Figura 3.3.7. Confórmero de mínima energía optimizado con nivel de teoría B3LYP/6-311++g(d,p) para **MIs.b**.

El análisis de los Orbitales Naturales de Enlace (NBO) donde se detallan las principales interacciones estabilizantes fueron determinadas para el confórmero **MIs.b** con el nivel de teoría B3LYP/6-311++(d,p), Tabla 3.3.2.

Las mayores contribuciones a la estabilización de la molécula están dadas por las transferencias de carga LPS $\rightarrow \sigma^*N1 - C9$ con una energía de 76,56 kcal/mol y por LPN2 $\rightarrow \pi^*C9$ -S con una energía de 52,33 kcal/mol. Si bien la interacción hiperconjugativa LPS $\rightarrow \sigma^*N1$ -H1N presenta una energía menor, aunque relevante, junto con las dos anteriores serían las responsables de la formación de enlaces intermoleculares observadas en las estructuras cristalinas reportadas en este trabajo y en compuestos de similares características.⁸

Deslocalización NBO Donante (i) – Aceptor (j)	MIs (kcal/mol)
LP O2 → σ* N1 – H1N	28,82
LP O2 → σ* N1 – C9	22,64
LP O2 $\rightarrow \sigma^*$ C4 – C8	17,88
LP O2 $\rightarrow \sigma^*$ C8 – N1	23,78
LP N1 → π* C8 – O2	21,42
LP N1 → π* C9 – S	31,21
LP N2 $\rightarrow \pi^*$ C9 – S	52,33
LP S $\rightarrow \sigma^* N1 - H1N$	9,13
LP S $\rightarrow \sigma^*$ N1 – C9	76,56
LP S $\rightarrow \sigma^*$ C9 – N2	15,54
LP O1 $\rightarrow \pi^*$ C6 – C1	29,56

Tabla 3.3.2. Análisis de NBO con las principales interacciones estabilizantes de MIs.b.

3.3.3. N-[(3-cloro-2-metilfenil)carbamotioil]-4-metoxibenzamida, (MMCf).

En la Figura 3.3.7. se muestran los enlaces con libre rotación que se evaluaron para la obtención de las curvas de energía potencial visualizadas en la Figura 3.3.8. De este análisis se obtuvo el confórmero de mínima energía presentado en la Figura 3.3.9.

Figura 3.3.7. Enlaces seleccionados y designación de los ángulos de torsión para MMCf.

Figura 3.3.8. Curvas de energía potencial en función de la variación de los ángulos diedros τ_1 . τ_5 para **MMCf**, calculados con el nivel de teoría B3LYP/6-31g(d).

Del análisis de las curvas de energía potencial mostradas en la Figura 3.3.8. se hicieron las siguientes observaciones.

 La torsión τ1 (C3C4-CO2) presenta mínimos a 20° y 340° que corresponden a una configuración synperiplanar y mínimos a 160° y 200° que presentan una configuración *antiperiplanar*. El mínimo global está localizado a 200°, en el cual el carbonilo está en el mismo plano que el anillo aromático.

- En la torsión τ2, la mayoría de los puntos de la curva son estructuras posibles debido a su baja energía, por esta razón y para no caer en mínimos locales, se toma solo el mínimo global de τ2 a 310° que presenta una configuración *synclinal* en el enlace C4C8-N1C9.
- Para τ3 y τ4 se encontraron dos mínimos de energía en 0° y 360° con una diferencia de energía entre ellos de 0,10 kcal/mol y corresponden a la configuración *synperiplanar*.
 Para ambas torsiones se observa una estructura plana local de la parte central -C(O)-NH-C(S)-NH-R, donde los enlaces dobles C=O y C=S se disponen con orientación *antiperiplanar* dando lugar a la forma de *S*. A esta última se atribuye la estabilidad del confórmero, ya que favorece las interacciones intramoleculares a través de puentes de hidrogeno C=O HN-R formando un pseudo anillo de 6 miembros.
- Para la torsión τ5, C9N2-C10C15, se observan los mínimos globales a 40° y 320°, que corresponden a la configuración *synclinal*.

Con la información obtenida de las curvas de energía potencial se diseñaron y estudiaron las distintas conformaciones. Se obtuvieron 4 confórmeros que se optimizaron con el método y la base B3LYP/6-311++g(d,p), obteniéndose así la geometría molecular de la forma más estable: **MMCf.b** (Figura 3.3.9.). Los cálculos y correlación de datos se hacen en base al confórmero de mínima energía **MMCf.b**

Figura 3.3.9. Confórmeros de mínima energía optimizados con nivel de teoría B3LYP/6-311++g(d,p) para **MMCf**.

El confórmero de mínima energía **MMCf.b** presenta una planaridad en la porción -C(O)-NH-C(S)-NH-R favorecida por el puente de hidrógeno O···H intramolecular, con una distancia de enlace 1,823 Å. El grupo metoxilo se encuentra en disposición "cis" con respecto al grupo carbonilo. El anillo de 3-cloro-2-metilfenilo se aparta del plano del resto de la molécula, posiblemente debido al efecto estérico que puede ejercer el grupo metilo.

En la Tabla 3.3.3. se presentan los resultados del estudio de los Orbitales Naturales de Enlace (NBO) a través de las principales interacciones estabilizantes determinadas con el nivel de teoría B3LYP/6-311++(d,p).

De la Tabla 3.3.3. se deduce que la mayor estabilización de la molécula se presenta principalmente por las transferencias de carga LPN2 $\rightarrow \sigma^*$ C9–S con una energía de 73,85 kcal/mol y LPN1 $\rightarrow \pi^*$ C8–O con una energía de 55,35 kcal/mol.

Deslocalización NBO Donante (i) – Aceptor (j)	MMCf.b Kcal/mol
LP O2 → σ* C4 – C8	18,72
LP O2 $\rightarrow \sigma^*$ C8 – N1	25,03
LP O2 $\rightarrow \sigma^*$ N2 – H2N	14,02
LP N1 $\rightarrow \pi^*$ C8 – O2	55,35
LP N1 $\rightarrow \pi^*$ C9 – S	47,34
LP N2 $\rightarrow \pi^*$ C9 – S	73,85
LP S $\rightarrow \sigma^*$ N1 – C9	14,36

Tabla 3.3.3. Análisis de NBO con las principales interacciones estabilizantes de MMCf.b.

3.4. Espectroscopia infrarroja y Raman

Los espectros de infrarrojo (IR) y Raman de N-butilcarbamotioil-4-metoxibenzamida (**MBt**), Nisopropilcarbamotioil-4-metoxibenzamida (**MIs**) y N-[(3-cloro-2-metilfenil)carbamotioil]-4metoxibenzamida (**MMCf**) se presentan en las Figuras 3.4.1.-3.4.3. y, en las Tablas 3.4.1.-3.4.3., las asignaciones de los modos normales de vibración. En esta sección se describirán, comparativamente, solo las asignaciones de los grupos más representativos de los compuestos estudiados.

Las bandas observadas en el intervalo de 3208 a 2833 cm⁻¹ (ver Anexo 3) corresponden a los estiramientos simétricos y antisimétricos de los enlaces C-H de los anillos aromáticos y de las porciones alifáticas. Las bandas localizadas en 3227, 3213 y 3185 cm⁻¹ (calc. 3438, 3428 y 3371 cm⁻¹) para **MBt**, **MIs** y **MMCf**, respectivamente, son atribuidas al estiramiento N2-H. Estas bandas anchas presentan una intensidad débil, lo que refleja la presencia interacciones intramoleculares de puentes de hidrogeno con el carbonilo (C=O HN2-R). Se observa que la menor frecuencia de estiramiento N2-H calculada corresponde a **MMCf** (3371 cm⁻¹). Esta banda está desplazada aproximadamente 60 cm⁻¹ hacia menores números de ondas en comparación con **MBt** y **MIs**. Este comportamiento está relacionado con la mayor fuerza de la interacción intramolecular N2-H⁻⁻⁻O=C en **MMCf** debido la presencia del anillo aromático de 3-cloro-2-metilfenilo. Una explicación más detallada de este comportamiento diferencial para **MMCf** se describe en la Sección 3.6.3, dado que este efecto también se observa en solución y es posible evaluarlo por RMN.

En los 3 compuestos, la posición de la banda intensa del grupo (C=O) no presenta cambios significativos y se observan en 1663, 1662 y 1664 cm⁻¹ (Raman: 1663, 1662, 1667 cm⁻¹) para **MBt**, **MIs** y **MMCf**, respectivamente. La frecuencia del C=O está desplaza a menores frecuencia en los tres casos debido a que este participa en las interacciones intramoleculares anteriormente mencionadas.

Debido a la baja intensidad de las bandas del estiramiento C–S, su asignación en 741, 751 y 721 cm⁻¹ para **MBt**, **MIs** y **MMCf**, respectivamente, fue realizada con ayuda de cálculos teóricos. Los valores de estas frecuencias están de acuerdo con la distancia C-S de 1,665 Å, determinada por RX para **MBt**, corroborando el carácter de simple enlace entre el carbono y el azufre en estas tioureas.

A continuación, se presentan los espectros experimentales de IR y Raman y las tablas con las asignaciones más relevantes para **MBt**, **MIs** y **MMCf**.

3.4.1. N-butilcarbamotioil-4-metoxibenzamida, (MBt).

Figura 3.4.1. Espectros IR (superior) y Raman (inferior) experimentales de MBt.

Tabla 3.4.1. Frecuencias experimentales	, calculadas y	asignación	tentativa	de los	modos	de
vibración más relevantes para MBt .						

Mada	Experir	Experimental ^a IR ^c Raman ^d Calculado ^b		Asignación ^e
WOUD	IR°			Asignación
ν_1	3285(d)		3621(32)	v(N1-H)
ν_2	3227(d)		3438(244)	ν(N2-H)
v_{19}	1663(f)	1663(42)	1704(231)	v(C=O)
v_{20}	1602(f)	1602(100)	1645(221)	v(CH)Ar
V ₂₂	1561(mf)		1582(449)	v(C9-N2)
v_{23}	1528(mf)		1554(342)	δ(Ν1-Η) +δ(Ν2-Η)
v_{24}	1510(mf)		1535(622)	δ(N2-H) + δ(N1-H) + δ(N1C9N2)
v_{36}	1372(d)		1391(168)	ν(C8-N1) +ω(CH ₂) ₃
v_{37}	1350(d)		1361(229)	ν(C9-N2) + ω(CH ₂) ₃
v_{43}	1253(mf)	1253(52)	1293(193)	v(C7-O1)
v_{44}	1178(mf)	1179(26)	1264(285)	ν(C8-C4) + δ(C9N2H)
v_{48}	1152(d)		1182(290)	v(C9-N1)
v_{51}			1161(6)	v(C10-N2) + δ(C10C11C12)
v_{53}	1054(md)		1098(41)	v(C10-N2) + v(C11-C12)
v_{56}	1031(m)		1052(56)	v(C7-O1)
ν_{68}	741(md)		780(24)	v(C-S)

^a en cm⁻¹. ^b B3LYP/6-311++g(d,p), frecuencias IR calculadas e intensidades entre paréntesis (km mol⁻¹). ^c f, fuerte; m, medio; d, débil; md, muy débil. ^d Intensidad relativa entre paréntesis. ^e v, δ , γ ,y ω representa estiramiento, deformación en el plano, deformación fuera del plano y aleteo, respectivamente.

3.4.2. N-Isopropilcarbamotioil-4-metoxibenzamida, (MIs).

Figura 3.4.2. Espectros IR (superior) y Raman (inferior) experimentales de MIs.

 Tabla 3.4.2. Frecuencias experimentales, calculadas y asignación tentativa de los modos de vibración más relevantes para MIs.

Mada	Experi	mental ^a	Calculado ^b	Acignoción ^e
WOUU	IR°	Raman ^d	Frecuencia	Asignación
v_1	3389(md)		3624(32)	ν(N1-H)
ν_2	3213(d)		3428(255)	ν(N2-H)
ν_{17}	1662(f)	1662(64)	1704(225)	v(C=O)
ν_{18}	1604(mf)	1605(100)	1645(218)	δ(CH)Ar
ν_{20}	1566(mf)		1584(446)	v(C9-N2)
ν_{21}	1535(mf)		1557(364)	δ(N1-H) + δ(N2-H)
ν_{22}	1511(mf)		1536(526)	δ(N2-H) + δ(N1-H)
ν_{34}	1317(d)	1318(37)	1377(233)	ν(N1-C8) + δ(N2-C9)
ν_{38}	1261(mf)	1261(56)	1293(163)	v(C1-O1)
ν_{39}	1191(mf)	1189(15)	1265(285)	v(C4-C8)
ν_{40}	1173(mf)	1173(42)	1209(134)	ν(C9-N1) + δ(N1-H)
ν_{43}	1118(d)	1118(7)	1190(220)	v(C10-N2)
ν_{45}	1074(md)	1074(6)	1163(109)	v(C9-N1)
v_{48}	899(md)	898(17)	1084(39)	ν(C8-N1) + ν(C9-N1) + δ(SC9N1)
v_{62}	751(md)	751(32)	762(35)	v(C-S)

^a en cm⁻¹. ^b B3LYP/6-311++g(d,p), frecuencias IR calculadas e intensidades entre paréntesis (km mol⁻¹). ^c f, fuerte; m, medio; d, débil; md, muy débil. ^d Intensidad relativa entre paréntesis. ^ev, δ , γ , ω y ρ representa estiramiento, deformación en el plano, deformación fuera del plano y aleteo, respectivamente.

3.4.3. N-[(3-cloro-2-metilfenil)carbamotioil]-4-metoxibenzamida, (MMCf).

Figura 3.4.3. Espectros IR (superior) y Raman (inferior) experimentales de MMCf.

Tabla 3.4.3. Frecuencias	experimentales,	calculadas y	asignación	tentativa	de los	modos	de
vibración más relevantes p	oara MMCf.						

Modo Experimental ^a		nental ^a		Asignación ^e
WOUU	IR°	Raman ^d	Calculauo	Asignacion
ν1	3318(md)		3620(35)	ν(N1-H)
ν2	3185(m)		3371(414)	ν(N2-H)
v16	1664(f)	1667(78)	1703(197)	v(C=O)
v17	1605(f)	160(100)	1645(162)	ν(CH)Ar
v19		1534(6)	1608(212)	$v(CC) Ar + \delta(N2H)$
ν20	1505(mf)	1511(13)	1604(42)	ν(CH)Ar
ν21		1482(15)	1580(583)	(δ N2-H)
ν22	1458(m)	1458(12)	1554(198)	δ(N1-H)
ν23	1327(m)	1327(14)	1532(485)	$v(CC) Ar + \delta(N1H)$
ν24	1269(d)	1269(13)	1504(34)	δ(C16H ₃)
v25	1255(f)	1256(55)	1503(56)	δ(C7H ₃)
v29			1474(<1)	δ(C16H ₃) + δ(CH) Ar
v33	1173(mf))	1176(36)	1363(790)	v(C9-N2)
v37			1299(32)	v(C10-N2)
v38	1161(m)	1160(42)	1291(261)	v(C1-O1)
v39	1141(d)	1143(16)	1259(200)	v(C4-C8)
v44	1015(d)		1177(155)	ν(C9-N1) + δ(CH) Ar
v46	868(md)	870(38)	1154(116)	δ(N1C9N2)
v49			1092(14)	ν(C8-N1) + ν(C9-N1)
v66	721(md)	725(13)	770(52)	v(C9-S)

^a en cm⁻¹. ^b B3LYP/6-311++g(d,p), frecuencias IR calculadas e intensidades entre paréntesis (km mol⁻¹). ^c f, fuerte; m, medio; d, débil; md, muy débil. ^d Intensidad relativa entre paréntesis.

^eν, δ, γ, ω y ρ representa estiramiento, deformación en el plano, deformación fuera del plano y aleteo respectivamente.

3.5. Espectroscopia electrónica UV-visible

Los espectros UV-visible experimentales y calculados (B3LYP/6-311G(d,p)) de Nbutilcarbamotioil-4-metoxibenzamida (**MBt**), N-isopropilcarbamotioil-4-metoxibenzamida (**MIs**) y N-[(3-cloro-2-metilfenil) carbamotioil]-4-metoxibenzamida (**MMCf**) se presentan en la Figura 3.5.1., 3.5.3. y 3.5.5., respectivamente y los orbitales moleculares involucrados en las transiciones electrónicas se muestran en las Figuras 3.5.2., 3.5.4. y 3.5.6., respectivamente. La concentración de cada una de las soluciones que se utilizó para medir los espectros fue: $4,6x10^{-6}$ M (**MBt**); $1,1x10^{-3}$ M (**MIs**); $2,2x10^{-6}$ M (**MMCf**).

3.5.1. N-butilcarbamotioil-4-metoxibenzamida, (MBt).

El espectro electrónico experimental de **MBt** fue medido en solución de acetonitrilo y para calcular el mismo se tomó en cuenta el efecto implícito del solvente (acetonitrilo). En la Figura 3.5..1 se muestran los espectros experimental y calculado de **MBt**.

Con el apoyo de los cálculos teóricos, se asignaron las bandas de absorción que se detallan en la Tabla 3.5.1., considerando las contribuciones > 30% y f > 0,05.

 Tabla 3.5.1.
 Espectros electrónicos experimental y calculado de MBt en solución de acetonitrilo, junto con las asignaciones de las transiciones más relevantes.

Experimental ^a	Calculado ^b	f ^c	Asignado	%
104	191	0,1880	HOMO-5 → LUMO+1	33
194	194	0,0551	HOMO-5 → LUMO+1	64
216	220	0,1391	HOMO-1 \rightarrow LUMO+2	83
210	223	0,1982	HOMO-4 → LUMO	51
070	280	0,2342	HOMO-2 → LUMO	100
278	292	0,4778	HOMO-1 → LUMO	100

^a en nm. ^b Transiciones electrónicas calculadas (B3LYP/6-311G(d,p). ^c La fuerza del oscilador de las transiciones calculadas en unidades atómicas.

La banda localizada en 194 nm (calc. 191 y 194 nm) se origina por transiciones monoelectrónicas HOMO-5 \rightarrow LUMO+1 desde orbitales no enlazantes de los átomos de nitrógeno y del oxígeno carbonílico hacia los orbitales π^* del anillo aromático.

La absorción en 216 nm (calc. 220 y 223 nm) se debe a excitaciones HOMO-1 \rightarrow LUMO+2 y HOMO-4 \rightarrow LUMO, principalmente entre orbitales π del anillo y no enlazantes de los átomos de azufre, nitrógeno y oxígeno carbonílico y los orbitales π^* de la molécula.

La banda 278 nm (calc. 280 y 292 nm) surge de transiciones dominantes HOMO-2 \rightarrow LUMO y HOMO-1 \rightarrow LUMO entre orbitales π del anillo y el par libre del azufre hacia los orbitales π^* de toda la molécula.

Figura 3.5.2. Orbitales moleculares involucrados en las transiciones electrónicas de **MBt**. La escala de energía es solo cualitativa.

3.5.2. N-isopropilcarbamotioil-4-metoxibenzamida, (MIs).

En la Figura 3.5.3. se muestra el espectro experimental (en acetonitrilo) y el calculado de MIs.

Figura 3.5.3. Espectros UV-visible experimental (trazo continuo) y calculado (trazo discontinuo) de **MIs**.

Tabla 3.5.2 Espectros electrónicos experimental y calculado de **MIs** en solución de acetonitrilo, junto con las asignaciones de las transiciones más relevantes.

Experimental ^a	calculado ^b f ^c		Asignación	%
194	191	0,2158	HOMO-3→ LUMO+1	30
201 ^H	201 ^H 222 0.0957		HOMO-4 \rightarrow LUMO	49
201	222	0,0057	HOMO-1 \rightarrow LUMO+2	36
216	231	0,1122	HOMO-3 → LUMO	27
270	282	0,3298	HOMO-2 → LUMO	96
270	295	0,3756	HOMO-1 \rightarrow LUMO	100

^a en nm. ^b Transiciones electrónicas calculadas (B3LYP/6-311 G(d,p)). ^c La fuerza del oscilador de las transiciones calculadas en unidades atómicas. ^H Hombro.

La banda de absorción observada en 194 nm, generada por transiciones HOMO-3 \rightarrow LUMO+1 (calc. 191 nm), se debe fundamentalmente a excitaciones $\pi \rightarrow \pi^*$ en el anillo aromático. El hombro en 201 nm (calc. 222 nm) se origina por transiciones HOMO-4 \rightarrow LUMO y HOMO-1 \rightarrow LUMO +2 desde orbitales no enlazantes de los átomos de nitrógeno, oxígeno del carbonilo y azufre a los orbitales π^* de toda la molécula.

La banda 216 nm (calc. 231nm) se debe principalmente a una transición monoelectrónica HOMO-3 \rightarrow LUMO originada por excitaciones $\pi \rightarrow \pi^*$ en el anillo. Por último, la absorción más intensa del espectro experimental en 278 nm (calc. 282 y 295 nm) se debe a la contribución de transiciones HOMO-2 \rightarrow LUMO y HOMO-1 \rightarrow LUMO desde orbitales π del anillo de benceno y no enlazantes del átomo de azufre y del oxígeno del grupo metoxilo a orbitales π^* de toda la molécula.

Figura 3.5.4. Orbitales moleculares involucrados en las transiciones electrónicas de MIs.

3.5.3. N-[(3-cloro-2-metilfenil)carbamotioil]-4-metoxibenzamida, (MMCf).

En la Figura 3.5.5. Experimental se presenta el espectro experimental (en acetonitrilo) y el calculado de **MMCf**.

Figura 3.5.5. Espectros UV-visible experimental (trazo continuo) y calculado (trazo discontinuo) de **MMCf**.

Tabla 3.5.3. Espectros electrónicos experimental y calculado de **MMCf** en solución de acetonitrilo, junto con las asignaciones de las transiciones más relevantes.

Experimental ^a	Calculado ^b	fc	Asignado	%
242	238	0,0860	HOMO-2 → LUMO+1	84
242	251	0,1007	HOMO \rightarrow LUMO+3	51
202	302	0,7201	HOMO-2 → LUMO	95
303	313	0,1122	HOMO-1 → LUMO	88

^a en nm. ^b Transiciones electrónicas calculadas (B3LYP/6-311 G(d,p)). ^c La fuerza del oscilador de las transiciones calculadas en unidades atómicas.

La absorción en 242 nm (calc. 238 y 251 nm) es atribuida mayoritariamente a excitaciones HOMO-2 \rightarrow LUMO+1 y, en menor medida, a HOMO \rightarrow LUMO+3. Las mismas se originan desde orbitales π de ambos anillos y no enlazantes de los átomos de azufre, nitrógeno y oxígeno a orbitales π^* extendidos sobre todo el esqueleto molecular. La banda en 303 nm se debe a transiciones dominantes HOMO-2 \rightarrow LUMO y HOMO-1 \rightarrow LUMO, desde orbitales π del anillo metoxifenilo y pares no enlazantes de los átomos de azufre y nitrógeno hacia orbitales π^* de toda la molécula.

3.6. Espectroscopia de Resonancia Magnética Nuclear (RMN).

Los espectros de RMN de ¹H y ¹³C de **MBt**, **MIs** y **MMCf** se presentan en la Figuras 3.6.3. – 3.6.6. y en la Tabla 3.6.1. se muestran los desplazamientos químicos (ppm) experimentales y calculados. Los desplazamientos químicos calculados se obtuvieron por el método GIAO, cuyo procedimiento se detalla en Materiales y Métodos, en la Sección j. Métodos computacionales.

Los compuestos expuestos en este capítulo poseen sistemas aromáticos del tipo benzoilo con sustitución en posición "para" en su estructura. En los espectros de RMN estos protones aromáticos generan señales fuertemente acopladas que no resultaron de primer orden. Las constantes de acoplamiento (*J*) fueron obtenidas mediante cálculos algebraicos tal como se explica más abajo.

Los protones de la porción *para*-benzoil sustituida se pueden tratar como sistemas de cuatro núcleos simbolizados formalmente como AA'BB'. Esta denominación tiene en cuenta que la diferencia entre los desplazamientos químicos (en Hz) de los núcleos involucrados es comparable en magnitud al valor de las constantes de acoplamiento. Los símbolos AA' y BB' representan pares de núcleos que son químicamente equivalentes, pero no magnéticamente equivalentes. Muchos sistemas de espín presentan espectros que no son de primer orden similares a los obtenidos en este trabajo, a pesar de los altos campos magnéticos utilizados para medir los mismos. Algunos ejemplos son bencenos *o*-disustituidos,⁹ bencenos *p*-

disustituidos con diferentes sustituyentes,¹⁰ piridinas γ -sustituidas,¹¹ tiofenos,¹² furanos,^{13,14} etanos 1,2-disustituidos con diferentes sustituyentes y ciclopropanos sustituidos.¹⁵

Al tratar estos sistemas, podemos considerar solo la parte "A" del espectro ya que el completo es aproximadamente centro-simétrico respecto de la posición $\frac{1}{2}(vA + vB)$. En la Figura 3.6.1. se muestra un espectro AA'BB' típico, correspondiente al compuesto **MIs**, donde puede observarse esta simetría.

Figura 3.6.1. Sistema AA'BB' de N-isopropilcarbamotioil-4-metoxibenzamida, las letras A y B indican los dos grupos de protones del sistema.

El espectro AA'BB' tiene 24 líneas en total (12 para la porción AA'). Estas líneas se muestran asignadas con un número en la porción A del espectro (Figura 3.6.2). A partir de los valores de desplazamiento químico (δ) hallados para cada línea en el espectro experimental se llevan a cabo los cálculos que permiten determinar las constantes de acoplamiento en estos espectros que no son de primer orden.^{16,17}

Figura 3.6.2. Zona AA' del espectro ¹H RMN del N-isopropilcarbamotioil-4-metoxibenzamida. Los números sobre el espectro indican las líneas que convergen.

Para ejemplificar el método de cálculo de las constantes de acoplamiento del sistema AA'BB' se tomó la porción del espectro ¹H RMN del compuesto **MIs**, que corresponde a los protones 2 y 6 y 3 y 5 (Figura 3.6.2.).

Las ecuaciones utilizadas son las siguientes:

N = L_1 – L_3 , donde L representa el valor de desplazamiento químico (Hz) para cada una de las 12 líneas mostradas en la Figura 3.6.2.

 $K = L_7 - L_8 = L_5 - L_6$ $L = [(L_{11} - L_{10})(L_{12} - L_9)]^{1/2}$ M = 0 $J_{AA'} = J_{BB'}$ $K = J_{AA'} + J_{BB'}$ $J_{AB} = (N + L)/2$ $J_{AB'} = J_{AB} - L$

Algunas de las posiciones de las líneas y las intensidades del espectro AA'BB' pueden ser expresadas algebraicamente y otras no. Además, no todas las líneas cuyas posiciones pueden ser explícitamente expresadas son dependientes de K (donde K es la suma de las constantes de acoplamiento de AA' y BB'). Esto hace que K sea más difícil de determinar en los espectros AA'BB', particularmente cuando K es grande. Como la apariencia del espectro tiende a volverse independiente de su magnitud y de su signo relativo, el valor de N se obtiene de la diferencia entre la separación de las líneas 1 y 3.^{16–18}

Para ejemplificar el cálculo, se describe a continuación la obtención de constante de acoplamiento *J* en el sistema AA'BB' del compuesto **MIs**. En este caso se tienen los valores en Hz para las líneas de la porción "A" del espectro.

 $L_{5,9} = 4689,3$ $L_{1,2} = 4686,3$ $L_{6,10} = 4684,3$ $L_{7,11} = 4679,5$ $L_{3,4} = 4677,4$ $L_{8,12} = 4674,5$

Para la Porción "A" del espectro se obtuvieron los siguientes valores: **N** = 8,9 Hz; **K** = 5,0 Hz; **L** = 8,4 Hz. A partir de ellos se calcularon las constantes de acoplamiento.

 $J_{2,3} = J_{5,6} = 8,6$ Hz $J_{2,6} = J_{3,5} = 2,1$ Hz $J_{2,5} = J_{3,6} = 0,3$ Hz Estos cálculos se hicieron para todos los compuestos que presentan bencenos *p*-disustituidos (Tabla 3.7.1.).

Tabla 3.7.1. Líneas, valores de N, K y L y constantes de acoplamiento de **MBt**, **MIs** y **MMCf** expresados en Hz.

Param.	MBt	Mis	MMCf
L _{5,9}	4683,3	4689,3	4728,2
L _{1,2}	4680,3	4686,3	4725,1
L _{6,10}	4678,2	4684,3	4723,1
L _{7,11}	4673,3	4679,5	4718,2
$L_{3,4}$	4671,4	4677,4	4716,3
L _{8,12}	4668,4	4674,5	4713,4
Ν	8,9	8,9	8,8
κ	4,9	5,0	4,8
L	8,5	8,4	8,5
J _{2,3} =J _{5,6}	8,7	8,6	8,6
J _{2,6} =J _{3,5}	1,9	2,1	1,9
J _{2,5} = J _{3,6}	0,2	0,3	0,2

A continuación, se presentan los espectros experimentales obtenidos de cada uno de los compuestos expuestos en este capítulo, junto con la asignación de RMN.

3.6.1. N-butilcarbamotioil-4-metoxibenzamida, (MBt).

¹**H RMN** (600 MHz, CDCl₃) δ = 10,77 (br,s, 1H, Bu-NH); 8,97 (s, 1H, O=C-NH), 7,79 (dt, 2H, H3/H5, *J* = 9, 2 y <1 Hz); 6,96 (dt, 2H, H2/H6, *J* = 9, 2 y <1 Hz); 3,86 (s, 3H, C<u>H</u>₃-O); 3,68 (c, 2H, N-C<u>H</u>₂, *J* = 7 Hz), 1,68 (q, 2H, NCH₂C<u>H</u>₂, *J* = 7 Hz), 1,43 (sext, 2H, CH₃C<u>H</u>₂, *J* = 7 Hz), 0,96 ppm (t, 3H, CH3, *J* = 7 Hz).

Figura 3.6.4. Espectro de RMN de ¹³C (zona ampliada) de **MBt**.

¹³**C RMN** (151 MHz, CDCl₃) δ = 179,9 (C=S); 166,4 (C=O); 163,9 (C1); 129,7 (C3/C5); 123,9 (C4); 114,5 (C2/C6); 55,7 (CH₃-O); 45,7 (N-CH₂); 30,4 (NCH₂<u>C</u>H₂); 20,3 (CH₃<u>C</u>H₂); 13,8 ppm (<u>C</u>H₃CH₂).

3.6.2. N-isopropilcarbamotioil-4-metoxibenzamida, (MIs).

Figura 3.6.5. Espectro de RMN de ¹H (zona ampliada) de **MIs**.

¹**H RMN** (600 MHz, CDCl₃) δ = 10,67 (br,s, 1H, ⁱPr-NH); 8,87 (s, 1H, O=C-NH); 7,80 (dt, 2H, H3/H5, *J* = 9, 2 y <1 Hz,); 6,98 (dt, 2H, H2/H6, *J* = 9, 2 y <1 Hz); 4,55 (octupl, 1H, CH, *J* = 7Hz); 3,88 (s, 3H, CH₃-O); 1,34 ppm (d, 6H, CH₃, *J* = 7 Hz).

Figura 3.6.6. Espectro de RMN de ¹³C (zona ampliada) de MIs.

¹³**C RMN** (151 MHz, CDCl₃) δ = 178,8 (C=S); 166,4 (C=O); 164,0 (C1); 129,7 (C3/C5); 124,0 (C4); 114,6 (C2/C6); 55,7 (CH₃-O), 48,0 (CH), 21,9 ppm (CH₃).

3.6.3. N-[(3-cloro-2-metilfenil)carbamotioil]-4-metoxibenzamida, (MMCf).

Figura 3.6.7. Espectro de RMN de ¹H (zona ampliada) de **MMCf**.

¹**H RMN** (600 MHz, CDCl₃) δ = 12,33 (br,s, 1H, Ar-N<u>H</u>); 9,22 (s, 1H, O=C-N<u>H</u>); 7,87 (dt, 2H, H5/H3, *J* = 9, 2 y <1 Hz); 7,55 (d, 1H, H13, *J* = 8 Hz); 7,35 (d, 1H, H15, *J* = 8 Hz); 7,19 (t, 1H,

H14, *J* = 8 Hz); 6,99 (dt, 2H, H2/H6, *J* = 9, 2 y <1 Hz); 3,89 (s, 3H, C<u>H</u>₃-O); 2,37 ppm (s, 3H, C<u>H</u>₃-Ar).

Figura 3.6.8. Espectro de RMN de ¹³C (zona ampliada) de **MMCf**. ¹³C RMN (151 MHz, CDCl₃) δ = 180,2 (C=S); 166,6 (C=O); 164,2 (C4); 137,8 (C10); 135,3 (C1); 132,6 (C13); 129,9 (C5/C3); 128,6 (C12); 126,8 (C15); 125,5 (C14); 123,4 (C11); 114,6 (C2/C6); 55,7 (-O-CH₃); 15,3 ppm (Ar-CH₃).

El espectro protónico muestra señales N2–H fuertemente desapantalladas a 10,77, 10,67 y 12,33 ppm para **MBt**, **MIs** y **MMCf**, respectivamente. Tal desprotección está causada principalmente por la interacción intramolecular de puente de hidrogeno. La mayor desprotección corresponde a **MMCf** con una diferencia notable respecto de los otros dos compuestos. El cambio de un sustituyente alquilo por un arilo provoca un corrimiento de la señal hacia campos bajos de aproximadamente 1,6 ppm. Esta diferencia muestra un incremento de la acidez del enlace N2-H en **MMCf**, debido a que el valor del desplazamiento químico es directamente proporcional a la fuerza de enlace de hidrogeno. La presencia del anillo aromático es crucial para explicar el desapantallamiento observado en **MMCf**, ya que permite que el par libre sobre el N2 se deslocalice hacia el anillo incrementando su acidez (ver Figura 3.6.9.). De este modo, el N2 adquiere un cierto carácter de amonio lo que ayuda a incrementar la acidez del enlace N2-H.

Este efecto de un mayor desapantallamiento también se observa en la señal de N1–H con valores de 8,79, 8,87 y 9,22 ppm para **MBt**, **MIs** y **MMCf**.

Figura 3.6.9. Estructuras de resonancia mostrando el carácter parcial de "amonio" y la mayor acidez del enlace N2-H en **MMCf**.

3.7. Difracción de rayos X

Para N-butilcarbamotioil-4-metoxibenzamida (**MBt**) se logró monocristales con calidad suficiente para la elucidación de su estructura por difracción de rayos X. La Tabla 3.7.1. describe los datos del cristal, la Tabla 3.7.2. los parámetros estructurales experimentales y calculados y en la Figura 3.7.1. se muestra el diagrama ORTEP. En el Anexo 3 se encuentra información adicional cristalográfica.

Tabla	3.7.1.	Resul	tados	de re	efinami	iento	estruc	ctural	y d	atos	de	la	estruc	tura	de	MBt.

Identificación	MBt
Formula empírica	$C_{13}H_{18}N_2O_2S$
Peso molecular	266,35
Temperatura/K	293(2)
Sistema cristalino	Monoclínico
Grupo espacial	P2 ₁ /c
a/Å	6,3789(3)
b/Å	23,7392(13)
c/Å	9,2761(5)
α/°	90
β/°	98,122(5)
γ/°	90
Volumen/Å ³	1390,59(13)
Z	4
$ ho_{calc}g/cm^3$	1,272
Coeficiente de absorción mm ⁻¹	0,229
F(000)	568,0
Radiación	ΜοΚα (λ = 0,71073)
2θ rango para colección de datos/°	6,452 a 57,504
Rango de los índices	-8 ≤ h ≤ 8, -13 ≤ k ≤ 30, -12 ≤ l ≤ 10
Reflexiones colectadas	5746
Reflexiones independientes	$3009 [R_{int} = 0,0362, R_{sigma} = 0,0563]$
Datos/restricciones/parámetros	3009/0/235

Bondad de ajustes F ²	1,027	
Índices R Final ^a [I>=2σ (I)]	R ₁ = 0,0515, wR ₂ = 0,1021	
Índices R final [todos los datos]	R ₁ = 0,0937, wR ₂ = 0,1205	
Mayor diferencia de pico/valle (e Å ⁻³) 0,16/-0,24		
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} , \ WR_{2} = [\Sigma W (F_{o} ^{2} - F_{c} ^{2})^{2} / \Sigma W (F_{o} ^{2})^{2}]^{1/2}$		

Tabla 3.7.2. Distancias de enlace (Å), ángulos de enlace y de torsión (°), experimentales y calculados (B3LY/6-311++g(d,p)), seleccionados para **MBt**. La numeración de los átomos es la descripta en el diagrama ORTEP de la Figura 3.7.1.

Daram	MBt		Dorom	MBt	
Param.	Exp.	Calc.	Paralli.	Exp.	Calc.
r(C1-O1)	1,361(2)	1,356	∠(O2-C8-N1)	121,45(19)	122,2
r(C1-C6)	1,378(3)	1,400	∠(O2-C8-C4)	121,4(2)	121,7
r(C1-C2)	1,379(3)	1,402	∠(N1-C8-C4)	117,09(18)	116,0
r(C2-C3)	1,373(3)	1,384	∠(N2-C9-N1)	116,4(2)	116,1
r(C3-C4)	1,389(3)	1,405	∠(N2-C9-S)	124,42(17)	125,7
r(C4-C5)	1,379(3)	1,398	∠(N1-C9-S)	119,14(16)	118,2
r(C4-C8)	1,482(3)	1,490	∠(N2-C10-C11)	110,7(2)	110,4
r(C5-C6)	1,377(3)	1,390	∠(C10-C11-C12)	111,4(2)	112,5
r(C7-O1)	1,416(3)	1,425	∠(C13-C12-C11)	113,0(3)	112,9
r(C8-O2)	1,224(2)	1,229	∠(C8-N1-C9)	128,77(19)	129,4
r(C8-N1)	1,369(3)	1,383	∠(C9-N2-C10)	123,9(2)	123,8
r(C9-N2)	1,319(3)	1,335	∠(C1-O1-C7)	118,4(2)	119,0
r(C9-N1)	1,394(3)	1,406	Ф (С5-С4-С8-О2)	13,0(3)	-16,5
r(C9-S)	1,665(2)	1,677	Ф (СЗ-С4-С8-О2)	-164,2(2)	162,2
r(C10-N2)	1,458(3)	1,459	Φ (C5-C4-C8-N1)	-168,2(2)	162,9
r(C10-C11)	1,506(3)	1,528	Φ (C3-C4-C8-N1)	14,7(3)	-18,4
r(C11-C12)	1,525(3)	1,533	Φ (N2-C10-C11-C12	-174,2(2)	179,9
r(C12-C13)	1,510(4)	1,531	Ф (С10-С11-С12-С13)	173,8(3)	179,9
∠(O1-C1-C6)	124,8(2)	124,6	Φ (O2-C8-N1-C9)	6,3(3)	-3,9
∠(O1-C1-C2)	115,5(2)	115,8	Φ (C4-C8-N1-C9)	-172,52(19)	177,2
∠(C6-C1-C2)	119,7(2)	119,6	Φ (N2-C9-N1-C8)	-1,2(3)	-0,1
∠(C3-C2-C1)	120,5(2)	120,2	Φ (S-C9-N1-C8)	178,18(18)	-179,9
∠(C2-C3-C4)	120,5(2)	120,9	Φ (N1-C9-N2-C10)	-178,7(2)	-179,6
∠(C5-C4-C3)	118,2(2)	118,4	Φ (S-C9-N2-C10)	2,0(3)	0,2
∠(C5-C4-C8)	117,83(19)	117,4	Φ (C11-C10-N2-C9)	164,5(2)	177,7
∠(C3-C4-C8)	123,9(2)	124,2	Ф (С6-С1-О1-С7)	0,8(4)	0,4
∠(C6-C5-C4)	121,6(2)	121,4	Ф (С2-С1-О1-С7)	-179,0(3)	-179,3
∠(C1-C6-C5)	119,5(2)	119,6	-	-	-

La molécula de **MBt** cristaliza en P2₁/c con a=6,3789(3), b=23,7392(13), c=9,2761(5) Å, $\alpha=\gamma=90^{\circ}$, $\beta=98,122(5)^{\circ}$ y Z=4. Esta presenta, en el estado cristalino, un enlace de hidrógeno intramolecular N-H···O con distancias H···O de 1,947 Å. La distancia de enlace del carbonilo es de 1,223 Å.

Figura 3.7.1. Diagrama ORTEP de **MBt**, con elipsoides térmicos al 30% del nivel de probabilidad.

El grupo $-O-CH_3$ está en el mismo plano del anillo y coincide con el formado por el esqueleto carbonado del butilo (a este conjunto lo llamaremos plano 1). La porción de carbonil tiourea, -C(O)NHC(S)NH-, forma un segundo plano (plano 2), éstos están desplazados solo 16,4° entre sí, dando lugar a una molécula "casi" plana.

Las interacciones intermoleculares detectadas en el empaquetamiento cristalino pueden explicar la planaridad observada. Por ello se hizo un análisis de superficie de Hirshfeld, siguiendo el procedimiento descripto en Materiales y Métodos (Sección k) los detalles más significativos del análisis se puntualizan a continuación.

Una interacción de enlace de puente de hidrógeno intramolecular NH···O, con una distancia interatómica H···O relativamente corta de 1,947 Å y una cadena C8-N1-C9-N2 con un ángulo de solo 1,20° completan una estructura pseudo-cíclica que evidencia un grupo carboniltiourea, C(O)NHC(S)NH, esencialmente planar. Los grupos C=O y C=S están en posición antiperiplanar, dando lugar a la forma de *S* descripta por Woldu and Dillen.¹⁹

La Figura 3.7.2. muestra la superficie de Hirshfeld de **MBt**, donde se aprecian los contactos más fuertes (marcados como círculos rojos de distinta intensidad en la Figura 3.7.2. a y b) que corresponden a interacciones intermoleculares $S \cdots H/H \cdots S$, (1), interacciones $C \cdots C/C \cdots C$, (2) y $O \cdots C/C \cdots O$, (3). El análisis de la superficie de Hirshfeld (Figura 3.7.2.c) mostró las siguientes contribución $S \cdots H$: 13,7 %, $C \cdots C$: 9 % y $C \cdots O$: 2.7 %.

Figura 3.7.2. a) Vista de la superficie de Hirshfeld de **MBt** evaluada con el descriptor d_{norm} (distancia de contacto normalizada) mostrando los contactos (**1**) S···H, (**2**) C···C y (**3**) O···C, **b**) la molécula girada 180° mostrando el contacto (**2**) C···C. **c**) Gráfico de descomposición 2D de los principales contactos.

En la Figura 3.7.3. se muestra la superficie de Hirshfeld generada sobre la propiedad de índice de forma (*shape index*), la misma ayuda visualizar los arreglos de apilamiento (stacking) planar, empaquetamientos característicos y las formas de contacto con moléculas vecinas entre sí.²⁰

En la propiedad índice de forma (*shape index*) se observan triángulos alternados de color rojo y azul, estos evidencian la presencia de arreglos de apilamiento (*stacking*) π – π en la red cristalina.^{21,22}

Una de las principales interacciones responsables del empaquetamiento molecular es C···H/H···C con una contribución de 14,5%. Estas corresponden a interacciones C-H··· π , las que en la superficie de Hirshfeld (Figura 3.7.3. *shape index*) aparecen como áreas cóncavas de color naranja (π ···H-C) y áreas convexas de color azul (C-H··· π).

Figura 3.7.3. a. Superficie de Hirshfeld evaluada con el índice de forma (*shape index*) **b.** Molécula girada 180° alrededor del eje central del gráfico.

3.8. Actividad biológica

A continuación, se presentan los resultados de los ensayos biológicos realizados a los compuestos **MBt**, **MIs** y **MMCf**.

3.8.1. Crecimiento celular y formación del biofilm

El crecimiento de las bacterias y la inhibición de la formación de biofilm fueron medidos espectrofotométricamente a una absorbancia de 560 y 580 nm, respectivamente. Los resultados obtenidos fueron cuantificados en porcentajes y se presentan en la Tabla 3.8.1. El ensayo se hizo a dos concentraciones diferentes, 10 μ g/mL y 100 μ g/mL, empleando DMSO como disolvente y control positivo (crecimiento de la bacteria y formación de biofilm) y el antibiótico Ciprofloxacina, CIP, con una concentración de 1 μ g/mL como control negativo. El procedimiento del ensayo se presentó en la sección de Bioensayos del Capítulo 2.

Tabla 3.8.1. Porcentaje de inhibición del crecimiento de las bacterias y porcentaje de inhibición de la formación del biofilm.

	% Inhibición			
Compuestos	Crecimiento DO 560nm	Formación de Biofilm DO 580nm		
MBt 10 μg/mL	1	23		
MBt 100 μg/mL	16	24		
MIs 10 μg/mL	8	22		
MIs 100 μg/mL	12	6		
MMCf 10 μg/mL	1	21		
MMCf 100 µg/mL	13	2		
CIP 1 μg/mL	79	90		

Los porcentajes de inhibición del crecimiento bacteriano de **MBt**, **MIs y MMCf** no superaron el 16% con respecto al crecimiento observado en DMSO (100%) y con respecto al antibiótico CIP, como se observa en la Figura 3.8.1. (barras blancas, 560 nm) por lo que puede aseverarse que ninguno de los compuestos presenta actividad antimicrobiana.

De manera similar, la inhibición de crecimiento del biofilm medido a una absorción de 580 nm (barras negras, Figura 3.8.1.) muestra resultados que en el mejor de los casos alcanza el 24% de inhibición, indicando la pobre capacidad de los compuestos de inhibir el crecimiento del biofilm. Tampoco se observan cambios importantes en el comportamiento con el incremento de la concentración.

Figura 3.8.1. Efecto de **MBt**, **MIs** y **MMCf** sobre el crecimiento y la formación de biopelículas de cultivos de *Pseudomonas aeruginosa* PAO1, a las concentraciones de 10 y 100 μg/mL.

3.8.2. Quorum sensing, QS.

Los resultados de evaluación del QS realizados sobre la cepa *C. violaceum* CV026 se presentan en la Figura 3.8.2. Un halo traslucido significa actividad antibacteriana. Una disminución de la coloración violeta con respecto al control de DMSO, cercana al pocillo donde se encuentra depositado el compuesto evaluado, indica la inhibición del Quorum sensing.

Figura 3.8.2. Efecto de los compuestos ensayados en la producción de violaceína en *C. violaceum* CV026. A. **MBt** 100 µg/mL ($6,4 \pm 0,5$ mm); B. **MBt** 1000 µg/mL ($6,5 \pm 0,3$ mm); C. **MIs** 100 µg/mL ($5,4 \pm 0,3$ mm); D. **MIs** 1000 µg/mL ($7,3 \pm 0,5$ mm); E. G. **MMCf** 100 µg/mL ($6,0 \pm 0,5$ mm); H. **MMCf** 1000 µg/mL ($7,3 \pm 0,5$ mm); **DMSO** 2,5% control.

De lo observado en la Figura 3.8.2. puede decirse que los halos de inhibición resultaron de aproximadamente 6 a 7 mm, exhibiendo la posibilidad de que las carbonil tioureas evaluadas puedan inhibir la producción del pigmento asociado (violaceína) al sistema de QS.

Se observa que los halos de inhibición no varían notoriamente con respecto a las concentraciones empleadas, ya que la diferencia del tamaño de los halos a 100 μ g/mL y 1000 μ g/mL es menor a 2 mm.

3.8.3. MMT

En la Tabla 3.8.2 se presentan los resultados de los compuestos **MBt**, **MIs** y **MMCf** evaluándose la actividad metabólica en *P. aeruginosa*, PAO1. Los datos se expresan como valor medio ± desviación estándar.

Compuestos	DO a 570 nm uestos		% Inhibición Actividad Metabólica de bacterias en Biofilm	
	10 µg/mL (%)ª	100 µg/mL (%)ª	10 µg/mL	100 µg/mL
MBt	$1,\!209\pm0,\!061$	$\textbf{1,048} \pm \textbf{0,120}$	17	28
MIs	$1,191 \pm 0,033$	$\textbf{0,895} \pm \textbf{0,058}$	18	39
MMCf	$1,\!147\pm0,\!081$	$1,\!164\pm0,\!039$	21	20
CIP 1 µg/ml	$0,164 \pm 0,009$			89
Control	$1,\!455\pm0,\!079$			

Tabla 3.8.2. Efecto de los compuestos **MBt**, **MIs**, y **MMCf** sobre la actividad metabólica de las células de biofilm PAO1 de *P. aeruginosa*.

La viabilidad de las células bacterianas presentes en la biopelícula presentó una inhibición menor al 40% en todos los compuestos a las concentraciones de 10 μ g/mL y 100 μ g/mL. La inhibición de la actividad metabólica del biofilm de **MBt** y **MMCf** sobre las bacterias es independiente de las concentraciones empleadas, ya que no se observan diferencias en los porcentajes de inhibición sugiriendo que la efectividad de los mismos se alcanza a bajas dosis.

Por otra parte, **MIs** duplicó su efecto de inhibición del biofilm de un 18% a un 39% cuando se aumentó su concentración de 10 μ g/mL a 100 μ g/mL.

3.9. Conclusiones

La frecuencia de estiramiento del enlace N2-H en los compuestos **MBt**, **MIs** y **MMCf**, asignada con la ayuda de los cálculos teóricos, están desplazadas hacia menores números de onda con respecto a la asignación de los N-H de sus homólogos amidas secundarias en la bibliografía 3470 – 3200 cm⁻¹,²³ debido a su participación en interacciones intramoleculares. Las mismas se presentan como bandas anchas en los espectros IR experimentales, indicando que dichos enlaces participan en interacciones de puente de hidrógeno intramolecular con el átomo de oxígeno del carbonilo, N2H···O=C. Este contacto intramolecular fue detectado en los espectros de RMN, en la estructura cristalina de **MBt** y en las familias de compuestos anteriormente estudiados en este trabajo doctoral.

Las bandas de absorción IR asignadas al grupo carbonilo de **MBt**, **MIs** y **MMCf** no muestran cambios significativos en su localización, ya que los tres compuestos son similares estructuralmente en esa porción molecular e intervienen en las mismas interacciones intramoleculares.

La porción carbonil tiourea contiene tres diferentes tipos de enlace C-N con distintos carácter de doble enlace que pueden detectarse observando las distancias interatómicas C-N. Los

valores encontrados en la estructura cristalina de **MBt** muestran que el enlace C9-N2 es el que presenta mayor carácter de doble enlace, debido a la fuerte contribución de la estructura de resonancia con separación de carga del enlace tioamida (S⁻-(R)C=N⁺HR'). Para los compuestos **MIs** y **MMCf** estas observaciones se hicieron en base a los confórmeros de mínima energía obtenidos por cálculos computacionales. (Tabla 3.9.1).

 $\bigcup_{\substack{||\\ C_8 \\ N_1}}^{O} \sum_{\substack{||\\ C_9 \\ C_9 \\ N_1}}^{N_2}$

Distancias	stancias MBt		s MBt MIs		MIs	MMCf	
De Enlace	Exp.	Calc.	Calc.	Calc.			
C8-N1	1,369	1,383	1,383	1,385			
C9-N1	1,394	1,406	1,406	1,406			
C9-N2	1,319	1,335	1,335	1,348			
C9-S	1,665	1,677	1,680	1,671			
C8-O2	1,224	1,229	1,229	1,230			

Tabla 3.9.1. Distancias de enlace en Å de la porción carboniltiourea.

Las pruebas biológicas realizadas evidencian que estos compuestos no tienen actividad antimicrobiana frente a las cepas *P. aeruginosa* PAO1 y *C. violaceum* CV026. La prueba de inhibición del biofilm en la cepa PAO1 indica que la inhibición del biofilm fue significativa y no así la inhibición de crecimiento. Esto indicaría que el mecanismo de acción no sería antimicrobiano sino por inhibición del Quorum sensing. Este resultado se confirma con el ensayo realizado en la cepa mutante C. violaceum CV026, donde se detecta una inhibición del mecanismo de QS. Por otra parte los compuestos son capaces de inhibir el metabolismo de las células que forman el biofilm, por lo tanto es otra forma de frenar su desarrollo y posibilitar su eliminación. Sin embargo, cabe destacar que se duplica la inhibición de la actividad metabólica de las bacterias en el biofilm cuando se modifica la concentración de **MIs** de 10 mg/L a 100 mg/L.

3.9.1. Bibliografía

- Kang, I.-J. *et al.* Design, synthesis, and anti-HCV activity of thiourea compounds. *Bioorg. Med. Chem. Lett.* **19**, 1950–1955 (2009).
- 2. Ramadas, K., Suresh, G., Janarthanan, N. & Masilamani, S. Antifungal activity of 1,3disubstituted symmetrical and unsymmetrical thioureas. *Pestic. Sci.* 52, 145–151 (1998).
- 3. del Campo, R. *et al.* Thiourea derivatives and their nickel(II) and platinum(II) complexes: antifungal activity. *J. Inorg. Biochem.* **89**, 74–82 (2002).
- 4. Brito, T. O. *et al.* Design, syntheses and evaluation of benzoylthioureas as urease inhibitors of agricultural interest. *RSC Adv.* **5**, 44507–44515 (2015).
- Saeed, A., Flörke, U. & Erben, M. F. A review on the chemistry, coordination, structure and biological properties of 1-(acyl/aroyl)-3-(substituted) thioureas. *J. Sulfur Chem.* 35, 318–355 (2013).
- 6. El Aamrani, F. Z., Kumar, A., Beyer, L., Cortina, J. L. & Sastre, A. M. Liquid-liquid extraction of gold(iii) and its separation over copper(II), iron(III), and zinc(II) using thiourea derivatives from chloride media. *Solvent Extr. Ion Exch.* **16**, 1389–1406 (1998).
- Utzat, K., Bohn, R. K. & Michels, H. H. Four conformers observed and characterized in 1hexyne. *J. Mol. Struct.* 841, 22–27 (2007).
- Saeed, A., Bolte, M., Erben, M. F. & Pérez, H. Intermolecular interactions in crystalline 1-(adamantane-1-carbonyl)-3-substituted thioureas with Hirshfeld surface analysis. *CrystEngComm* 17, 7551–7563 (2015).
- Sun, H., Hua, Q., Guo, F., Wang, Z. & Huang, W. Selective Aerobic Oxidation of Alcohols by Using Manganese Oxide Nanoparticles as an Efficient Heterogeneous Catalyst. *Adv. Synth. Catal.* **354**, 569–573 (2012).
- Zheng, J. *et al.* Reductant-directed formation of PS–PAMAM-supported gold nanoparticles for use as highly active and recyclable catalysts for the aerobic oxidation of alcohols and the homocoupling of phenylboronic acids. *Chem. Commun.* 48, 6235 (2012).
- 11. Peters, B. J. *et al.* Structure Dependence of Pyridine and Benzene Derivatives on Interactions with Model Membranes. *Langmuir* **34**, 8939–8951 (2018).
- Tietz, J. I., Seed, A. J. & Sampson, P. Preparation of Brominated 2-Alkoxythiophenes via Oxidation and Etherification of 2-Thienyltrifluoroborate Salts. *Org. Lett.* 14, 5058–5061 (2012).
- Song, Z. Z. & Wong, H. N. C. 4-disubstituted furans, 5. Regiospecific mono-ipsoiodination of 3,4-bis(trimethylsilyl)furan and regiospecificipso-iodination of tris[(4-alkyl- or -aryl)furan-3-yl]boroxines to 4-substituted 3-(trimethylsilyl)furans and unsymmetrical, 3,4disubstituted f. *Liebigs Ann. der Chemie* **1994**, 29–34 (1994).
- 14. Katritzky, A. R. et al. Synthesis of 2,4-disubstituted furans and 4,6-diaryl-substituted 2,3-

benzo-1,3a,6a-triazapentalenes. Arkivoc 2004, 109 (2003).

- 15. Laurella, S. L. Resonancia magnética nuclear: Una herramienta para la elucidación de estructuras moleculares. I, (2017).
- Martin, J. & Dailey, B. P. Proton NMR Spectra of Disubstituted Benzenes. *J. Chem. Phys.* 37, 2594–2602 (1962).
- 17. Bovey, F., Mirau, P. & Gutowsky, H. S. Nuclear Magnetic Resonance Spectroscopy. (1988).
- 18. Günther, H. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry. (Wiley-VCH, 2013).
- 19. Woldu, M. G. & Dillen, J. A quantum mechanical study of the stability and structural properties of substituted acylthiourea compounds. *Theor. Chem. Acc.* **121**, 71–82 (2008).
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. *Chem. Commun.* 3814 (2007). doi:10.1039/b704980c
- 21. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallographica Section *B: Structural Science* **60**, (2004).
- 22. Spackman, M. A. & Jayatilaka, D. Hirshfeld surface analysis. *CrystEngComm* **11**, 19–32 (2009).
- 23. Larkin, P. J. 'IR and Raman Spectroscopy Principles and Spectral Interpretation'. Vasa (2011). doi:10.1016/b978-0-12-386984-5.10001-1

1. CAPÍTULO 4

Tioureas N',N'-sustituidas

4.1. Introducción

En este capítulo se presentan los estudios experimentales, mediante espectroscopia electrónica (UV-visible), vibracional (IR y Raman) y de resonancia magnética nuclear (RMN, ¹H y ¹³C) y cálculos teóricos de cinco nuevas tioureas *N',N'*-sustituidas. También fue posible determinar en cuatro de ellas, la estructura cristalina por difracción de rayos X en monocristal. Los compuestos estudiados y sus códigos de identificación entre paréntesis son: N-[di(isopropil)carbamatiol]-4-metoxibenzamida (**MIso2**), N-[di(metil)-carbamatiol]-4-metoxibenzamida (**MIso2**), N-[di(metil)-carbamatiol]-4-(etilcarbamotioil)-2,2-difenilacetamida (**DifEt**) y N-(difenilcarbamatiol)-4-metoxibenzamida (**Mf2**).

Todos los α -carbonil tioureidos (o α -carbonil tioureas) estudiados en este capítulo presentan diferentes conformaciones. Las mismas han sido designadas con letras de acuerdo a la nomenclatura propuesta por Woldu and Dillen,¹ (Esquema 4.1.1). Para los compuestos **DifEt** y **AntBu**, donde R²=H, la porción carbonil tiourea -C(O)-NH-C(S)-NH- presenta una estructura planar local, donde la posición de los grupos C=O y C=S se disponen con orientación antiperiplanar dando lugar principalmente a la forma *S*.

Esquema 4.1.1. Posibles conformaciones para tioureas N-acil/aroil-N'-sustituidas.

En el caso de **Miso2**, **Mm2** y **Mf2** donde R² y R³ \neq H, la formación de puentes de hidrógeno intramoleculares está impedida y, por lo tanto, la forma S mencionada anteriormente como la conformación más estable (Capitulo 2. Sección 2.1. Introducción), deja de serla. Las conformaciones predominantes en estos casos se analizarán individualmente. Experimentalmente se determinaron por difracción de rayos X las conformaciones de las moléculas **Miso2** y **Mm2**. Del compuesto **Mf2** no se pudo obtener cristales de buena calidad para determinar su estructura cristalina. La molécula **Mm2** adopta la forma *U*, geometría *anticlinal*,^{2,3} mientras la molécula **Miso2** adopta la *synclinal*.

4.2. Síntesis

En el Esquema 4.2.1. se presenta, en forma genérica, la síntesis de los compuestos **MIso2**, **Mm2**, **AntBu**, **DifEt** y **Mf2**. La preparación de los correspondientes isotiocianatos se detalló en el Capítulo 1, Sección 1.2.

El cloruro de ácido correspondiente (11,5 mmol) se añadió gota a gota a una solución de tiocianato de potasio (17,4 mmol) disuelto en acetonitrilo seco. La mezcla se calentó a reflujo por dos horas y luego se agregó la amina correspondiente (11,5 mmol). Esta mezcla se dejó reaccionar durante dos horas con calentamiento (90 - 95°C), al cabo del cual se adicionó hielo y agua destilada fría.

Esquema 4.2.1. Esquema general de la síntesis.

En el caso de **DifEt** y **AntBu**, al finalizar la reacción se formó un aceite de color amarillo pálido, el que fue extraído de la fase acuosa con diclorometano empleando un embudo de decantación. El agua residual se eliminó con sulfato de sodio anhidro, se filtró y eliminó el solvente en un rotavapor, obteniéndose un sólido de color blanco impregnado de un aceite color naranja. El aislamiento del producto se realizó mediante cromatografía en columna (hexano/acetato de etilo, 7:3)

En la síntesis de **MIso2**, **Mm2** y **Mf2** cuando se adicionó la mezcla de hielo y agua destilada se formó un sólido blanco. El sólido fue lavado con etanol frío y su caracterización permitió comprobar la presencia de los compuestos de interés.

4.3. Estudio teórico químico cuántico

Para determinar los confórmeros de mínima energía de **MIso2**, **Mm2**, **DifEt**, **AntBu** y **Mf2** se analizaron las curvas de energía potencial relativa para los enlaces con libre rotación, los que se ilustran en la Figura 4.3.1. Una vez obtenidos los mínimos globales, se siguió el

procedimiento descripto en la sección Métodos computacionales del capítulo Métodos Experimentales, Técnicas y Equipamiento.

Figura 4.3.1. Enlaces seleccionados y designación de los ángulos de torsión para MIso2, Mm2, DifEt, AntBu y Mf2.

Los ángulos diedros analizados y los valores encontrados para los mínimos de energía se muestran en la Tabla 4.3.1. El confórmero más estable (mínima energía), optimizado con el nivel de teoría B3LYP/6-311++g(d,p) para cada uno de los compuestos estudiados, es el que se adoptó para predecir los espectros IR, Raman, UV-visible y de RMN, como así también los cálculos de NBO.

Tabla 4.3.1. Descripción de los ángulos de torsión analizados y valores de los mínimos locales encontrados.

Compuesto	Torsión	Ángulo de mínima energía (°)
	τ1: C3C4-C8O2	0, 20, 200 y 360
	τ2: C4C8-N1C9	170
MIso2	τ3: C8N1-C9N2	70 y 290
	τ4: SC9-N2C11	200 y 350
	τ5: C9N2-C11C13	80, 210 y 260
Mm2	τ1: C5C4-C8O2	0, 20, 200 y 360
	τ2: C4C8-N1C9	190
	τ3: C8N1-C9S	130 y 230
	τ4: N1C9-N2C10	20, 170 y 340

DifEt	τ1: C11C1-C2O	80, 140, 150 y 310	
	τ2: OC2-N1C3	0 y 360	
	τ3: C2N1-C3S	130 y 230	
	τ4: N1C3-N2C4	180	
	τ5: C3N2-C4C5	140, 220 y 290	
	τ1: C2C1-C5O	60, 120, 240 y 300	
	τ2: OC15-N1C16	0, 350 y 360	
AntBu	τ3: C15N1-C16S	130 y 230	
	τ4: N1C16-N2C17	180	
	τ5: C16N2-C17C18	140, 230 y 290	
Mf2	τ1: C5C4-C8O2	0, 20, 200 y 300	
	τ2: O2C8-N1C9	0	
	τ3: C8N1-C9N2	50 y 310	
	τ4: N1C9-N2C10	30, 160 y 330	

4.3.1. N-[di(isopropil)carbamatiol]-4-metoxibenzamida, (MIso2).

Las curvas de energía potencial para los ángulos de torsión mostrados en la Figura 4.3.1. se presentan en la Figura 4.3.2., a partir de ellas se puede observar:

Figura 4.3.2. Curvas de energía potencial en función de la variación de los ángulos diedros τ_1 . τ_5 para **Miso2**, calculados con el nivel de teoría B3LYP/6-31g(d).

- La torsión alrededor de τ1 (C3C4-C8O2) presenta dos mínimos globales aproximadamente equivalentes (20° y 200°) y dos mínimos locales (160° y 340°). En todos ellos el grupo carbonilo se dispone en el mismo plano del anillo aromático.
- τ2 (C4C8-N1C9) presenta un único mínimo a 170°, que corresponde a una configuración antiperiplanar.
- En la torsión τ3 se observan dos mínimos en 70° y 290°, con una diferencia de energía de 0,12 kcal/mol, con una configuración *synclinal* en ambos mínimos para el enlace C8N1-C9N2.
- Para el ángulo de torsión τ4 (SC9-N2C11) se observan dos mínimos a 200° (*antiperiplanar*) y 350° (*synperiplanar*) respectivamente.
- Los mínimos encontrados en la torsión τ5, en 80°, 210° y 260° corresponden a las configuraciones synclinal, perianticlinal y anticlinal del enlace C9N2-C11C13.

A partir de la información obtenida de las curvas de energía potencial se plantearon las distintas opciones conformacionales que fueron optimizadas con el nivel B3LYP/6-311++g(d,p), obteniéndose la estructura más estable la cual se muestra en la Figura 4.3.3.

Figura 4.3.3. Confórmero más estable de MIso2.

Las distancias de enlace en torno a la función carbonil tiourea C=O, C=S, N1-C8, N1-C9 y N2-C9 son 1,226; 1,660; 1,400; 1,427 y 1,344 Å respectivamente. Las distancias de enlace C=O se corresponden con un doble enlace mientras que las distancias C=S poseen mayor carácter de enlace simple. También se puede observar que de las distancias C-N, la menor es la N2-C9, siendo un enlace de carácter semidoble como se ha discutido en los Capítulos 2 y 3, debido a la resonancia del grupo amida (Esquema 2.7.1., Capitulo, 2). El grupo metoxilo se encuentra en el mismo plano del anillo aromático; el ángulo diedro entre los grupos C=O y C=S es de -115,1° adoptando así la configuración *anticlinal*.

El análisis de NBO para **MIso2** indica que la mayor estabilización se debe a la transferencia de carga LP N1 $\rightarrow \pi^*$ C8-O2, con una energía de 35,5 kcal/mol, como se muestra en la Tabla
4.3.2. La mayor distancia del enlace C8-O2, determinada por RX para **MIso2**, pone de manifiesto esta interacción.

Desloc Donant	Energía kcal/mol		
LP O2	\rightarrow	σ* C 4 - C8	20,4
LP O 2	\rightarrow	σ* C 8 - N 1	28,8
LP N1	\rightarrow	π* C8 - O2	35,5
LP S	\rightarrow	σ* N 1 - C9	13,9
LP S	\rightarrow	σ* C9 - N2	16,1

	Tabla 4.3.2.	Análisis	de NBC) para	MIso2.
--	--------------	----------	--------	--------	--------

4.3.2. N-[di(metil)-carbamatiol]-4-metoxibenzamida, (Mm2).

Las curvas de energía potencial obtenidas para **Mm2** se muestran en la Figura 4.3.4. Se observó que para las torsiones $\tau 1$ y $\tau 2$ los mínimos resultantes son los mismos en ambas moléculas, **Miso2** y **Mm2**, por lo tanto sólo se describirán las torsiones $\tau 3$ y $\tau 4$.

- Para el ángulo de torsión τ3 se observan dos mínimos, a 130° y 230° los que corresponden a la configuración *anticlinal* para el enlace C8N–C9S, ambos presentan la misma energía. La diferencia entre ambas formas es la desviación del enlace C=S con respecto al enlace –C8N–, que resulta de +130 y -130°, respectivamente.
- La torsión τ4, que involucra al enlace N1C9-N2C10, presenta mínimos en 20°, 170° y 340°, con configuraciones *synperiplanar*, *antiperiplanar* y *synperiplanar*, respectivamente.

Figura 4.3.4. Curvas de energía potencial en función de la variación de los ángulos diedros τ_1 . τ_4 para **Mm2**, calculados con el nivel de teoría B3LYP/6-31g(d).

Las diferentes opciones conformacionales fueron optimizadas con la base B3LYP/6-311++g(d,p), resultando la estructura más estable mostrada en la Figura 4.3.5.

Figura 4.3.5. Confórmero más estable para Mm2.

En la Tabla 4.3.3. se muestran las principales contribuciones estabilizantes obtenidas por NBO, destacándose las de los pares libres del O1 y del N1 al orbital π^* C1-C5 y C8-O2, respectivamente, con energías de 32,4 y 37,5 kcal/mol.

Tabla 4.3.3. Análisis de NE	30 de Mm2
-----------------------------	------------------

Desloc	aliz	Energía kcal/mol	
Donan) – Aceptor (j)	Mm2
LP O2	\rightarrow	σ* C4-C8	20,6
LP O2	\rightarrow	σ* C8-N1	28,9
LP N1	\rightarrow	π* C8-O2	37,5

LP S	\rightarrow	σ* N1-C9	13,6
LP S	\rightarrow	σ* C9-N2	15,1
LP O1	\rightarrow	σ*C1-C6	7,3
LP O1	\rightarrow	π* C1-C5	32,4
Total			155,4

4.3.3. N-(etilcarbamotioil)-2,2-difenilacetamida, (DifEt).

En la Figura 4.3.6. se presentan las curvas de energía potencial resultantes de las torsiones alrededor de los enlaces con libre rotación mostrados en la Figura 4.3.1.

Figura 4.3.6. Curvas de energía potencial en función de la variación de los ángulos diedros $\tau 1_{-}$ $\tau 5$ para **DifEt**, calculados con el nivel de teoría B3LYP/6-31g(d).

Observando las curvas generadas por las torsiones $\tau 1 - \tau 5$, se puede concluir:

- La torsión τ1 para el enlace C11C1-C2O genera una curva cuya con una barrera rotacional muy baja (el máximo de esta barrera es de 1,77 kcal/mol), lo que permite que todos los puntos de la curva sean conformaciones con población significativa. Sin embargo, para el análisis se tomaran en cuenta sólo los ángulos de mínima energía en 80°, 140°, 150° y 310°, cuyas configuraciones pueden describirse como *synclinal* (80° y 310°) y *anticlinal* (140° y 150°).
- La torsión τ2 presenta dos mínimos de energía equivalentes a 0° y 360° ambos con configuración synperiplanar.
- Para la variación del ángulo de torsión τ3, C2N1-C3S, se observan dos mínimos a 130° y 230°, asignándose a ambos la configuración *anticlinal*.
- En 180° se presenta el único mínimo de energía para la torsión τ4 (N1C3-N2C4), antiperiplanar, donde los grupos C=O y C=S se disponen en sentido opuesto, dando lugar a la forma S antes mencionada.
- La curva de energía potencial para la torsión τ5 (C3N2-C4C5) presenta tres mínimos a 140°, 220° y 290° que se pueden describir como *anticlinal, anticlinal* y *synclinal*, respectivamente.

Analizando las curvas de energía potencial y la combinación de los mínimos observados para las distintas torsiones, se determinó que el confórmero resultante de mínima energía es el que se muestra en la Figura 4.3.7. En él se evidencia el predominio de la forma *S*, favoreciendo la formación de un pseudo-anillo de 6 miembros. La distancia de enlace O···H es de 1,894 Å, en muy buen acuerdo con el valor de 1,896 Å determinado por DRX.

Figura 4.3.7. Confórmero más estable (de mínima energía) para DifEt.

4.3.4. N-butilcarbamotioil-9-antracencarboxamida, (AntBu).

Examinando las curvas de energía potencial (Figura 4.3.8.) se puede resumir:

En la torsión τ1 (C2C1-C5O), se observan cuatro mínimos en la curva: 60°, 120°, 240° y 300°. Los confórmeros observados en 60° y 240° son energéticamente equivalentes, al

igual que los observados en 120° y 300° y en todos ellos el grupo carbonilo (C5-O) se desvía 123° respecto al plano del antraceno.

- Para el enlace OC15-N1C16, la torsión (τ2) presenta dos mínimos en 0° y 350°, energéticamente equivalentes y con una configuración *synperiplanar*.
- La torsión τ3 sobre el enlace C15N1-C16S muestra dos mínimos en 130° y 230°, ambos con orientación *anticlinal*.
- En la curva de energía potencial para la torsión τ4, N1C16-N2C17, la barrera rotacional es de 28,2 kcal/mol, a 120° y la configuración del confórmero es *anticlinal*. La configuración adoptada de mínima energía a 180° es *antiperiplanar*, en la cual el carbonilo está orientado de manera de favorecer el puente de hidrogeno con el enlace N2H2 confiriéndole mayor estabilidad.
- Para la torsión τ5 del enlace C16N2-C17C18, los mínimos encontrados en 140 y 230 (*anticlinal*) y en 290° (*synclinal*).

Figura 4.3.8. Curvas de energía potencial en función de la variación de los ángulos diedros τ_1 . τ_5 para **AntBu**, calculados con el nivel de teoría B3LYP/6-31g(d).

A partir de la información de las curvas de energía potencial, se determinó el confórmero de mínima energía de la Figura 4.3.9., optimizado al nivel B3LYP6-311++g(d,p). Los ángulos diedros τ 1, τ 2, τ 3, τ 4 y τ 5 resultantes para este confórmero son 66°, 3°, 178°, 179° y -90°, respectivamente. Se observa el predominio la forma *S* en la porción carbonil tiourea y su estabilidad se atribuye a la formación del pseudo anillo de 6 miembros por interacción intramolecular de puente de hidrógeno.

Figura 4.3.9. Confórmero más estable (de mínima energía) para AntBu.

4.3.5. N-[di(feni)l-carbamatiol]-4-metoxibenzamida, (Mf2).

En la Figura 4.3.10. se presentan las curvas de energía potencial resultantes de las torsiones alrededor de los enlaces con libre rotación para **Mf2**, mostrados en la Figura 4.3.1.

Figura 4.3.10. Curvas de energía potencial en función de la variación de los ángulos diedros τ_1 . τ_4 para **Mf2**, calculados con el nivel de teoría B3LYP/6-31g(d).

La torsión τ1, C5C4-C8O2, presenta cuatros mínimos en la curva de energía potencial en 0, 20, 200 y 300°. En 0° y 20° el grupo carbonilo se encuentra en posición *synperiplanar* con respecto al enlace C4-C5 del anillo aromático y resulta *antiperiplanar* en los mínimos de 200° y 300°.

- En τ2, O2C8-N1C9, el confórmero en el mínimo global (0°) presenta una configuración *synperiplanar*.
- Para la torsión τ3 (C8N1-C9N2) se observan dos mínimos en 50 y 310° equivalentes energéticamente y con una configuración *synclinal*. Esto mismo ocurre para los mínimos de τ4 (N1C9-N2C10) en 30 y 330°, mientras que para el mínimo en 160° la configuración es antiperiplanar.

Los anillos aromáticos por una cuestión estérica poseen restricciones a la libre rotación respecto a la porción tiourea, y por lo tanto, se van a disponer de modo tal que no interfieren uno con el otro.

Con la información extraída de las curvas de energía potencial se obtuvo el confórmero de mínima energía mostrado en la Figura 4.3.11. Se puede observar que el grupo metoxilo y el grupo carbonilo se encuentran en el mismo plano de anillo aromático. El ángulo de torsión de los grupos C=O y C=S es de 181,3° dando una configuración *antiperiplanar*. Los anillos aromáticos unidos al nitrógeno N2 presentan un ángulo entre sus planos de 116,7°.

4.4. Espectroscopia infrarroja y Raman

Los espectros de infrarrojo (IR) y Raman de N-[di(isopropil)carbamatiol]-4-metoxibenzamida (**MIso2**), N-[di(metil)-carbamatiol]-4-metoxibenzamida (**Mm2**), N-(etilcarbamotioil)-2,2difenilacetamida (**DifEt**), N-butilcarbamotioil-9-antracencarboxamida (**AntBu**) y N-[di(fenil)carbamatiol]-4-metoxibenzamida (**Mf2**), se presentan en las Figuras 4.4.1. - 4.4.5. y las principales asignaciones se muestran en la Tabla 4.4.1. (las correspondientes tablas con las asignaciones completas se encuentran en el Anexo 4).

Para las moléculas **Mm2**, **MIso2** y **Mf2** las bandas en 3310, 3185 y 3222 cm⁻¹ (calc. 3577, 3592 y 3597 cm⁻¹) se asignaron a los estiramientos N1-H. Las absorciones intensas en 3178 y 3214 cm⁻¹ (calc. 3451 y 3448 cm⁻¹) se atribuyeron al estiramiento N2-H para **DifEt** y **AntBu**, respectivamente. Las intensidades y posiciones de estas bandas están asociadas a las interacciones inter e intramoleculares entre N1H····S, N1H····O y N2H···O, descriptas con más detalle en la Sección 4.7 (Difracción de RX).

Las bandas observadas en el intervalo de 3144 a 2841 cm⁻¹ corresponde a los estiramientos antisimétricos y simétricos de los enlaces C-H de los anillos aromáticos y de las porciones alifáticas.

La banda característica del grupo carbonilo C=O se observa en 1650, 1680, 1691, 1678 y 1693 cm⁻¹ (Raman: 1649, 1677, 1689, 1682 y 1693 cm⁻¹) para **MIso2**, **Mm2**, **DifEt**, **AntBu** y **Mf2**, respectivamente, las cuales concuerdan con las reportadas para compuestos similares.^{4,5} Para **MIso2** y **Mm2**, compuestos estructuralmente parecidos, las frecuencias de estiramiento del grupo C=O difieren significativamente y puede atribuirse a las diferentes distancias de enlace del C=O ([**MIso2**]: 1,224(2) Å; [**Mm2**]:1,214(6) Å) determinadas por difracción de rayos X (Tabla 4.7.2.). Esta diferencia puede deberse a las distintas interacciones intermoleculares en las que participan los grupos carbonilo, en **Mm2** el C=O se encuentra formando puentes de hidrogeno bifurcados mientras que en **MIso2** el C=O participa de puentes de hidrogeno múltiples.

En los espectros IR experimentales se observan las bandas en 1602 (mf) [**MIso2**], 1605 (mf) [**Mm2**], 1605 (mf) [**Mf2**], 1595 (md) [**DifEt**] y 1624 (md) [**AntBu**] cm⁻¹ las cuales fueron asignadas, con ayuda de los cálculos teóricos, a los estiramientos C-C de los anillos aromáticos.

Por otra parte, el estiramiento C-S se detectó en 846, 871, 733, 640 y 851 cm⁻¹ (calc. 844, 886, 747, 734 y 865 cm⁻¹) para **MIso2**, **Mm2**, **DifEt**, **AntBu**, y **Mf2**, respectivamente. El corrimiento de este modo hacia frecuencias bajas se corresponde con la disminución del carácter de doble enlace del grupo $C=S^{6,7}$ típico de la función tioamida: -C(=S)-NH-. En esta función, hay una deslocalización del par libre del átomo de nitrógeno que incrementa la densidad electrónica sobre el enlace contiguo C-N y la disminuye sobre el enlace vecino C-S. Estas deslocalizaciones están favorecidas, en parte, por la deficiencia en el solapamiento pi entre los átomos de carbono y azufre, lo que incrementa la contribución de la estructura de resonancia sobre las propiedades espectroscópicas permiten también explicar las diferencias entre las frecuencias observadas pala los otros estiramientos C-N presentes en la molécula y se vuelve a discutir en este capítulo para analizar los datos obtenidos en resonancia magnética nucleas (ver sección 4.6).

En la tabla 4.4.1. se presentan las asignaciones de los modos más representativos y en las Figuras 4.4.1.- 4.4.4. los espectros experimentales IR y Raman de **MIso2**, **Mm2**, **DifEt**, **AntBu** y **Mf2**, respectivamente.

Tabla 4.4.1. Frecuencias IR y Raman experimentales, calculadas y asignación tentativa de los modos normales para **MIso2**, **Mm2**, **DifEt**, **AntBu** y **Mf2**.

0		Experi	mental ^a	O a la sula da b	A size s si ćed
Comp.	woao	IR°	Raman ^c	Calculado	Asignacion
	v1	3310(m)		3577(25)	ν(N1-H)
	v23	1650(mf)	1649(50)	1740(237)	v (C=O)
	ν24	1602(mf)	1603(100)	1644(248)	v (CC) Ar
	v26	1474(mf)	1470(8)	1558(227)	δ (N1-H) + ν (C9-N2)
	v39	1440(f)	1438(6)	1464(240)	δ (N1-H)
MIso2	v51	1256(mf)	1251(45)	1288(156)	v (C1-O1)
	v52	1222(mf)	1224(13)	1268(361)	v (C4-C8)
	v53	1176(f)	1173(36)	1225(236)	γ (C9-N2)
	v57	1137(m)		1181(103)	v (C9-N1)
	v63	1093(m)	1092(2)	1126(245)	v (N1-C8)v + (C9-N1)
	ν78	846(d)		844(11)	v(C9-S) + v(H <u>C</u> - <u>C</u> H ₃) ₂
	ν1	3185(m)		3592(26)	v(N1-H)
	v15	1680(mf)	1677(57)	1743(248)	v(C=O)
	v16	1605(mf)	1604(100)	1644(245)	ν(CC) Ar
	v18	1556(mf)	1556(8)	1582(284)	δ (N1-H)
Mm2	v30	1389(f)	1388(21)	1411(253)	v(C9-N2)
	v33	1304(m)	1305(<1)	1296(46)	ν(N2-CH ₃)
	v36	1205(f)		1212(176)	v(N1-C9)
	ν44		1078(9)	1089(5)	v(N1-C8)
	v51	871(f)	870(12)	886(34)	v(C9-S)
	ν2	3178(f)		3451(238)	v(N2-H)
DifEt	v19	1691(mf)	1689(21)	1729(147)	v(C=O)
	ν24	1581(h)		1580(308)	v(C3-N2)
	v25	1559(mf)		1545(675)	δ(N1-H) + δ(N2-H)
	v34	1446(f)		1404(134)	$v(C2-N1) + v(C3-N2) + \omega(CH_2)$
	v45	1187(f)	1189(24)	1202(91)	v(C1-C11)
	v47	1175(d)		1192(32)	v(N2-C4)
	v50	1160(f)		1173(258)	v(C3-N1)
	ν76	733(f)		747(35)	v(C3-S)
	ν2	3214(f)		3448(265)	v(N2H2A)
	v21	1678(mf)	1682(4)	1713(214)	v(C=O)
	ν26	1561(mf)	1561(18)	1591(336)	ν(C16-N2) + δ(N1H1)
	ν28	1521(mf)		1541(638)	δ(N1H1) + δ(N2H2)
	ν44	1329(d)		1357(47)	δ(N1H) + ν(C16N2)
AntBu	v53	1208(mf)		1217(151)	ν(C15-N1) + δ(N1H)
	v55	1180(f)	1174(3)	1200(83)	ν(N1-C16) + ρ(CH ₂) ₃
	v61	1113(d)		1125(52)	v(N1-C15)
	v62	1071(m)		1095(65)	v(N2-C17)
	ν76	912(d)	908(1)	894(30)	δ(OC15N1)
	v89	640(md)		734(32)	v(C16-S)
	ν1	3222(d)		3597(29)	v(N1-H)
Mf2	v19	1693(mf)	1696(46)	1747(211)	v(C=O)
	v20	1605(mf)	1601(55)	1644(257)	v(C-C) Ar
	v29	1493(mf)	1492(8)	1512(419)	δ(N1-H)
1411 2	v36	1371(mf)	1370(25)	1368(452)	v(C9-N2)
	v46	1186(m)	1187(11)	1222(176)	v(N1-C9)
	v58	1089(md)	1119(<1)	1089(53)	ν(N1-C8)
	ν75	851(m)	854(10)	866(24)	v(C9-S)

^a en cm⁻¹. ^b B3LYP/6-311++g(d,p), intensidad calculada entre paréntesis (km mol⁻¹). ^c f, fuerte; m, medio; d, débil; md, muy débil. ^dv, δ , γ , y ρ representan , estiramiento, deformación en el plano, deformación fuera del plano y balanceo, respectivamente.

Figura 4.4.1. Espectros experimentales de **MIso2**: IR (trazo superior) y Raman (trazo inferior) en estado sólido.

Figura 4.4.2. Espectros experimentales de **Mm2**: IR (trazo superior) y Raman (trazo inferior) en estado sólido.

Figura 4.4.3. Espectros experimentales de **DifEt**: IR (trazo superior) y Raman (trazo inferior) en estado sólido.

Figura 4.4.4. Espectros experimentales de **AntBu**: IR (trazo superior) y Raman (trazo inferior) en estado sólido.

Figura 4.4.5. Espectros de IR (superior) y Raman (inferior) experimentales de Mf2.

4.5. Espectroscopia electrónica UV-visible

UV-visible Los espectros experimentales teóricos de los compuestos N-V [di(isopropil)carbamatiol]-4-metoxibenzamida N-[di(metil)-carbamatiol]-4-(**MIso2**), metoxibenzamida (Mm2), N-(etilcarbamotioil)-2,2-difenilacetamida (DifEt), N-butilcarbamotioil-9-antracencarboxamida (AntBu) y N-[di(feni)l-carbamatiol]-4-metoxibenzamida, (Mf2) se presentan en la Figura 4.5.1., 4.5.3., 4.5.5., 4.5.7. y 4.5.9., respectivamente. Los orbitales moleculares involucrados en las transiciones electrónicas de los mismos se muestran en las Figuras 4.5.2., 4.5.4., 4.5.6., 4.5.8. y 4.510.

El nivel de teoría B3LYP/6-311 G(d,p) fue empleado para el cálculo de los espectros electrónicos en solución de acetonitrilo. A continuación, se presenta la descripción para cada uno de los compuestos, considerando las contribuciones > 30% y f > 0,06. Las concentraciones de las soluciones utilizadas para medir los espectros fueron: $4,8x10^{-6}$ M (**MISo2**); $5,4x10^{-6}$ M (**Mm2**); $1,7x10^{-6}$ M (**DifEt**); $4,0x10^{-6}$ M (**AntBu**); $3,3x10^{-6}$ M (**Mf2**).

4.5.1. N-[di(isopropil)carbamatiol]-4-metoxibenzamida, (MIso2).

Figura 4.5.1. Espectros UV-visible experimental (a) y calculado (b) en acetonitrilo de MIso2.

Tabla 4.5.1. Espectros electrónicos experimental y calculado de **Miso2**, junto con las asignaciones de las transiciones más relevantes.

Experimental ^a	Calculado ^b	f ^c	Asignación ^d	%
105	201	0 0655	HOMO-4 \rightarrow LUMO+2	39
195	201	0,0000	HOMO-3 → LUMO+1	39
212 ^H	225	0,1168	HOMO-2 \rightarrow LUMO+2	29
	236	0,1503	HOMO-2 → LUMO+1	59
	245	0,2030	HOMO-1 → LUMO+1	97
267	279	0,2806	HOMO-2 → LUMO	81
	284	0,1860	HOMO → LUMO+1	68
	296	0,0775	HOMO-1 → LUMO	97

^aEn nm. ^bTransiciones electrónicas calculadas (B3LYP/6-311++G(d,p). ^c La fuerza del oscilador de las transiciones calculadas en unidades atómicas. ^H Hombro.

La banda en 195 nm (calc. 201 nm) se genera por transiciones electrónicas HOMO-4 \rightarrow LUMO+2 y HOMO-3 \rightarrow LUMO+1, principalmente entre orbitales π del anillo aromático y los pares libres del oxígeno carbonílico y de los nitrógenos hacia los π^* del anillo aromático y del enlace C9-N2.

El hombro localizado a 212 nm, (calc. 225 nm) es producto de transiciones monoelectrónicas HOMO-2 \rightarrow LUMO+2 desde orbitales π del anillo aromático y del par no enlazante del oxígeno del metoxilo a los π^* del anillo aromático. La absorción a 267 nm se genera por excitaciones principalmente entre los orbitales no enlazantes del azufre (HOMO y HOMO-1), los orbitales π del anillo aromático (HOMO-2) a los π^* del anillo aromático y del enlace C9-N2. (LUMO y LUMO+1.)

Figura 4.5.2. Orbitales moleculares involucrados en las transiciones electrónicas de MIso2.

4.5.2. N-[di(metil)-carbamatiol]-4-metoxibenzamida, (Mm2).

Figura 4.5.3. Espectros UV-visible experimental (a) y calculado (b) en acetonitrilo de Mm2.

Tabla	4.5.2.	Espectros	electrónicos	experimental	у	calculado	de	Mm2	en	solución	de
acetoni	itrilo, ju	nto con las	asignaciones	de las transicio	ne	s más relev	/ante	es.			

Experimental ^a	calculado ^b	fc	Asignación	%
105	197	0,0899	HOMO- $3 \rightarrow$ LUMO+2	68
195	203	b f ^c Asignación 0,0899 HOMO-3→ LUMO+ 0,0661 HOMO-4 → LUMO+ 0,1235 HOMO-5 → LUMO+ 0,1663 HOMO-2 → LUMO+ 0,2288 HOMO-1 → LUMO+ 0,4699 HOMO-2 → LUMO+ 0,0936 HOMO-1 → LUMO+	HOMO-4 \rightarrow LUMO+2	68
	221	0,1235	$HOMO-5 \rightarrow LUMO$	46
212	230	0,1663	$\text{HOMO-2} \rightarrow \text{LUMO+2}$	85
	234	0,2288	HOMO-1 \rightarrow LUMO+2	82
260	280	0,4699	$HOMO-2 \rightarrow LUMO$	82
200	290	ado f° Asignacion 7 0,0899 HOMO-3→ LUM 3 0,0661 HOMO-4 → LUM 1 0,1235 HOMO-5 → LUM 0 0,1663 HOMO-2 → LUM 4 0,2288 HOMO-1 → LUM 0 0,4699 HOMO-2 → LUI 0 0,0936 HOMO-1 → LUI	$HOMO-1 \rightarrow LUMO$	75

^aEn nm. ^bTransiciones electrónicas calculadas (B3LYP/6-311++G(d,p). ^c La fuerza del oscilador de las transiciones calculadas en unidades atómicas.

La absorción en 195 nm (calc. 197 y 203 nm) se genera por transiciones desde HOMO-3 y HOMO-4 a LUMO+2, entre los orbitales π del anillo aromático y los no enlazantes de los átomos de azufre y de oxígeno del metoxilo hacia los orbitales π^* del benceno y de los enlaces C-S y C9-N2. La banda en 212 nm (calc. 221, 230 y 234 nm) se origina particularmente por excitaciones HOMO-5 \rightarrow LUMO, HOMO-2 \rightarrow LUMO+2 y HOMO-1 \rightarrow LUMO+2 entre los orbitales no enlazantes de los átomos de nitrógeno, azufre y oxígeno hacia orbitales π^* del anillo y de los enlaces C-S y C9-N2. La absorción observada en 268 nm (calc. 280 y 290 nm) surge de transiciones monoelectrónicas dominantes HOMO-2 \rightarrow LUMO y HOMO-1 \rightarrow LUMO

desde orbitales π del anillo y no enlazantes de los átomos de azufre, oxígeno y nitrógeno a orbitales π^* extendidos sobre toda la molécula.

Figura 4.5.4. Orbitales moleculares involucrados en las transiciones electrónicas de Mm2.

4.5.3. N-(etilcarbamotioil)-2,2-difenilacetamida, (DifEt).

Figura 4.5.5. Espectros UV-visible experimental (a) y calculado (b) en acetonitrilo de DifEt.

En el espectro experimental de la Figura 4.5.5 se observan principalmente tres bandas, la absorción intensa en 206 nm es originada principalmente por transiciones HOMO-2 \rightarrow LUMO+1 y HOMO-1 \rightarrow LUMO+2 (calc.: 218 nm respectivamente). El hombro a 238 nm (calc.:219 nm) se atribuye a transiciones HOMO-1 \rightarrow LUMO+2, mientras que la banda de menor intensidad en 272 nm se debe a excitaciones HOMO-2 \rightarrow LUMO y HOMO-1 \rightarrow LUMO (calc. 264 nm).

La banda localizada en 206 nm se atribuye a transiciones $\pi \rightarrow \pi^*$ en los anillos aromáticos y desde los orbitales no enlazantes de los átomos de azufre y de nitrógeno a los π^* del anillo aromático. El hombro en 238 nm se genera por excitaciones entre orbitales no enlazantes del S y del N2 hacia los π^* del anillo aromático. La absorción en 272 nm se asigna a transiciones entre los orbitales π de los anillos aromáticos y los pares libres del S y N y los orbitales antienlazantes de la porción tiourea.

Iabia	4.5.3.	Especilos	electronicos	experimental	у	Calculauo	ue	DIIEL	en	Solucion	ue
acetor	nitrilo, ju	nto con las	asignaciones	de las transicio	one	es más relev	vant	es.			

Concertas, electrónicas, experimental y coloulada

Experimental ^a	calculado ^b	f°	Asignación	%
206	210	0.0059	HOMO-2 → LUMO+1	31
200	210	218 0,0958 HOMO-1	HOMO-1 \rightarrow LUMO+2	25
238 ^H	219	0,1981	HOMO-1 → LUMO+2	55
272	264	0 2002	HOMO-2 → LUMO	38
212	204	0,2092	HOMO-1 → LUMO	62

مماريماخم

4~

^aEn nm. ^b Transiciones electrónicas calculadas B3LYP/6-311G(d,p). ^c La fuerza del oscilador de las transiciones calculadas en unidades atómicas.

Figura 4.5.6. Orbitales moleculares involucrados en las transiciones electrónicas de DifEt.

4.5.4. N-butilcarbamotioil-9-antracencarboxamida, (AntBu).

Figura 4.5.7. Espectros UV-visible experimental (a) y calculado (b) en acetonitrilo de AntBu.

Experimental ^a	calculado ^b	f°	Asignación	%
245 ^H	248	0,0661	HOMO-1 → LUMO+2	100
253	252	0,9500	HOMO-3 → LUMO+1	54
200	258	0,1436	HOMO → LUMO+3	52
277	262	0,7362	HOMO-3 → LUMO+1	45
277	273	0,1792	HOMO-2 → LUMO+1	100
383	405	0,1410	HOMO → LUMO	100

Tabla 4.5.4. Espectros electrónicos experimental y calculado de **AntBu** en solución de acetonitrilo, junto con las asignaciones de las transiciones más relevantes.

^aEn nm. ^bTransiciones electrónicas calculadas (B3LYP/6-311G(d,p). ^c La fuerza del oscilador de las transiciones calculadas en unidades atómicas. ^H Hombro

HOMO y HOMO-3 corresponden a los orbitales π localizados en los anillos de antraceno; a HOMO-2 y HOMO-1 contribuyen los pares libres del azufre y del nitrógeno de la porción tioamida. Los orbitales LUMO, LUMO+2 y LUMO+3 poseen carácter π^* de los anillos aromáticos y LUMO+1 cuenta con el aporte de orbitales antienlazantes de la porción carbonil tiourea.

En el espectro electrónico del **AntBu** se observa un hombro en 245 nm generado principalmente por transiciones entre orbitales no enlazantes de la porción tiourea y los orbitales π^* del esqueleto de antraceno. Las bandas localizadas en 253 y 277 nm se originan por excitaciones $\pi \rightarrow \pi^*$ en los anillos del antraceno y desde orbitales π de los anillos y no enlazantes de los átomos azufre de nitrógeno hacia orbitales antiligantes del esqueleto aromático. La absorción en 383 nm corresponde a la transición dominante HOMO \rightarrow LUMO entre orbitales enlazantes y antienlazantes de los anillos condensados.

Figura 4.5.8. Orbitales moleculares involucrados en las transiciones electrónicas de AntBu.

4.5.5. N-[di(fenil)-carbamatiol]-4-metoxibenzamida, (Mf2).

Figura 4.5.9. Espectros UV-visible experimental (a) y calculado (b) en acetonitrilo de Mf2.

La absorción en 218 nm se origina por transiciones electrónicas HOMO-7 \rightarrow LUMO (calc.: 253 nm) entre orbitales π de uno de los anillos aromáticos y orbitales π^* de la porción tiourea. El hombro localizado en 256 nm es generado por excitaciones HOMO \rightarrow LUMO+2 (calc.: 265 nm) entre orbitales no enlazantes del grupo tiourea y orbitales antienlazantes de los anillos de benceno unidos al N2. La banda observada en 277 nm atribuye a excitaciones HOMO-2 \rightarrow LUMO (calc.: 305 nm) desde orbitales enlazantes del sustituyente fenilo del átomo N1 hacia orbitales antienlazantes de la porción alifática. La absorción en 322 nm (calc.: 332 nm) resulta de las transiciones electrónicas HOMO-1 \rightarrow LUMO y HOMO \rightarrow LUMO principalmente entre orbitales no enlazantes de la tiourea a orbitales π^* de la misma porción.

Tabla 4.5.5. Espectro electrónico experimental y calculado de (Mf2) en solución de acetonitrilo,junto con asignaciones de transiciones relevantes.

Experimental	Calculado	f	Asignado	%
218	253	0,256	HOMO-7 → LUMO	87
256 ^H	265	0,093	HOMO \rightarrow LUMO+2	82
277	305	0,353	HOMO-2 → LUMO	92
222	222	0.047	HOMO-1 → LUMO	48
322	332	0,217	HOMO → LUMO	52

^a En nm. ^b Transiciones electrónicas calculadas (B3LYP/6-311++G(d,p). ^c La fuerza del oscilador de las transiciones calculadas en unidades atómicas. ^H Hombro.

4.6. Espectroscopia de Resonancia Magnética Nuclear, RMN.

Los espectros de RMN de ¹H y ¹³C de **MIso2**, **Mm2**, **DifEt**, **AntBu** y **Mf2** se presentan en la Figuras 4.6.2. – 4.6.4. y en la Tabla A4.20 (Anexo 4) se muestran los desplazamientos químicos (ppm) más representativos experimentales y calculados. Los desplazamientos químicos calculados se obtuvieron por el método GIAO detallado en la Sección j. Métodos computacionales en Materiales y Métodos. El método para la determinación de las constantes de acoplamiento de 4-metoxifenilo para MIso2, **Mm2** y **Mf2** se detalla en el Capítulo 3 sección 3.6.

El carbono del grupo carbonilo sigue la tendencia: δ = 173,0 [DifEt] >170,1 [AntBu] > 165,1 [MIso2] > 163,4 [Mm2] > 163,3 [Mf2] ppm. El menor valor de δ observado en Mm2, Mf2 y MIso2 se explica por la transferencia de carga del grupo metoxilo (Figura 4.6.1.), que incrementa la densidad electrónica sobre éste carbono y por lo tanto su apantallamiento. El valor encontrado para el C=O en estos compuestos concuerda con los reportados para otros compuestos conteniendo la porción *p*-metoxifenilcarbonilo.¹⁰

Figura 4.6.1. Efecto de protección por resonancia del grupo metoxilo sobre carbonilos.

El desplazamiento químico para el átomo de carbono del tiocarbonilo es observado como una señal de baja intensidad en los compuestos **Mm2**, **DifEt**, **AntBu** y **Mf2** a ~180 ppm, comprobándose que los cambios de sustituyentes no afectan esta señal para estos compuestos. En el caso particular del compuesto **MIso2**, bajo las condiciones de medida usadas para obtener el espectro de RMN de ¹³C, aun con un tiempo extra de acumulación, ésta señal para el carbono de tiocarbonilo no fue detectada en el espectro.

Una observación más detallada del espectro de RMN de ¹³C de **MIso2** (Figura 4.6.4.) muestra las siguientes características: En el espectro medido en CDCl₃, no se detectan señales para los carbonos de carbonilo, tiocarbonilo y metino, pero en cambio, cuando MIso2 se disuelve en (CD₃)₂CO (solvente que permite una mayor concentración de soluto), las señales de CO y -CHson detectadas, con muy baja intensidad con la forma de una banda ancha a 161,5 ppm para el carbonilo y como un conjunto de señales desdobladas en la región entre 50,4 y 46,0 ppm para el metino (Figura 4.6.4.b). Esta característica de ensanchamiento de las señales de resonancia se encuentra además replicada en los metilos de isopropilo, donde, en lugar de una señal intensa y aguda, se observa una banda muy ancha y amesetada a 20 ppm. Como es de esperarse, este ensanchamiento de señales se percibe con mayor intensidad en el espectro de RMN de ¹H (Figura 4.6.3.). Particularmente, el ensanchamiento es mayor en las señales del grupo isopropilo y el efecto se trasmite por la cadena de carbonil tiourea hasta el carbono carbonílico. En cambio, tanto los espectros protónicos como de ¹³C de **Miso2** presentan señales de intensidad y ancho de línea habitual para los átomos de la porción p-metoxifenilo. Esta observación nos lleva a la conclusión que los ensanchamientos observados están causados por un problema estérico en torno a ambos grupos isopropilos. La banda puede ser el resultado de la coexistencia de múltiples conformaciones, cada una de ellas con un arreglo espacial distinto entre los grupos isopropilo, que, por su volumen y restricción de movimiento en el espacio, genera conformaciones con un tiempo de vida media suficiente para ser detectados por RMN. Por lo tanto, cada conformación observable está constituida por átomos con un entorno químico ligeramente diferente entre sí originando cada una su propio conjunto de señales, en la forma de banda detectada en los espectros. La diferencia en el entorno químico de cada conformación se registra principalmente en los grupos isopropilos no equivalentes pero el efecto no alcanza a los átomos del otro extremo de la molécula (*p*-metoxifenilo), cuyos átomos no experimentan ensanchamiento de señal.

La medición de espectros de RMN de **MIso2** a mayores temperaturas, probablemente hubiera disminuido el efecto observado, al incrementar la energía de las moléculas y logrando así que éstas superen la barrera de rotación entre confórmeros.

Figura 4.6.2. Formas resonantes en la *N*,*N*-diisopropil tioamida.

Para el compuesto **Mm2**, los metilos unidos al nitrógeno de la tioamida (N2) en los espectros de ¹H y ¹³C (Figura 4.6.5. y 4.6.6.) presentas desplazamientos químicos diferentes, es decir, no son químicamente equivalentes. Esto se debe a que el entorno químico de cada metilo es diferente a causa del impedimento a la libre rotación del enlace C9-N2 de la tioamida. El mismo posee un carácter parcial de enlace doble como se explicó anteriormente en la sección 4.4. y visualizado en la Figura 4.6.2.

El compuesto **Mf2** presenta señales que pueden ser debidas a la coexistencia de múltiples conformaciones, los cuales dificultan la asignación fidedigna de cada señal de los carbonos de los fenilos unidos al nitrógeno. El posible equilibrio se puede evidenciar en algunas señales del espectro de RMN de ¹³C, en la señal de -OCH₃ (55,8 y 55,6 ppm), C2/C6 (114,4 y 114,1 ppm) y C3/C5 (129,4 y 129,3).

En el compuesto **DifEt** todos los protones del grupo difenilo se detectan como un multiplete entre 7,4 y 7,2 ppm. En el espectro de RMN de ¹³C se observaron nueve señales debido a cuestiones de simetría. Los carbonos de los anillos de fenilo, al tener libre rotación, se comportan como químicamente equivalentes.

Para el espectro de RMN protónico de **AntBu** se pudieron asignar todas las señales, las cuales presentan una integración acorde con el compuesto esperado, pero no fue posible evaluar las constantes de acoplamiento adecuadamente debido a un ensanchamiento de todas las señales. Las asignaciones se hicieron en base a los compuestos similares de este trabajo de tesis, a otros compuestos de la familia reportados en la bibliografía^{11,12} y a los resultados de desplazamiento químico obtenido por cálculos teóricos. No se encontró en la bibliografía una explicación del motivo de la pérdida de resolución a la muestra (por ejemplo, presencia de impurezas paramagnéticas).

En los espectros de **Mf2** se observa al menos dos conjuntos de señales, que indican la presencia de dos confórmeros. El equilibrio se puede evidenciar en algunas señales del espectro de RMN de ¹³C, tales como la señal de -OCH₃ con una señal más intensa a 55,6 ppm para el confórmero mayoritario y una señal menor a 55,8 ppm. También para C2/C6 (114,4 y 114,1 ppm) y C3/C5 (129,4 y 129,3).

4.6.1. N-[di(isopropil)carbamatiol]-4-metoxibenzamida, (MIso2).

Figura 4.6.3. Espectros de RMN de ¹H del compuesto **MIso2**. **a.** en CDCl₃. **b.** en acetona. ¹H RMN (250 MHz, **CDCl**₃) δ = 7,8 (m, 2H, H3/H5); 6,9 (dt, 2H, H2/H6, *J* = 9, 2 y <1 Hz); 4,5 – 4,1 (m, 2H, -CH-); 3,8 (s, 3H, -O-CH₃); 1,7 – 1,1 ppm (m, 12H, -CH₃).

¹**H RMN** (300 MHz, **Acetona**) δ = 8,0 (dt, 2H, H3/H5, *J* = 9, 2 y <1 Hz); 7,0 (dt, 2H, H2/H6, *J* = 9, 2 y <1 Hz); 4,6 – 4,3 (m, 2H, -CH-); 3,9 (s, 3H, -OC<u>H₃</u>); 1,7 - 1,2 ppm (m, 12H, -CH₃).

Figura 4.6.4. Espectros de RMN de ¹³C **MIso2**. **a.** CDCl₃. **b.** acetona ¹³C RMN (63 MHz, CDCl₃) δ = 163,2 (C1); 130,0 (C3/C5); 125,5 (C4); 114,0 (C2/C6), 55,5 (-O-CH₃); 20,1 ppm (-CH₃).

¹³C RMN (75 MHz, Acetona) δ =165,1 (C=O); 164,0 (C1); 130,9 (C3/C5); 126,7 (C4); 114,6 (C2/C6); 55,9 (-O-CH₃); 50,4 – 46,0 (-CH-); 20,0 ppm (-CH₃).

4.6.2. N-[di(metil)-carbamatiol]-4-metoxibenzamida, (Mm2).

8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 fl (ppm)

Figura 4.6.5. Espectros de RMN de ¹H de Mm2.

¹**H RMN** (600 MHz, CDCl₃) δ = 8,6 (s, 1H, -NH); 7,8 (dt, 2H, H3/H5, *J* = 9, 4 y 1 Hz); 6,9 (dt, 2H, H2/H6, *J*= 9, 4 y 1 Hz); 3,8 (s, 3H, O-CH₃); 3,5 (s, 3H, CH₃); 3,2 ppm (s, 3H, CH₃).

Figura 4.6.6. Espectros de RMN de ¹³C de Mm2.

¹³C RMN (151 MHz, CDCl₃) δ = 180,5 (C=S); 163,4 (C=O); 163,1 (C1); 130,1 (C3/C5); 124,6 (C4), 114,1 (C2/C6), 55,6 (-O-CH₃), 44,3 (-CH₃), 43,2 (-CH₃).

¹**H RMN** (200 MHz, CDCl₃) δ = 10,5 (br, s, 1H, Et-N2H); 9,0 (s, 1H, O=C-N1H); 7,4 – 7,2 (m, 10H, C₆H₅); 5,0 (s, 1H, -CH-); 3,7 (dq, 2H, -CH₂, *J* = 7 y 5 Hz); 1,3 ppm (t, 3H, CH₃, *J* = 7 Hz).

Figura 4.6.8. Espectros de Rivin de "C de Difet.

¹³**C RMN** (50 MHz, CDCl₃) δ = 179,4 (C=S); 173,0 (C=O); 137,2 (C11/C21); 129,2 (C12/C16/C22/C26); 128,9 (C13/C15/C23/C25); 128,1 (C14/C24); 59,4 (C1); 40,8 (-CH₂-); 13,5 ppm (-CH₃).

Figura 4.6.9. Espectros de RMN de ¹H de AntBu.

¹**H RMN** (600 MHz, CDCl₃) δ = 10,9 (br,s, 1H, Bu-NH); 8,9 (s, 1H, O=C-NH); 8,6 (s, 1H, H8); 8,0 – 7,9 (m, 4H, Antraceno); 7,6 - 7,5 (m, 4H, Antraceno); 3,8 – 3,7 (m, 2H, N-C<u>H</u>₂); 1,8 (s, 2H, NCH₂C<u>H</u>₂); 1,6 – 1,5 (m, 2H, CH₃C<u>H</u>₂); 1,1 ppm (t, 3H, CH₃, *J* = 7 Hz).

Figura 4.6.10. Espectros de RMN de ¹³C de AntBu.

¹³**C RMN** (151 MHz, CDCl₃) δ = 179,7 (C=S); 170,1 (C=O); 131,0 (C1); 130,4 (C7/C9); 129,0 (C8); 128,1 (C2/C14); 128,06 (C4/C12); 127,96 (C6/10C); 126,0 (C5/C11); 124,2 (C13/C3); 46,0 (N-CH₂); 30,5 (NCH₂<u>C</u>H₂); 20,5 (CH₃<u>C</u>H₂); 14,0 ppm (CH₃).

Figura 4.6.11. Espectros de RMN de ¹H de **Mf2**.

¹**H RMN** (500 MHz, CDCl₃) δ = 8,78 (br,s, 1H, N1H); 7,58 (dt, 2H, H3/H5, *J* = 9, 4 y <1 Hz); 7,36 - 7,31 (m, 8H, C₆H₅); 7,26 - 7,16 (m, 2H, C₆H₅); 6,85 (dt, 2H, H2/H6, *J*= 9, 4 y <1 Hz); 3,81 ppm (s, 3H, -OCH₃). Se asignaron solo las señales del confórmero principal.

Figura 4.6.12. Espectros de RMN de ¹³C de Mf2.

¹³**C RMN** (126 MHz, CDCl₃) δ = 182,9 (C=S); 163,3 (C=O); 162,0 (C1); 133,0 (C₆H₅); 129,9 (C₆H₅); 129,4 (C3/C5)'; 129,3 (C3/C5); 127,4 (C₆H₅); 127,0 (C₆H₅); 124,9 (C4); 121,0 (C₆H₅); 117,9 (C₆H₅); 114,4 (C2/C6)'; 114,1 (C2/C6); 55,8 (CH₃)'; 55,6 ppm (-OCH₃). Se asignaron solo las señales del confórmero principal.

4.7. Difracción de rayos X

Se han estudiado las estructuras moleculares de los compuestos **MIso2**, **Mm2**, **AntBu** y **DifEt** en estado sólido mediante difracción de Rayos X en monocristal. La información específica correspondiente a datos del cristal y refinamiento se detalla en la Tabla 4.7.1. Los parámetros geométricos de distancias y ángulos de enlace se presentan en su totalidad y se describen en el Anexo 4.

Tabla 4.7.1. Resultados del refinamiento estructural y datos de los cristales de Miso2, Mm2,AntBu y DifEt.

Identificación	MIso2	Mm2	AntBu	DifEt
Formula empírica	$C_{15}H_{22}N_2O_2S$	$C_{11}H_{14}N_2O_2S$	$C_{20}H_{20}N_2OS$	C ₁₆ H ₁₈ N ₂ OS

Peso molecular	294,40	238,30	336,44	286,38
Temperatura/K	293(2)	293(2)	293(2)	293(2)
Sistema cristalino	ortorrómbico	monoclínico	triclínico	triclínico
Grupo espacial	Pbcn	P2 ₁ /c	P-1	P-1
a/Å	22,3245(9)	13,046(2)	8,9669(5)	6,4045(6)
b/Å	10,3700(3)	4,5997(8)	9,7134(5)	10,8469(5)
c/Å	27,3107(9)	20,521(5)	10,7238(7)	11,8669(9)
α/°	90	90	85,748(4)	104,895(5)
β/°	90	106,10(2)	81,429(5)	99,550(7)
γ/°	90	90	74,653(5)	92,139(5)
Volumen/Å ³	6322,6(4)	1183,0(4)	890,08(9)	782,87(10)
Z	16	4	2	2
ρ _{calc} g/cm ³	1,237	1,338	1,255	1,215
Coeficiente de absorción mm ⁻¹	0,208	0,261	0,190	1,806
F(000)	2528,0	504,0	356,0	304,0
Radiación	MoKα (λ = 0,71073)	MoKα (λ = 0,71073)	MoKα (λ = 0,71073)	CuKα (λ = 1,54184)
2O rango para colección de datos/°	5,966 a 58,28	5,924 a 57,584	7,2 a 57,602	7,84 a 144,68
Rango de los índices	-25 ≤ h ≤ 29, -13 ≤ k ≤ 12, -31 ≤ l ≤ 36	-9 ≤ h ≤ 16, -6 ≤ k ≤ 5, -25 ≤ l ≤ 26	-11 ≤ h ≤ 11, -12 ≤ k ≤ 13, -13 ≤ l ≤ 14	-7 ≤ h ≤ 7, -8 ≤ k ≤ 13, -14 ≤ l ≤ 14
Reflexiones colectadas	25265	4923	7031	5274
Reflexiones independientes	7071 [R _{int} = 0,0458, R _{sigma} = 0,0437]	4923 [R _{sigma} = 0,1376]	3797 [R _{int} = 0,0202, R _{sigma} = 0,0333]	3031 [R _{int} = 0,0254, R _{sigma} = 0,0370]
Datos/restriccione s/parámetros	7071/0/537	4923/0/153	3797/0/286	3031/0/182
Bondad de ajustes F ²	1,025	0,871	1,045	1,041
Índices R Finalª [I>=2σ (I)]	R1 = 0,0521, wR2 = 0,1095	$R_1 = 0.0769,$ w $R_2 = 0.1866$	R1 = 0,0465, wR2 = 0,1167	$R_1 = 0.0566,$ w $R_2 = 0.1665$
Índices R final Itodos los datos	R1 = 0,1030, wR2 = 0.1325	$R_1 = 0,1727,$ wR ₂ = 0.2199	R1 = 0,0609, wR2 = 0.1303	$R_1 = 0,0670,$ w $R_2 = 0.1837$
Mayor diferencia de pico/valle (e Å ⁻ ³)	0,17/-0,22	0,43/-0,31	0,22/-0,33	0,52/-0,30
		······································		

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, \ wR_2 = [\Sigma w (|F_o|^2 - |F_c|^2)^2 / \Sigma w (|F_o|^2)^2]^{1/2}$

4.7.1. N-[di(isopropil)carbamatiol]-4-metoxibenzamida, (MIso2).

La Figura 4.7.1 muestra el diagrama ORTEP obtenido por difracción de rayos X para el compuesto **MIso2**, la molécula cristaliza en sistema ortorrómbico adoptando el grupo espacial Pbcn, con 16 moléculas por celda unidad y con dimensiones de celda: a=22,3245(9) Å, b=10,3700(3) Å, c=27,3107(9) Å, α = β = γ =90°. En la celda unidad se determinó la presencia de

dos moléculas cristalográficamente equivalentes pero estructuralmente diferentes, **MIso2A** y **MIso2B**.

Las principales distancias de enlace, ángulos y ángulos diedros experimentales y calculados (B3LYP/6-311g++(d,p)) se presentan en la Tabla 4.7.2. para la comparación entre los datos calculados y experimentales se usaron los parámetros de la molécula **MIso2A** debido a que no hay diferencias significativas entre ambos confórmeros.

Figura 4.7.1. Diagrama ORTEP con la numeración de las moléculas A y B para el compuesto **Miso2**.

Las distancias de enlace de los grupos C8=O2 y C9=S1 son de 1,224(2) y 1,664(2) Å (calc.: 1,218 y 1,682 Å) y un ángulo de torsión de 76,3°. Las distancias de enlace C8-N1, N1-C9 y C9-N2 son 1,361(3), 1,432(3) y 1,326(3) Å, respectivamente, siendo esta última la más corta sugiriendo un mayor carácter de doble enlace para C9-N2.

Tabla 4.7.2. Distancias de enlace (Å), ángulos de enlace y de torsión (°), experimentales y calculados (B3LY/6-311++g(d,p)) para **MIso2A**. La numeración de los átomos adoptada es la descripta en el diagrama ORTEP de la Figura 4.7.1.

Parámotro	MIso2A		
Farametro	Exp.	Calc.	
r(C8-O2)	1,224(2)	1,218	
r(C9-S)	1,664(2)	1,682	
r(C8-N1)	1,361(3)	1,400	
r(C9-N2)	1,326(3)	1,344	
r(C9-N1)	1,432(3)	1,427	
∠(O2-C8-N1)	120,8(2)	122,7	
∠(N1-C9-S1)	117,78(15)	115,2	
∠(N2-C9-S1)	126,72(17)	127,6	

∠(O2-C8-C4)	121,95(19)	122,4
Φ(O2-C8-N1-C9)	14,1(3)	-15,4
Φ(S-C9-N1-C8)	75,8(2)	-117,4
Φ(N2-C9-N1-C8)	-105,8(2)	64,7

Los grupos metoxilo y carbonilo se encuentran en el mismo plano del anillo aromático siendo el grupo tiocarbonilo casi perpendicular a este plano. Los isopropilos presentan disposición espacial diferente a causa de las interacciones intramoleculares con el nitrógeno y el azufre: C14-H···N1, C12-H···N1 y C11-H···S con valores de distancia interatómica donor – aceptor $d(D \cdots A = 2,50, 2,60 \text{ y } 2,43 \text{ Å})$, respectivamente (Figura 4.7.2.a).

Figura 4.7.2. (a) Interacciones intramoleculares en el cristal **MIso2.A**. **(b)** Vista de las 16 moléculas contenidas en la celda unidad y los contactos intra e intermoleculares en el empaquetamiento cristalino. **(c)** Ensamblado de las moléculas generado por las interacciones intra e intermoleculares.

Las interacciones inter e intramoleculares presentes en el estado cristalino para las especies **MIso2A** y **MIso2B** son descriptas en la Tabla 4.7.3. Se observan contactos intermoleculares del tipo CH···O, CH···N y CH···S, donde el oxígeno del grupo carbonilo actúa como grupo

aceptor al igual que el N1 y S. Estas interacciones son las responsables del empaquetamiento de las moléculas, el cual podemos observar en la Figura 4.7.2.

D-H·· A	d(D-H)	d(H…A)	d(D…A)	∠(DHA)
N1A-H1NA····O2A ^{#3}	0,84	2,23	3,044(2)	162
N1B-H1B····O2B ^{#3a}	0,83	2,23	3,029(2)	160
C3A-H3A…O2A ^{#3}	0,97	2,40	3,342(1)	163
C3B-H3B····O2B ^{#3a}	0,96	2,43	3,384(1)	170
C12A-H2AA…N1A *	1,00	2,60	3,103(1)	111
C5A-H5A…O2A *	0,95	2,47	2,795(1)	100
C5B-H5B····O2B *	0,94	2,46	2,792(1)	101
C14A-H4AB····N1A *	0,93	2,50	3,027(1)	116
C14B-H4BB…N1B *	0,94	2,55	3,023(1)	112
C11A-H11A…SA *	0,96	2,43	3,055(1)	123
C11B-H11B…SB *	0,96	2,42	3,043(1)	123

Tabla 4.7.3. Interacciones de enlace de hidrógeno inter e intra moleculares (Å, °) para MIso2.

^{#3}: 1/2-x,-¹/₂+y,z; ^{#3a}: 1/2-x,¹/₂+y,z; ^{#4}: -x,1-y,1-z; ^{#5}: 1-x,1-y,-z.; ^{#6}: 1-x,1-y,1-z. *Interacciones intramoleculares.

En la superficie de Hirshfeld (Figura 4.7.3.a) se observan dos puntos de color rojo intenso generados por los contactos $O \cdots H/H \cdots O$, atribuidos a las interacciones N1-H $\cdots O2$ que involucra el oxígeno del grupo carbonilo, con una contribución del 12,9% (Figura 4.7.3.b).

Figura 4.7.3. (a) Vista de la superficie de Hirshfeld de **MIso2** evaluada con el descriptor d_{norm} (distancia de contacto normalizada), mostrando el contacto, O···H. (b) Gráfico de descomposición 2D del principal contacto O···H con una contribución del 12,9 %.

4.7.2. N-[di(metil)-carbamatiol]-4-metoxibenzamida, (Mm2).

Como se muestra en la Tabla 4.7.1., **Mm2** cristaliza en el sistema monoclínico adoptando el grupo espacial P2₁/c, con Z = 4 moléculas por celda unidad y con dimensiones de celda de: a=13,046(2) Å, b=4,5997(8) Å, c=20,521(5) Å, α =90 β =106,10(2) y γ =90°. El diagrama ORTEP obtenido a partir de la difracción de rayos X se muestra en la Figura 4.7.4. La estructura

resuelta presenta una *cuasi* planaridad entre el 4-metoxifenilo y el grupo amida, con un ángulo de intersección entre los planos de 28,5°.

Figura 4.7.4. Diagrama ORTEP de Mm2.

Los principales parámetros geométricos se presentan en la Tabla 4.7.4. Las distancias de enlace de C=S y C=O son de 1,698 y 1,214 Å con una configuración *anticlinal*. Esta configuración concuerda con el confórmero obtenido por cálculos teóricos. De las tres distancias de enlace C-N presentes en la molécula, la de mayor carácter de doble enlace le corresponde a C9-N2, ya que presenta la menor distancia (ver Tabla 4.7.4.).

Tabla 4.7.4. Distancias de enlace (Å), ángulos de enlace y de torsión (°), experimentales y calculados (B3LY/6-311++g(d,p)) para **Mm2**. La numeración de los átomos adoptada es la descripta en el diagrama ORTEP de la Figura 4.7.1.

Darámatra	Mm2		
Parametro	Exp.	Calc.	
r(C8-O2)	1,214(6)	1,217	
r(C9-S)	1,698(5)	1,679	
r(C8-N1)	1,406(6)	1,402	
r(C9-N2)	1,317(6)	1,342	
r(C9-N1)	1,367(6)	1,413	
∠(O2-C8-N1)	121,6(5)	122,6	
∠(N1-C9-S1)	119,6(4)	118,1	
∠(N2-C9-S1)	121,7(4)	125,1	
∠(O2-C8-C4)	124,1(5)	122,6	
Ф(О2-С8-N1-С9)	-5,4(9)	12,0	
Φ(S-C9-N1-C8)	129,2(5)	126,7	
Φ(N2-C9-N1-C8)	-54,7(7)	-55,1	

Las interacciones intra e intramoleculares encontradas en el cristal se describen en la Tabla 4.7.5 y se visualizan en la Figura 4.7.5.a y 4.7.5.c.

Tabla 4.7.5. Interacciones de enlace de hidrógeno inter e intra moleculares (Å, °) para Mm2.

D-H·· A	d(D-H)	d(H…A)	d(D…A)	∠(DHA)
N1-H1····S ^{#1}	0,91	2,58	3,473(8)	165
C11-H11 …N1 *	0,96	2,39	2,771(7)	103
--	-----------------	------	----------	-----
C11-H11…O2 *	0,96	2,56	2,888(7)	100
^{#1} :1-x, -y, 1-z; *Interacciones in	tramoleculares.			

Figura 4.7.5. (a) Interacciones intramoleculares. **(b)** Moléculas por celda unidad. **(c)** Ensamblado de las moléculas generado por interacciones intra e intermoleculares.

La estructura **Mm2**, como se observa en la Figura 4.7.5.a, presenta interacciones intramoleculares de C11H ···N1 y C11H ···O2, que generan una disposición espacial diferente para cada grupo metilo, e interacciones intermoleculares N1H1 ···S/S····H1N1 visualizadas en la

superficie de Hirshfeld, (Figura 4.7.6.) como puntos rojos marcados como **1**. En el ordenamiento del cristal, se puede observar (Figura 4.7.2.) que el átomo de azufre participa de otro contacto, C9S···C3, con el C3 del anillo aromático de una molécula vecina. Estos dos contactos generan arreglos supramoleculares dando lugar a motivos $R_2^2(8)$, generalmente presentes en las carbonil tioureas.

Figura 4.7.6. (a) Vista de la superficie de Hirshfeld de **Mm2** evaluada con el descriptor d_{norm} (distancia de contacto normalizada) mostrando los contactos, $\mathbf{1} \rightarrow S \cdots H/H \cdots S$, $\mathbf{2} \rightarrow O \cdots H/H \cdots O$, $\mathbf{3} \rightarrow H \cdots H/H \cdots H$ y $\mathbf{4} \rightarrow C \cdots S/S \cdots C$. (b) Gráfico de descomposición 2D de los principales contactos y su contribución $O \cdots H$ (17,4%), $S \cdots H$ (15,0%), $C \cdots S$ (1,9%) y $H \cdots H$ (46,6%).

4.7.3. N-(etilcarbamotioil)-2,2-difenilacetamida, (DifEt).

La Figura 4.7.7. muestra el diagrama ORTEP de **DifEt**. La lista completa de las distancias interatómicas, ángulos y ángulos diedros se detallan en el Anexo 4.

La molécula cristaliza en el sistema triclínico adoptando el grupo espacial P-1, con Z = 2 moléculas por celda unidad y con dimensiones de celda: a=6,4045(6) Å, b=10,8469(5) Å, c=11,8669(9) Å, α =104,895(5)° β =99,550(7)° y γ =92,139(5)°.

Los anillos aromáticos se disponen espacialmente en diferentes planos formando ángulos de 58,1 y 72,3° con respecto al plano del grupo $-C(O)NHC(S)NH-CH_2CH_3$. La planaridad del grupo carbonil tiourea, como ya se mencionó para compuestos similares, se debe a la interacción intermolecular de puente de hidrógeno N2H···O.

Figura 4.7.7. Diagrama de ORTEP de DifEt.

Tabla 4.7.6. Distancias de enlace (Å), ángulos de enlace y de torsión (°), experimentales y calculados (B3LY/6-311++g(d,p)) para **DifEt**. La numeración de los átomos adoptada es la descripta en el diagrama ORTEP de la Figura 4.7.1.

Parámotro	DifEt		
Farametro	Exp.	Calc.	
r(C2-O)	1,2174(1)	1,222	
r(C2-N1)	1,3706(1)	1,378	
r(C3-N2)	1,3154(1)	1,335	
r(C3-N1)	1,3986(1)	1,411	
r(C3-S)	1,6708(1)	1,674	
∠(O-C2-N1)	123,00(13)	123,1	
∠(N2-C3-S)	124,27(10)	125,9	
∠(N1-C3-S)	119,22(10)	118,3	
Φ(O-C2-N1-C3)	0,4(2)	0,4	
Φ(N2-C3-N1-C2)	-1,0(2)	-1,1	
Φ(S-C3-N1-C2)	179,5(1)	179,2	

Tabla 4.7.7. Interacciones de enlace de hidrógeno inter e intra moleculares (Å,°) para DifEt.

D-H··	· A d(D)-H) d(H	A) d(D…A)	∠(DHA)
N(1)-H(1N) ·	·S ^{#1} 0,	79 2,66	3,442(3)	170
N(2)-H(2N) ·	·O * 0,8	88 1,90	2,615(2)	138
C(1)-H(1) ··S	S ^{#1} 0,9	92 2,82	3,705(3)	161

^{#1}: -x,1-y,1-z; *Interacciones intramoleculares.

Figura 4.7.8. Interacciones intermoleculares de puente de hidrógeno.

La principal interacción intermolecular encontrada en la estructura cristalina fue S…H/ H…S marcada como puntos de color rojo en la Figura 4.7.9. y corresponden a los contactos N(1)-H(1N) …S y C(1)-H(1) …S.

Figura 4.7.9. (a) Vista de la superficie de Hirshfeld de **DifEt** evaluada con el descriptor d_{norm} (distancia de contacto normalizada) mostrando el contacto, S…H. (b) Gráfico de descomposición 2D del principal contacto S…H/ H…S con una contribución del 13,1 %.

4.7.4. N-butilcarbamotioil-9-antracencarboxamida, (AntBu).

La molécula de **AntBu**, presentada en la Figura 4.7.8, cristaliza en el sistema triclínico adoptando el grupo espacial P-1, con Z = 2 moléculas por celda unidad y con dimensiones de celda: a=8,9669(5) Å, b=9,7134(5) Å, c=10,7238(7) Å, α =85,748(4)° β =81,429(5)° y γ =74,653(5)°.

Figura 4.7.10. Diagrama ORTEP de AntBu.

Tabla 4.7.8. Distancias de enlace (Å), ángulos de enlace y de torsión (°), experimentales y calculados (B3LY/6-311++g(d,p)) para **AntBu**. La numeración de los átomos adoptada es la descripta en el diagrama ORTEP de la Figura 4.7.1.

Parámatra	AntBu				
Farametro	Exp.	Calc.			
r(C15-O)	1,213(2)	1,225			
r(C15-N1)	1,363(2)	1,380			
r(C16-N2)	1,314(2)	1,337			
r(C16-N1)	1,4041(1)	1,411			
r(C16-S)	1,6715(1)	1,676			
∠(O-C15-N1)	123,20(1)	123,1			
∠(N2-C16-S)	126,05(1)	126,6			
∠(N1-C16-S)	117,89(11)	118,0			
Φ(O-C15-N1-C16)	-0,5(3)	2,8			
Φ(N2-C16-N1-C15)	1,3(2)	-2,1			
Φ(S-C16-N1-C15)	-177,5(1)	178,2			

El puente de hidrogeno N2H···O con d(N···O), d(H···O) y \angle (NH···O) de 2,655(2) Å, 2,00 Å y 135°, respectivamente, favorece la planaridad de la porción carboniltiourea C(O)NHC(S)NH, la cual resulta perpendicular al plano del resto de la molécula. Los dos planos se intersectan formando un ángulo de 84,4°. La orientación de los grupos C=O y C=S resulta *antiperiplanar*.

Tabla 4.7.9. Interacciones de enlace de hidrógeno inter e intra moleculares (Å, °) para AntBu.

D-H·· A	d(D-H)	d(H…A)	d(D…A)	∠(DHA)
N(1)-H(1N) ···S ^{#1}	0,86	2,63	3,452(2)	161
C17-H ··S *	0,94	2,69(2)	3,165(2)	111
N(2)-H(2N) ··O *	0,84	2,00	2,655(2)	135
N(2)-H(2N) ··O ^{#2}	0,84	2,33(2)	3,019(2)	140

^{#1}1-x,1-y,-z.; ^{#2}: 1-x,1-y,1-z. *Interacciones intramoleculares.

En la Figura 4.7.11.a se muestra a lo largo del eje C de la celda dímeros $R_{\frac{1}{2}(12)}^2$ con anillos de 12 miembros formados por la interacción intermolecular N2H···O [d(N····O)= 3,019(2) Å, \angle (NH····O)= 140°] y por la interacción N1H···S [d(N····S)= 3,452(2) Å, \angle (NH····S)= 161°], $R_{\frac{1}{2}(8)}^2$.

Figura 4.7.11. (a) Empaquetamiento en la celda unidad. b) Interacciones intermoleculares de puente de hidrógeno.

La superficie de Hirshfeld de **AntBu** (Figura 4.7.12.(a)) muestra los principales contactos marcados como **1** y **2**, que representan las interacciones H···O/O···H y H···S/S···H atribuidas a los enlaces de hidrógeno N2-H···O y N1-H···S1. También se observan en la superficie dos regiones rojas de menor intensidad identificadas como **3**, que corresponden a contactos H···H, y **4** asociados a enlaces de hidrógeno C12-H···S que representan las interacciones más débiles.

Figura 4.7.12 (a) Vista de la superficie de Hirshfeld de **AntBu** evaluada con el descriptor d_{norm} (distancia de contacto normalizada) mostrando los contactos S…H y O…H (b) Gráfico de descomposición 2D de los principales contactos O…H/H…O y S…H/H…S con una contribución del 6,3% y 10,1, respectivamente.

En la Figura 4.7.13 se presentan las contribuciones de cada tipo de contactos intermoleculares en la superficie de Hirshfeld, donde la mayor contribución es debida a las interacciones H···H.

4.8 Ensayos biológicos

El procedimiento de los ensayos biológicos fue descripto en el Capítulo 2, sección 2.8. A continuación se presentan los resultados obtenidos para los ensayos sobre Mf2, Mm2 y MIso2.

4.8.1. Crecimiento bacteriano y formación de biopelículas

El compuesto **Mf2** presentó una inhibición del crecimiento de la cepa de *Pseudomonas aeruginosa* PAO1 de 7% y 19% y de inhibición en la formación de biofilm de 38% y 38% en las concentraciones de 10 μ g/mL y 100 μ g/mL, respectivamente, con respecto al control.

Para el compuesto **Mm2**, el porcentaje de inhibición de crecimiento del biofilm fue de 44% y 46%, respectivamente para concentraciones de 10 μ g/mL y 100 μ g/mL. Esto se puede considerar como un muy buen resultado, ya que lo que se pretende de un compuesto es que tenga capacidad de inhibir este factor de virulencia sin afectar la viabilidad de las bacterias. En este caso en particular, la inhibición del crecimiento bacteriano fue menor al 6%.

Figura 4.3.2. Efecto de **Mf2**, **Mm2** y **MIso2** sobre el crecimiento y la formación de biopelículas en *Pseudomonas aeruginosa* PAO1. Los datos se expresan como valor medio ± desviación estándar.

4.8.2. Quorum sensing, QS.

Los compuestos presentaron mejores resultados sobre la inhibición competitiva con los autoinductores en la cepa CV026 en el ensayo a la concentración de 1000 μ g/mL, con respecto al control DMSO. El compuesto **Mf2** evidenció tener mayor poder inhibitorio en la producción de violaceína (Figura 4.3.3.F).

Todos los compuestos presentaron algún grado de inhibición y al aumentar la concentración también se observó un aumento en el efecto de inhibición. En el ensayo realizado a la concentración de 100 μ g/mL se observó que los 3 compuestos inhiben la formación de la

violaceína sin "matar" la bacteria. Este sería el resultado ideal debido a que se busca la inhibición del QS sin afectar la viabilidad de la bacteria.

Figura 4.3.3. Efecto de los compuestos ensayados en la producción de violaceína en *C. violaceum* CV026. A. **Mm2** 100 μ g/mL (7,0 ± 0,2 mm); B. **Mm2** 1000 μ g/mL (10,8 ± 0,7 mm); C. **MIso2** 100 μ g/mL (6,2 ± 0,5 mm); D. **MIso2** 1000 μ g/mL (6,2 ± 0,5 mm); E. **Mf2** 100 μ g/mL (10,2 ± 0,5 mm); F. **Mf2** 1000 μ g/mL (17,5 ± 1,1 mm); **DMSO** 2,5% control.

4.8.3. Ensayo de actividad metabólica del biofilm

La viabilidad de las células bacterianas presentes en el biofilm presentó, en todos los casos, una inhibición menor al 46% para ambas concentraciones, 10 μ g/mL y 100 μ g/mL. En el caso de los compuestos **MIso2** y **Mm2** los resultados encontrados fueron independientes de las concentraciones empleadas.

Por otro lado, **Mf2** aumentó casi al doble su inhibición con el aumento de la concentración, desde un 28% a 10 μ g/mL a un 45% de inhibición a 100 μ g/mL.

Tabla 4.3.2. Efecto de **Mf2**, **Mm2** y **MIso2** sobre la actividad metabólica de las células de biofilm PAO1 de *P. aeruginosa*.

Compuestos	DO a	570 nm	% Inhibición Actividad Metabólica de bacterias en Biofilm			
10 μg/mL (%		100 µg/mL (%) ^a	10 µg/mL	100 µg/mL		
MIso2	$0,939\pm0,050$	$1,\!019\pm0,\!042$	35	30		
Mm2	$0,944 \pm 0,109 \qquad 0,944 \pm 0,109$		35	35		
Mf2	$\textbf{1,045} \pm \textbf{0,079}$	$1,045 \pm 0,079 \qquad 0,806 \pm 0,018$		45		
CIP 1 µg/ml	0,164	± 0,009	8	9		
Control	1,455	± 0,079	-	-		

4.9 Conclusiones

En los compuestos expuestos en este capítulo se puede observar que cuando la sustitución en el N2 es diferente de hidrogeno, se hace mucho más evidente el carácter doble del enlace N2-C de la función tioamida (-(S=C)-N2-) y por lo tanto, cobra mayor significación la restricción a la libre rotación en C-N2 y aumenta la planaridad en torno a dicho enlace. Por ejemplo, en el compuesto **Mm2** los grupos metilo unidos al nitrógeno presentan desplazamientos químicos diferentes en RMN, ya que debido a la mencionada planaridad, estos sustituyentes poseen entornos químicos diferentes.

Las interacciones inter e intramoleculares presentes en las estructuras cristalinas son las responsables de la estabilización de las moléculas en el cristal. Los confórmeros de mínima energía calculados tienen algunas diferencias estructurales con los encontrados experimentalmente por DRX que se atribuyen a las interacciones intermoleculares presentes en el empaquetamiento.

En las moléculas **AntBu** y **DifEt**, la porción de tiourea -C(O)N1C(S)N2H– es completamente plana debido a las interacciones N2H···O intramoleculares presentes, favoreciendo la formación de un pseudo anillo de 6 miembros y dando lugar a la forma *S*. Los grupos C=O y C-S adoptan una configuración *antiperiplanar*.

Por otra parte, los ensayos biológicos indicaron que los compuestos presentan capacidad de inhibir de la formación de biofilm y una baja actividad antimicrobiana en las concentraciones ensayadas en contraste con el control, CIP, frente a *Pseudomonas aeruginosa* PAO1.

Todos los compuestos ensayados en este capítulo presentan algún grado de inhibición competitiva con los auto inductores de biofilm por el sitio activo en *C. violaceum* que desencadena la producción de violaceína. Además el compuesto **Mf2** es el que presenta características antibióticas sobre la *C. violaceum*, CV026 a una concentración de 1000 μ g/mL.

4.10 Bibliografía

- 1. Woldu, M. G. & Dillen, J. A quantum mechanical study of the stability and structural properties of substituted acylthiourea compounds. *Theor. Chem. Acc.* **121**, 71–82 (2008).
- Est, O. On the complex formation of CdCl 2 with 1-furoylthioureas : Preconcentration and voltammetric behavior of Cd (II) at carbon paste electrodes modified with 3monosubstituted and 3, 3-disubstituted derivatives. *Sensors And Actuators* **120**, 766– 772 (2007).
- Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamarro, J. Aroylthioureas: new organic ionophores for heavy-metal ion selective electrodes. J. Chem. Soc. Perkin Trans. 2 2211 (2001). doi:10.1039/b102029n
- 4. Yang, G., Zhang, Z. & Wang, D. Synthesis of a Library of N-p-Hydroxybenzoyl Thioureas using a Poly (ethylene glycol) Support. *New York* 1483–1486 (2001).
- Mansuroğlu, D. S., Arslan, H., VanDerveer, D. & Binzet, G. Synthesis and Characterization of N -(2,2-Diphenylacetyl)- N '-Substituted Thiourea Derivatives: The Crystal Structure of N -(2,2-Diphenylacetyl)- N '-(4-chloro phenyl)-thiourea. *Phosphorus. Sulfur. Silicon Relat. Elem.* 184, 3221–3230 (2009).
- Daud, A. I., Khairul, W. M., Mohamed Zuki, H. & Kubulat, K. Aerobic synthetic approach and characterisation of some acetylide-thiourea derivatives for the detection of carbon monoxide (CO) gas. *J. Mol. Struct.* **1093**, 172–178 (2015).
- 7. Hadad, C. M., Rablen, P. R. & Wiberg, K. B. C-O and C-S bonds: Stability, bond dissociation energies, and resonance stabilization. *J. Org. Chem.* **63**, 8668–8681 (1998).
- 8. Santiago V. Luis, M. Isabel Burguete Azacárate, B. A. B. in *Introducción a la Química Orgánica* 254 (1997).
- 9. Kirby, A. J. *Reactivity and StructureReactivity and Structure Concepts in Organic Chemistry*. **15**, (Springer-Verlag Berlin Heidelberg New York, 1983).
- Khairul, W. M., Goh, Y. P., Daud, A. I. & Nakisah, M. A. Cytotoxicity effects of alkoxy substituted thiourea derivatives towards Acanthamoeba sp. *Arab. J. Chem.* **10**, 532–538 (2017).
- 11. Pandith, A., Kumar, A., Lee, J.-Y. & Kim, H.-S. 9-Anthracenecarboxamide fluorescent probes for selective discrimination of picric acid from mono- and di-nitrophenols in ethanol. *Tetrahedron Lett.* **56**, 7094–7099 (2015).
- 12. Ang, W. J., Lo, L.-C. & Lam, Y. Expedient carbonylation of aryl halides in aqueous or neat condition. *Tetrahedron* **70**, 8545–8558 (2014).

CAPÍTULO 5

Ureidos

5.1. Introducción

En este capítulo se presenta la síntesis de nuevos ureidos, a partir de la reacción de isocianatos y aminas primarias. Los compuestos obtenidos fueron estudiados experimentalmente por difracción de rayos X (DRX), espectroscopia vibracional (IR y Raman), electrónica (UV-Vis) y de RMN (¹H y ¹³C). El análisis estructural y espectroscópico se complementó con la ayuda de cálculos teóricos. Los ureidos obtenidos fueron: N-butilcarbamoil-4-metoxibenzamida (**UDO-MBt**), N-isopropilcarbacarbamoil naftaleno-1-carboxamida (**UDO-NIs**) y N-[3-cloro-2-metilfenil)carbamoil]-4-metoxibenzamida (**UDO-MMCf**).

Al igual que los acil tioureidos homólogos, estudiados en los capítulos previos, las acil ureas o acil ureidos están constituidos por dos grupos amida (carboxamida) conectados en serie, - C(=O)-NH-C(=O)-NH-. La urea, el compuesto base de los ureidos, fue obtenida por primera vez por Friedrich Wöhler¹ en 1828 a partir de compuestos inorgánicos.

Las diferentes ureas y los ureidos simples son empleados como fertilizantes y abono de suelos para la agricultura, para la fabricación de resinas de urea-formaldehído y melamina-formaldehido. Ureidos de mayor complejidad estructural son productos de gran importancia en la industria farmacológica, ya que pueden actuar como somníferos o sedantes, poseen efecto analgésico,² actividad anticancerígena,³ para el tratamiento de la tuberculosis, actividad antimicrobiana^{4,5} y se han realizado estudios de su acción para tratar la epilepsia,^{6,7} entre otros.

Algunos ejemplos de benzoilureas, Ar-CO-NHCONHR, actúan como insecticidas ya que se comportan como reguladores del crecimiento de los insectos, a diferencia de las benzoil tioureas, que inhiben la síntesis de la quitina.⁸ Algunos de los principios activos presentes en el mercado que contienen la porción acil urea se presentan en la Figura 5.1.1.

Figura 5.1.1. Principios activos presentes en productos comerciales conteniendo acil urea.

Otros estudios de interés son el de la actividad antiviral de los ureidos contra el virus herpes simple tipo 1 VHS-1,⁹ la actividad antibacteriana contra bacterias Gram-positivas¹⁰ y su aplicación en el tratamiento de la leishmaniasis.¹¹

Los ureidos, de manera similar a los tioureidos, pueden adoptar las conformaciones propuestas por Woldu and Dillen.¹² En este trabajo se obtuvieron ureas monosustituidas, con R^3 = H, por lo que es de esperarse que adopten la configuración *S*, favoreciendo la formación de puentes de hidrógeno, (Figura 5.1.2.).

Figura 5.1.2. Posibles conformaciones propuestas para los ureidos mono sustituidos (R3 = H).

5.2. Síntesis

En el Esquema 5.2.1 se describe la metodología sintética empleada para la obtención de **UDO-MBt**, **UDO-NIs** y **UDO-MMCf**. El carbonil isocianato correspondiente se condensó con las diferentes alquilaminas para formar las carbonil ureas de interés. La obtención de los isocianatos se detalló en el Capítulo 1, Sección 1.2. Síntesis.

Esquema 5.2.1. Estrategia general de síntesis de UDO-MBt, UDO-NIs y UDO-MMCf.

En un balón de reacción de 100 mL se colocó 11,7 mmol de 4-metoxibenzamida (Sigma-Aldrich, 98%) o 1-naftalenamida (ver sección 1.2.2., Capítulo 1) disueltos en 15 mL de acetonitrilo seco, luego se agregó 20,0 mmol de cloruro de oxalilo (COCI)₂. La mezcla se mantuvo a reflujo (80°C) y con agitación constante por 3 horas en atmosfera de nitrógeno (Capítulo 1). Finalizada la reacción se dejó enfriar a temperatura ambiente y manteniendo la atmosfera de nitrógeno se adicionó por goteo 11,7 mmol de la amina correspondiente: nbutilamina (1,1 mL), isopropilamina (0,8 mL) y 3-cloro-2-metilanilina (1,4 mL) para obtener **UDO-MBt**, **UDO-NIs** y **UDO-MMCf** respectivamente. Esta mezcla se calentó a 80°C y con agitación constante durante dos horas, posteriormente se llevó a un rotavaporador para extraer el solvente. El sólido obtenido fue recristalizado en una mezcla de solventes metanol/diclorometano.¹³

5.3. Estudio teórico cuántico

Para determinar las conformaciones de mínima energía de los compuestos **UDO-MBt**, **UDO-NIs** y **UDO-MMCf**, se analizaron las curvas de energía potencial relativa de todos aquellos enlaces con libre rotación. Una vez obtenidos los mínimos globales, se siguió con el procedimiento descripto en la sección j. Métodos computacionales de Métodos Experimentales Técnicas y Equipamiento.

5.3.1. N-butilcarbamoil-4-metoxibenzamida, (UDO-MBt).

En la Figura 5.3.1. se visualizan los ángulos de torsión analizados y las curvas de energía potencial obtenidas para **NBt** se muestran en la Figura 5.3.2.

Figura 5.3.1. Enlaces seleccionados y designación de los ángulos de torsión para UDO-MBt.

Figura 5.3.2. Curvas de energía potencial en función de la variación de los ángulos diedros τ_1 . τ_5 para **UDO-MBt**, calculados con el nivel de teoría B3LYP/6-31g(d).

El compuesto **UDO-MBt** presenta una única conformación de mínima energía. Los parámetros estructurales que caracterizan al confórmero se detallan en la Tabla 5.3.1. y su estructura se presenta en la Figura 5.3.3.

Parámetro	UDO-MBt	Parámetro	UDO-MBt
φC3C4-C8O2	-162	r C8-O2	1,2277
	-178	r C9-O3	1,2209
φC8-N1-C9N2	2	r C8-N1	1,3794
φN1C9-N2C10	-178	r C9-N1	1,4264
∠C1 O1 C7	119	r C9-N2	1,3484
r C1-O1	1,3569	r N2H-O2	1,9216

Tabla 5.3.1. Parámetros estructurales (Å, °) de UDO-MBt.

Figura 5.3.3. Confórmero más estable para UDO-MBt.

5.3.2. N-isopropilcarbacarbamoil naftaleno-1-carboxamida, (UDO-NIs).

Se analizaron las curvas de energía potencial generadas para los ángulos individualizados en la Figura 5.3.4. y en la Figura 5.3.5. se presentan las curvas resultantes para los enlaces con libre rotación de **UDO-NIs**.

Figura 5.3.5. Curvas de energía potencial en función de la variación de los ángulos diedros τ_1 . τ_4 para **UDO-NIs**, calculados con el nivel de teoría B3LYP/6-31g(d).

Una vez identificados y seleccionados los mínimos locales de cada curva de energía potencial, se combinaron entre sí obteniéndose un posible confórmero optimizado con el nivel de teoría B3LYP-6-311++G(d,p). Figura 5.3.6.

Figura 5.3.6. Confórmero calculado más estable para UDO-NIs.

5.3.3. N-[3-cloro-2-metilfenil)carbamoil]-4-metoxibenzamida, (UDO-MMCf).

A partir de las torsiones definidas en la Figura 5.3.7. se obtuvieron las curvas de energía potencial de **UDO-MMCf** que se muestran en la Figura 5.3.8.

Figura 5.3.7. Enlaces seleccionados y designación de los ángulos de torsión para UDO-MMCf.

Figura 5.3.8. Curvas de energía potencial en función de la variación de los ángulos diedros τ_{1-} τ_4 para **UDO-MMCf**, calculados con el nivel de teoría B3LYP/6-31G(d).

UDO-MMCf.b es el confórmero de mínima energía y mayor porcentaje poblacional. La principal diferencia entre los confórmeros **UDO-MMCf.a** y **UDO-MMCf.c**, obtenidos a partir del análisis de las curvas de energía potencial, es la orientación del grupo metoxilo con respecto al grupo carbonilo, ambos unidos a un anillo aromático.

Tabla 5.3.2. Confórmeros de **UDO-MMCf** obtenidos del análisis de las curvas de energía potencial optimizados con el nivel de teoría B3LYP-6-311++G(d,p).

Confórmerosτ1(°)τ2(°)τ3(°)τ4(°)Población (%	Confórmeros	τ1(°)	τ 2(°)	τ 3(°)	τ 4(°)	Población (%)
---	-------------	-------	---------------	---------------	---------------	---------------

UDO-MMCf.a	-161	-177	-0,9	179	32
UDO-MMCf.b	6	-177	-0,5	179	37
UDO-MMCf.c	-161	-177	-0,8	179	32

5.4. Espectroscopia infrarroja y Raman

Los espectros IR y Raman de **UDO-MBt**, **UDO-NIS** y **UDO-MMCf** se muestran en las Figuras 5.4.1.-5.4.3., respectivamente. En las Tablas 5.4.1.-5.4.3. se describen las asignaciones de las principales frecuencias observadas y calculadas para los confórmeros de mínima energía. Las tablas completas de las asignaciones de IR y Raman se encuentran en el Anexo 5.

El estiramiento N2-H observado en 3293, 3279 y 3273 cm⁻¹ (calc.: 3503, 3503 y 3423 cm⁻¹) para **UDO-MBt**, **UDO-NIs** y **UDO-MMCf**, respectivamente están en buen acuerdo con los valores reportadas en la bibliografía¹⁴ para amidas secundarias (~3300 cm⁻¹).

A partir de los cálculos teóricos se asignó las bandas de estiramiento de los carbonilos unidos a grupos arilos (ϕ -C(O)N1-) a menores frecuencias con respecto a las del C=O de la porción carbonil urea, (-N1C(O)N2-). Las frecuencias observadas en los espectros experimentales están localizadas en: 1674 y 1691 cm⁻¹ [**UDO-MBt**], 1675 y 1689 cm⁻¹ [**UDO-NIs**] y 1666 y 1698 cm⁻¹ [**UDO-MMCf**] para ϕ -C(O)N1- y -N1C(O)N2-, respectivamente. Esta diferencia se debe probablemente a que el carbonilo ϕ -C(O)N1- participa de interacciones intramoleculares con el enlace N2-H.

En el intervalo de 3214 a 2700 cm⁻¹ (ver Anexo 5) se observan las bandas asignadas a los estiramientos de los enlaces C-H de los anillos aromáticos y a los antisimétricos y simétricos de los CH_2 y CH_3 de las porciones alifáticas.

A continuación, se presentan los espectros experimentales de IR y Raman y las tablas con las asignaciones más relevantes para **UDO-MBt**, **UDO-NIs** y **UDO-MMCf**.

5.4.1. N-butilcarbamoil-4-metoxibenzamida, (UDO-MBt).

Figura 5.4.1. Espectros experimentales de UDO-MBt: IR (trazo superior) y Raman (trazo inferior).

Tabla 5.4.1. Frecuencias experimentales, calculadas y asignación tentativa de los principales modos vibracionales para **UDO-MBt**.

	Experimental ^a		· · · A	
Modo	IR۵	Raman ^c	Calculado	Asignación
ν1	3365 (H)		3634(35)	v(N1-H)
ν2	3293 (m)		3503(224)	ν(N2-H)
v19	1691 (mf)	1703 (<1)	1770(526)	v(C9=O3)
v20	1674 (mf)	1671 (73)	1709(213)	v(C8=O2)
v21	1608(f)	1609 (96)	1645(211)	v(CC)Ar
v23	1544 (f)	1534 (<1)	1584(594)	δ(N2-H) + ν(N2-C9)
v30	1482 (f)		1492(433)	ν(C8-N1) + δ(N1H)
v33	1468 (H)		1474(100)	ω(C7H ₃)
v43	1276 (f)	1274 (100)	1292(104)	v(C7-O1)
v45	1258 (mf)	1253(70)	1262(662)	ν(C8-C4) + δ(N1H)
v46	1249 (mf)		1242(223)	ν(C9-N2) + ν(C9-N1)
v48	1222 (f)		1196(288)	δ(CH) Ar

^a en cm⁻¹. ^b f, fuerte; m, medio; d, débil; md, muy débil; H, Hombro. ^c Frecuencias IR calculadas e intensidades entre paréntesis (km mol⁻¹). ^d v, δ y ω representa estiramientos, deformaciones y aleteo, respectivamente.

5.4.2. N-isopropilcarbacarbamoil naftaleno-1-carboxamida, (UDO-NIs).

Figura 5.4.2. Espectros IR (trazo superior) y Raman (trazo inferior) experimentales de N-isopropilcarbacarbamoil naftaleno-1-carboxamida.

 Tabla 5.4.2. Frecuencias experimentales, calculadas y asignación tentativa de los principales modos de vibracionales para UDO-NIS.

Mada	Experin	Experimental ^a		Asignación ^d		
wouo -	IR ^c Raman ^c		Calculado	Asignation		
ν1			3624(39)	v(N1H)		
ν2	3295(d)		3503(188)	ν(N2H)		
v11	3100(m)		3106(28)	$\nu_{\text{asim}}(\text{CH}_3)$		
v12	2971(d)		3097(68)	$\nu_{\text{asim}}(\text{CH}_3)_2$		
v17	1689(mf)	1695(<1)	1791(479)	v(C12=O)		
v18	1675(mf)	1676(34)	1724(153)	v(C11=O)		
ν22	1551(mf)	1540(9)	1578(541)	ν(C12-N2) + δ(N2-H)		
v38	1283 (m)	1284(15)	1489(151)	v(C11-N1)		
ν40	1253 (f)	1254(26)	1244(285)	v(C12-N2)		
ν43			1063(14)	v(N1-C12)		

^a en cm⁻¹. ^b f, fuerte; m, medio; d, débil; md, muy débil; H, Hombro. ^c Frecuencias IR calculadas e intensidades entre paréntesis (km mol⁻¹). ^d v y δ representa estiramientos y deformaciones, respectivamente.

5.4.3. N-[3-cloro-2-metilfenil)carbamoil]-4-metoxibenzamida, (UDO-MMCf).

Figura 5.4.3. Espectros experimentales de UDO-MMCf: IR (trazo superior) y Raman (trazo inferior).

Tabla 5.4	I.3. Frecuencias	experimentales,	calculadas	y	asignación	tentativa	de	los	modos
vibraciona	ales más relevant								

Modo	Experir	nental ^a	Calaulada ^b	Acianación ^d
wouo	IR ^c	Raman ^c	Calculauo	ASIGNACION
ν1			3630(43)	v(N1-H)
ν2	3273(d)		3423(326)	ν(N2-H)
v11	2959(md)		3143(18)	$v_{asim}(C7H_3)$
v16	1698(mf)		1774(494)	v(C9=O3)
v17	1666(d)	1668(50)	1708(129)	v(C8=O2)
v19	1603(m)	1611(51)	1640(299)	v(CC)Ar
v20	1579(mf)	1576(72)	1619(660)	ν(N2C9) + δ(N2H)
v22	1558(m)	1556(<1)	1588(341)	$\delta(N2H) + v(CC) Ar$
v28	1481(m)		1491(572)	ν(N1C8) + δ(N1H)
v37	1277(d)		1296(80)	ν(C10-N2) + ν(C1O1)
v39	1253(f)	1263(100)	1264(683)	v(C4-C8)
v40	1231(m)	1228(9)	1234(218)	v(C9-N2)
v41	1190(m)	1192(15)	1220(193)	v(C9-N1)
ν44	1113(d)	1192(15)	1196(375)	δ(CH) Ar

^a en cm⁻¹. ^b f, fuerte; m, medio; d, débil; md, muy débil; H, Hombro. ^c Frecuencias IR calculadas e intensidades entre paréntesis (km mol⁻¹). ^d v y δ representa estiramientos y deformaciones, respectivamente.

5.5. Espectroscopia electrónica UV-visible

Los espectros UV-visible experimentales y calculados (B3LYP/6-311G(d,p)) de Nbutilcarbamoil-4-metoxibenzamida (**UDO-MBt**), N-isopropilcarbamoil naftaleno-1-carboxamida (**UDO-NIs**) y N-[3-cloro-2-metilfenil)carbamoil]-4-metoxibenzamida (**UDO-MMCf**) y los orbitales moleculares involucrados en las transiciones electrónicas de cada uno de los compuestos se discutirán a continuación.

La concentración de cada una de las soluciones de acetonitrilo que se utilizó para medir los espectros fue: $3,5x10^{-5}$ M (**UDO-MBt**); $1,4x10^{-5}$ M (**UDO-NIs**); $9,9x10^{-5}$ M (**UDO-MMCf**).

5.5.1. N-butilcarbamoil-4-metoxibenzamida, (UDO-MBt).

En la Figura 5.5.1. se presentan los espectros experimental y calculado de **UDO-MBt**, en la Tabla 5.5.1. las asignaciones tentativas y en la Figura 5.5.2. los orbitales involucrados en las transiciones electrónicas.

Figura 5.5.1. Espectros UV-Vis de UDO-MBt: a) experimental y b) calculado.

La absorción más intensa en el espectro experimental en 205 nm (calc.: 180 y 192 nm) se genera principalmente por las transiciones de $\pi \rightarrow \pi^*$ en el anillo aromático y hacia los orbitales antienlazantes de la porción carbonil urea.

El hombro observado en 211 nm (calc.: 207 nm) se atribuye a la transición HOMO-4 \rightarrow LUMO entre los pares libres de ambos átomos de oxígeno hacia los π^* del anillo aromático.

La banda en 263 nm (calc.: 219 y 267 nm) surgen principalmente de las excitaciones electrónicas $\pi \rightarrow \pi^*$ en el anillo aromático.

Tabla 5.5.1. Espectros electrónicos experimental y calculado de **UDO-MBt**, junto con la asignación tentativa de las transiciones más relevantes.

Experimental ^a	Calculado ^b	f°	Asignado	%
205	180	0,3935	$\rm HOMO \rightarrow \rm LUMO+2$	62
205	192	0,2780	$\text{HOMO-2} \rightarrow \text{LUMO+1}$	56
211 ^H	207	0,1747	$HOMO-4 \rightarrow LUMO$	69
262	219	0,1165	$\rm HOMO \rightarrow \rm LUMO+1$	72
203	267	0,5849	$HOMO \rightarrow LUMO$	97

^aEn nm. ^bTransiciones electrónicas calculadas (B3LYP/6-311G(d,p)). ^cLa fuerza del oscilador de las transiciones calculadas en unidades atómicas. ^HHombro.

5.5.2. N-isopropilcarbamoil naftaleno-1-carboxamida, (UDO-NIs).

En la Figura 5.5.3. se muestran los espectros electrónicos de **UDO-NIs** experimental y calculado y, en la Figura 2.5.2., los principales orbitales moleculares involucrados en las transiciones electrónicas.

λ (nm)

Figura 5.5.3. Espectros UV-Vis de UDO-NIs: a) experimental y b) calculado.

El hombro en 203 nm (calc. 202 y 205 nm) se origina principalmente por transiciones desde orbitales HOMO-3 y HOMO-1 hacia LUMO+1, entre orbitales π del anillo y no enlazantes de los oxígenos de la porción carbonil urea hacia los orbitales π^* de los anillos aromáticos.

La absorción en 221 nm (calc. 207 y 208 nm) proviene de excitaciones HOMO-1 \rightarrow LUMO+2 y HOMO-2 \rightarrow LUMO+2, desde orbitales no enlazantes de los átomos de nitrógeno y oxígeno de la porción -C(O)N2- y orbitales π del naftilo hacia los orbitales π^* de toda la molécula. El hombro 232 nm (calc. 232 y 234 nm) se genera por transiciones HOMO-4 \rightarrow LUMO entre los orbitales no enlazantes de los átomos de oxígeno y nitrógeno hacia los orbitales π^* del naftilo.

La banda localizada en 283 nm (calc. 311 nm) se atribuye a la transición dominante HOMO \rightarrow LUMO, asignada a excitaciones $\pi \rightarrow \pi^*$ en el naftilo.

Tabla 5.5.2. Espectro electrónico experimental y	calculado de UDO-NIs jur	nto con la asignación
tentativa de las transiciones más relevantes.		

Experimental ^a	Calculado ^b	fc	Asignado	%
202 ^H	202	0,1565	HOMO-3 \rightarrow LUMO+1	50
203	205	0,1866	HOMO-1 \rightarrow LUMO+1	50
221	207	0,5494	HOMO-1 \rightarrow LUMO+2	37
221	208	0,1093	HOMO-2 \rightarrow LUMO+2	80
ooo ^H	232	0,2319	HOMO-4 \rightarrow LUMO	36
232	234	0,2336	HOMO-4 \rightarrow LUMO	59
283	311	0,1846	$HOMO \rightarrow LUMO$	100

^a En nm. ^b Transiciones electrónicas calculadas (B3LYP/6-311G(d,p)). ^c La fuerza del oscilador de las transiciones calculadas en unidades atómicas.

Figura 5.5.4. Orbitales moleculares involucrados en las transiciones electrónicas de UDO-NIs.

5.5.3. N-[3-cloro-2-metilfenil)carbamoil]-4-metoxibenzamida, (UDO-MMCf).

En la Figura 5.5.5. se presentan el espectro experimental y el calculado de **UDO-MMCf**. Los orbitales moleculares utilizados para la asignación de las transiciones electrónicas se muestran en la Figura 5.5.6.

Figura 5.5.5. Espectros UV-visible de UDO-MMCf: a) experimental y b) calculado.

La absorción en 205 nm (calc. 208, 223 y 232 nm) es atribuida a excitaciones HOMO-5 \rightarrow LUMO, HOMO-1 \rightarrow LUMO+1 y HOMO \rightarrow LUMO+2. Estas se originan desde orbitales π de ambos anillos y no enlazantes de los átomos de nitrógeno y oxígeno hacia los orbitales π^* de los anillos aromáticos.

La banda en 273 nm (calc. 271 y 296 nm) se debe a transiciones dominantes HOMO \rightarrow LUMO y HOMO-1 \rightarrow LUMO, entre los orbitales π y π^* de ambos anillos aromáticos.

 Tabla 5.5.3. Espectros electrónicos experimental y calculado de UDO-MMCf, junto con las asignaciones de las transiciones más relevantes.

Experimental ^a	Calculado ^b	fc	Asignado	%
	208	0,1199	HOMO-5 \rightarrow LUMO	67
205	223	0,1153	$\text{HOMO-1} \rightarrow \text{LUMO+1}$	53
	232	0,0981	$\rm HOMO \rightarrow \rm LUMO+2$	75
272	271	0,3667	$\text{HOMO-1} \rightarrow \text{LUMO}$	100
215	296	0,4617	$HOMO \rightarrow LUMO$	100

^a En nm. ^b Transiciones electrónicas calculadas (B3LYP/6-311G(d,p)). ^c La fuerza del oscilador de las transiciones calculadas en unidades atómicas.

Figura 5.5.6. Orbitales moleculares involucrados en las transiciones electrónicas de UDO-MMCf.

5.6. Espectroscopia de Resonancia Magnética Nuclear, (RMN).

Los espectros de RMN protónicos y de ¹³C de los *p*-metoxibenzoil- y 1-naftoil- ureidos discutidos en este capítulo se hicieron en un equipo de 600 MHz. Las señales de RMN de los hidrógenos unidos a los nitrógenos se encuentran en las zonas de campo bajo siendo las más desprotegidas, 11,03 y 11,01 [**UDO-MMCf**] > 9,38 y 8,81 [**UDO-MBt**] > 8,47 y 8,27 ppm [**UDO-NIs**] para los N2H y N1H respectivamente. Estas señales están fuertemente desapantalladas y, de ambos hidrógenos acídicos, la mayor desprotección corresponde al N2-H ya que participa en interacciones intramoleculares de puentes de hidrógeno. De manera análoga a lo observado en los tioureidos estudiados en el capítulo 2, el corrimiento químico del hidrógeno N2-H sufre una mayor desprotección cuando N2 está directamente unido a un anillo aromático (**UDO-MMCf**) debido a que la interacción intramolecular de puente de hidrógeno se refuerza en este caso por deslocalización electrónica. Una discusión más detallada se describe en el capítulo 3.

En el compuesto **UDO-MMCf**, las dos señales de N-H están separadas entre sí por solo 0,02 ppm de diferencia. Estos mismos hidrógenos se observan más separados en **UDO-MBt** y **UDO-**

NIs. La diferencia en el comportamiento particular de **UDO-MMCf** se atribuye al solvente de medida ya que este último fue disuelto en DMSO deuterado, un solvente polar aprótico caracterizado por interaccionar fuertemente con este tipo de hidrógenos. Las otras dos muestras fueron medidas en CDCl₃.

En el espectro protónico de **UDO-MBt** las asignaciones se hicieron con la ayuda de los desplazamientos químicos obtenidos por cálculos teóricos y por comparación con otros compuestos similares estudiados en este trabajo de tesis.

Las constantes de acoplamiento (*J*) de los hidrógenos aromáticos en los compuestos "*para*" metoxi-sustituidos fueron obtenidas por métodos algebraicos descriptos en el capítulo 3, sección 3.6.

5.6.1. N-butilcarbamoil-4-metoxibenzamida, (UDO-MBt).

Figura 5.6.1. Espectros RMN ¹H de UDO-MBt.

¹**H RMN** (600 MHz, CDCl₃) δ = 9,38 (s, 1H, Bu-N2H); 8,81 (s, 1H, O=C-N1H); 7,95 (d, 2H, H3/H5, *J* = 9 Hz); 6,96 (d, 2H, H2/H6, *J* = 9 Hz); 3,87 (s, 3H, CH₃-O); 3,37 (c, 2H, N-CH₂, *J* = 7 Hz); 1,60 (q, 2H, NCH₂CH₂, *J* = 7 Hz); 1,42 (sext, 2H, CH₃CH₂, *J* = 7 Hz); 0,95 ppm (t, 3H, CH₃, *J* = 7 Hz).

Figura 5.6.2. Espectros RMN ¹³C de UDO-MBt.

¹³**C RMN** (151 MHz, CDCl₃) δ = 167,7 (Ar-<u>C</u>8=O2); 163,6 (<u>C</u>9=O3-N-CH₂); 154,7 (C1); 130,0 (C3/C5); 124,8 (C4); 114,1 (C2/C6); 55,6 (CH₃-O); 39,7 (N-CH₂); 31,9 (NCH₂<u>C</u>H₂); 20,3 (CH₃<u>C</u>H₂); 13,9 ppm (<u>C</u>H₃CH₂).

5.6.2. N-isopropilcarbacarbamoil naftaleno-1-carboxamida, (UDO-NIs).

¹**H RMN** (600 MHz, CDCl₃) δ = 8,47 (d, 1H, ⁱPr-N2<u>H</u>, *J* = 6 Hz); 8,35 (d, 1H, H9, *J* = 8 Hz); 8,27 (s, 1H, O=C-N1<u>H</u>); 8,01 (d, 1H, H2, *J* = 8 Hz); 7,91 (d, 1H, H4, *J* = 8 Hz); 7,73 (d,1H, H6, *J* = 7 Hz); 7,61 (dd, 1H, H8, *J* = 7 Hz); 7,58 (dd, 1H, H7, *J* = 7 Hz); 7,51 (t, 1H, H3, *J* = 8 Hz); 4,08 (octupl, 1H, -CH-, *J* = 7 Hz); 1,30 ppm (d, 6H, CH₃ *J* = 7 Hz).

Figura 5.6.4. Espectros RMN ¹³C de UDO-NIs.

¹³**C RMN** (151 MHz, CDCl₃) δ = 170,0 (C12=O2); 152,6 (C11=O1); 134,0 (C1); 132,6 (C2); 132,0 (C10); 130,0 (C5); 128,8 (C4); 128,0 (C6); 127,0 (C7); 126,1 (C3); 125,1 (C9); 124,7 (C8); 42,5 (CH); 23,0 ppm (CH₃).

Figura 5.6.5. Espectros RMN ¹H de UDO-MMCf.

¹**H RMN** (600 MHz, DMSO) δ = 11,03 (br, s, 1H, N2H); 11,01 (br, s, 1H, N1H), 8,08 (dt, 2H, H5/H3, *J* = 9, 2 y <1 Hz); 7,95 (m, 1H, H13); 7,25 (m, 2H, H14/H15); 7,07 (dt, 2H, H2/H6, *J* = 9, 2 y <1 Hz); 3,85 (s, 3H, C<u>H</u>₃-O); 2,36 ppm (s, 3H, C<u>H</u>₃-Ar).

Figura 5.6.6. Espectros RMN ¹³C de UDO-MMCf.

¹³**C RMN** (151 MHz, DMSO) δ = 168,3 (C9=O3); 163,2 (C8=O2); 151,5 (C1); 137,7 (C10); 133,6 (C4); 130,6 (C13); 127,2 (C5/C3); 126,3 (C12); 124,7 (C15); 123,9 (C14); 120,6 (C11); 113,9 (C2/C6); 55,6 (-O-C<u>H₃</u>); 14,5 (C<u>H₃-Ar</u>).

5.7. Difracción de rayos X, (DRX).

Se obtuvieron monocristales con calidad suficiente para la elucidación de las estructuras por difracción de rayos X de **UDO-MBt** y **UDO-NIs**. La Tabla 5.7.1. detalla resultados del refinamiento estructural. En la Tabla 5.7.2. se describen los principales parámetros estructurales experimentales y calculados. Las tablas completas de los parámetros estructurales se encuentran en el Anexo 5.

Figura 5.7.1. Diagramas ORTEP de **UDO-MBt** y **UDO-NIs** mostrando los elipsoides térmicos con 30% de probabilidad.

Para **UDO-NIs** se determinó en la celda unidad la presencia de dos moléculas cristalográficamente equivalentes pero estructuralmente diferentes. Estas moléculas están ordenadas como dímeros a través de enlaces intermoleculares NH···O [d(N11···O22) = 2,855 Å, \angle (N11H···O22) = 169,0 °] y [d(N21···O12) = 2,862 Å, \angle (N21H···O12) = 169,5 °].

Tabla 5.7.1.	Resultados	del	refinamiento	estructural	у	datos	de	los	cristales	de	UDO-MBt	y
UDO-NIs.												

Identificación	UDO-MBt	UDO-NIs	
Formula empírica	C ₁₃ H ₁₈ N ₂ O ₃	C ₁₅ H ₁₆ N ₂ O ₂	
Peso molecular	250,29	256,30	
Temperatura/K	293(2)	293(2)	
Sistema cristalino	monoclínico	ortorrómbico	
Grupo espacial	P2 ₁ /c	Pna2 ₁	
a/Å	4,8639(2)	21,3313(7)	
b/Å	15,2441(7)	6,2055(2)	
c/Å	18,5621(8)	20,6591(6)	
α/°	90	90	
β/°	96,637(4)	90	
γ/°	90	90	
Volumen/Å ³	1367,08(10)	2734,67(15)	
Z	4	8	
ρ _{calc} g/cm ³	1,216	1,245	
Coeficiente de absorci	ón0,087	0,084	

536,0	1088,0
ΜοΚα (λ = 0,71073)	ΜοΚα (λ = 0,71073)
6,936 a 58,05	6,838 a 58,194
-6 ≤ h ≤ 6, -20 ≤ k ≤ 20, -23 ≤ l ≤ 24	-28 ≤ h ≤ 26, -8 ≤ k ≤ 8, -25 ≤ l ≤ 27
12946	14362
3159 [R _{int} = 0,0446, R _{sigma} = 0,0463]	5572 [R _{int} = 0,0414, R _{sigma} = 0,0545]
3159/0/165	5572/1/347
1,023	1,029
R ₁ = 0,0779, wR ₂ = 0,2110	R ₁ = 0,0505, wR ₂ = 0,0831
R ₁ = 0,1442, wR ₂ = 0,2578	R ₁ = 0,0901, wR ₂ = 0,0965
0,47/-0,28	0,13/-0,14
	536,0 MoK α (λ = 0,71073) 6,936 a 58,05 -6 ≤ h ≤ 6, -20 ≤ k ≤ 20, -23 ≤ l ≤ 24 12946 3159 [R _{int} = 0,0446, R _{sigma} = 0,0463] 3159/0/165 1,023 R ₁ = 0,0779, wR ₂ = 0,2110 R ₁ = 0,1442, wR ₂ = 0,2578 0,47/-0,28

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ wR_{2} = [\Sigma w (|F_{o}|^{2} - |F_{c}|^{2})^{2} / \Sigma w (|F_{o}|^{2})^{2}]^{1/2}$

La molécula de **UDO-MBt** cristaliza en el sistema cristalino monoclínico, en el grupo espacial P2₁/c con: a=4,8639(2), b=15,2441(7), c=18,5621(8) Å, $\alpha=\gamma=90^{\circ}$, $\beta=96,637(4)^{\circ}$ y Z=4, mientras que el compuesto **UDO-NIs** cristaliza en el sistema cristalino ortorrómbico (grupo espacial Pna2₁)con dimensiones de celda: a=21,3313(7), b=6,2055(2), c=20,6591(6) Å, $\alpha=\beta=\gamma=90^{\circ}$ y Z=8.

Estas moléculas presentan, en estado cristalino, un enlace intramolecular relativamente fuerte N2H···O [d (N2···O) = 2,667 Å, \angle (N2H···O) = 131,5 °] **UDO-MBt**; [d (N2···O) = 2,699 Å, \angle (N2H···O) = 133,2°] **UDO-NIs(1)** y [d (N2···O) = 2,670 Å, \angle (N2H···O) = 134,3°] **UDO-NIs(2)** que favorecen la planaridad de la porción carbonil urea, -C(O)N1HC(O)N2H-.

Tabla 5.7.2. Distancias de enlace (Å), ángulos de enlaces y de torsión (°), experimentales y calculados (B3LYP/6-311++g(g,p)) de **UDO-MBt** y **UDO-NIs**.

Darámatras	UDO	-NIs	Darámatraa	UDO-MBt	
Parametros	Ехр	Calc	Parametros	Ехр	Calc
r(C1-C11)	1,487(4)	1,5021	r(C4-C8)	1,481(4)	1,4930
r(C11-N1)	1,371(4)	1,3785	r(C8-N1)	1,371(3)	1,3794
r(C11-O1)	1,227(3)	1,2249	r(C8-O2)	1,221(3)	1,2277
r(C12-O2)	1,226(4)	1,2179	r(C9-N1)	1,393(4)	1,4264
r(C12-N1)	1,405(4)	1,4302	r(C9-N2)	1,320(4)	1,3484
r(C12-N2)	1,329(4)	1,3486	r(C9-O3)	1,232(3)	1,2209
r(C13-N2)	1,459(4)	1,4653	r(N2-C10)	1,442(4)	1,4581
∠(C2-C1-C11)	119,4(3)	118,9	∠(C4-C8-O2)	121,2(2)	121,5
∠(N1-C11-C1)	115,3(3)	114,4	∠(N1-C8-C4)	117,0(2)	116,1
∠(01-C11-C1)	122,4(3)	122,8	∠(O2-C8-N1)	121,8(3)	122,4
∠(O1-C11-N1)	122,2(3)	122,8	∠(O3-C9-N2)	123,3(3)	126,1

118,9(3)	118,1	∠(N1-C9-O3)	118,1(3)	118,1
117,5(3)	115,5	∠(N2-C9-N1)	118,5(2)	115,8
-172,9	176,3	Φ (C4-C8-N1-C9)	175,8	-178,1
39,7	-41,3	Φ (N1-C9-N2-C10)	-176,2	-178,5
38,3	-39,6	Φ (O2-C8-N1-C9)	-4,2	2,5
-178,9	178,5	Φ (O3-C9-N2-C10)	2,8	2,2
3,3	-3,1	Φ (C8-N1-C9-N2)	5,02	1,8
	118,9(3) 117,5(3) -172,9 39,7 38,3 -178,9 3,3	118,9(3)118,1117,5(3)115,5-172,9176,339,7-41,338,3-39,6-178,9178,53,3-3,1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	118,9(3)118,1 \angle (N1-C9-O3)118,1(3)117,5(3)115,5 \angle (N2-C9-N1)118,5(2)-172,9176,3 Φ (C4-C8-N1-C9)175,839,7-41,3 Φ (N1-C9-N2-C10)-176,238,3-39,6 Φ (O2-C8-N1-C9)-4,2-178,9178,5 Φ (O3-C9-N2-C10)2,83,3-3,1 Φ (C8-N1-C9-N2)5,02

Las distancias de enlace C-N en la porción carbonil urea, ϕ -C(O)N1HC(O)N2H- son: C8/11–N1: 1,371(3) y 1,371(4) Å, C9/12–N1: 1,393(4) y 1,405(4) Å y C9/12–N2: 1,320(4) y 1,329(4) Å, para **UDO-MBt** y **UDO-NIs**, respectivamente. Se puede observar que la distancia N1–C(O) > ϕ -C(O) –N1 > C(O)–N2 indicando un mayor carácter de doble enlace para C-N2 atribuido a la contribución de resonancia típica del grupo amida, manteniéndose así una tendencia similar a la observada en las carboniltioureas estudiadas en los capítulos anteriores.

Estos compuestos al igual que sus homólogos tioureidos, expuestos en capítulos anteriores, presentan la formación de un pseudo anillo debido a la interacción intramolecular $C1=O\cdots HN2$ en la porción carbonil urea, -C(O)NHC(O)NH-. Estas interacciones estabilizan la forma de *S* adoptada por las moléculas, no observándose en consecuencia diferencias significativas en las distancias de enlace del C=O.

En las Figuras 5.7.2. y 5.7.3. se observan las interacciones intra e intermoleculares que se describen en la Tabla 5.7.3. para **UDO-MBt** y **UDO-NIs**.

Figura 5.7.2. Interacciones intra e intermolecular en UDO-MBt.

Tabla 5.7.3. Distancias y ángulos de enlace de hidrógeno (Å, °) intra e intermoleculares relevantes para **UDO-MBt** y **UDO-NIs**.

Compuesto	D-H·· A	d(D-H)	d(H…A)	d(D…A)	∠(DHA)
	C7-H7B…O2 ¹	0,96	2,60	3,543(4)	167,1
UDO-MBt	N1-H1⋯O3 ²	0,86	2,07	2,884(3)	158,0
	N2-H2A…O1 ³	0,86	2,50	3,163(3)	135,1
	N2-H2A…O2*	0,86	2,02	2,667(3)	131,5

	N11-H11…O22	0,86	2,01	2,855(3)	169,0
	N12- H12A…O11	0,86	2,04	2,698(3)	133,2
UDO-NIs	C215-H21E…O11 [#]	0,96	2,60	3,500(4)	157,1
	N21-H21… O12	0,86	2,01	2,862(3)	169,5
	N22-H22A…O21	0,86	2,00	2,670(3)	134,3

¹2-X,-1/2+Y,3/2-Z; ²-X,1-Y,1-Z; ³1-X,1/2+Y,3/2-Z, [#]3/2-X,1/2+Y,-1/2+Z. *Intramolecular.

Figura 5.7.3. Interacciones intra e intermolecular UDO-NIs.

5.8. Ensayos biológicos

En la Figura 5.8.1. se observan los resultados obtenidos de los bioensayos realizados para el compuesto **UDO-MBt** con respecto al control. Se evaluó la inhibición del crecimiento bacteriano y la formación de biopelícula.

Se observa que, en las concentraciones ensayadas, **UDO-MBt** inhibe el crecimiento sólo a 100 μ g/mL (18%) y sin embargo ya inhibe el biofilm a 10 μ g/mL (26%).

Figura 5.8.1. Efecto de **UDO-MBt** sobre el crecimiento bacteriano y la formación de biopelículas en *Pseudomonas aeruginosa* PAO1. Los datos se expresan como valor medio ± desviación estándar.

Quorum sensing

En los ensayos realizados con *C. violaceum* CV026 (Figura 5.8.2.), a la concentración de 100 μ g/mL, no se observan modificaciones en la población bacteriana, pero si una decoloración del pigmento violaceína involucrado en el sistema de QS. El ensayo realizado a mayor concentración, 1000 μ g/mL, presenta un halo traslucido evidenciando la inhibición del crecimiento de *C. violaceum*.

Por esta razón se puede concluir que, para las concentraciones ensayadas, el ureido tiene la propiedad de reducir la formación de la biopelícula (a 10 μ g/mL) por que puede inhibir la producción de autoinductores (AHL, acil homoserina lactonas). A la concentración de 1000 μ g/mL, **UDO-MBt** inhibe el QS, debido a que interfiere en la viabilidad de la bacteria. Para verificar estas dos presunciones se sugiere realizar más ensayos para este tipo de compuesto y utilizar diferentes concentraciones.

Figura 5.8.2. A. Efecto de **UDO-MBt** ensayado en la producción de violaceína en *C. violaceum* CV026 a diferentes concentraciones. **A.** 100 μ g/mL (6,8 ± 0,2 mm); **B.** 1000 μ g/mL (9,6 ± 0,4 mm); **DMSO** 2,5% control.

MTT

Los resultados obtenidos de la actividad metabólica en la bacteria *Pseudomonas aeruginosa*, PAO1 se presentan en la Tabla 5.8.1. El ureido **UDO-MBt** evidenció capacidad de inhibir la viabilidad de las bacterias en un 22% para una concentración de 10 μ g/mL, la que se duplica al aumentar la concentración a 100 μ g/mL.
Estos resultados podrían sugerir que **UDO-MBt** puede emplearse en superficies evitando la proliferación de bacterias debido a que inhibe parcialmente el metabolismo bacteriano de células en biofilm.

Compuestos	DO a 570 nm	% Inhibición Actividad Metabólica de bacterias en Biofilm
UDO-MBt 10 μg/mL (%)	1,130 ± 0,083	22
100 μg/mL (%)	$\textbf{0,858} \pm \textbf{0,031}$	41
CIP 1 µg/ml	$\textbf{0,164} \pm \textbf{0,009}$	89
Control	$1,\!455\pm0,\!079$	

Tabla 5.8.1. Efecto de los compuestos **UDO-MBt** sobre la actividad metabólica de las células de biofilm PAO1 de *Pseudomonas aeruginosa*.

5.9. Conclusiones

La síntesis de ureidos es compleja en cuanto a la obtención de sus precursores, los isocianatos que son compuesto sensibles a la humedad y al oxígeno ambiental.

Los ureidos comparten con los tioureidos homólogos, estudiados previamente, características conformacionales similares. En las carbonil ureas se favorece la formación de puentes de hidrogeno NH···O intramoleculares, adoptando la forma S. Las estructuras cristalinas de **UDO-MBt** y **UDO-NIs** indican que la porción de la molécula -C(O)-NHC(O)NH- es completamente plana, esto también se observa en el confórmero de mínima energía de **UDO-MMCf**.

Los espectros electrónicos y los diagramas de los orbitales moleculares de los compuestos expuestos en este capítulo, **UDO-MBt**, **UDO-NIs** y **UDO-MMCf** las transiciones HOMO \rightarrow LUMO se generan por excitaciones desde los orbitales $\pi \rightarrow \pi^*$ de los anillos aromáticos presentes en la estructura de cada compuesto.

El compuesto **UDO-MBt** fue evaluado biológicamente presentando escasa inhibición del crecimiento bacteriano de *Pseudomonas aeruginosa*, PAO1 en las concentraciones ensayadas, sin embargo muestra capacidad de inhibir la formación del biofilm sin afectar la viabilidad de la bacteria. El efecto inhibitorio de biofilm a bajas concentraciones se correlaciona con la inhibición competitiva que presenta por los autoinductores de biofilm, mediados por QS. A concentraciones mayores (1000 μ g/mL) puede inclusive tener un efecto antibacteriano contra *C. violaceum*.

5.10. Bibliografía

- 1. Wöhler, F. Ueber künstliche Bildung des Harnstoffs. Ann. der Phys. und Chemie 88, 253–256 (1828).
- 2. Librowski, T. *et al.* Evaluation of anticonvulsant and analgesic effects of benzyl- and benzhydryl ureides. *Eur. J. Pharmacol.* **559**, 138–149 (2007).
- 3. Jiang, J. D. *et al.* 3-(lodoacetamido)-benzoylurea: a novel cancericidal tubulin ligand that inhibits microtubule polymerization, phosphorylates bcl-2, and induces apoptosis in tumor cells. *Cancer Res.* **58**, 5389–95 (1998).
- 4. Surikova, O. V. *et al.* Synthesis and analgesic and antimicrobial activities of 2-(3,3-dialkyl-1,2,3,4-tetrahydroisoquinolin-1-idene)ethanoic acid ureides. *Pharm. Chem. J.* **47**, 198–201 (2013).
- Nag, S., Pathak, R., Kumar, M., Shukla, P. K. & Batra, S. Synthesis and antibacterial evaluation of ureides of Baylis-Hillman derivatives. *Bioorganic Med. Chem. Lett.* 16, 3824–3828 (2006).
- 6. Wong, M. G., Defina, J. A. & Andrews, P. R. Conformational analysis of clinically active anticonvulsant drugs. *J. Med. Chem.* **29**, 562–572 (1986).
- 7. Pavia, M. R., Lobbestael, S. J., Taylor, C. P., Hershenson, F. M. & Miskell, D. L. N-Phenyl-N'-pyridinylureas as anticonvulsant agents. *J. Med. Chem.* **33**, 854–861 (1990).
- 8. Cohen, E. in *Encyclopedia of Insects* 156–157 (Elsevier, 2009). doi:10.1016/B978-0-12-374144-8.00052-7
- 9. Flekhter, O. B. *et al.* Synthesis and Antiviral Activity of Ureides and Carbamates of Betulinic Acid and Its Derivatives. *Russ. J. Bioorganic Chem.* **29**, 594–600 (2003).
- PAVLOV, A. Y. *et al.* Carboxamides and Hydrazide of Glycopeptide Antibiotic Eremomycin Synthesis and Antibacterial activity. *J. Antibiot. (Tokyo).* 49, 194–198 (1996).
- 11. Tewari, N. *et al.* Leishmanicidal activity of phenylene bridged C2 symmetric glycosyl ureides. *Bioorg. Med. Chem. Lett.* **14**, 4055–4059 (2004).
- 12. Woldu, M. G. & Dillen, J. A quantum mechanical study of the stability and structural properties of substituted acylthiourea compounds. *Theor. Chem. Acc.* **121**, 71–82 (2008).
- 13. Weikert, R. J. *et al.* Synthesis and anthelmintic activity of 3'-benzoylurea derivatives of 6phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole. *J. Med. Chem.* **34**, 1630–1633 (1991).
- 14. Bladon, P. Spectroscopic identification of organic compounds, by R. M. Silverstein and G.

C. Bassler. John Wiley and Sons Inc, New York and Chichester, Sussex. 2nd Edition 1967. *Org. Magn. Reson.* **1**, 277 (2018).

ANEXOS

ANEXO 1

Tabla A1.1. Frecuencias IR observadas (cm⁻¹), calculadas (B3LYP/6-311++G(d,p)).y asignación completa de los modos normales de vibración de **NNCO**.

	E verening enter	Calculado ^[b]	A signa sián ^[c]
WOOD	Experimental	Frecuencia	- Asignación
ν1	3063 (md)	3250(11)	v(C9-H)
ν2		3214(2)	v(C1-H) + v(C6-H) dp
ν3	3054 (md)	3194(21)	v(C6-H) + v(C5-H) dp
ν4	2961 (md)	3192(32)	v(C10-H) + v(C13-H) + v(C14-H) dfp
ν5	2918 (md)	3176(25)	v(C14-H) + v(C10-H) dfp
ν6	2850 (md)	3172(3)	v(C5-H) + v(C6-H) dfp
ν7		3168(<1)	v(C10-H) + v(C14-H) + v(C13-H) dfp
ν8	2243 (mf)	2287(2949)	$v_{Antisimétrico} NCO$
ν9	1701 (f)	1702(597)	ν C =O
v10	1661(md)	1654(10)	v(C14-C9) + v(C10-C4)
v11	1574 (md)	1626(14)	v(C5-C6) + v(C10-C13)
v12	1398 (m)	1603(118)	v(C1-C6) + v(C13-C14) + v(C3-C4)
v13	1512 (d)	1543(92)	δ(C6-H) + δ(C13-H) δ(C14-H) +δ(C10-H)
v14		1490(6)	δ(C1-H) + δ(C5-H) + δ(C6-H) + δ(13-H)
v15	1461 (md)	1467(14)	δ(C1-H) + δ(C5-H) + δ(C10-H) + δ(C13-H)
v16	1398 (m)	1446(449)	$v_{Sim\acute{etrico}}$ NCO
v17	1651 (md)	1419(22)	δ(C1-H) + δ(C9-H) + δ(C14-H) + δ(C13-H)
v18		1382(4)	v(C3–C4)
v19	1274 (md)	1372(19)	δ(C10-H) + δ(C5-H)
v20	1261(d)	1295(58)	δ(C9-H) + δ(C10-H)
v21		1243(98)	δ (C1-H) + δ (C5-H) + δ (C6-H)
v22	1228 (f)	1233(274)	δ (C1-H) + δ (C5-H) + δ (C13-H) + ν(CC3-C2)
v23	1178 (md)	1200(126)	δ (C13-H) + δ (C11-H) + δ (C1-H)
v24		1188(8)	δ (C13-H) + δ (C14-H) + δ (C9-H) + δ (C6-H)
v25		1168(17)	δ (C13-H) + δ (C10-H) + δ (C5-H) + δ (C6-H)
v26		1111(69)	ν(C13-C14)
v27	1092 (d)	1088(437)	δ (C10C2C3) + δ (C1-H) + δ (C10C4C3)
v28	1071 (m)	1048(4)	v(C13-C14)
v29		1014(<1)	ν(C13-H) + ν(C14-H) + ν(C9-H)
v30	1053 (md)	1010(1)	γ(C1-H) + γ(C5-H) + γ(C6-H)
v31	1009 (md)	989(2)	γ(C10-H) + γ(C13-H) + γ(C14-H) + γ(C9-H)
v32		962(<1)	ұ(C1-H) + ұ(C5-H)
v33	932 (m)	937(316)	δ(C1C6C5) + ν(C18N19)
v34		889(<1)	γ(C10-H) + γ(C9-H) + γ(C13-H) + γ(C14-H)
v35		830(40)	x(C1-H) + x(C4-H) + x(C6-H) + x(C9-H)
v36	887 (md)	826(78)	v (C18N19) + δ(C13C14C9)
v37		802(6)	δ(C1C6C5) +δ(C10C13C14)
v38		792(144)	x(C3C2C10) + x(O21C10C2)
v39		760(119)	δ(O21C18N19) +δ(C18N19C20)
v40		758(<1)	x(C5C4C3) + x(C9-H) + x(O21C18N19)
v41		/38(<1)	$\delta(O21C18N19) + \delta(C-H)_{Anillos}$
v42	659 (d)	671(79)	δ(O22C20N19) + δ(C3C9C14) + δ(C4C10C13)

v43		626(2)	ү(C1C6C5) + ү(C10C13C14)
ν44	605 (md)	613(37)	x(N19C20O22)
v45	585 (md)	595(11)	δ(N19C20O22)
v46		556(1)	δ(N19C20O22) + δ(N19C18O21)
ν47		532(<1)	δ(C9C14C13)
ν48	504 (md)	514(32)	ү(C10C13C14) + ү(C2C3C9)
ν49		475(<1)	γ(C10C13C14) + γ(C1C5C6)
ν50		459(2)	δ(C5C4C10)
v51		405(1)	۲(C4C10C13) + ۲(C3C9C14)
ν52		373(<1)	δ(C2C18O21)
ν53		276(4)	δ(C2C18N19)
ν54		233(4)	δ(O21C18N19)
v55		220(<1)	۲(C10C4C5)
v56		178(3)	γ(C1-H) + γ(C6-H) + γ(C13-H) + γ(C14-H)
v57		101(<1)	ү(C18N19C20) + ү(C9-H) + ү(C10-H)
v58		77(1)	δ(N19C20O22)
v59		56(1)	¥(N19C20O22)
v60		19(2)	v(O21C18N19)

^[a] mf, muy fuerte; f, fuerte; m, medio; d, débil; md, muy débil. ^[b] Frecuencias en cm⁻¹ e intensidades en (Km mol⁻¹). ^[c] v, δ y Υ representan modos de estiramiento, deformación en el plano y deformación fuera del plano, respectivamente. dp y dfp representan modos en fase y fuera de fase.

Mada	Experimental ^[a]	Calculado ^[b]	Acianoción ^[c]
Widdo	Experimental	Bandas	ASIGIIACION
ν1		3228(8)	v(C11-H)
ν2		3204(10)	ν(C6-H) + ν(C1-H) dp
ν3		3192(31)	ν(C13-H) + ν(C14-H) + ν(C10-H) dp
ν4		3190(16)	ν(C6-H) + ν(C1-H) dfp
ν5		3178(20)	ν(C13-H) + ν(C10-H) dfp
ν6		3172(3)	ν(C1-H) + ν(C2-H) dfp
ν7		3168(<1)	ν(C10-H) + ν(C14-H) dfp
ν8	1958 (mf)	1999(3873)	$v_{antisimétrico} NCS$
ν9	1692 (f)	1690(670)	ν C=O
v10	1579 (md)	1656(3)	v(C11-C13) + v(C10-C14)
v11	1512 (md)	1624(5)	ν(C1-C2) + ν(C10-C14)
v12	1421 (m)	1602(168)	v(C1-C6) + v(C13-C14)
v13	1395 (md)	1544(64)	δ(C11-H) + δ(C13-H) δ(C14-H) +δ(C10-H)
ν14	1347 (md)	1489(47)	$\delta(C1-H) + \delta(C2-H) + \delta(C6-H) + \delta(13-H)$
v15		1468(1)	$\delta(C2-H) + \delta(C10-H) + \delta(C14-H) + \delta(C11-H)$
v16		1421(12)	δ(C6-H) + δ(C11-H) + δ(C14-H)
v17		1381(29)	v(C3-C4)
v18		1369(47)	υ(C5-C6) + δ(C13-H) + δ(C2-H) + δ(C10-H)
v19		1303(290)	δ(C10-H) + δ(C11-H) + δ(C2-H)
v20	1231 (mf)	1252(462)	$\delta(C6-H) + \delta(C1-H) + \delta(C11-H) + \nu(C5-C18)$
v21	1218 (m)	1233(160)	δ (C14-H) + δ (C2-H) + δ (C11-H) ν(C4-C11)

Tabla A1.2. Frecuencias IR observadas (cm⁻¹), calculadas (B3LYP/6-311++G(d,p)).y asignación completa de los modos normales de vibración de **NNCS**

v22	1185 (m)	1206(215)	δ(C6-H) + δ(C1-H) + δ(C2-H) + ν(C18-N)
v23		1189(1)	δ(C13-H) + δ(C11-H) + δ(C1-H)
ν24	1148 (d)	1169(21)	$\delta(C10-H) + \delta(C14-H) + \delta(C1-H) + \delta(C2-H)$
v25	1118 (m)	1152(242)	δ(C1-H) + δ(C2-H) + δ(C10-H)
v26	1075 (d)	1095(48)	δ(C6-H) + δ(C1-H) + δ(C2-H)
ν27	1031 (md)	1050(23)	δ(C10-H) + δ(C11-H)
v28	1011 (md)	1027(21)	$v(C5-C18) + \delta(C4C5C6) + \delta(C10C14C13)$
v29		1008(2)	γ(C13-H) + γ(C14-H) + γ(C10-H) + γ(C11-H)
v30		1003(1)	ν(C1-H) + ν(C13-H) + ν(C2-H) + ν(C6-H)
v31	1000 (md)	981(5)	γ(C11-H) + γ(C13-H) + γ(C14-H) + γ(C10-H)
v32	992 (md)	956(6)	γ(C6-H) + γ(C2-H)
v33	882 (m)	885(253)	v _s (NCS)
ν34	857 (md)	879(10)	γ(C10-H) + γ(C11-H) + γ(C13-H) + γ(C14-H)
v35	813 (d)	825(32)	γ(C1-H) + γ(C11-H) + γ(C13-H) + γ(C2-H)
v36	701 (f)	811(207)	δ(C5C18O) + δ(C2C1C6)
v37	701(1)	803(103)	δ(C2C1C6) +δ(C10C14C13)
v38	740 (mf)	788(124)	х(C13-H) +х(C14-H) + х(C5-H)
v39	668 (d)	753(15)	γ(C3C2C10) + γ(C5C4C11)) + γ(OCN)
v40		731(7)	γ(C13-H) + γ(C14-H) + γ(OC18N) +γ(C10-H)
v41	641 (d)	704(36)	δ(C18NC19) +δ(C3C10C14) +δ(C4C11C13)
ν42	593 (m)	654(144)	δ(OC18N) + δ(C1C2C3) + δ(C4C11C13)
v43		625(5)	ү(C1C6C5) + ү(C11C13C14)
ν44	662 (md)	555(32)	δ (C1C6C5) + δ (C10C14C13) + δ (SCN)
v45		536(33)	$\delta(C2C1C6) + \delta(C4C3C10) + \delta(0C18C5)$
v46	505 (d)	511(17)	¥(C2C3C4)
v47		484(2)	δ(NCS)
ν48		476(3)	х(C10C14C13) + х(C2C1C6)
v49	472 (md)	469(18)	۲(NCS)
v50	420 (md)	438(20)	δ(C2C3C10) + γ(C5C4C11)
v51		405(4)	ү(C4C11C13) + ү(C3C10C14)
v52		353(7)	δ(C5C18O)
v53		284(7)	δ(C5C18N)
ν54		204(2)	¥(C1C2C3)
v55		193(<1)	δ(C5C18N) + γ(C10C14C13)
v56		170(5)	ү(C1C6C5) + ү(C10C14C13)
v57		94(1)	γ(C18NC19) + γ(C4C11C13) + γ(C14C10C3)
v58		70(3)	τ(C19N20C18O)
ν59		44(1)	δ(C18NC19)
v60		26(1)	δ(NCS)

^[a] mf, muy fuerte; f, fuerte; m, medio; d, débil; md, muy débil. ^[b] Frecuencias en cm⁻¹ e intensidades en (Km mol⁻¹). ^[c] v, τ , δ , y Υ representan modos de estiramiento, torsión, deformación en el plano y deformación fuera del plano, respectivamente. dp y dfp representan modos en fase y fuera de fase.

Tabla A1.3. Frecuencias IR observadas (cm⁻¹), calculadas (B3LYP/6-311++G(d,p)).y asignación completa de los modos normales de vibración de **BNCS**.

Modo ^[a]	Exporimontal	Calculado ^[b]	- Asignación ^[c]
WOUD	Experimental	Frecuencia	Asigliación
ν1	3106 (md)	3800(213)	ν(O11-H)

ν2		3205(2)	ν(C5-H) + ν(C6-H) dp
ν3		3203(4)	v(C3-H)
ν4		3192(6)	ν(C5-H) + ν(C6-H) dfp
ν5	3076 (md)	3171(14)	v(C2-H) + v(C3-H) dfp
ν6	1943 (mf)	2007(3831)	V _{antisimétrico} (NCS)
ν7	1698 (f)	1698(580)	v(C=O)
ν8	1594 (f)	1630(797)	v(C5-C6) + v(C2-C3)
ν9		1617(12)	ν(C1-C2) + ν(C4-C5) +δ(C1O11H)
v10	1498 (d)	1534(64)	δ (C5-H) + δ(C6-H) + δ(C3-H) + δ(C2-H)
v11	1412 (d)	1462(70)	δ(C3-H) + δ(C2-H) + ν(C5-C6) + δ(C6-H)
v12	1305 (d)	1375(68)	ν(C4-C5) + δ (C1O11H) + ν(C2-C3)
v13		1329(23)	δ(C5-H) + δ(C3-H)
v14	1255 (m)	1290(145)	δ(C2-H) + δ(C3-H) + ν(C1O11)
v15	1204(mf)	1264(1461)	υ(C13-C4) + δ(C6-H)
v16		1193(57)	δ(C1O11H) + δ(C2-H)
v17	1163 (f)	1171(813)	δ(C5-H) + δ(C6-H) + δ(C3-H) + δ(C2-H)
v18	1111 (md)	1123(34)	δ(C5-H) + δ(C6-H) + δ(C2-H) + δ(C3-H)
v19	1070 (d)	1106(214)	ν(C13N) + δ(C3-H) + δ(C6-H)
v20		1020(1)	δ(C2C3C4) + δ(C1C6C5)
v21		991(<1)	х(C5-H) + х(C6-H)
ν22		975(1)	γ(C2-H) + γ(C3-H)
v23	881 (m)	872(431)	v _{simétrica} (NCS)
ν24	865 (md)	859(61)	γ(C6-H) + γ(C5-H) + γ(C2-H) dfp
v25		826(2)	γ(C2-H) + γ(C3-H) + γ(5-H) + γ(C6-H) dfp
v26	850 (d)	821(206)	δ (C4C5C6) + δ (O14C13C4)
ν27	822 (md)	763(41)	х(C2C13O14)
ν28		707(9)	δ(O11C1C2) + δ(C13N15C16)
v29	797 (md)	688(34)	γ(N15C13O14) + γ(C2C1C6) + γ(C3C4C5)
v30		647(5)	δ(C1C2C3) + δ(C4C5C6)
v31	619 (d)	610(285)	δ(O14C13N15) + δ(C2C1C6)
v32		510(14)	γ(C3C4C5) + γ(C2C1C6) dp
v33		488(1)	δ(NCS)
v34		478(3)	Y(NCS)
v35		439(23)	$\delta(O11C1C2) + \delta(NCS)$
v36		421(<1)	ν(C2C3C4) + ν(C1C6C5) dfp
v37		389(17)	δ(C4C13O14)
v38		386(166)	х(О11-H)
v39		287(19)	δ(C5C4C13)
v40		285(3)	$x(C1011H) + x(O14C13N15) + \tau(C2C1011H)$
v41		184(1)	δ(C4C14N15)
ν42		112(<1)	τ(C2C1O11H)
v43		83(3)	τ (C3C4C13O14)
v44		51(2)	δ(C13N15C16)
v45		34(2)	۲(NCS)

^[a] mf, muy fuerte; f, fuerte; m, medio; d, débil; md, muy débil. ^[b] Frecuencias en cm⁻¹ e intensidades en (Km mol⁻¹). ^[c] v, δ , Υ y τ representan modos de estiramiento, deformación en el plano deformación fuera del plano y de torsión, respectivamente. dp y dfp representan modos en fase y fuera de fase.

ANEXO 2

Tabla A2.1. Parámetros geométricos incluyendo distancias de enlaces en Angström (Å) y ángulos en grados (°) experimentales (Exp) y calculados (Calc) de **NBt**, **NEt** y **NIs**. [#]. Solo para esta Tabla se tiene en cuenta la numeración de la Figura 2.7.1.

NBt		ŧ	- <i>i i</i>	NIs	
Parametros	Ехр	Calc	- Parametros	Ехр	Calc
r(C1-C2)	1,371(4)	1,383	r(C1-C2)	1,370(2)	1,383
r(C1-C10)	1,428(3)	1,435	r(C1-C10)	1,426(2)	1,435
r(C1-C11)	1,497(3)	1,500	r(C1-C11)	1,486(2)	1,499
r(C2-C3)	1,414(4)	1,410	r(C2-C3)	1,402(3)	1,410
r(C3-C4)	1,348(6)	1,372	r(C3-C4)	1,348(3)	1,372
r(C4-C5)	1,404(6)	1,419	r(C4-C5)	1,412(3)	1,419
r(C5-C6)	1,438(6)	1,420	r(C5-C10)	1,415(2)	1,434
r(C5-C10)	1,425(3)	1,434	r(C5-C6)	1,416(3)	1,420
r(C6-C7)	1,338(7)	1,373	r(C6-C7)	1,351(3)	1,373
r(C7-C8)	1,389(6)	1,413	r(C7-C8)	1,381(3)	1,413
r(C8-C9)	1,363(4)	1,375	r(C8-C9)	1,361(3)	1,375
r(C9-C10)	1,414(4)	1,421	r(C9-C10)	1,421(3)	1,421
r(C11-N1)	1,371(3)	1,383	r(C11-O)	1,223(2)	1,227
r(C11-O1)	1,220(3)	1,227	r(C11-N1)	1,373(2)	1,383
r(C12-N1)	1,392(3)	1,408	r(C12-N2)	1,320(2)	1,336
r(C12-N2)	1,318(3)	1,336	r(C12-N1)	1,393(2)	1,409
r(C12-S1)	1,675(2)	1,677	r(C12-S)	1,6678(1)	1,678
r(C13-C14)	1,507(5)	1,533	r(C13-N2)	1,464(2)	1,469
r(C13-N2)	1,461(3)	1,460	r(C13-C14)	1,507(3)	1,530
r(C14-C15)	1,512(5)	1,532	r(C13-C15)	1,512(3)	1,533
r(C15-C16)	1,437(7)	1,532	∠(C2-C1-C10)	120,16(1)	120,09
∠(C2-C1-C10)	121,4(2)	120,1	∠(C2-C1-C11)	118,98(1)	118,89
∠(C2-C1-C11)	118,7(2)	118,8	∠(C10-C1-C11)	120,63(1)	120,97
∠(C10-C1-C11)	119,7(2)	120,9	∠(C1-C2-C3)	120,9(2)	121,33
∠(C1-C2-C3)	119,(3)	121,3	∠(C4-C3-C2)	120,0(2)	119,85
∠(C4-C3-C2)	120,4(3)	119,8	∠(C3-C4-C5)	121,53(19)	120,96
∠(C3-C4-C5)	121,9(3)	121,0	∠(C4-C5-C10)	119,08(18)	119,70
∠(C4-C5-C6)	123,6(3)	120,9	∠(C4-C5-C6)	121,9(2)	120,92
∠(C4-C5-C10)	119,2(3)	119,7	∠(C10-C5-C6)	119,03(19)	119,39
∠(C10-C5-C6)	117,2(4)	119,4	∠(C7-C6-C5)	121,2(2)	120,88
∠(C7-C6-C5)	122,3(3)	120,9	∠(C6-C7-C8)	120,3(2)	119,84
∠(C6-C7-C8)	119,9(3)	119,8	∠(C9-C8-C7)	120,8(2)	120,90
∠(C9-C8-C7)	121,0(4)	120,9	∠(C8-C9-C10)	121,1(2)	120,82
∠(C8-C9-C10)	121,0(3)	120,8	∠(C5-C10-C9)	117,54(18)	118,18
∠(C1-C10-C9)	123,9(2)	123,7	∠(C5-C10-C1)	118,36(16)	118,06
∠(C5-C10-C1)	117,6(3)	118,1	∠(C9-C10-C1)	124,10(17)	123,75
∠(C5-C10-C9)	118,5(3)	118,2	∠(O-C11-N1)	122,25(1)	122,61
∠(N1-C11-C1)	114,40(1)	114,3	∠(0-C11-C1)	122,52(1)	123,11
∠(01-C11-C1)	122,40(1)	123,1	∠(N1-C11-C1)	115,22(1)	114,27

Falametro	Ехр	Calc	i arametro	Ехр	Calc
Parámetro	NEt		- Parámetro	NEt	
Φ(S1-C12-N2-C13)	-1,5(4)	0,6			
Φ(S1-C12-N1-C11)	-176,51(18)	179,4	Ф (С15-С13-N2-С12)	148,73	-89,8
Ф(О1-С11-N1-С12)	3,2(4)	4,4	Ф (С14-С13-N2-С12)	-87,83	146,1
Φ(N2-C13-C14-C15)	171,7(3)	179,6	Φ (S-C12-N2-C13)	-1,23	-1,6
Φ(N2-C12-N1-C11)	3,8(4)	-0,1	Φ (N1-C12-N2-C13)	178,92	178,5
Ф(N1-C12-N2-C13)	178,2(2)	179,9	Φ (S-C12-N1-C11)	175,16	177,6
Ф(С14-С13-N2-С12)	99,1(3)	90,1	Φ (N2-C12-N1-C11)	-4,99	-2,5
Ф(С10-С1-С11-О1)	47,1(3)	41,3	Ф (О-С11-N1-С12)	-2,45	5,0
Ф(С10-С1-С11-N1)	-134,9(2)	-139,3	Ф (С1-С11-N1-С12)	176,03	-174,3
Ф(С2-С1-С11-О1)	-128,4(3)	-136,1	Ф (С10-С1-С11-О)	-43,35	41,1
Φ(C2-C1-C11-N1)	49,6(3)	43,2	Φ (C10-C1-C11-N1)	138,17	-139,6
Ф(С1-С11-N1-С12)	-174,8(2)	-175,0	Ф (С2-С1-С11-О)	131,22	-136,4
∠(C12-N2-C13)	124,77(1)	124,5	Φ (C2-C1-C11-N1)	-47,26	42,9
∠(C11-N1-C12)	128,15(1)	129,6	∠(C12-N2-C13)	125,48(1)	124,92
∠(C16-C15-C14)	112,8(4)	112,9	∠(C11-N1-C12)	128,36(1)	129,65
∠(C15-C14-C13)	115,0(3)	112,3	∠(C14-C13-C15)	112,32(19)	112,51
∠(N2-C13-C14)	111,6(2)	113,1	∠(N2-C13-C15)	108,46(18)	110,79
∠(N2-C12-S1)	124,83(1)	126,5	∠(N2-C13-C14)	110,35(18)	108,80
∠(N2-C12-N1)	117,07(1)	115,7	∠(N1-C12-S)	119,01(1)	117,57
∠(N1-C12-S1)	118,10(1)	117,8	∠(N2-C12-S)	124,70(1)	126,68
∠(01-C11-N1)	123,16(1)	122,6	∠(N2-C12-N1)	116,29(1)	115,75

Parametro	Ехр	Calc	Parametro	Ехр	Calc
r(C1-C2)	1,493(3)	1,499	∠(C8-C7-C6)	119,6(2)	119,84
r(C1-C6)	1,359(3)	1,383	∠(C7-C8-C9)	122,0(2)	120,97
r(C1-C14)	1,431(3)	1,435	∠(C8-C9-C10)	122,3(2)	120,92
r(C2-N1)	1,374(2)	1,383	∠(N2-C4-C5)	111,0(2)	110,30
r(C2-O)	1,217(2)	1,227	∠(C1-C6-C7)	120,4(2)	121,33
r(C3-N1)	1,390(2)	1,408	∠(C8-C9-C14)	119,2(2)	119,70
r(C3-N2)	1,316(2)	1,336	∠(C14-C9-C10)	118,5(3)	119,39
r(C3-S)	1,6757(1)	1,675	∠(C11-C10-C9)	121,0(3)	120,88
r(C4-C5)	1,464(4)	1,525	∠(C10-C11-C12)	120,7(3)	119,84
r(C4-N2)	1,463(2)	1,461	∠(C13-C12-C11)	120,6(3)	120,89
r(C6-C7)	1,415(3)	1,410	∠(C12-C13-C14)	121,0(2)	120,82
r(C7-C8)	1,353(4)	1,372	∠(C9-C14-C1)	118,1(2)	118,06
r(C8-C9)	1,401(4)	1,419	∠(C13-C14-C1)	123,67(18)	123,75
r(C9-C10)	1,429(4)	1,420	∠(C13-C14-C9)	118,22(19)	118,18
r(C9-C14)	1,414(3)	1,434	∠(C2-N1-C3)	127,89(1)	129,43
r(C10-C11)	1,342(5)	1,373	∠(C3-N2-C4)	124,63(1)	123,64
r(C11-C12)	1,383(5)	1,413	Ф (С1-С2-N1-С3)	-178,02(1)	175,3
r(C12-C13)	1,366(3)	1,375	Ф (С5-С4-N2-С3)	100,2(3)	179,7
r(C13-C14)	1,410(3)	1,421	Φ (C6-C1-C2-N1)	50,8(3)	-42,8
∠(C6-C1-C2)	119,67(1)	118,90	Ф (С6-С1-С2-О)	-127,8(2)	136,6
∠(C6-C1-C14)	120,81(18)	120,10	Φ (C14-C1-C2-N1)	-133,24(1)	139,7
∠(C14-C1-C2)	119,40(1)	120,96	Ф (С14-С1-С2-О)	48,2(3)	-41,0
∠(N1-C2-C1)	115,29(1)	114,34	Φ (N1-C3-N2-C4)	179,97(1)	-179,7

∠(0-C2-C1)	122,10(1)	123,13	Φ (N2-C3-N1-C2)	9,6(3)	0,9	
∠(O-C2-N1)	122,59(1)	122,53	Ф (О-С2-N1-С3)	0,5(3)	-4,1	
∠(N1-C3-S)	118,53(1)	118,26	Φ (S-C3-N1-C2)	-170,50(1)	-179,0	
∠(N2-C3-N1)	116,76(1)	116,00	Ф (S-C3-N2-C4)	0,1(3)	0,2	
∠(N2-C3-S)	124,71(1)	125,74				

[#] Los datos experimentales provienen de difracción de rayos X y los cálculos experimentales de B3LYP/6-311++g(d,p).

Tabla. A2.2. Asignación de los espectros de IR y Raman para NBt.

	Experi	mental ^a	a h	• • • • · d
Modo	IR ^c	Raman ^c	Calculado	Asignación
ν1	3327 vw		3612(36)	v(N1H1)
ν2	3227 m	3252 vw	3452(277)	v(N2H2A)
ν3			3225(3)	v(CH) Ar
ν4	3186 ^H w	3184 vw	3192(12)	v(CH) Ar
ν5		3038 ^H m	3188(21)	v(CH) Ar
ν6	3165 ^H w	2983 vw	3174(19)	v(CH) Ar
ν7			3172(4)	v(CH) Ar
ν8			3166(<1)	v(CH) Ar
ν9			3162(<1)	v(CH) Ar
v10			3101(14)	vas(C13H ₂)
v11	3077	2943 w	3087(47)	vas(CH ₃)
v12	2962	2919 w	3082(49)	vas(CH ₃)
v13			3065(15)	vas(C14H ₂)
ν14	2933	2905 w	3042(37)	vsim(C13H ₂)
v15		2887 vw	3032(15)	vas(C15H ₂)
v16	2872	2869 w	3021(39)	vsim(CH ₃)
v17		2856 vw	3014(17)	vsim(C14H ₂)
v18	2859	2741 vw	3004(19)	vsim(C15H ₂)
v19	1669 m	1671 s	1709(194)	v(C11O1)
v20			1659(1)	v(CC) Ar
v21		1621 vw	1631(79)	v (CC) Ar
v22		1589 vw	1612(3)	v (CC) Ar
v23		1576 s	1594(348)	δ(N2H2A) + δ(N1H1)
v24	1537	1569 ^H o	1546(185)	v (CC) Ar
v25		1000 5	1542(580)	δ(N1H1) + δ(N2H2A)
v26	1462 vw		1512(10)	δ (C15H ₂) + δ as(C16H ₂) + δ (C14H ₂)
v27		1508 vw	1501(8)	δas(CH₃)
v28			1498(3)	δ (C14H ₂) + δ as(CH ₃)
v29		1496 vw	1492(11)	δ (CH) Ar
v30			1490(0)	δ (C15H ₂) + δ (C14H ₂)
v31	1/3/ 1/14	1448 vw	1479(63)	δ(C13H ₂)
v32	1434 VW	1433 vw	1469(15)	δ (CH) Ar
v33			1425(5)	δ (CH) Ar
v34			1416(7)	$\delta_{sim}(CH_3) + \omega(C13H_2)$
v35			1408(12)	ω (C13H ₂) + ω (C14H ₂) + δ_{sim} (CH ₃)
v36	1382 vw		1390(18)	ω(C15H ₂) + ν(CC) Ar
v37	1373 vw	1395 vw	1388(40)	ω(C15H ₂) + ω(C14H ₂)
v38	1359 vw		1373(15)	δ(N2C13) + ν(CC) Ar

v39	1340 w	1371 s	1364(176)	δ(N2C13) + ν(CC) Ar
v40	1708 w	1070	1338(96)	ν(C12N2) + δ(N2C13)
v41	1278 w	12/0 W	1331(26)	$\tau \omega$ (C15H ₂) + $\tau \omega$ (C14H ₂)
v42	1264 w	1245 w	1262(111)	δ(C11N1H1) + δ(CH) Ar
v43	1247 w	1211 w	1215(65)	δ(CH) Ar + δ(C11N1H1)
ν44	1238 m	1202 w	1202(107)	δ (C15H ₂) + ρ (C13H ₂) + ρ(C14H ₂)
v45	1202 m	1173 w	1173(73)	δ(CH) Ar
v46	1170 w	1146 w	1168(38)	δ(CH) Ar
v47	1148 w		1130(18)	ω(CH₃)
v48	1118 vw	1115 vw	1125(24)	ν(C12-N1) + ν(C13-N2)
v49	1113 vw	971 vw	1098(17)	v (C12S1) + δ (C13N2H2A) + v (CC) Ar
v50	1078 w	944 w	1091(59)	v (C12S1) + δ (C13N2H2A) + v (CC) Ar + δ (CCC) Ar
v51	1069 vw		1049(16)	ν(CC) Ar + δ(CH) Ar + δ(CH) Ar
v52			913(1)	ω(CH ₃)
v53	1055 w	922 vw	901(20)	δ(O1C11N1) + ω(CH ₃)
ν54			880(1)	γ(CH) Ar
v55			841(2)	δ(N1C12N2)
v56	1022 vw	892 w	823(15)	γ(CH) Ar
v57	945 vw	877 vw	803(9)	$\rho(CH_3) + \rho(C15H_2) + \rho(C14H_2) + \rho(C13H_2)$
v58	892 w	829 s	798(100)	γ(C-H) Ar
v59	877 vw	787 vw	770(7)	γ(N1H1)
v60		754 vw	748(3)	γ (N2H2A) + γ (N1H1) + γ (CH) Ar + ν (CC) Ar
v61	734 w	732 vw	744(11)	ν(C12S1) + γ(CH) Ar + γ(N2H2A)
v62			734(12)	γ (N2H2A) + ρ (C15H ₂) + ρ (C14H ₂) + ρ (C13H ₂)
v63	719 vw	716 vw	720(34)	γ(N2H2A)
v64	658 w	657 m	672(22)	δ (CCC) Ar
v65	635 vw	631 w	657(50)	γ(N1H1)
v66			641(8)	γ(CCC) Ar
v67	627 vw	625 vw	623(11)	γ(N1C12N2)
v68	584 vw	570 w	575(9)	γ(CCC) Ar
v69		518 m	529(2)	δ (CCC) Ar
ν70	571 vw	507 vw	515(7)	γ(N1C11O1) + δ(CCC) Ar
ν71	507 vw	465 vw	468(10)	τ (N2C13C14) + τ (C14C15C16)
ν72		401vw	395(9)	τ(C13C14C15)
ν73		355 vw	358(5)	τ(C11N1C12)

Tabla. A2.3. Asignación de los espectros de IR y Raman para NEt

Modo	Experimental ^a			Asignación ^d
WOUD	IR ^c Raman ^c		Calculauo	Asignation
ν1			3612(36)	v(N1H1)
ν2	3219(mf)	3248(md)	3451(244)	v(N2H2A)
ν3			3225(3)	v(C13H)
ν4	3059(md)		3192(11)	$v_{\sf sim}(\sf CH)$ Ar
ν5	3043(m)	3195(md)	3188(21)	$v_{\sf sim}(\sf CH)$ Ar
ν6		3086(md)	3174(21)	$v_{asim}(CH)$ Ar
ν7	3006(md)	3064(md)	3173(2)	v_{asim} (CH) Ar

ν8		3059(md)	3166(<1)	v_{asim} (CH) Ar
ν9		3055(md)	3162(<1)	v _{asim} (CH) Ar
v10		3046(md)	3107(24)	$v_{asim}(CH_3)$
v11	2990(md)	3038(md)	3096(33)	$v_{asim}(CH_3)$
v12		3008(md)	3060(4)	$v_{asim}(CH_3CH_2)$
v13		2995(md)	3036(12)	$v_{sim}(CH_3CH_2)$
v14	2975(d)	2976(md)	3030(18)	$v_{sim}(CH_3CH_2)$
v15	1671(mf)	1676(mf)	1709(197)	v(C=O)
v16	1624(md)	1624	1659(1)	δ(CH)Ar
v17	1495(md)	1592	1631(8)	δ(CH)Ar
v18	1576(H)	1576	1612(4)	δ(CC)Ar
v19	1562(mf)	1567(mf)	1581(352)	v(C3-N2)
v20	4507(1546(184)	δ(N1-H) + δ(N2-H)
v21	1527(mf)		1541(630)	δ (N1-H) + v(C2-N1)
v22	1510		1520(44)	$\delta(CH_2)$
v23	1463		1500(51)	$\delta(CH_3)$
v24	1456	1448(md)	1496(9)	ω(CH ₃)
v25	1442	1438(md)	1493(9)	δ (CH) Ar
v26			1470(8)	δ (CH) Ar
v27			1426(6)	δ (CH) Ar
v28	1436(md)	1437(md)	1420(17)	ω(CH ₃)
v29	1368(m)	1372(mf)	1400(111)	$\omega(CH_2) + \nu(C2-N1) + \nu(C3-N2)$
v30	1346(md)		1389(9)	v (CC) Ar
v31			1372(1)	ω(CH ₂)
v32	1327(d)	1328(md)	1351(196)	$v(C2-N1) + v(C3-N2) + \omega(CH_2)$
v33	1300(d)	1296(md)	1298(10)	τ(CH ₂)
v34			1297(2)	$\tau(CH_2) + \tau(CH_2)$
v35	1283(d)	1284(md)	1264(77)	v(C1C2)
v36			1240(7)	δ(CC) Ar
v37	1252(mf)	1252(md)	1216(43)	δ(CC) Ar
v38	1223(md)		1192(20)	δ(CC) Ar
v39	1204(mf)		1189(176)	$v(C13-N1) + \omega(CH_2) + \delta(N1H)$
v40	1189(mf)		1176(128)	$v(C13-N1) + \delta(CH) Ar + \delta(N1H)$
v41	1170(H)		1169(18)	δ(CH) Ar
v42			1163(1)	$\omega(CH_2) + \delta(CH_2)$
v43	1152(f)	1152(md)	1132(10)	v(N1C3)
v44	1121(m)		1098(5)	δ (CH) Ar
v45	1090(f)		1063(23)	$v(CH_2-CH_3)$
v46	1055(mf)	1055(m)	1048(22)	v(CC) Ar
v47	1025(md)		1013(3)	$v(C3-S) + \delta(CCC) Ar + v(C2-N1)$
v48			1002(<1)	γ(CH) Ar
v49			997(1)	γ(CH) Ar
v50			977(1)	γ (CH) Ar
v51	998		972(4)	$\delta(CH_2)$
v52			941(<1)	ν(CH) Ar
v53	985(md)		897(12)	$\delta(CH_2)$
v54			881(1)	v(CH) Ar
v55			833(1)	$\delta(CH) \operatorname{Ar} + v(C3-S) + \delta(CH_{2})$
v56	972(d)		823(17)	$\gamma(CH)$ Ar
v57	799(f)		809(3)	$o(CH_2)$
v58	788(mf)	790(md)	807(3)	$\delta(CCC) \text{ Ar } + \gamma(CH_2)$
		- \/	- \-/	- ()

v59	761(mf)		799(96)	γ(N2H2A) + γ(C=O) + γ(CH) Ar
v60	749(m)		768(6)	γ(N2H) + γ(C=O)
v61	733(m)	730(md)	748(24)	v(C-S)
v62	714(f)	712(md)	747(5)	γ(N1H) + γ(N2H) + γ(CCC) Ar
v63	659(m)	660(md)	695(23)	γ(N2H)
v64	636(d)	633(md)	673(19)	δ(CCC) Ar
v65	628(d)		655(52)	γ(N1H)
v66			647(4)	γ(N1H) + γ(N2H) + γ(CCC) Ar
v67	620(d)		617(18)	γ(C3-S)
v68	583	581(md)	602(10)	γ(CCC) Ar
v69			559(3)	δ (C13N2CH ₂) + γ (CCC) Ar
ν70	554(d)	553(md)	522(6)	ω (CH ₂) + γ (CCC) Ar
ν71	515(md)	515(d)	514(5)	γ (CH) Ar $+ \gamma$ (CC) Ar
ν72			479(1)	γ (CH) Ar $+ \gamma$ (CC) Ar
ν73	508(md)		455(8)	γ(CC) Ar
ν74	459(md)		405(2)	γ(CC) Ar
ν75	432(md)		399(3)	ω(CH ₃) + δ(N2C4C5)

Mode	Experimental ^a			Acianoción ^d
wodo	IR ^c	Raman ^c	Calculado	Asignacion
ν1			3611(36)	v(N1H1)
ν2	3193(f)	3191(md)	3439(247)	v(N2H2)
ν3			3225(3)	ν(CH) Ar
ν4	3087(md)		3192(11)	$v_{\sf sim}(\sf CH)$ Ar
ν5	3043(d)	3064(m)	3188(21)	v_{sim} (CH) Ar
ν6		3051(md)	3174(22)	$v_{asim}(CH) \; Ar$
ν7			3173(2)	$ u_{asim}$ (CH) Ar
ν8			3166(<1)	$ u_{asim}$ (CH) Ar
ν9			3162(<1)	$ u_{asim}$ (CH) Ar
v10			3110(17)	$v_{asim}(CH_3)$
v11			3106(27)	$v_{asim}(CH_3)$
v12	2978(m)	2980(md)	3099(41)	$v_{asim}(CH_3)_2$
v13	2971(d)	2972(md)	3086(4)	$v_{asim}(CH_3)_2$
v14			3070(2)	v(<u>CH</u> -(CH ₃) ₂)
v15	2926(d)	2934(md)	3027(29)	$v_{sim}(CH_3)_2$
v16	2872(d)	2872(md)	3023(15)	v_{sim} (C14H ₃) + v_{sim} (C15H ₃)
v17	1673(mf)	1673(mf)	1709(194)	v(C=O)
v18			1659(1)	δ(CH)Ar
v19	1595(md)	1593(md)	1632(8)	δ(CH)Ar
v20	1576(md)	1575(mf)	1612(4)	δ(CC)Ar
v21	1551(mf)		1581(382)	ν(C12-N2)
v22	1532(mf)		1546(194)	v(CC)Ar
v23	1002(111)		1541(615)	δ(N1-H) + δ(N2-H)
v24		1510(d)	1509(26)	$\delta(CH_3)_2$
v25	1464(d)	1463(md)	1500(23)	δ(CH ₃) ₂

Tabla. A2.4. Asignación de los espectros de IR y Raman para NIs

v26	1434(md)		1493(9)	δ(CH) Ar
v27	1397(md)	1397(md)	1489(3)	δ (CH) Ar
v28			1486(3)	δ (CH) Ar
v29			1470(9)	δ (CH) Ar
v30			1426(10)	δ (CH) Ar + δ (CH ₃) ₂
v31			1422(16)	$\omega(CH_3)_2$
v32			1402(14)	$\omega(CH_3)_2 + \omega(C13H)$
v33	1387(md)		1393(82)	ω(C13H)
v34	1371(d)	1371(mf)	1389(9)	ω(C13H) + δ(CCC) Ar
v35	1355(md)	,	1376(89)	ω (C13H) + v(N2C12)
v36	1377(md)		1369(132)	ω (C13H) + v(N2C12)
v37	1314(md)		1344(29)	ω(C13H)
v38	1280(d)	1279(md)	1298(12)	δ(CH) Ar
v39	1249(d)	1248(md)	1264(76)	$\delta(CC)$ Ar + $\delta(CH)$ Ar + $v(C1C11)$
v40			1240(6)	v(CC) Ar
v41			1215(36)	δ (CH) Ar
v42	1201(f)	11200(d)	1207(123)	$v(N1C12) + \omega(CH_2)_2$
v43			1192(2)	v(CC) Ar
v44	1192(f)	1193(d)	1191(49)	$\Theta(CH_2) + v(CH) Ar$
v45	1166(d)	1166(md)	1172(45)	$\delta(CH)$ Ar
v46	1149(f)	1149(md)	1165(141)	$\delta(N1C12) + \delta(N1C11) \delta(CH) Ar$
v47		1154(md)	1145(33)	ω(CH ₂)
v48	1127(m)		1121(45)	v(N1C12)
v49	1117(m)		1096(11)	v(CH) Ar
v50	1074(md)		1049(16)	v(CC) Ar
v51	1024(md)		1019(5)	δ(N1C13N2)
v52	994(md)	993(md)	1010(12)	$\omega(CH_2) + \nu(C-S)$
v53			1001(<1)	γ (CH) Ar
v54			997(<1)	γ (CH) Ar
v55			977(1)	γ (CH) Ar
v56			955(<1)	ω(CH ₂)
v57			943(<1)	γ (CH) Ar
v58			938(1)	$\omega(CH_2)_2$
v59	899(md)		907(13)	$\delta(C12N1C13) + \omega(CH_3)_2$
v60			881(1)	$\delta(CCC) \operatorname{Ar} + \gamma(CH_2)$
v61		871(md)	875(3)	v(C14-C15)
v62	816(d)		823(16)	γ (CH) Ar
v63			813(3)	$\delta(C12N1C13) + \delta(C14C13C15)$
v64		807(md)	807(1)	v(CCC) Ar
v65	788(m)	788(md)	799(96)	$\gamma(C=0) + \gamma(N2H) + \gamma(CH) Ar$
v66	769(m)		769(5)	δ (CCC) Ar + γ (N2H) + γ (N1H)
v67			748(3)	$\delta(CCC)$ Ar + $\gamma(N2H)$ + $\gamma(N1H)$
v68	720(md)	729(md)	743(33)	v(C-S)
v69	659(d)	658(md)	717(31)	γ(N2H)
v70	637(md)		673(19)	γ (N1H) + γ (CCC) Ar
v71	626(md)		664(52)	γ(N1H)
v72			647(3)	$\gamma(N2H) + \gamma(CCC) Ar$
v73			621(10)	$\gamma(C-S) + \gamma(N2H) + \gamma(N1H)$
v74	593(md)		600(10)	γ (CCC) Ar + γ (CH) Ar
v75		589(md)	558(3)	γ (CC) Ar + δ (CC) Ar
v76	553(md)		523(5)	δ(CC) Ar
-	· /		· · /	· · ·

		ν77	509(md)	510(d)	514(4)	δ(CC) Ar + γ(C=O)	
а	en	ν78			479(1)	γ (CC) Ar + γ (CH) Ar	cm ^{-1 b}

Tabla A2. 5. Coordenadas atómicas $(x10^4)$ y parámetros de desplazamiento equivalente isotrópico $(Å^2 \times 10^3)$ para **NBt**. U(eq) es definido como un tercio de la traza del tensor. Uij ortogonalizado.

Átomo	x	У	Z	U(eq)
C1	6341(3)	1875,7(19)	3295(2)	52,5(5)
C2	4866(4)	1275(2)	3734(3)	66,9(7)
C3	2928(4)	714(3)	2985(4)	90,0(11)
C4	2521(5)	778(3)	1851(4)	96,0(12)
C5	4009(5)	1358(3)	1360(3)	79,6(9)
C6	3665(7)	1409(4)	145(4)	108,6(15)
C7	5152(9)	1914(4)	-314(3)	112,9(15)
C8	7114(7)	2402(3)	389(3)	94,7(11)
C9	7532(5)	2415(2)	1556(2)	69,5(7)
C10	5993(4)	1914(2)	2085(2)	57,9(6)
C11	8276(3)	2585,7(19)	4131,8(19)	48,4(5)
C12	11050(3)	2321,7(19)	5764,5(18)	49,6(5)
C13	13496(4)	4157(2)	6996(2)	63,9(6)
C14	15530(5)	4285(4)	6538(3)	89,2(9)
C15	17353(6)	5078(4)	7441(4)	99,9(11)
C16	18167(11)	4465(9)	8343(6)	176(3)
N1	9315(3)	1903,0(16)	4844,7(15)	47,9(4)
N2	11739(3)	3540,6(17)	6038,5(17)	58,8(5)
01	8834(3)	3692,2(15)	4192,7(16)	64,3(5)
S1	12099,9(11)	1252,8(5)	6443,7(5)	68,7(3)

Tabla A2. 6. Parámetros de desplazamiento ansiotrópico ($Å^2 \times 10^3$) para **NBt**. El factor del desplazamiento ansiotrópico toma la forma: $-2\pi^2[h^2a^{*2}U11+2hka*b*U12+...]$.

Átomo	U11	U22	U33	U23	U13	U12
C1	47,2(10)	37,0(9)	62,1(12)	4,2(9)	-6,9(9)	2,0(8)
C2	54,1(12)	50,4(12)	86,9(18)	4,4(12)	9,7(12)	-1,3(10)
C3	48,1(13)	69,4(18)	130(3)	-10,1(18)	13,6(16)	-8,8(12)
C4	50,8(14)	74,3(19)	125(3)	-14,3(19)	-24,2(16)	-1,3(13)
C5	70,8(16)	54,6(14)	84,3(18)	-4,9(13)	-32,1(14)	10,4(12)
C6	115(3)	79(2)	89(2)	-7,7(19)	-58(2)	12(2)
C7	170(4)	80(2)	64,1(19)	13,2(16)	-37(2)	12(3)
C8	142(3)	72,8(19)	61,0(16)	19,1(14)	-6,2(18)	7,7(19)
C9	88,9(18)	51,0(12)	59,6(13)	14,7(11)	-11,1(12)	2,8(12)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	59,4(12)	39,4(10)	60,4(13)	4,9(9)	-16,5(10)	6,5(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	51,3(10)	36,8(9)	49,9(10)	9,9(8)	-7,2(8)	-1,7(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	56,7(11)	39,1(10)	46,7(10)	10,5(8)	-5,4(9)	-2,5(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	72,1(14)	42,2(11)	62,7(13)	7,9(10)	-17,1(11)	-5,9(10)
C1581(2)88(2)115(3)18(2)-3,8(19)-17,0(17)C16149(5)241(8)132(4)96(5)-52(4)-57(5)N153,2(9)32,9(8)51,2(9)11,1(7)-6,2(7)-5,0(6)N266,2(11)37,2(9)61,3(11)13,0(8)-18,8(9)-5,8(8)O175,6(10)39,2(8)67,1(10)18,3(7)-21,8(8)-8,6(7)	C14	79,7(19)	92(2)	80,6(19)	9,1(17)	-1,7(15)	-11,8(16)
C16149(5)241(8)132(4)96(5)-52(4)-57(5)N153,2(9)32,9(8)51,2(9)11,1(7)-6,2(7)-5,0(6)N266,2(11)37,2(9)61,3(11)13,0(8)-18,8(9)-5,8(8)O175,6(10)39,2(8)67,1(10)18,3(7)-21,8(8)-8,6(7)	C15	81(2)	88(2)	115(3)	18(2)	-3,8(19)	-17,0(17)
N153,2(9)32,9(8)51,2(9)11,1(7)-6,2(7)-5,0(6)N266,2(11)37,2(9)61,3(11)13,0(8)-18,8(9)-5,8(8)O175,6(10)39,2(8)67,1(10)18,3(7)-21,8(8)-8,6(7)	C16	149(5)	241(8)	132(4)	96(5)	-52(4)	-57(5)
N2 66,2(11) 37,2(9) 61,3(11) 13,0(8) -18,8(9) -5,8(8) O1 75,6(10) 39,2(8) 67,1(10) 18,3(7) -21,8(8) -8,6(7)	N1	53,2(9)	32,9(8)	51,2(9)	11,1(7)	-6,2(7)	-5,0(6)
O1 75.6(10) 39.2(8) 67.1(10) 18.3(7) -21.8(8) -8.6(7)	N2	66,2(11)	37,2(9)	61,3(11)	13,0(8)	-18,8(9)	-5,8(8)
	01	75,6(10)	39,2(8)	67,1(10)	18,3(7)	-21,8(8)	-8,6(7)
<u>S1</u> 90,1(5) 40,5(3) 62,1(4) 17,4(3) -27,3(3) -5,5(3)	S1	90,1(5)	40,5(3)	62,1(4)	17,4(3)	-27,3(3)	-5,5(3)

Tabla A2. 7. Coordinación de hidrógeno (x10⁴) y parámetros de desplazamiento isotrópico ($Å^2 \times 10^3$) para **NBt**.

Átomo			_	11/0 m
Atomo	X	у	Z	U(eq)
H2	5138	1237	4518	80
H3	1929	298	3277	108
H4	1218	428	1381	115
H6	2364	1080	-339	130
H7	4872	1939	-1102	135
H8	8158	2724	57	114
H9	8850	2758	2012	83
H13A	13702	3657	7570	77
H13B	13142	5000	7396	77
H14A	15969	3435	6235	107
H14B	15245	4665	5878	107
H15A	18491	5240	7037	120
H15B	16876	5897	7812	120
H16A	17289	4609	8939	264
H16B	19594	4816	8699	264
H16C	18161	3562	7994	264
H1	8835	1117	4706	57
H2A	11108	4007	5623	71

Tabla A2. 8. Coordenadas atómicas $(x10^4)$ y parámetros de desplazamiento equivalente isotrópico $(Å^2 \times 10^3)$ para **NEt**. U(eq) es definido como un tercio de la traza del tensor. Uij ortogonalizado.

Átomo	x	У	z	U(eq)
C1	2004(3)	2099,9(16)	2979,7(17)	40,6(4)
C2	3712(4)	2726,9(17)	3980,6(16)	43,1(4)
C3	6038(4)	2282,5(17)	5777,2(16)	41,6(4)
C4	8135(4)	4005(2)	7210(2)	57,8(6)
C5	10501(6)	4427(4)	6820(3)	113,1(13)
C6	73(4)	1349,6(19)	3256(2)	53,2(5)
C7	-1662(4)	829(2)	2336(3)	69,7(7)

C8	-1387(5)	1080(2)	1173(3)	72,6(8)
C9	592(4)	1832(2)	843(2)	57,9(6)
C10	938(7)	2065(3)	-391(2)	83,0(9)
C11	2894(8)	2752(3)	-688(3)	94,6(11)
C12	4621(6)	3261(3)	196(3)	81,1(8)
C13	4366(4)	3073(2)	1391(2)	57,7(6)
C14	2342(4)	2361,1(17)	1752,4(17)	44,0(5)
N1	4507(3)	1955,5(14)	4754,3(14)	43,4(4)
N2	6562(3)	3483,6(14)	6153,7(15)	50,1(4)
0	4315(3)	3847,0(12)	4113,4(13)	62,4(5)
S	7074,2(12)	1139,9(5)	6441,8(5)	57,7(2)

Tabla A2. 9. Parámetros de desplazamiento ansiotrópico ($Å^2 \times 10^3$) para **NEt**. El factor del desplazamiento ansiotrópico toma la forma: $-2\pi^2[h^2a^{*2}U11+2hka^*b^*U12+...]$.

Átomo	U11	U22	U33	U23	U13	U12
C1	52,0(11)	31,5(9)	39,3(9)	3,4(7)	-5,4(8)	12,1(8)
C2	62,1(12)	33,0(9)	34,1(9)	4,5(7)	-5,8(8)	7,6(8)
C3	55,9(12)	34,7(9)	34,5(9)	6,3(7)	-3,1(8)	5,9(8)
C4	77,1(16)	43,6(11)	50,6(12)	4,2(9)	-17,6(11)	4,4(11)
C5	79(2)	151(3)	108(3)	54(2)	-27,2(19)	-30(2)
C6	59,5(13)	43,5(11)	58,2(13)	8,9(9)	0,8(10)	11,2(10)
C7	50,6(14)	52,2(13)	104(2)	4,5(13)	-9,1(13)	3,5(11)
C8	71,7(17)	58,3(14)	82,9(18)	-12,4(13)	-36,1(14)	19,6(13)
C9	77,1(16)	47,2(11)	49,4(12)	-4,9(9)	-20,6(11)	25,9(11)
C10	129(3)	78,1(18)	44,2(13)	-6,7(13)	-33,3(16)	47,6(19)
C11	154(3)	96(2)	45,5(14)	20,9(15)	6,4(18)	54(2)
C12	113(2)	80,6(18)	60,7(16)	28,9(14)	23,6(16)	33,4(17)
C13	73,6(15)	52,3(12)	51,1(12)	13,3(10)	3,0(11)	17,3(11)
C14	60,8(12)	34,8(9)	37,6(10)	1,2(7)	-8,1(9)	17,9(9)
N1	64,1(11)	27,2(7)	38,2(8)	5,7(6)	-11,1(7)	3,0(7)
N2	69,8(12)	33,3(8)	46,2(9)	5,9(7)	-18,4(8)	5,0(8)
0	104,1(13)	29,5(7)	51,6(8)	7,1(6)	-28,6(8)	3,3(7)
S	90,5(5)	35,4(3)	47,5(3)	8,8(2)	-23,1(3)	10,2(3)

Tabla A2. 10. Coordinación de hidrógeno (x10⁴) y parámetros de desplazamiento isotrópico ($Å^2 \times 10^3$) para **NEt**.

eq)	U(e	z	У	х	Átomo
69	6	7748	3376	8255	H4A
39	6	7666	4704	7471	H4B
70	17	6366	3736	11157	H5A
70	17	7528	4751	11507	H5B
70	17	6309	5070	10390	H5C
34	6	4056	1177	-108	H6
34	8	2528	317	-2984	H7
37	8	575	743	-2547	H8
) 7 7 7 7 7 7 7 8 4 34 37	6 17 17 17 6 8 8	6366 7528 6309 4056 2528 575	4704 3736 4751 5070 1177 317 743	11157 11507 10390 -108 -2984 -2547	H4B H5A H5B H5C H6 H7 H8

-210	1735	-997	100
3089	2888	-1498	113
5969	3734	-24	97
5544	3421	1974	69
3995	1176	4585	52
5936	3998	5750	60
	-210 3089 5969 5544 3995 5936	-21017353089288859693734554434213995117659363998	-2101735-99730892888-149859693734-24554434211974399511764585593639985750

Tabla A2. 11. Coordenadas atómicas $(x10^4)$ y parámetros de desplazamiento equivalente isotrópico $(Å^2 \times 10^3)$ para **NIs**. U(eq) es definido como un tercio de la traza del tensor. Uij ortogonalizado.

Átomo	X	У	z	U(eq)
C1	7297(3)	3999,8(8)	7694,5(15)	38,0(4)
C2	9287(3)	4186,2(10)	8416,7(17)	44,8(5)
C3	11102(3)	3761,0(12)	8756,8(19)	54,3(6)
C4	10911(3)	3161,9(11)	8361,8(19)	55,6(6)
C5	8900(3)	2944,7(9)	7614,5(17)	47,6(5)
C6	8685(5)	2316,3(11)	7195(2)	67,6(7)
C7	6733(5)	2112,5(13)	6498(2)	73,5(7)
C8	4890(4)	2515,6(12)	6187(2)	65,9(7)
C9	5019(3)	3125,9(11)	6556,8(18)	51,4(5)
C10	7041(3)	3366,0(8)	7279,3(15)	39,6(4)
C11	5506(3)	4479,7(9)	7268,3(16)	41,2(4)
C12	3498(3)	5391,2(8)	7972,0(15)	36,4(4)
C13	933(3)	6057,9(10)	6534,6(17)	42,8(5)
C14	-1485(4)	5829,3(14)	6490(3)	60,7(6)
C15	1284(5)	6314,2(16)	5369(2)	70,5(7)
N1	4990(2)	4877,7(7)	8112,6(14)	39,2(4)
N2	2570(3)	5544,1(8)	6883,3(14)	44,0(4)
0	4590(2)	4526,8(7)	6236,0(11)	59,7(4)
S	3008,6(8)	5767,5(2)	9159,0(4)	49,84(18)

Tabla A2. 12. Parámetros de desplazamiento ansiotrópico ($Å^2 \times 10^3$) para **NIs**. El factor del desplazamiento ansiotrópico toma la forma: $-2\pi^2[h^2a^{*2}U11+2hka*b*U12+...]$.

Átomo	U11	U22	U33	U23	U13	U12
C1	42,0(9)	41,2(11)	32,1(9)	3,2(9)	10,1(8)	-0,2(8)
C2	47,4(10)	46,4(13)	39,9(11)	2,4(11)	6,6(8)	-5,1(9)
C3	37,9(10)	72,6(16)	50,2(13)	13,3(12)	3,2(9)	-5,0(11)
C4	51,5(12)	59,7(15)	56,0(14)	13,9(12)	11,6(10)	13,3(11)
C5	57,0(11)	44,2(12)	44,6(11)	7,1(10)	17,4(9)	5,8(9)
C6	86,1(17)	51,5(15)	67,7(16)	4,7(13)	20,7(14)	20,0(14)
C7	116(2)	44,8(15)	62,1(16)	-5,3(14)	22,8(15)	0,2(15)
C8	80,8(16)	62,1(17)	54,5(14)	-9,2(13)	12,6(12)	-19,0(14)
C9	53,4(12)	53,5(14)	47,0(12)	-3,5(11)	9,2(10)	-4,1(11)
C10	46,9(10)	41,6(11)	33,4(10)	3,8(9)	15,7(8)	-0,9(8)
C11	46,4(10)	41,8(11)	34,1(10)	-0,5(9)	4,1(8)	-2,7(8)

C12	36,0(8)	37,2(10)	33,9(10)	4,8(9)	1,8(7)	-3,0(8)
C13	42,1(10)	47,4(12)	35,9(10)	8,2(10)	0,5(8)	3,6(9)
C14	45,1(12)	74,9(18)	58,4(16)	5,6(16)	0,6(11)	-4,6(12)
C15	67,6(16)	88(2)	56,0(16)	30,9(16)	10,7(12)	12,0(15)
N1	45,3(8)	42,4(9)	27,3(8)	1,7(8)	0,5(7)	4,7(7)
N2	48,6(9)	51,5(11)	29,9(9)	2,5(8)	2,7(7)	10,2(8)
0	79,6(9)	61(1)	32,8(7)	-4,4(7)	-3,6(7)	20,4(7)
S	63,1(3)	50,0(3)	32,9(3)	-0,7(3)	0,4(2)	14,0(2)

Tabla A2. ⁻	13. Coordinación	de hidrógeno	(x10 ⁴) y parámetros	de desplazamiento	isotrópico
(Å ² ×10 ³) pa	ra NIs .				

Átomo	X	У	Z	U(eq)
H1N	5540(30)	4792(9)	8808(16)	41(5)
H2	9410(30)	4602(9)	8661(16)	46(5)
H2N	2870(30)	5309(10)	6384(19)	60(7)
H3	12390(30)	3912(10)	9246(17)	56(6)
H4	12180(30)	2875(10)	8569(18)	70(6)
H6	9980(30)	2072(11)	7398(19)	71(7)
H7	6660(40)	1682(12)	6240(20)	87(8)
H8	3480(40)	2379(11)	5760(20)	79(7)
H9	3800(30)	3404(8)	6365(15)	43(5)
H13	1320(30)	6373(9)	7155(17)	53(6)
H14A	-1840(30)	5488(11)	5930(20)	69(7)
H14B	-1690(30)	5675(10)	7240(20)	72(7)
H14C	-2560(40)	6176(11)	6280(20)	76(7)
H15A	260(40)	6644(12)	5150(20)	77(7)
H15B	880(40)	5977(12)	4760(20)	89(9)
H15C	2840(40)	6465(11)	5410(20)	92(8)

ANEXO 3

 Tabla A3.1. Frecuencias experimentales y calculadas y asignación tentativa de MBt.

Mada	Experimental ^a			Acianación ^d
WOUD	IR۵	Raman ^c		Asignación
ν1	3285(d)		3621(32)	v(N1-H)
ν2	3227(d)		3438(244)	v(N2-H)
ν3			3213(8)	v_{sim} (CH) Ar
ν4			3199(2)	v_{sim} (CH) Ar
ν5			3196(1)	$v_{asim}(CH) Ar$
ν6	3208(d)		3171(7)	$v_{asim}(CH) Ar$
ν7	3181(md)		3142(19)	$v_{asim}(C7H_3)$
ν8			3088(42)	v_{asim} (C13H ₃)
ν9	2961(d)	2963(4)	3083(70)	$v_{asim}(C11H_2) + v_{asim}(C12H_2) + v_{asim}(C13H_3)$
v10	2932(d)	2931(6)	3076(31)	$v_{asim}(C7H_3)$
v11			3065(27)	v_{asim} (C10H ₂)
v12			3044(6)	$v_{asim}(C10H_2) + v_{asim}(C11H_2) + v_{asim}(C12H_3)$
v13	2901(md)	2900(7)	3029(25)	ν _{sim} (C10H ₂)

v14			3026(6)	$v_{\text{acim}}(\text{C11H}_2) + v_{\text{acim}}(\text{C12H}_2)$
v15	2872(md)	2871(5)	3021(42)	$v_{\rm sin}(C13H_2)$
v16	2855(md)	2854(7)	3013(18)	$v \in (C12H_2)$
v10 v17	2833(md)	2834(6)	3013(61)	$v_{sim}(CTH_2)$
v17 v18		2001(0)	3004(2)	$v_{sim}(C(11H))$
v10	 1662(f)	1663(42)	1704(221)	$V_{sim}(CIII_2)$
00	1003(I) 1602(f)	1602(100)	1704(231) 1645(221)	$\nabla(C=0)$
v20	1602(1)	1602(100)	1045(221)	V(CH)Ar
v21			1606(3)	V(CH)Ar
v22	1561(mf)		1582(449)	v(C9-N2)
v23	1528(mf)		1554(342)	δ(N1-H) +δ(N2-H)
ν24	1510(mf)		1535(622)	$\delta(N2-H) + \delta(N1-H) + \delta(N1C9N2)$
v25	1468(m)		1520(27)	δ(CH ₂) ₃
ν26			1508(12)	$\delta(CH_2)_3 + \delta(C13H_3)$
ν27	1459(m)		1502(61)	δ(C7H ₃)
v28			1500(8)	δ(C13H ₃)
v29			1497(5)	$\delta(C11H_2) + \delta(C13H_3)$
v30	1438(d)		1493(10)	δ(C13H ₃)
v31			1491(6)	$\delta(C12H_2) + \delta(C11H_2)$
v32			1476(7)	ω(C7H ₃)
v33			1448(3)	δ (CH) Ar
v34	1402(d)		1417(34)	ω (C10H ₂) + ω (C11H ₂)
v35	1402(md)		1411(24)	ω(C13H ₃)
v36	1372(d)		1391(168)	$v(C8-N1) + \omega(CH_2)_3$
v37	1350(d)		1361(229)	$v(C9-N2) + \omega(CH_2)_3$
v38	1329(m)	1329(8)	1346(22)	v(C-C) Ar
v39	1310(m)	1310(15)	1336(11)	δ(CH) Ar
v40			1334(<1)	$\Theta(CH_2)_{2}$
v41			1313(<1)	$\omega(CH_2)_3 asim$
v41	1282(d)	1272(8)	1302(10)	
v-12	1252(0)	1253(52)	1203(103)	v(C7-01)
v 4 5	1178(mf)	1170(26)	1264(285)	$\sqrt{(C^2 - C_1)}$
V44	1170(111)	1179(20)	1207(200)	«(СЦ)
V45			1202(15)	$\omega(CT_2)_{3 \text{ asim}}$
V40			1203(13)	$\omega(C/H_3)$
v47	11/2(111)	1172(41)	1190(230)	0(CH) Ar
v48	1152(0)		1182(290)	v(C9-N1)
v49	1140(ma)		1176(18)	$\rho(CH_2)_3$
v50			1167(1)	ρ(C7H ₃)
v51			1161(6)	$v(C10-N2) + \delta(C10C11C12)$
v52	1082(md)	1182(8)	1142(35)	δ(CH) Ar
v53	1054(md)		1098(41)	v(C10-N2) + v(C11-C12)
ν54			1092(4)	v(C8-N1)
v55		914(20)	1063(18)	v(C12-C13) + v(C11-C10)
v56	1031(m)		1052(56)	v(C7-O1)
ν57			1023(2)	δ (CC) Ar + δ (CH) Ar
v58	847(d)		1020(1)	δ (CC) Ar + δ (C10-C11)
v59			984(2)	γ(CH) Ar
v60			965(<1)	ρ(C10H ₂)
v61			954(<1)	δ(N1C9N2)
v62			926(<1)	δ (N1SN2) + ω(C13H ₃) + ω(C12H ₂)
v63	810(md)		898(15)	δ(OC8N1) + δ(C8N1C9)
v64	764(m)	764(15)	854(37)	γ(CH) Ar

v65			825(7)	δ(CCC) Ar + ν(C-S)
v66			824(2)	γ(CH) Ar
v67			804(<1)	τ((CH ₂) ₃)
v68	741(md)		780(24)	v(C-S)
v69	717(md)		777(40)	γ(N1-H) + γ(N2-H) + γ(C=O)
ν70			743(2)	τ((CH ₂) ₃)
v71	633(md)	634(8)	722(28)	γ(N1-H) + γ(N2-H)
ν72			686(6)	γ(N2-H)
ν73			648(12)	γ(N1-H)
ν74	620(md)	617(4)	634(25)	γ(N1-H) + δ(SC9N2)
ν75	611(md)		626(22)	γ(N1-H) + γ(N2-H) + γ(C9-N1)
ν76	582(md)	580(3)	609(60)	γ(N1-H) + γ(N2-H) + γ(C9-N1)
ν77	556(md)		589(21)	δ(C9N2C10) + γ(N1-H)
ν78	530(md)		535(4)	δ(C1O1C7) + γ(C-H) Ar
ν79			507(3)	γ(CH) Ar
v80			453(14)	δ(C1O1C7) + δ(C10C11C12)
v81			423(<1)	γ(CH) Ar
v82			408(1)	δ (C13C12C11) + δ (N1C9N2)
v83			378(1)	ρ(C=O)
ν84			351(11)	γ(C1O1) + γ(C-H) Ar
v85			312(2)	γ(C7O1) + γ(C-C) Ar
v86			303(1)	δ(C1O1C7) + δ(N1C9N2)
v87			249(<1)	ω(C13H ₃)
v88			225(<1)	ω(C7H ₃)
v89			215(1)	ρ(C9-S)
ν90			208(5)	ρ (C7H) ₃
v91			195(10)	ρ(C9-S) + ω(C7H) ₃

Modo	Experir	nental ^a		Asignación ^d
WOUD	IR°	Raman ^c	Calculauo	Asignación
ν1	3389(md)		3624(32)	v(N1-H)
ν2	3339(d)		3428(255)	v(N2-H)
ν3	3214(md)		3211(8)	$v_{sim}(CH)$ Ar
ν4			3199(2)	$v_{\sf sim}(\sf CH)$ Ar
ν5			3196(1)	v_{asim} (CH) Ar
ν6	3154(md)		3172(7)	v_{asim} (CH) Ar
ν7	3079(md)	3069()	3142(18)	$v_{asim}(C7H_3)$
ν8	3044(md)	3026()	3111(16)	v_{asim} (C12H ₃)
ν9	3026(md)		3106(28)	v_{asim} (C11H ₃)
v10	2980(md)	2982()	3098(43)	$v_{asim}(C11H_3) + v_{asim}(C12H_3) + v(C10H)$
v11			3086(4)	$v_{asim}(C11H_3) + v_{asim}(C12H_3)$
v12	2967(d)	2967()	3076(31)	$v_{asim}(C7H_3)$
v13			3069(2)	ν(<u>CH</u> -(CH ₃) ₂)
v14	2929(md)	2989()	3027(31)	$v_{sim}(C11H_3) + v_{sim}(C12H_3)$

Tabla A3.2. Frecuencias experimentales y calculadas con la asignación tentativa de MIs

v15	2889(md)	2916()	3023(15)	$v_{sim}(C11H_3) + v_{sim}(C12H_3)$
v16	2835(md)	2935()	3013(57)	$v_{sim}(C7H_3)$
v17	1662(f)	1662(64)	1704(225)	v(C=O)
v18	1604(mf)	1605(100)	1645(218)	δ(CH)Ar
v19			1606(4)	δ(CH)Ar
v20	1566(mf)		1584(446)	v(C9-N2)
v21	1535(mf)		1557(364)	δ(N1-H) + δ(N2-H)
v22	1511(mf)		1536(526)	$\delta(N2-H) + \delta(N1-H)$
v23	1469(md)		1510(24)	$\delta(CH_2)_2$
v24	1458(md)		1504(53)	δ(C7H ₃)
v25	1452(md)	1453(7)	1501(35)	$\delta(CH_a)_2$
v26	1435(md)		1494(10)	δ(C7H ₂)
v27			1490(3)	$\delta(CH_2)_2$
v28			1487(4)	$\delta(CH_2)_2$
v29			1477(9)	ω(C7H)
v30			1449(3)	$\delta(CH)$ Ar
v31	1386(md)		1421(24)	ω(CH ₂) ₂
v32	1363(md)		1401(17)	$\omega(CH_3)_2$
v33	1335(d)		1394(176)	δ(C10H)
v34	1317(d)	1318(37)	1377(233)	$v(N1-C8) + \delta(N2-C9)$
v0- v35	1312(d) ^H		1349(52)	δ(C10H)
v36		1281(26)	1344(12)	$\delta(C10H) + \delta(N2-H) + \delta(N1-H)$
v30 v37		1201(20)	1336(11)	8(CH) Ar
v37 v38	1261(mf)	1261(56)	1293(163)	v(C1-01)
v30	1101(mf)	1189(15)	1265(285)	V(C1-C1)
v39 v40	1173(mf)	1173(42)	1200(200)	$v(C_{1}-C_{3})$
v40 v41			1203(154)	$\delta(CH) \Lambda r + \omega(C7H)$
v 4 1	11/0(d)	11/0(6)	1107(1/2)	$\delta(CH) \text{ Ar} = \delta(C/H_3)$
v42 v43	1118(d)	1118(7)	1100(220)	v(C10-N2)
v 4 5			1168(1)	о(С7H)
v 	1074(md)	1074(6)	1163(109)	$v(C_{P}-N_{1})$
v45 v46		1001(16)	1144(15)	
v40 v47	1026(d)		1130(08)	8(CH) Ar
v-17	899(md)	898(17)	1084(39)	$v(CR-N1) \pm v(CQ-N1) \pm \delta(SCQN1)$
v40	841(d)	854(21)	1052(55)	v(C3 - N1) + v(C3 - N1) + 0(3C3 N1)
v 4 9 v50	041(u)	00+(21)	1022(00)	$\delta(CC) \Delta r + \delta(CH) \Delta r$
V50 V51			1022(1)	$\delta(CC) AI + \delta(CH) AI$
V51 V52			084(2)	
V0Z			965(<1)	γ(CH) Ar
V55			903(<1)	
V34 V55			038(1)	
V55			906(0)	β(CH-(CH3)2) δ(O2C9N1)
v50 v57			900(9) 861(5)	δ(CCC) Ar
v57 v58	 797(md)	707(3)	855(37)	
v50 v50	<i>i 3i</i> (iiiu)	191(3)	825(1)	y(CH) Ar
v59 v60			810(6)	γ(CH) Ar
V00	 763(md)		770(47)	$\gamma(CT) AI$
v01 v62	751(md)	 751(32)	762(35)	$\gamma(11211) + \gamma(1111) + \gamma(02-08)$ $\gamma(-2)$
VUZ	680(md)		730(30)	v(C-3) ∞/NI3LI\
v03			608(A)	יע(N2H) ב אוארע אוארא איערע באוארע
V04	 634(md)	 632(12)	6/0(4)	$\gamma(N(1) + \gamma(N(1)) + \gamma(O(2))$
COV	034(mu)	033(1Z)	049(13)	$\gamma(NTH) + O(CC) Ar$

v66	621(md)	621(5)	634(30)	γ(N1H) + γ(N1-C9)
v67	601(md)		628(26)	γ(S-C)
v68	580(md)	580(4)	615(45)	γ(N2H) + γ(N1H) + γ(N1 <u>C9</u> N2)
v69	576(md)	577(3)	582(19)	ρ(CH) Ar
ν70			531(6)	δ(C8O1C6)
v71			507(3)	γ(CCC) Ar
ν72			469(6)	γ(CH-(CH ₃) ₂)
ν73			426(7)	δ(C11C10C12)
ν74			423(<1)	γ(CCC) Ar + γ(CH) Ar
ν75			407(1)	$δ(N2C10C11) + ω(CH_3)_2$
ν76			372(1)	ω(C=O)
ν77			348(11)	$\rho((CH_3)_2) + \delta(CH-(CH_3)_2)$
ν78			310(1)	γ(C=O) + γ(C1-O1)
ν79			302(1)	ρ(CH) Ar
v80			257(<1)	ρ((CH ₃) ₂)
v81			231(<1)	ρ((CH ₃) ₂)
v82			227(<1)	ρ (C7H ₃)
v83			219(14)	ρ(CS)
v84			199(6)	ρ (C7H ₃)
v85			164(<1)	γ(N1-H)
v86			130(2)	ω(C7H ₃)
v87			123(10)	γ(N1-H) Ar + γ(C7-O1) + γ(C=O)
v88			98(1)	γ(CH) Ar + γ(C=O)
v89			80(1)	ρ (C7H ₃)
v90			65(1)	γ(CH) Ar
v91			43(<1)	γ(C12H ₃) + γ(C11H ₃)
v92			29(1)	γ(CH) Ar + γ(C12H ₃) + γ(C11H ₃)
v93			28(<1)	γ(CH) Ar

Tabla A3.3. Datos de IR y Raman experimentales y calculados con la asignación tentativa **MMCf**.

	Experimental ^a		a h	• • • • d
Modo	IR ^c	Raman ^c	Calculado	Asignación
ν1	3318(md)		3620(35)	ν1
ν2	3185(m)		3371(414)	v(N2-H)
ν3			3218(<1)	$v_{sim}(CH)$ Ar
ν4	3066(md)		3213(8)	$v_{sim}(CH)$ Ar
ν5			3204(3)	$v_{asim}(CH)Ar$
ν6			3200(2)	$v_{sim}(CH)$ Ar
ν7			3198(1)	$v_{asim}(CH)Ar$
ν8		3081(<1)	3182(6)	$v_{asim}(CH)Ar$
ν9		3075(<1)	3171(7)	$v_{asim}(CH)Ar$
v10	3062(d)	3057(<1)	3143(19)	v_{asim} (C7H ₃)
v11			3133(9)	v_{asim} (C16H ₃)
v12			3097(8)	v_{asim} (C7H ₃)
v13	2977(md)		3078(30)	v_{asim} (C16H ₃)

v14	2932(md)		3031(11)	v_{sim} (C16H ₃)
v15	2839(md)	2840(<1)	3015(57)	$v_{sim}(C7H_3)$
v16	1664(f)	1667(78)	1703(197)	v(C=O)
v17	1605(f)	160(100)	1645(162)	v(CH)Ar
v18	1574(d)	1576(13)	1637(84)	v(CH)Ar
v19	()	1534(6)	1608(212)	$v(CC)$ Ar + $\delta(N2H)$
v20	1505(mf)	1511(13)	1604(42)	v(CH)Ar
v21	()	1482(15)	1580(583)	(δN2-H)
v22	1458(m)	1458(12)	1554(198)	δ(N1-H)
v23	1327(m)	1327(14)	1532(485)	$v(CC) Ar + \delta(N1H)$
v24	1269(d)	1269(13)	1504(34)	δ(C16H ₂)
v25	1255(f)	1256(55)	1503(56)	δ(C7H₂)
v26			1495(11)	δ(C7H₂)
v27		1246(40)	1494(29)	δ(C16H ₂)
v28		1211(7)	1477(9)	ω(C7H ₂)
v29			1474(<1)	$\delta(C16H_2) + \delta(CH) Ar$
v_{20}	1189(m)	1189(13)	1468(28)	δ(CH) Ar
v31			1449(5)	δ(CH) Ar
v32			1420(3)	۵(C16H _a)
v32	1173(mf))	1176(36)	1363(790)	v(C9-N2)
v30			1347(6)	$v(CC) \Delta r$
v3 4			1336(24)	V(СС) Аг 8(СН) Аг
v35			1312(4)	v(CC) Ar
v30 v27			1200(32)	V(CC) AI
v37	1161(m)	1160(42)	1203(02)	v(C1-N2)
v30	11/1(d)	11/3(16)	1259(200)	v(C1-C1)
v39 v40	11 4 1(u)	1143(10)	1239(200)	V(C4-C8)
v 4 0	 1122(d)	1124(5)	1200(73)	8(CH) Ar
v 4 1 v42	1122(U)	1075(24)	1203(73)	0(C16H)
v42	 1027(m)	1073(24)	1105(260)	&(CLOH3)
V43	1027(III) 1015(d)		1177(155)	$V(C0 \text{ N1}) + \delta(CH) \text{ Ar}$
V44	1015(0)	944(22)	1168(<1)	
v45	 868(md)	9 77 (22) 870(38)	1154(116)	ρ(C/Π ₃) δ(N1CON2)
v40	843(d)	070(30)	11/1(115)	
V47	043(u)		1000(5)	
V 4 0			1002(14)	O(CCC) AI + O(CH) AI
V49 			1092(14)	v(CO-NI) + v(C9-NI)
V50			1050(5)	$p(CIOH_3)$
V01	 909(md)		1032(00)	V(C7-O1)
V5Z	606(IIIu)	807(10)	1020(70)	$\omega(CIDH_3) + V(CIZ-CI)$
V55			1021(2)	
V04			900(2)	γ(CH) Ar
V00			960(1)	γ(CH) Ar
V30			909(1)	γ(CH) Ar
V07			902(2)	γ(CH) Ar
V08			910(2)	$\gamma(C\Pi)$ Ar $\gamma(C12, CI)$
v59			019(24) 955(25)	v(CL) = v(CL) = v(CL)
V0U			000(00)	γ(CH) Ar
V01			024(<1) 017(5)	$\gamma(CH) Ar$
V02			01/(J) 800(J)	
V03	 706(~~d)	 700/7)	009(Z) 705(25)	
V04	700(IIIU)	100(1)	190(00)	γ(CH) Ar

v65	760(d)	759(36)	786(53)	γ(N2-H) + γ(C8-C4)
v66	721(md)	725(13)	770(52)	v(C9-S)
v67			758(20)	γ(N2-H)
v68	675(md)	676(22)	732(21)	γ(N2-H) + γ(CH) Ar
v69		633(15)	701(3)	γ(N2-H) + γ(N1-H)
ν70	625(md)		696(19)	δ(C9N2C10)
v71	613(md)	613(8)	651(21)	γ(N1-H)
ν72	597(md)	598(28)	640(28)	γ(N1-H) + γ(C9-S)
ν73	541(md)	543(8)	618(23)	δ(CCC) Ar
ν74	526(md)		611(31)	γ(C9-N)
ν75	508(md)		596(28)	δ(CCC) Ar
ν76			551(9)	δ(CCC) Ar
ν77			541(<1)	γ(C12-Cl) + γ(CH) Ar
ν78			521(14)	γ(CH) Ar
ν79			511(<1)	γ(CC) Ar
v80			505(3)	γ(C1-O1)
v81	478(md)	474(5)	468(15)	δ(N2C9S)
v82			424(<1)	γ(CC) Ar
v83			400(3)	δ(Cl-C12-C13)
v84			381(2)	ρ (C8O2)
v85		418(8)	372(12)	δ(C1-O1-C7)
v86		390(5)	351(4)	ρ (C16H₃)
v87			314(<1)	δ(C1-O1-C7)
v88		366(6)	309(1)	γ (C1-O1)
v89			279(2)	δ(Cl-C12)
v90			248(3)	δ(Cl-C12)
v91			226(<1)	ρ (C16H₃)
v92			223(1)	ω(CC) Ar
v93		231(22)	202(12)	ω(C7H ₃)
ν94			167(4)	ρ (C7H₃)
v95			151(2)	γ(C7-O1) + γ(N1-H)
v96			125(6)	γ(C7-O1) + γ(N2-H)
ν97			113(6)	γ(C8-O2) + γ(N1-H)
ν98			98(<1)	ω(C16H ₃)
ν99			91(<1)	ω(C7H ₃) + $γ$ (C7-O1)
v100			88(<1)	ω(C16H ₃)
v101			60(<1)	γ(C9-S) + γ(CH) Ar
v102			50(<1)	γ(C7-O1) + γ(CH) Ar
v103			27(<1)	ω(C7H ₃) + γ(CH) Ar
v104			18(<1)	ω (CH) Ar
v105			15(<1)	ω(CH) Ar

Tabla A3. 4. Coordenadas atómicas $(x10^4)$ y parámetros de desplazamiento equivalente isotrópico ($Å^2 \times 10^3$) para **MBt**. U(eq) es definido como un tercio de la traza del tensor. Uij ortogonalizado.

Átomo	Х	У	z	U(eq)
C1	-2264(3)	3350,8(10)	5560(2)	45,8(6)
C2	-1679(3)	3906,4(10)	5446(3)	45,4(6)
C3	2(3)	4047,2(10)	4742(2)	42,2(5)
C4	1141(3)	3632,3(9)	4136(2)	38,8(5)
C5	524(3)	3079,1(10)	4251(3)	50,0(6)
C6	-1155(4)	2934,3(11)	4959(3)	53,9(6)
C7	-4602(5)	2697,1(14)	6465(5)	73,2(9)
C8	2922(3)	3749,9(10)	3314(2)	41,9(5)
C9	5283(3)	4518,4(10)	2670(2)	40,6(5)
C10	7650(4)	4366,0(12)	842(3)	52,6(7)
C11	8586(4)	3863,0(11)	176(3)	48,0(6)
C12	10431(4)	4032,5(12)	-612(3)	53,8(6)
C13	11563(5)	3533,5(14)	-1155(4)	63,2(8)
N1	3773(3)	4280,1(9)	3434(2)	44,1(5)
N2	6034(3)	4190,9(9)	1714(2)	48,3(5)
01	-3943(2)	3259,4(8)	6287,7(19)	63,5(5)
02	3581(2)	3391,5(7)	2543,1(18)	58,1(5)
S	6003,1(9)	5185,8(3)	2994,2(7)	55,1(2)

Tabla A3. 5. Parámetros de desplazamiento ansiotrópico ($Å^2 \times 10^3$) para **MBt**. El factor del desplazamiento ansiotrópico toma la forma: $-2\pi^2[h^2a^{*2}U11+2hka^*b^*U12+...]$.

Átomo	U11	U22	U33	U23	U13	U12
C1	37,5(11)	48,5(15)	50,8(13)	3,0(12)	4,3(10)	-4,2(10)
C2	39,4(11)	41,9(14)	55,5(14)	-3,9(12)	8,8(10)	2,4(10)
C3	38,9(11)	35,2(13)	52,6(14)	-2,0(12)	6,9(10)	-2,4(10)
C4	36(1)	38,1(13)	41,7(12)	-3,6(10)	3,5(9)	-0,4(9)
C5	49,7(13)	37,5(14)	64,6(16)	-5,0(12)	13,8(12)	-0,3(10)
C6	56,6(14)	35,9(14)	69,5(17)	2,5(13)	9,9(12)	-8,5(11)
C7	62,6(18)	64(2)	97(3)	17(2)	25,8(19)	-11,3(16)
C8	40,7(11)	38,3(13)	46,5(12)	-6,1(11)	5,5(10)	-0,5(10)
C9	38,4(11)	42,9(13)	41,1(12)	-3,1(11)	7,7(9)	0,0(9)
C10	61,8(16)	49,3(17)	51,4(15)	-0,7(14)	24,3(13)	0,4(13)
C11	54,1(13)	46,5(15)	45,5(14)	-3,6(13)	14,6(12)	-2,4(12)
C12	61,9(15)	50,9(16)	53,1(15)	1,9(14)	23,2(13)	4,4(13)
C13	68,3(18)	64(2)	61,8(19)	-1,8(17)	23,2(17)	11,3(16)
N1	45,5(10)	39,5(11)	50,3(12)	-13,5(10)	16,8(9)	-4,4(9)
N2	51,3(11)	46,0(13)	51,3(12)	-10,4(11)	20,1(9)	-7,3(10)
01	55,9(9)	58,9(12)	81,1(12)	5,6(10)	28,2(9)	-10,1(8)
02	63,2(10)	44,3(10)	72,4(11)	-19,2(9)	28,9(9)	-7,4(8)
S	70,5(4)	39,7(4)	60,6(4)	-6,5(3)	28,3(3)	-8,2(3)

Tabla A3. 6. Coordinación de hidrógeno (x10⁴) y parámetros de desplazamiento isotrópico ($Å^2 \times 10^3$) para **MBt**.

Atomo x y z U(eq)	Atomo x	У	Z	U(eq)
-------------------	---------	---	---	-------

H1N	3470(30)	4487(10)	4040(20)	41(7)
H2	-2430(30)	4178(11)	5850(20)	63(7)
H2N	5550(40)	3866(11)	1670(30)	56(8)
H3	320(30)	4431(10)	4680(20)	40(6)
H5	1220(30)	2793(11)	3800(30)	63(7)
H6	-1500(30)	2570(10)	5050(20)	51(6)
H7A	-4990(40)	2523(13)	5530(30)	89(11)
H7B	-5840(40)	2737(13)	6960(30)	89(9)
H7C	-3440(40)	2475(13)	6990(30)	91(10)
H10A	8780(40)	4582(13)	1500(30)	88(9)
H10B	7070(30)	4616(11)	180(30)	59(8)
H11A	9060(30)	3594(10)	880(30)	53(7)
H11B	7560(30)	3653(10)	-530(30)	58(7)
H12A	9920(30)	4294(11)	-1370(30)	56(7)
H12B	11430(40)	4274(12)	30(30)	71(8)
H13A	12200(40)	3301(12)	-400(30)	65(8)
H13B	10670(40)	3311(13)	-1810(30)	81(10)
H13C	12720(50)	3641(13)	-1640(30)	97(10)

ANEXO 4

Tabla A4.1.	Datos	de	IR y	Raman	experimentales	у	calculados	con	la	asignación	tentativa
MIso2.											

Mode	Experimental ^a			Asignación ^d
WOUU	IR°	Raman ^c	Calculauo	Asignacion
ν1	3310(m)		3577(25)	∨(N1-H)
ν2			3210(8)	v_{sim} (CH) Ar
ν3			3197(3)	v_{sim} (CH) Ar
ν4		3077(<1)	3194(<1)	$v_{asim}(CH)Ar$
ν5	3052(md)		3175(7)	$ u_{asim}(CH) Ar$
ν6	3016(md)		3162(14)	v_{asim} (CH) Isopropilo
ν7			3144(13)	v_{asim} (CH ₃) Isopropilo
ν8			3143(2)	v_{asim} (CH ₃) Isopropilo
ν9	3003(md)	3004(5)	3140(20)	v_{asim} (CH ₃) Metoxilo
v10			3134(7)	v_{asim} (CH ₃) Isopropilo
v11			3103(25)	v_{asim} (CH ₃) Isopropilo
v12			3100(35)	v_{asim} (CH ₃) Isopropilo
v13			3097(12)	v_{asim} (CH ₃) Isopropilo
v14	2975(d)	2976(12)	3095(33)	v_{asim} (CH ₃) Isopropilo
v15			3090(8)	v_{asim} (CH ₃) Isopropilo
v16			3083(22)	v _{asim} (CH) Isopropilo
v17			3074(31)	v_{asim} (CH ₃) Metoxilo
v18	2937(md)	2940(12)	3039(39)	v_{sim} (CH) Isopropilo
v19			3037(35)	v_{sim} (CH) Isopropilo
v20		2892(4)	3033(32)	v_{sim} (CH) Isopropilo
v21	-	2846(3)	3031(7)	v_{sim} (CH) Isopropilo
v22	2842(md)		3012(58)	v_{sim} (CH ₃) Metoxilo
v23	1650(mf)	1649(50)	1740(237)	v (C=O)

v24	1602(mf)	1603(100)	1644(248)	v (CC) Ar
$\sqrt{25}$		1521(6)	1607(2)	v(CC) Ar
v26	1474(mf)	1470(8)	1558(227)	v (C9-N2)
v20 v27	1454(H)	1453(6)	1540(62)	δ(CH)Δr
v28			1520(54)	δ(CH_)-
v20 v20			1520(0+) 1511(14)	8 (CH)
v29 v20			1507(5)	8 (CH)
v30 			1507(3)	
vo i 			1504(40)	$O(C/H_3)$
v32			1302(<1)	
V33			1494(10)	$O(C/H_3)$
V34			1495(2)	$O(C\Pi_3)_2$
V35			1491(42)	$O(CH_3)_2$
v36			1489(4)	δ (CH ₃) ₃
v37			1478(1)	0 (CH ₃) ₂
v38			1476(4)	ω (C/H ₃)
v39	1440(f)	1438(6)	1464(240)	δ (N1-H)
v40			1445(14)	δ (CH) Ar
v41			1422(10)	ω (CH ₃) ₂
ν42	1413(md)		1417(38)	ω (CH) Isopropilo
v43	1388(md)		1414(32)	ω (CH) Isopropilo
ν44			1404(31)	ω (CH ₃) ₂
v45			1396(11)	ω (CH ₃) ₂
v46	1372(m)		1361(188)	ω (CH) Isopropilo
ν47	1365(m)		1354(166)	ω (CH) Isopropilo
v48	1344(f)		1346(144)	v (CC) Ar
v49	1342(f)	1339(8)	1341(39)	δ (CH) Isopropilo
v50	1313(m)	1314(41)	1331(4)	δ (CH) Ar
v51	1256(mf)	1251(45)	1288(156)	v (C1-O1)
v52	1222(mf)	1224(13)	1268(361)	v (C4-C8)
v53	1176(f)	1173(36)	1225(236)	γ (C9-N2)
v54		`	1202(3)	ω (C7H ₃)
v55			1202(12)	$\omega (CH_3)_2$
v56	1162(m)	1164(9)	1190(270)	δ (CH) Ar
v57	1137(m)		1181(103)	v (C9-N1)
v58			1168(<1)	
v59	1121(m)	1122(8)	1159(51)	v (N2-CH) Isopropilo
v60			1151(20)	$v(CH-CH_2)$ isopropilo
v61			1139(15)	δ (CH) Ar
v62			1131(2)	v (CH-CH _a) Isopropilo
v63	1093(m)	1092(2)	1126(245)	v (C9-N1-C8)
v64			1095(1)	v (N1-C8)
v0 4	1030(m)		1054(73)	v (N1 CO) Δr
v05 v66			1023(2)	v (CH) ∧r
v00	1011(md)		1005(10)	y (N2-CH) Isopropilo
V07	1011(110)		085(2)	
v00	 027(md)	020(12)	903(2)	γ (CH) Ar
v09	927 (mu)	929(12)	970(7)	ү (СП) Аг
V/U			900(3) 054(-1)	γ (CH) Ar
V/ I			904(NI) 050(~1)	ω (CH ₃) ₂
V1Z			900(51)	$\rho(C \pi)$ isopropiio
V13			907 (SI)	$(CH_3)_2$
V/4			904(∠)	$\omega (CH_3)_2$

v75	910(d)	911(41)	906(12)	δ (C9-N1-C8)
ν76	871(md)	871(4)	869(<1)	v(CH-CH ₃) Isopropilo
ν77	852(d)		856(37)	γ (CH) Ar
ν78	846(d)		844(11)	$v(C=S) + v(CH-CH_3)_2$
ν79			826(<1)	γ (CH) Ar
v80	822(md)		803(9)	γ (CCC) Ar
v81	797(md)	798(19)	776(25)	γ (C4C8)
v82	762(d)	762(3)	715(15)	γ (CCC) Ar + γ (C4C8)
v83		633(15)	683(4)	γ (N1H)
v84	623(md)	622(11)	665(45)	γ (N1H)
v85			646(7)	γ (CCC) Ar + γ (C9N2)
v86			629(23)	γ (N1H)
v87	590(d)	593(4)	599(22)	γ (N1H)
v88	563(d)	564(5)	578(23)	δ (C10N2C11)
v89	514(md)	512(3)	534(18)	γ (CH) Ar
v90			527(9)	δ (C1-O1-C7)
v91			505(3)	γ (CH) Ar
v92			482(6)	δ (CH-(CH ₃) ₂)
v93			438(4)	$r(CH-(CH_3)_2) + \delta (CH-(CH_3)_2)$
v94			429(3)	γ (N1H)
v95			427(<1)	γ (CH) Ar
v96			394(<1)	δ (CH-(CH3) ₂)
v97			351(2)	δ (CH-(CH3) ₂)
v98			340(<1)	ρ (CH-(CH ₃) ₂)
v99			316(5)	ρ (C7H₃)
v100			309(<1)	δ (CH-(CH ₃) ₂)
v101			296(4)	ρ (C7H ₃) + δ(CH-(CH ₃) ₂)
v102			262(<1)	ρ ((CH ₃) ₂)
v103			241(<1)	ρ ((CH ₃) ₂)
v104			235(<1)	ρ ((CH ₃) ₂)
v105			228(2)	ρ (C7H₃)
v106			222(<1)	ρ ((CH ₃) ₂)
v107			217(5)	ρ ((CH ₃) ₂)
v108			209(<1)	ρ ((CH ₃) ₂)
v109			193(1)	ρ ((CH₃)₂)
v110			165(<1)	ρ ((CH₃)₂)
v111			144(3)	ρ ((CH ₃) ₂)
v112			128(2)	ω ((CH ₃) ₂)
v113			123(2)	ρ ((CH ₃) ₂) + ω ((CH ₃) ₂)
v114			99(<1)	ρ ((CH ₃) ₂)
v115			98(3)	ω (C=O)
v116			82(<1)	ω (C7H ₃)
v117			75(3)	ω ((CH ₃) ₂) + ω (C7H ₃)
v118			39(<1)	ρ ((CH ₃) ₂)
v119			32(1)	γ (CH) Ar
v120			24(1)	ω((CH ₃) ₂)

^v120 -- 24(1) $\omega((CH_3)_2)$ ^a en cm⁻¹. ^b B3LYP/6-311++g(d,p), intensidad calculada en paréntesis (km mol⁻¹). ^c f, fuerte; m, medio; d, débil; md, muy débil. ^dv, δ, γ, ω, ρ y τ representa stretching, deformación en el plano, deformación fuera del plano, aleteo, balanceo y torsión, respectivamente.

	Experimental ^a			A a laura a láud	
woao	IR	Raman ^c	Calculado	Asignacion	
ν1	3185(m)		3592(26)	v(N1-H)	
ν2	3144(md)		3209(8)	$ u_{sim}(CH) Ar$	
ν3			3198(3)	$ u_{sim}(CH)Ar$	
ν4			3194(<1)	$ u_{asim}(CH) Ar$	
ν5		3075(13)	3175(7)	$ u_{asim}(CH) Ar$	
ν6	3094(md)	3062(16)	3153(8)	$v_{asim}(CH_3)$ Metilo	
ν7			3146(4)	$v_{asim}(CH_3)$ Metilo	
ν8	3038(md)	3033(<1)	3141(19)	v_{asim} (CH ₃) Metoxilo	
ν9			3102(11)	$v_{asim}(CH_3)$ Metilo	
v10	2999(d)	3000(15)	3194(25)	$v_{sim}(CH_3)$ Metilo	
v11	2968(md)	2968(9)	3075(31)	v_{asim} (CH ₃) Metoxilo	
v12	2929(d)	2942(16)	3039(53)	v_{sim} (CH ₃) Metilo	
v13			3024(29)	$v_{sim}(CH_3)$ Metilo	
v14	2841(d)	2841(10)	3013(57)	v_{sim} (CH ₃) Metilo	
v15	1680(mf)	1677(57)	1743(248)	v(C=O)	
v16	1605(mf)	1604(100)	1644(245)	v(CC) Ar	
v17		1580(6)	1607(2)	v(CC) Ar	
v18	1556(mf)	1556(8)	1582(284)	δ (Ν1-Η)	
v19			1543(30)	δ(CH)Ar	
v20			1505(37)	δ (CH ₃) Metilo	
v21	1510(f)	1511(3)	1504(59)	δ(C7H ₃)	
v22	1479(mf)	1474(7)	1498(182)	δ (CH ₃) Metilo	
v23	1465(H)		1494(26)	δ (CH ₃) Metilo	
v24			1493(11)	δ(C7H ₃)	
v25			1478(61)	ω (CH ₃) Metilos + ω (C7H ₃)	
v26			1476(4)	ω(C7H ₃)	
v27	1448(f)	1435(5)	1472(192)	ω (CH ₃) Metilos + ω (C7H ₃)	
v28			1447(1)	ω (CH ₃) Metilos + v(CC) Ar	
v29			1446(7)	ω (CH ₃) Metilos + v(CC) Ar	
v30	1389(f)	1388(21)	1411(253)	v(C9-N2)	
v31	1323(m)	1321(11)	1347(64)	ν(CC) Ar	
v32			1333(4)	δ (CH) Ar	
v33	1304(m)	1305(<1)	1296(46)	v(N2-CH₃)	
ν34	1287(m)	1285(6)	1289(168)	v(O1-C1)	
v35	1249(mf)	1253(89)	1256(510)	v(C4-C8)	
v36	1205(f)		1212(176)	v(N1-C9)	
v37			1202(5)	ρ (C7H ₃)	
v38	1190(f)	1185(10)	1192(264)	δ (CH) Ar	
v39			1168(<1)	ω(C7H ₃)	
v40			1160(48)	ρ((CH₃) Metilos	
v41	1167(mf)	1172(49)	1144(84)	δ(CH) Ar	
v42	1130(mf)	1129(47)	1136(123)	δ (CH) Ar	
v43			1116(5)	ρ((CH₃) Metilos	
ν44		1078(9)	1089(5)	v(N1-C8)	
v45	1054(d)		1074(19)	ρ((CH ₃) Metilos	
v46	1028(f)	1029(2)	1053(77)	v(C7-O1)	
v47			1022(3)	δ (CCC) Ar	

Tabla. A4.2. Asignación de los espectros de IR y Raman para Mm2.

ν48			989(8)	$v(N2-CH_3)$
v49			984(2)	γ(CH) Ar
v50			968(<1)	γ(CH) Ar
v51	871(f)	870(12)	886(34)	v(C9-S)
ν52	845(m)	843(3)	855(33)	γ(CH) Ar
v53			826(<1)	γ(CH) Ar
ν54	797(d)	797(15)	811(7)	δ (CCC) Ar
v55	757(f)	756(13)	776(28)	γ(CH) Ar + γ(C4C8)
ν56			736(2)	v(N2-CH ₃)
ν57	697(m)	697(<1)	711(20)	γ(CH) Ar + γ(N1H)
ν58	657(m)	668(7)	670(46)	γ(N1H)
v59	633(d)	629(10)	645(13)	δ (CCC) Ar
v60	624(m)	620(28)	629(21)	γ (C=S) + γ (N2H)
v61	588(d)	586(2)	597(39)	γ (C=S) + γ (N2H)
v62	533(md)	533(2)	536(5)	γ(CH) Ar
v63	515(md)		513(13)	δ(SCN2)
ν64		508(2)	505(2)	δ(C1O1C7)
v65		465(9)	448(6)	γ(C10N2C11)
v66		425(2)	426(<1)	γ(CC) Ar
v67			408(2)	γ(C10N2C11)
v68		377(2)	373(<1)	γ(N1H)
v69			332(2)	ω(C=O)
ν70			305(4)	ω(C7H ₃)
v71		303(7)	298(6)	ω (CH ₃) Metilos
ν72			273(3)	ω(N2-(CH ₃) ₂₎
ν73			226(1)	ρ(C7H ₃)
ν74			213(8)	γ(<u>C</u> 7H ₃)
ν75			199(<1)	ρ(CH ₃) Metilo
ν76			184(1)	ρ (CH ₃) Metilo
ν77			139(3)	γ (C7O1)
ν78			125(4)	ρ (CH ₃) Metilo
ν79			108(5)	ρ(CH ₃) Metilo
v80			98(2)	ρ (CH ₃) Metilo
v81			83(2)	γ(CH ₃) Metilo
v82			66(<1)	γ(CH₃) Metilo
v83			34(1)	γ(CH) Ar
v84			31(2)	γ(CH) Ar

^a en cm⁻¹. ^b B3LYP/6-311++g(d,p), intensidad calculada en paréntesis (km mol⁻¹). ^c mf, muy fuerte; f, fuerte; m, medio; d, débil; md, muy débil. ^dv, δ y γ representa stretching, deformación en el plano, deformación y fuera del plano, respectivamente.

Tabla A4.3. Frecuencias experimentales, calculadas y asignación tentativa de los modos de vibración de **AntBu**.

Modo -	Experimental ^a		Calculado ^b	Acianoción ^d
	IR°	Raman ^c		Asignacion
ν1			3600(38)	v(N1H1)
ν2	3214(f)		3448(265)	v(N2H2A)
ν3			3205(7)	v(CH) Ar

ν4			3198(12)	v(CH) Ar
ν5	3165(d)		3188(22)	v(CH) Ar
ν6	3078(d)	3082(<1)	3187(20)	v(CH) Ar
ν7			3173(11)	v(CH) Ar
ν8			3174(8)	v(CH) Ar
ν9			3164(4)	v(CH) Ar
v10			3163(<1)	v(CH) Ar
v11			3159(3)	v(CH) Ar
v12		3064(7)	3101(13)	vas(C17H ₂)
v13	3053(d)	3053(5)	3086(47)	vas(CH ₃)
v14	2967(d)		3082(49)	vas(CH _a)
v15			3064(16)	vas(C18H ₂)
v16	2959(d)		3042(36)	vsim(C17H ₂)
v17	(_)		3031(14)	vsim(C18H ₂)
v18	2935(d)		3021(38)	vsim(CH ₂)
v19	2871(md)		3014(16)	vsim(C18H ₂)
v20	2864(md)		3004(19)	$vsim(C19H_2)$
v21	1678(mf)	1682(4)	1713(214)	v(C=0)
v_{22}			1668(1)	v(CC) Ar
$\sqrt{23}$	1624(md)	1627(2)	1657(3)	v(CC) Ar
v24			1614(<1)	v (CC) Ar
v^{2-1}			1594(19)	v(CC) Ar
v26	1561(mf)	1561(18)	1591(336)	$v(C16-N2) + \delta(N1H1)$
v27		1524(2)	1560(18)	v(CC) Ar
v28	1521(mf)		1541(638)	$\delta(N1H1) + \delta(N2H2)$
v29			1519(8)	δ (CH) Ar
v30	1482(h)	1485(13)	1510(12)	$\delta(C17H_2) + \delta(C18H_2) + \delta(C19H_2)$
v31			1501(7)	⊕(CH₂) ⊕ (CH₂)
v32			1498(6)	$\delta(C18H_2) + \delta(CH_2)$
v33			1489(<1)	$\delta(C18H_2) + \delta(C19H_2)$
v34	1460(d)		1482(14)	δ (CH) Ar
v35	1452(d)		1480(19)	$\delta(C17H_2)$
v36	1439(m)		1478(55)	$\delta(C17H_2)$
v37			1433(3)	v(C1-C15) + v(CC) Ar
v38			1417(3)	δ (CH) Ar
v39			1416(5)	δ(CH) Ar
v40		1411(100)	1409(11)	ω(CH₃)
v41		/	1402(<1)	$\omega(CH_2)_3 + \omega(CH_3)$
v42	1377(d)		1388(54)	v(CC) Ar
v43	1359(d)	1351(9)	1374(75)	$\omega(C17H_2) + \omega(C18H_2) + \omega(C19H_2)$
v44	1329(d)		1357(47)	δ (N1H) + v(C16N2)
v45	()		1349(2)	v(CC) Ar
v46	1304(d)		1337(106)	$\tau(CH_2)$
v47	1396(md)		1330(22)	$\tau(CH_2)_3$
v48	,	1288(4)	1310(2)	δ (CH) Ar
v49	1265(d)	1266(19)	1296(11)	$(CH_2)_3$
v50			1290(8)	δ (CH) Ar + v(CC) Ar
v51	1236(d)		1267(37)	$\tau(CH_2)_3$
v52		1231(3)	1256(1)	δ (CH) Ar + v(CC) Ar
v53	1208(mf)		1217(151)	$v(C15-N1) + \delta(N1H)$
v54	,	1185(4)	1207(3)	δ(CH) Ar

v55	1180(f)	1174(3)	1200(83)	$v(N1-C16) + \rho(CH_2)_3$
v56	1151(d)	1152(2)	1198(39)	δ(CH) Ar
v57	1119(d)		1179(24)	δ(CH) Ar
v58			1172(8)	δ(CH) Ar
v59			1131(15)	$v(N1-C16) + \rho(CH_2)_3$
v60			1130(<1)	δ(CH) Ar
v61	1113(d)		1125(52)	v(N1C15)
v62	1071(m)		1095(65)	v(N2C17)
v63	,		1057(<1)	v(CC) Butilo
v64	1015(md)	1017(13)	1040(8)	v(CC) Ar
v65			1038(4)	v(CC) Ar
v66			1007(1)	v(CC) Butilo
v67			1006(6)	v(C15-C1)
v68			998(<1)	γ (CH) Ar
v69			995(<1)	γ (CH) Ar
v70	960(m)		978(2)	γ (CH) Ar
ν71			975(<1)	$\gamma(CH)$ Ar
ν72	950(md)		949(6)	$\tau(CH_2)_2$
v72			947(<1)	
v73			911(<1)	
v74 v75	935(md)		910(25)	$\gamma(CH) \Delta r$
v75 v76	912(d)	908(1)	894(30)	δ(OC15N1)
v70 v77			876(<1)	$v(CC) \land r$
v//			862(<1)	
v70 v70	881(d)		850(0)	
v/9 	846(md)		836(2)	
VOU 	040(ma)	 822(11)	803(10)	
vo i 	 704(d)	022(11)	801(20)	$\rho(CH_2)$ Butilo + $\rho(CC)$ Ar
V0Z	7 3 4 (u)		769(<1)	$p(CH_2)$ But $ho + p(CC)$ Al
V03	 752(d)		769(11)	$\gamma(CH) A = \gamma(C - O)$
V0 4	752(u)		740(14)	$\gamma(NZH) + \gamma(NIH) + \gamma(C=0)$
vo5	 737(f)	722(1)	747(67)	$\gamma(\mathbf{N}) \rightarrow \gamma(\mathbf{CH}) \wedge \mathbf{r}$
vou 	737(1)	122(1)	748(3)	$\gamma(N(2H)) + \gamma(CH) A$
	 667(md)	668(3)	740(3)	$p(CH_2)_3$
voo 	640(md)	000(0)	7 + 3(10) 734(32)	$p(Cn_2)_3$
v09 v00	040(110)		73+(32) 711(10)	v(C3)
v90 v01			680(10)	γ(N2H)
v91 v02	 624(d)		669(40)	γ(N2H)
V9Z	024(u)		653(4)	
v93	 601(md)		637(17)	
V94	001(110)		623(5)	$p(CI/T_2) + o(CCC) AI$
V95	 552(md)		611(14)	$\frac{8}{6}$
v90 v07	552(mu)		594(2)	S(C16N2C17)
v97			562(6)	O(CIONZCI7)
v90			534(6)	S(CCC) Ar
v99			504(0)	
v100			301(<1)	$\gamma(CC) Ar + \gamma(CH) Ar$
v101	 525(md)	 526(2)	4/3(NI) 157(10)	$\gamma(UC) Ar + \gamma(UH) Ar$
V 10Z	525(mu)	320(3) 407(10)	407(18)	$\gamma(UC) AI + \gamma(UH) AI$
VIU3		407(10) 300(17)	404(0) 110/~1)	
v104		301(6)	412(>1) 102(~1)	
CU1 V		391(0)	403(\1)	

v106	 355(1)	386(9)	δ (CCC) Butilo
v107	 	368(2)	δ(N1C16N2)
v108	 	352(4)	γ (CC) Ar + γ (CH) Ar
v109	 	303(<1)	γ (CC) Ar + γ (CH) Ar
v110	 	273(7)	ρ(CH ₂) ₃
v111	 	253(6)	ρ(CH ₃)
v112	 	239(<1)	ρ(CH ₃)
v113	 	233(<1)	γ (CC) Ar + γ (CH) Ar
v114	 	227(2)	γ(N2H) + γ(N1H)
v115	 	181(1)	γ(N2H) + γ(N1H) + γ(C=O)
v116	 	169(3)	γ (CC) Ar + γ (CH) Ar
v117	 	152(4)	ρ(CH ₃) + ρ(CH ₂) ₃
v118	 	118(<1)	$\rho(CH_3) + \rho(CH_2)_3$
v119	 	115(<1)	γ (CC) Ar + γ (CH) Ar
v120	 	110(4)	ω(C=O) + ω(N1H)
v121	 	84(2)	γ (CC) Ar + γ (CH) Ar
v122	 	70(<1)	ω(C=O) + ω(N1H)
v123	 	63(<1)	$\omega(CH_3) + \omega(CH_2)_3$
v124	 	52(<1)	γ(CC) Ar + γ(CH) Ar
v125	 	29(<1)	$\gamma(CH_3) + \gamma(CH_2)_3$
v126	 	19(<1)	$\gamma(CH_3) + \gamma(CH_2)_3$
v127	 	14(<1)	$\rho(CH_3) + \rho(CH_2)_3$

 Tabla A4. 4. Frecuencias experimentales, calculadas y asignación tentativa de los modos de vibración de DifEt.

Mada	Experimental ^a			Acignoción ^d
WOUD	IR°	Raman [°]	Calculauo	Asignacion
ν1	3363(md)		3611(37)	ν(N1-H)
ν2	3178(f)		3451(238)	ν(N2-H)
ν3			3201(4)	v_{sim} (CH) Ar
ν4			3195(6)	ν _{sim} (CH) Ar
ν5	3108(d)		3188(11)	$v_{asim}(CH)Ar$
ν6	3087(d)	3067(90)	3188(26)	$v_{asim}(CH) \operatorname{Ar} + v_{sim}(CH) \operatorname{Ar}$
ν7	3061(d)	3048(35)	3177(20)	v_{asim} (CH) Ar + v_{sim} (CH) Ar
ν8	3028(d)		3176(16)	$v_{asim}(CH)Ar$
ν9			3166(<1)	$v_{asim}(CH)Ar$
v10			3165(<1)	$v_{asim}(CH)Ar$
v11	3002(md)	2996(17)	3157(5)	$v_{asim}(CH)Ar$
v12			3152(7)	$v_{asim}(CH)Ar$
v13	2965(md)		3107(24)	$v_{asim}(CH_3)$
ν14	2931(md)		3096(31)	$v_{asim}(CH_3)$
v15			3060(4)	$v_{asim}(CH_2)$
v16		2918(32)	3049(12)	v(CH)
v17			3036(12)	$v_{sim}(CH_2)$
v18	2871(d)		3030(17)	v _{sim} (CH ₃)

v19	1691(f)	1689(21)	1729(147)	ν(C=O)
v20			1643(<1)	δ(CC) Ar
v21	1595(md)		1638(11)	δ(CC) Ar
v22			1624(2)	δ(CC) Ar
v23			1622(3)	δ(CC) Ar
v24	1581(m)		1580(308)	v(C3-N2)
v25	1559(mf)		1545(675)	$\delta(N1-H) + \delta(N2-H)$
v26	1494(f)		1525(36)	$\delta(CH)$ Ar
v27			1523(25)	δ(CH) Ar
v28			1519(39)	$\delta(CH_2)$
v29			1500(45)	$\delta(CH_2)$
v30			1496(9)	$\delta(CH_3)$
v31			1484(2)	δ(CH)
v32	1470(m)		1483(12)	δ(CH) Ar
v33	1450(f)		1421(15)	
v34	1446(f)		1404(134)	$v(C2-N1) + v(C3-N2) + o(CH_{2})$
v35	1381(d)		1377(19)	$\omega(CH)$
v36			1372(2)	S(CH) Ar
v30 v37	1369(d)		1357(77)	
v37 v39	1009(u)		1347(0)	$\omega(CH_2)$
v30	 1334(d)		1343(31)	
v39 40	1307(d)		1311(6)	
V40	1307(0)		1206(<1)	
V4 I	1202(IIIU)		1290(<1)	
V4Z	1231(110)		1204(<1)	0(CH)
v43			1210(<1)	o(CH) Ar
v44			1208(4)	0(CH) Ar
v45	1187(1)	1189(24)	1202(91)	v(c1-c11)
v46			1201(12)	v(C1-C21)
v47	1175(0)		1192(32)	v(N2-C4)
v48			1184(<1)	ð(CH) Ar
v49			1183(<1)	ð(CH) Ar
v50	1160(f)		1173(258)	v(C3-N1)
v51	1152(m)	1152(20)	1162(<1)	$\rho(CH_2)$
v52	1118(d)		1126(9)	v(CC) Ar
v53	1072(d)		1110(13)	v(CC) Ar
v54			1102(<1)	δ(CH) Ar
v55	1050(d)	1050(18)	1063(20)	v(C4-C5)
v56	1030(d)	1031(22)	1053(11)	δ(CCC) Ar
v57	1002(md)	1004(100)	1051(10)	δ(CCC) Ar
v58			1019(<1)	δ(CCC) Ar
v59			1017(1)	δ(CCC) Ar
v60			1010(<1)	γ (CH) Ar
v61			1002(<1)	γ (CH) Ar
v62			993(<1)	γ (CH) Ar
v63	971(md)		986(20)	ð(C2N1C3)
v64			981(<1)	γ(CH) Ar
v65	949(md)	947(9)	960(10)	v(C4-C5)
v66	920(md)		940(1)	γ(CH) Ar
v67	910(md)		925(2)	γ(CH) Ar
v68		845(52)	892(<1)	γ(C1-C2)
v69			961(<1)	γ(CH) Ar

ν70	878(md)		857(2)	ω (CH) Ar
ν71			849(<1)	ω(CH) Ar
ν72	818(md)	819(19)	831(2)	δ(CH)
v73			807(2)	ρ(CH ₂)
ν74	801(md)		782(6)	γ(CH) Ar
v75	764(md)	761(15)	767(16)	γ(CH) Ar + γ(C=O)
v76	733(f)		747(35)	v(C-S)
ν77	721(f)	728(20)	733(28)	γ (N1H) + γ (N2H)
ν78	694(f)		715(47)	γ(CH) Ar
ν79			708(41)	γ(CH) Ar
v80	642(m)	640(13)	688(34)	γ(N2H)
v81			654(27)	δ(CCC) Ar
v82	616(d)	618(19)	636(31)	γ(N1H)
v83		()	634(<1)	δ(CCC) Ar
v84			633(3)	δ(CCC) Ar
v85	567(md)	564(9)	614(21)	γ(N1-C3-N2)
v86	486(md)		575(17)	δ(C3-N2-C4)
v87	472(md)		559(14)	δ(CCC) Ar
v88			496(5)	γ(CCC) Ar
v89			484(1)	γ(CCC) Ar
v90			415(<1)	γ(CH-C) Ar
v91			413(<1)	γ(CH-C) Ar
v92			400(4)	γ(N2-C4-C5)
v93			359(17)	δ(C=O)
ν94			316(<1)	ρ(CH ₃)
v95			287(<1)	ρ(CH) Ar
v96			273(<1)	ρ(CH ₃)
v97			255(4)	ρ(CH) Ar
v98			238(5)	γ(CH) Ar
v99			227(3)	γ (CH) Ar + ρ (CH ₃)
v100			195(3)	γ(N1H) + ρ(CH ₃)
v101			177(5)	ρ(CH ₃)
v102			144(4)	γ(C=O)
v103			121(3)	ω (C=O) + ρ (CH ₃)
v104			98(2)	ω(N1C3N2)
v105			72(<1)	ρ(CH) Ar
v106			58(<1)	$\rho(CH_2) + \rho(CH_3)$
v107			54(<1)	$\rho(CH_3) + \rho(CH_2)$
v108			37(<1)	γ(CH) Ar
v109			24(<1)	ω(CH ₃)
v110			17(<1)	γ(CH) Ar
v111			11(<1)	ω(CS)

 Tabla A4. 5. Frecuencias experimentales, calculadas y asignación tentativa de los modos de vibración de Mf2.
Mode	Experir	nental ^a	Coloulado ^b	Acianación ^d	
wodo	IR ^c	Raman ^c	Calculado	Asignation	
ν1	3222(d)		3597(29)	ν(N1-H)	
ν2			3211(8)	$v_{sim}(CH) Ar$	
ν3			3207(1)	v _{sim} (CH) Ar	
ν4			3200(2)	v _{sim} (CH) Ar	
ν5			3198(3)	v _{sim} (CH) Ar	
ν6			3195(8)	v _{sim} (CH) Ar	
ν7			3195(<1)	v _{asim} (CH) Ar	
ν8			3194(6)	v _{asim} (CH) Ar	
ν9	3104(md)		3187(18)	v _{asim} (CH) Ar	
v10	3057(md)	3068(13)	3186(26)	v _{asim} (CH) Ar	
v11	3041(md)		3176(11)	v _{asim} (CH) Ar	
v12			3176(7)	v _{asim} (CH) Ar	
v13	3027(md)		3175(8)	vasim(CH) Ar	
v14			3166(<1)	vasim(CH) Ar	
v15			3166(<1)	vasim(CH) Ar	
v16	3011(md)		3140(20)	$v_{asim}(OT)/V_{asim}(C7H_{a})$	
v10 v17	2966(md)		3074(31)	$v_{asim}(O7H_3)$	
v17 v18	2837(md)	2836(5)	3012(58)	$v_{asim}(O7H_3)$	
v 10 v 10	1603(mf)	1606(46)	17/7(211)	$v_{sim}(C-O)$	
v19 v20	1605(mf)	1601(55)	1644(257)	$\sqrt{(C-O)}$	
v20 21	1003(111)	1001(55)	1044(207)	v(CC)Ar	
VZ I	 1500(md)		1622(20)		
VZZ	1590(mu)	1009(00)	1639(30)		
VZ3			1020(3)		
v24			1624(6)	$V(CC) AI + \delta(CH) AI$	
v25	 4 5 7 0 (res el)		1607(2)	$V(CC) AI + \delta(CH) AI$	
v26	1578(ma)	1579(14)	1544(44)	v(UC) Ar + $o(UH)$ A	
v27			1524(36)	δ(CH) Ar	
v28	1513(f)	1516(8)	1522(139)	δ(CH) Ar	
v29	1493(mf)	1492(8)	1512(419)	δ (N1-H)	
v30	1454(d)	1453(6)	1503(58)	δ(C7H ₃)	
v31	1442(md)		1494(10)	δ(C7H ₃)	
ν32	1418(md)	1419(5)	1484(19)	δ(CH) Ar	
v33			1482(6)	δ(CH) Ar	
v34	1396(H)		1475(14)	ρ(C7H ₃)	
v35			1447(5)	v(CC) Ar	
v36	1371(mf)	1370(25)	1368(452)	v(C9-N2)	
v37	1334(md)		1353(42)	δ(CH) Ar	
v38			1349(16)	$v(CC) Ar + \delta(CH) Ar$	
v39	1316(m)	1317(2)	1346(176)	v(CC) Ar	
v40			1331(4)	δ (CH) Ar	
v41	1291(d)	1289(9)	1326(95)	v(CC) Ar	
v42			1324(37)	v(CC) Ar	
v43	1280(md)		1291(82)	v(C10-N2)	
ν44	1251(mf)	1251(37)	1287(212)	v(C1-O1)	
v45	1209(mf)	1206(15)	1258(376)	v(C8-C4)	
v46	1186(m)	1187(11)	1222(176)	v(C9-N1)	

v47			1202(4)	ω(C7H ₃)
v48			1200(14)	δ(CH) Ar
v49			1195(4)	δ(CH) Ar
v50	1176(f)	1176(20)	1192(207)	δ(CH) Ar
v51			1182(<1)	δ(CH) Ar
v52			1181(<1)	δ(CH) Ar
v53	1160(f)	1158(100)	1172(336)	δ (N1C9N2) + v(C9-S)
ν54			1167(<1)	ω(C7H ₃)
v55	1152(H)		1139(16)	δ(CH) Ar
v56	1118(md)	1118(2)	1104(12)	$v(CC)$ Ar + $\delta(CH)$ Ar
v57			1101(7)	δ(CH) Ar
v58	1089(md)	1119(<1)	1089(53)	v(C8-N1)
v59	1072(d)	1073(6)	1053(77)	v(C7-O1)
v60		1033(11)	1049(8)	δ(CCC) Ar
v61	1025(m)	1021(4)	1047(15)	δ(CCC) Ar
v62	1009(md)	1005(89)	1022(6)	δ(CCC) Ar
v63		1003(<1)	1019(1)	δ(CCC) Ar
v64	970(md)	970(5)	1018(2)	δ(CCC) Ar
v65			1002(<1)	γ(CH) Ar
v66			1001(<1)	γ(CH) Ar
v67			989(3)	δ(N1C9N2)
v68			985(<1)	γ(CH) Ar
v69			984(2)	γ(CH) Ar
v70			982(<1)	γ(CH) Ar
v71			967(<1)	γ(CH) Ar
v72	923(md)	922(3)	940(5)	γ(CH) Ar
v73	903(md)	901(4)	925(4)	γ(CH) Ar
ν74			918(1)	δ(O2C8N1)
v75	851(m)	854(10)	866(24)	v(C9-S)
v76	838(md)	839(6)	855(34)	γ(CH) Ar
v77			848(<1)	γ(CH) Ar
v78			845(<1)	γ(CH) Ar
v79			826(<1)	γ(CH) Ar
v80			805(6)	δ(CCC) Ar
v81			777(11)	γ(CH) Ar
v82	821(md)	814(3)	772(35)	γ(C8-C4)
v83	794(md)	791(13)	769(23)	γ(CH) Ar
v84			721(9)	δ(CCC) Ar
v85	763(m)	764(25)	709(35)	γ(N1-H) + γ(CH) Ar
v86	720(md)	718 ^H (9)	707(26)	γ(CH) Ar
v87	709(md)	710(31)	706(38)	γ(CH) Ar
v88	699(m)		661(27)	γ (N2-H) + γ (N2-C9)
v89			654(13)	γ(N1-H)
v90		689(11)	643(25)	γ(N1-H) + δ(CCC) Ar
v91	689(m)		640(32)	γ(N1-H) + δ(CCC) Ar
v92			632(4)	δ(CCC) Ar
v93			629(1)	δ(CCC) Ar
v94	591(d)	590(6)	593(30)	γ (N1-H) + γ (N2-C9)
	. ,		× /	

· · /		· · ·	1.011/1
v96 523(md)	526(6)	531(21)	δ(C1-O1-C7)
v97 517(md)	517(6)	522(12)	γ(CC) Ar
v98		505(3)	γ(CC) Ar
v99		483(5)	γ(CC) Ar
v100		470(7)	γ(C10-N2)
v101		427(<1)	γ(CC) Ar
v102		420(<1)	γ(CC) Ar
v103		418(<1)	γ(CC) Ar
v104		400(2)	δ(C9N1C8)
v105		379(4)	δ(CCC) Ar
v106		324(3)	δ(C8C4C3)
v107		312(2)	δ(C1-O1-C7)
v108		306(3)	ω(C7H ₃)
v109		282(<1)	ω(C7H ₃) + γ(CH) Ar
v110		256(<1)	ω(CH) Ar
v111		239(3)	ω(CH) Ar
v112		223(<1)	ω(C7H ₃)
v113		212(6)	ρ(C7H ₃)
v114		169(<1)	ω(C7H ₃)
v115		134(2)	ω(C7H ₃) + γ(C7-O1)
v116		127(5)	ω(C7H ₃) + γ(C7-O1)
v117		99(3)	ρ(C7H ₃) + ρ(CH) Ar
v118		95(1)	$\gamma(CC) Ar + \gamma(CH) Ar$
v119		78(<1)	$\gamma(CC) Ar + \gamma(CH) Ar$
v120		63(<1)	$\gamma(CC) Ar + \gamma(CH) Ar$
v121		32(<1)	$\gamma(CC) Ar + \gamma(CH) Ar$
v122		55(2)	$\gamma(CC) Ar + \gamma(CH) Ar$
v123		41(<1)	$\gamma(CC) Ar + \gamma(CH) Ar$
v124		33(<1)	$\gamma(CC) Ar + \gamma(CH) Ar$
v125		24(<1)	$\gamma(CC) Ar + \gamma(CH) Ar$
v126		19(<1)	γ (CC) Ar + γ (CH) Ar

^a en cm⁻¹. ^b B3LYP/6-311++g(d,p), intensidad calculada en paréntesis (km mol⁻¹). ^c f, fuerte; m, medio; d, débil; md, muy débil. ^dv, δ , γ , ω y ρ representa stretching, deformación en el plano, deformación fuera del plano, aleteo y balanceo, respectivamente.

Tabla A4. 6. Coordenadas atómicas $(x10^4)$ y parámetros de desplazamiento equivalente isotrópico ($Å^2 \times 10^3$) para **MIso**. U(eq) es definido como un tercio de la traza del tensor. Uij ortogonalizado.

U(eq)
38,8(5)
38,7(5)
43,4(6)
42,6(6)
39,9(5)

C3B	6473,8(11)	6224(2)	5373,0(8)	38,1(5)
C4A	8325,1(10)	3131,9(18)	7810,8(7)	32,1(5)
C4B	6658(1)	4948,0(18)	5310,1(7)	31,7(5)
C5A	8723,7(11)	2176(2)	7947,9(8)	39,7(5)
C5B	6236,2(11)	3983(2)	5377,9(8)	38,6(5)
C6A	9311,6(11)	2448(2)	8067,3(9)	42,6(6)
C6B	5652,2(11)	4256(2)	5511,7(8)	41,5(6)
C7A	10507,2(14)	3168(3)	8301,7(13)	58,3(8)
C7B	4473,9(13)	4966(3)	5803,0(12)	54,0(7)
C8A	7696,4(10)	2756,2(19)	7705,0(7)	32,8(5)
C8B	7282,9(10)	4559,3(19)	5192,6(7)	33,5(5)
C9A	6671(1)	3478,2(18)	7594,3(8)	33,0(5)
C9B	8311,7(10)	5243,9(18)	5086,8(8)	33,9(5)
C10A	6739,1(11)	3768(2)	6683,5(8)	40,7(5)
C10B	8251,3(12)	5493(2)	4172,3(8)	43,5(6)
C11A	5771,3(12)	3206(3)	7103,6(10)	52,2(7)
C11B	9197,3(12)	4818(3)	4599,9(10)	55,5(7)
C12A	7197,7(18)	2773(4)	6530,3(12)	68,7(9)
C12B	7784,3(19)	4535(5)	4014,6(13)	78,9(11)
C13A	5642(2)	2096(4)	6762,7(16)	84,2(12)
C13B	9295(2)	3694(4)	4259,0(18)	94,9(13)
C14A	6970,9(19)	5132(3)	6672,5(13)	66,3(9)
C14B	8045(2)	6867(3)	4160,2(13)	71,5(10)
C15A	5453,6(15)	4444(4)	6961,2(13)	66,6(8)
C15B	9558,2(16)	6001(4)	4462,6(15)	75,7(10)
N1A	7302,2(8)	3722,0(17)	7604,3(6)	34,2(4)
N1B	7681,4(8)	5520,1(17)	5096,0(7)	36,1(4)
N2A	6424,9(8)	3441,3(16)	7152,7(6)	36,0(4)
N2B	8552,6(8)	5147,3(16)	4643,5(6)	36,9(4)
O1A	10073,3(7)	4106,6(16)	8165,9(6)	54,0(4)
O1B	4926,6(7)	5908,6(15)	5729,2(6)	53,7(5)
O2A	7537,2(7)	1627,0(13)	7696,2(6)	45,3(4)
O2B	7433,7(7)	3423,9(13)	5172,0(6)	46,3(4)
S1A	6319,3(3)	3311,2(7)	8127,7(2)	53,1(2)
S1B	8665,8(3)	5121,4(7)	5619,4(2)	56,9(2)

Tabla A4. 7. Parámetros de desplazamiento ansiotrópico ($Å^2 \times 10^3$) para **Miso**. El factor del desplazamiento ansiotrópico toma la forma: $-2\pi^2[h^2a^{*2}U11+2hka^*b^*U12+...]$.

Átomo	U11	U22	U33	U23	U13	U12
C1A	33,4(13)	42,5(12)	40,3(12)	-1(1)	-0,3(10)	-4,1(10)
C1B	35,1(13)	41,4(12)	39,5(12)	-1(1)	4,2(10)	1,4(10)
C2A	39,6(15)	31,8(12)	59,0(15)	3,4(11)	-3,1(12)	-4,3(10)
C2B	42,5(15)	29,4(11)	55,9(15)	-3,3(11)	8,4(12)	1,8(10)
C3A	37,6(14)	31,5(11)	50,5(14)	4,2(10)	-2,8(11)	3,3(10)
C3B	37,6(14)	27,8(11)	49,0(13)	0,1(10)	3,7(11)	-2,9(10)
C4A	34,1(12)	30,9(10)	31,4(11)	-0,9(9)	0,8(9)	0,9(9)

C4B	35,2(13)	29,7(10)	30,1(11)	0,7(8)	1,4(9)	-0,2(9)
C5A	39,6(14)	28,3(11)	51,1(13)	3,2(10)	-1,8(11)	0,7(10)
C5B	44,5(15)	27,2(11)	44,0(13)	-0,6(10)	3,2(11)	-0,4(10)
C6A	40,1(15)	36,8(12)	50,9(14)	3,9(11)	-3,6(11)	9,1(11)
C6B	40,2(15)	36,1(12)	48,3(14)	1,6(11)	2,0(11)	-10,2(11)
C7A	38,0(17)	72(2)	65,2(19)	4,3(17)	-11,7(15)	3,6(15)
C7B	36,3(16)	65,3(19)	60,5(18)	2,7(16)	7,8(14)	-6,5(13)
C8A	37,1(13)	29,3(11)	32,0(11)	0,5(9)	0,2(9)	-0,4(9)
C8B	39,7(13)	30,0(11)	30,9(11)	0,4(9)	0,8(9)	-0,4(9)
C9A	34,2(13)	24,9(10)	40,1(12)	1,7(9)	-2,5(10)	0,6(9)
C9B	34,2(13)	25,4(10)	42,2(12)	-0,6(9)	3,9(10)	0,9(9)
C10A	42,9(14)	43,6(13)	35,4(12)	4,7(10)	-3,8(11)	-0,9(11)
C10B	44,5(15)	46,7(13)	39,3(13)	3,3(11)	3,7(11)	0,6(11)
C11A	38,5(15)	70,0(17)	48,3(15)	10,8(13)	-9,1(12)	-16,4(13)
C11B	42,8(16)	74,0(18)	49,9(15)	10,8(14)	9,9(13)	17,0(14)
C12A	73(2)	83(2)	49,9(18)	-2,3(17)	2,7(17)	22,8(19)
C12B	76(3)	109(3)	51,5(19)	-4(2)	-3,1(18)	-37(2)
C13A	86(3)	72(2)	95(3)	7(2)	-32(2)	-42(2)
C13B	93(3)	76(3)	116(4)	2(2)	38(3)	43(2)
C14A	89(3)	58,2(18)	52,0(18)	14,1(15)	-9,2(19)	-28,2(18)
C14B	96(3)	65(2)	53,8(19)	20,3(16)	11(2)	29(2)
C15A	39,4(18)	92(2)	68(2)	7,8(19)	-9,3(16)	7,8(17)
C15B	39,7(19)	101(3)	87(3)	5(2)	10,0(18)	-8,5(18)
N1A	33,4(11)	29,4(9)	39,8(10)	0,1(8)	-4,4(8)	-1,7(8)
N1B	35,1(11)	27,3(9)	46,0(11)	1,5(8)	6,7(9)	2,8(8)
N2A	35,7(11)	35,0(9)	37,4(10)	2,6(8)	-4,2(8)	-5,4(8)
N2B	35,2(11)	36,4(9)	39,2(10)	1,9(8)	4,7(9)	2,8(8)
O1A	35,7(10)	52,2(10)	73,9(12)	2,6(9)	-10,2(9)	-2,7(8)
O1B	37,2(10)	48,5(9)	75,6(12)	-3,9(9)	13,3(9)	-1,9(8)
O2A	40,3(10)	28,1(8)	67,6(11)	-1,5(7)	-1,7(8)	-4,1(7)
O2B	47(1)	28,3(8)	63,5(10)	-0,8(7)	5,0(8)	3,9(7)
S1A	45,1(4)	73,8(5)	40,5(3)	4,0(3)	4,9(3)	-4,2(3)
S1B	54,1(4)	73,9(5)	42,6(3)	-2,5(3)	-6,0(3)	14,4(3)

Tabla A4. 8. Coordinación de hidrógeno (x10⁴) y parámetros de desplazamiento isotrópico ($Å^2 \times 10^3$) para **Miso**.

Átomo	X	У	z	U(eq)
H1BA	7969(13)	7110(30)	3825(11)	76(9)
H1NA	7407(11)	4480(20)	7675(8)	46(7)
H1NB	7588(12)	6270(30)	5174(9)	63(8)
H2A	9271(11)	5510(20)	7892(8)	51(7)
H2B	5768(10)	7350(20)	5555(8)	43(6)
H2AA	7564(16)	2850(30)	6737(12)	93(11)
H2BA	7669(15)	4690(30)	3693(13)	95(11)
H2AB	7324(14)	2930(30)	6195(12)	84(10)
H2BB	7443(17)	4580(30)	4220(13)	103(12)

H2AC	7022(18)	1940(40)	6576(15)	130(16)
H2BC	7940(20)	3650(50)	4075(18)	160(20)
H3A	8277(10)	5110(20)	7706(8)	44(6)
H3B	6752(11)	6930(20)	5338(8)	49(6)
H3AA	5220(18)	1910(30)	6750(13)	105(12)
H3BA	9034(16)	2960(30)	4350(12)	100(13)
H3AB	5875(16)	1330(30)	6840(12)	94(12)
H3BB	9694(18)	3430(30)	4281(13)	107(13)
H3AC	5749(16)	2280(30)	6414(14)	112(13)
H3BC	9230(20)	3950(50)	3912(19)	180(20)
H4AA	7057(13)	5350(30)	6353(12)	78(9)
H4AB	7304(16)	5190(30)	6876(12)	95(12)
H4BB	7694(18)	6970(30)	4344(13)	115(14)
H4AC	6667(17)	5750(30)	6811(12)	107(13)
H4BC	8375(18)	7440(40)	4288(14)	118(15)
H5A	8580(10)	1320(20)	7976(8)	46(6)
H5B	6360(10)	3120(20)	5343(8)	43(6)
H5AA	5574(13)	4760(30)	6624(11)	73(9)
H5BA	9432(14)	6360(30)	4121(13)	91(10)
H5AB	5038(15)	4270(30)	6940(11)	84(10)
H5AC	5518(15)	5170(30)	7226(12)	103(12)
H5BB	9967(18)	5710(30)	4443(12)	109(12)
H5BC	9490(18)	6710(40)	4706(16)	138(17)
H6A	9563(11)	1800(20)	8157(8)	47(7)
H6B	5388(11)	3570(20)	5544(8)	46(7)
H7AA	10854(14)	3630(30)	8392(10)	73(9)
H7AB	10341(14)	2660(30)	8591(12)	85(10)
H7BA	4604(12)	4330(30)	6047(10)	69(9)
H7AC	10587(14)	2590(30)	8038(11)	80(10)
H7BB	4389(13)	4500(30)	5510(11)	72(9)
H7BC	4114(15)	5400(30)	5910(11)	85(10)
H10A	6411(10)	3730(20)	6447(8)	36(6)
H10B	8591(10)	5402(19)	3930(7)	36(6)
H11A	5659(11)	2980(20)	7432(9)	57(7)
H11B	9293(12)	4570(20)	4928(10)	65(8)

Tabla A4. 9. Coordenadas atómicas $(x10^4)$ y parámetros de desplazamiento equivalente isotrópico ($Å^2 \times 10^3$) para **Mm2**. U(eq) es definido como un tercio de la traza del tensor. Uij ortogonalizado.

Átomo	X	У	z	U(eq)
C1	8333(4)	4885(13)	3868(3)	41,5(15)
C2	7426(4)	3927(13)	4021(3)	44,2(15)
C3	7157(4)	5008(12)	4578(3)	38,4(15)
C4	7789(4)	7033(11)	4997(2)	33,3(13)
C5	8700(4)	7929(14)	4827(3)	54,2(17)
C6	8981(5)	6839(15)	4280(3)	58,3(19)

C7	9456(5)	4615(18)	3120(3)	76(2)
C8	7560(4)	8252(13)	5605(3)	41,6(15)
C9	6105(4)	8569(12)	6155(2)	33,5(14)
C10	6188(5)	7879(15)	7335(3)	58,7(18)
C11	7392(5)	5112(13)	6834(3)	54,7(17)
N1	6494(3)	7940(10)	5617(2)	40,1(13)
N2	6557(3)	7337(10)	6744(2)	39,1(12)
01	8525(3)	3720(10)	3299,8(19)	63,3(13)
02	8228(3)	9340(9)	6074,8(19)	51,6(11)
S	5011,0(11)	10721(4)	6037,4(7)	50,1(5)

Tabla A4. 10. Parámetros de desplazamiento ansiotrópico ($Å^2 \times 10^3$) para **Mm2**. El factor del desplazamiento ansiotrópico toma la forma: $-2\pi^2[h^2a^{*2}U11+2hka^*b^*U12+...]$.

Átomo	U11	U22	U33	U23	U13	U12
C1	29(3)	56(5)	43(3)	1(3)	15(3)	5(3)
C2	33(3)	48(4)	53(4)	-11(3)	13(3)	-9(3)
C3	21(3)	48(4)	50(3)	-4(3)	15(2)	-6(3)
C4	23(3)	31(3)	47(3)	3(3)	11(2)	6(3)
C5	39(4)	65(5)	61(4)	-22(3)	19(3)	-19(3)
C6	27(3)	90(6)	66(4)	-9(4)	28(3)	-17(4)
C7	61(4)	109(7)	74(4)	-15(4)	46(4)	4(4)
C8	32(3)	45(4)	52(4)	0(3)	20(3)	5(3)
C9	18(3)	47(4)	37(3)	-11(3)	11(2)	-3(2)
C10	51(4)	80(5)	48(4)	-2(3)	18(3)	-4(4)
C11	47(4)	47(5)	66(4)	5(3)	9(3)	4(3)
N1	22(2)	62(4)	38(3)	-10(2)	11(2)	-2(2)
N2	31(3)	49(3)	40(3)	-3(2)	15(2)	-6(2)
01	49(3)	89(4)	63(3)	-14(2)	33(2)	-3(2)
02	26(2)	71(3)	55(2)	-19(2)	7,6(17)	-13(2)
S	27,7(8)	67,3(12)	56,3(9)	-3,4(9)	13,4(6)	9,7(8)

Tabla A4. 11. Coordinación de hidrógeno (x10⁴) y parámetros de desplazamiento isotrópico ($Å^2 \times 10^3$) para **Mm2**.

Átomo	X	У	Z	U(eq)
H2	6993	2542	3747	53
H3	6539	4359	4672	46
H5	9136	9323	5096	65
H6	9610	7433	4191	70
H7A	9445	6687	3062	114
H7B	9472	3690	2703	114
H7C	10080	4070	3473	114
H10A	6065	9924	7370	88
H10B	6718	7237	7734	88
H10C	5535	6837	7294	88
H11A	7380	4298	6402	82

H11B	7265	3603	7126	82
H11C	8076	5978	7035	82
H1N	6040(40)	7960(110)	5190(30)	43(15)

Tabla A4. 12. Coordenadas atómicas $(x10^4)$ y parámetros de desplazamiento equivalente isotrópico (Å2²×10³) para **DifEt**. U(eq) es definido como un tercio de la traza del tensor. Uij ortogonalizado.

Átomo	X	У	Z	U(eq)
C1	8435,8(19)	5810,6(18)	7437,7(9)	39,6(3)
C2	7065,1(19)	6479,5(18)	6615,9(9)	40,3(3)
C3	6765,9(18)	6630,9(16)	4914,0(9)	36,4(3)
C4	3879(2)	8180(2)	4088,8(11)	49,8(4)
C5	1978(3)	8937(3)	4397,3(15)	62,1(5)
C11	7485(2)	4719,3(18)	8265,7(10)	42,1(3)
C12	8554(3)	4189(2)	9084,1(12)	60,6(4)
C13	7815(4)	3167(3)	9857,1(14)	78,1(6)
C14	6010(4)	2651(3)	9832,2(16)	79,3(7)
C15	4941(3)	3152(3)	9030(2)	80,8(6)
C16	5678(3)	4173(3)	8241,7(15)	61,6(4)
C21	9233,8(19)	7356,2(18)	7685,1(9)	39,7(3)
C22	8087(2)	8463(2)	8125,0(12)	51,5(4)
C23	8795(3)	9902(3)	8308,8(15)	64,5(5)
C24	10660(3)	10247(3)	8054,1(15)	66,6(5)
C25	11801(3)	9158(3)	7627,8(14)	61,6(4)
C26	11102(2)	7717(2)	7437,7(11)	48,8(3)
N1	7695,3(17)	6116,1(16)	5778,4(8)	38,9(3)
N2	5098,4(18)	7541,6(17)	4906,9(9)	44,3(3)
0	5554,9(16)	7321,3(17)	6701,2(8)	55,6(3)
S	7798,9(5)	6059,4(6)	3970,5(2)	53,39(16)

Tabla A4. 13. Parámetros de desplazamiento ansiotrópico ($Å^2 \times 10^3$) para **DifEt**. El factor del desplazamiento ansiotrópico toma la forma: $-2\pi^2[h^2a^{*2}U11+2hka^*b^*U12+...]$.

Átomo	U11	U22	U33	U23	U13	U12
C1	34,9(6)	53,7(7)	29,4(6)	-12,2(5)	-0,9(5)	7,7(5)
C2	36,7(6)	53,3(7)	29,9(6)	-10,2(5)	-0,1(5)	3,9(5)
C3	35,9(6)	41,6(6)	31,1(6)	-6,0(5)	-0,7(5)	-4,0(5)
C4	47,0(8)	59,5(9)	38,7(7)	-2,5(6)	-9,3(6)	2,4(7)
C5	45,8(9)	72,2(11)	59,6(10)	2,1(9)	-10,1(7)	6,8(8)
C11	46,6(7)	48,1(7)	32,5(6)	-13,5(5)	1,1(5)	1,9(6)
C12	78,2(12)	64,6(10)	39,5(8)	-5,2(7)	-12,1(8)	-17,9(9)
C13	122(2)	75,0(12)	36,4(9)	-2,5(8)	-6,8(10)	-24,0(12)
C14	105,0(18)	73,6(12)	56,1(11)	-5,9(9)	28,3(11)	-13,5(12)
C15	60,0(11)	85,2(14)	92,8(17)	-7,1(12)	23,3(11)	-12,3(10)
C16	47,0(9)	73,0(11)	61,6(11)	-7,4(8)	-0,3(7)	-3,5(8)
C21	35,4(6)	51,7(7)	29,6(6)	-5,9(5)	0,0(5)	3,0(5)

C22	43,7(8)	61,0(9)	51,8(9)	-18,9(7)	7,7(6)	0,1(7)
C23	69,2(11)	59,4(10)	67,8(11)	-24,6(8)	0,8(9)	3,7(8)
C24	74,2(12)	57,9(10)	68,5(12)	-10,4(8)	-7,3(9)	-14,3(9)
C25	48,8(9)	73,0(11)	60,5(10)	-4,2(8)	1,3(7)	-13,2(8)
C26	38,2(7)	63,2(9)	42,5(7)	-7,5(6)	3,1(6)	0,5(6)
N1	34,2(6)	51,4(6)	30,0(5)	-9,7(4)	-0,8(4)	5,8(5)
N2	39,4(6)	58,9(7)	32,4(6)	-8,5(5)	-3,5(5)	5,3(5)
0	43,9(6)	83,1(8)	37,6(5)	-18,8(5)	-3,2(4)	20,5(5)
S	50,0(2)	79,1(3)	29,4(2)	-15,92(16)	-2,36(14)	13,09(18)

Tabla A4. 14. Coordinación de hidrógeno (x10⁴) y parámetros de desplazamiento isotrópico ($Å^2 \times 10^3$) para **DifEt**.

Átomo	X	У	Z	U(eq)
H1	9430(30)	5150(20)	7225(13)	39(4)
H1N	8700(30)	5580(20)	5775(12)	35(4)
H2N	4660(30)	7720(30)	5452(17)	58(5)
H4A	3690(40)	7300(30)	3769(18)	70(6)
H4B	4510(40)	9080(30)	3688(19)	76(7)
H5A	1330(40)	8110(40)	4810(20)	86(8)
H5B	1130(50)	9350(40)	3890(20)	91(8)
H5C	2240(40)	9870(40)	4740(20)	88(8)
H12	9790(30)	4590(30)	9095(16)	60(6)
H13	8540(50)	2860(50)	10450(30)	119(12)
H14	5550(50)	1950(40)	10400(20)	103(10)
H15	3640(50)	2840(50)	8970(30)	112(11)
H16	5010(40)	4510(30)	7660(20)	78(7)
H22	6830(30)	8190(30)	8271(16)	59(6)
H23	7990(40)	10610(30)	8592(19)	73(7)
H24	11140(40)	11290(30)	8188(19)	77(7)
H25	13160(40)	9400(40)	7490(20)	87(8)
H26	11920(30)	6960(30)	7159(17)	63(6)

Tabla A4. 15. Coordenadas atómicas $(x10^4)$ y parámetros de desplazamiento equivalente isotrópico ($Å^2 \times 10^3$) para **AntBu**. U(eq) es definido como un tercio de la traza del tensor. Uij ortogonalizado.

Átomo	x	У	z	U(eq)
C1	2429,7(18)	7233,6(17)	7710,5(14)	40,7(4)
C2	2718(2)	8572,5(18)	7726,0(16)	45,3(4)
C3	4207(3)	8834(3)	7365(2)	66,4(6)
C4	4427(4)	10154(3)	7440(3)	88,8(8)
C5	3170(4)	11305(3)	7873(3)	86,4(8)
C6	1746(3)	11117(2)	8206(2)	70,4(6)
C7	1441(2)	9762,4(18)	8153,8(16)	49,8(4)
C8	-29(2)	9539(2)	8512,2(17)	53,4(5)
C9	-316,0(19)	8210(2)	8498,2(16)	49,8(4)

C10	-1825(2)	7961(3)	8883(2)	67,7(6)
C11	-2062(3)	6645(3)	8900(2)	79,8(7)
C12	-817(3)	5474(3)	8519(2)	73,8(6)
C13	632(3)	5641(2)	8115,2(19)	59,1(5)
C14	949,4(19)	7005,5(18)	8095,8(15)	44,4(4)
C15	3731,2(19)	6008,3(18)	7194,1(15)	45,3(4)
C16	5789,3(17)	3936,7(16)	7874,5(14)	37,8(3)
C17	7612(2)	2422(2)	6251,7(19)	55,2(5)
C18	9020(3)	2985(3)	5738(2)	65,9(6)
C19	10382(3)	1856(3)	5129(2)	81,1(8)
C20	11791(3)	2419(5)	4702(3)	128,4(14)
N1	4534,8(15)	5155,0(14)	8069,5(13)	39,9(3)
N2	6272,5(17)	3584,4(16)	6694,9(14)	51,3(4)
0	4029,3(19)	5809,8(17)	6070,9(12)	83,1(6)
S	6505,2(5)	3053,9(4)	9143,0(4)	49,77(18)

Tabla A4. 16. Parámetros de desplazamiento ansiotrópico ($Å^2 \times 10^3$) para **AntBu**. El factor del desplazamiento ansiotrópico toma la forma: $-2\pi^2[h^2a^{*2}U11+2hka^*b^*U12+...]$.

Átomo	U11	U22	U33	U23	U13	U12
C1	37,0(8)	44,9(9)	29,5(8)	-2,4(6)	-5,0(6)	8,4(7)
C2	44,5(9)	48,5(9)	34,5(9)	-1,0(7)	-6,1(7)	2,9(7)
C3	53,7(12)	67,0(13)	71,3(15)	-2,1(11)	0,6(10)	-8,1(11)
C4	80,1(18)	91,3(19)	101(2)	4,1(16)	-7,0(15)	-38,0(16)
C5	109(2)	61,6(14)	92,3(19)	-0,6(13)	-15,1(16)	-27,8(15)
C6	93,7(18)	48,8(11)	61,2(13)	-7(1)	-17,4(12)	-0,2(12)
C7	58,6(11)	44,2(9)	36,9(9)	-4,0(7)	-10,0(8)	6,6(8)
C8	49,6(10)	54,8(11)	38,7(9)	-9,3(8)	-8,1(8)	19,9(8)
C9	37,0(9)	66,9(12)	33,9(9)	-8,4(8)	-4,6(7)	8,3(8)
C10	39,9(10)	99,6(18)	51,2(12)	-16,9(11)	-1,7(9)	5,3(11)
C11	55,6(14)	124(2)	63,3(15)	-13,3(14)	-0,2(11)	-30,1(14)
C12	71,0(15)	91,1(17)	64,8(14)	-8,7(12)	-2,4(11)	-32,6(13)
C13	61,1(12)	61,3(12)	51,4(12)	-8,1(9)	-5,1(9)	-9,3(10)
C14	41,5(9)	52,4(10)	31,1(8)	-4,6(7)	-5,8(7)	3,4(7)
C15	41,7(9)	49,6(9)	33,1(9)	-5,1(7)	-3,2(7)	8,1(7)
C16	33,7(8)	37,4(8)	36,3(8)	-3,5(6)	-1,2(6)	0,1(6)
C17	54,9(11)	49,9(10)	41,9(10)	-8,8(8)	0,7(8)	17,5(8)
C18	55,2(12)	73,7(14)	55,4(13)	-14,7(11)	-3(1)	7,5(10)
C19	65,1(14)	99,5(18)	49,2(13)	-0,8(13)	7,1(11)	21,7(13)
C20	70,4(18)	187(4)	93(2)	25(2)	18,9(16)	2(2)
N1	36,6(7)	43,0(7)	29,8(7)	-4,7(6)	-2,3(5)	7,5(6)
N2	49,7(9)	51,7(8)	34,3(8)	-5,2(6)	-1,4(7)	17,3(7)
0	87,2(11)	92,6(11)	31,6(7)	-11,8(7)	-10,2(7)	46,7(9)
S	53,1(3)	45,1(3)	37,0(3)	-1,50(18)	-6,35(19)	11,97(19)

Tabla A4. 17. Coordinación de hidrógeno (x10⁴) y parámetros de desplazamiento isotrópico ($Å^2 \times 10^3$) para **AntBu**.

Átomo	x	У	Z	U(eq)
H20A	11569	3127	4034	193
H20B	12658	1649	4401	193
H20C	12044	2842	5397	193
H1N	4280(20)	5395(19)	8840(20)	51(5)
H1TA	7800(20)	1780(20)	6950(20)	60(6)
H2N	5830(30)	4090(20)	6120(20)	72(7)
H3	5000(30)	8080(20)	7080(20)	67(6)
H4	5440(40)	10310(30)	7210(30)	121(11)
H5	3360(30)	12260(30)	7930(30)	109(9)
H6	880(30)	11890(30)	8520(20)	91(8)
H8	-910(20)	10350(20)	8800(20)	64(6)
H10	-2550(30)	8800(30)	9120(30)	88(8)
H11	-3130(40)	6480(30)	9180(30)	110(9)
H12	-1040(30)	4550(30)	8540(30)	105(9)
H13	1500(30)	4820(20)	7780(20)	74(6)
H17B	7260(20)	2000(20)	5540(20)	68(6)
H18A	9350(30)	3440(20)	6410(20)	74(7)
H18B	8780(30)	3780(30)	5060(20)	86(7)
H19A	10600(30)	1000(30)	5780(20)	84(7)
H19B	9940(30)	1450(30)	4420(30)	100(9)

Tabla A4. 18. Longitudes de enlace [Å] y ángulos [°] para MIso2 y Mm2.

Derémetre	Miso	2	Derémetre	Mm2	
Parametro	Exp.	Calc.	Parametro	Exp.	Calc.
r(C1-O1)	1,355(3)	1,358	r(C1-C6)	1,356(8)	1,400
r(C1-C6)	1,384(3)	1,400	r(C1-O1)	1,368(6)	1,357
r(C1-C2)	1,390(3)	1,402	r(C1-C2)	1,379(7)	1,402
r(C2-C3)	1,366(3)	1,384	r(C2-C3)	1,377(7)	1,384
r(C3-C4)	1,397(3)	1,405	r(C3-C4)	1,376(7)	1,405
r(C4-C5)	1,384(3)	1,397	r(C4-C5)	1,390(7)	1,397
r(C4-C8)	1,485(3)	1,494	r(C4-C8)	1,472(7)	1,493
r(C5-C6)	1,381(3)	1,391	r(C5-C6)	1,370(8)	1,391
r(C7-O1)	1,422(3)	1,424	r(C7-O1)	1,426(7)	1,425
r(C8-O2)	1,224(2)	1,218	r(C8-O2)	1,214(6)	1,217
r(C8-N1)	1,361(3)	1,400	r(C8-N1)	1,406(6)	1,402
r(C9-N2)	1,326(3)	1,344	r(C9-N2)	1,317(6)	1,342
r(C9-N1)	1,432(3)	1,427	r(C9-N1)	1,367(6)	1,413
r(C9-S)	1,664(2)	1,682	r(C9-S)	1,698(5)	1,679
r(C10-N2)	1,500(3)	1,497	r(C10-N2)	1,447(7)	1,461
r(C10-C14)	1,506(3)	1,534	r(C11-N2)	1,468(7)	1,464
r(C10-C12)	1,512(4)	1,536	∠(C6-C1-O1)	124,1(5)	124,6
r(C11-N2)	1,486(3)	1,497	∠(C6-C1-C2)	119,8(5)	119,7
r(C11-C13)	1,508(4)	1,536	∠(01-C1-C2)	116,1(5)	115,8
r(C11-C15)	1,518(4)	1,534	∠(C3-C2-C1)	120,4(5)	120,1
∠(01-C1-C6)	125,4(2)	124,5	∠(C2-C3-C4)	121,1(5)	120,8

∠(01-C1-C2)	115,5(2)	115,8	∠(C3-C4-C5)	116,7(5)	118,4
∠(C6-C1-C2)	119,1(2)	119,7	∠(C3-C4-C8)	124,1(5)	124,0
∠(C3-C2-C1)	120,9(2)	120,1	∠(C5-C4-C8)	119,2(5)	117,6
∠(C2-C3-C4)	120,9(2)	120,8	∠(C6-C5-C4)	122,6(5)	121,3
∠(C5-C4-C3)	117,7(2)	118,4	∠(C1-C6-C5)	119,4(5)	119,6
∠(C5-C4-C8)	118,19(18)	117,6	∠(02-C8-N1)	121,6(5)	122,6
∠(C3-C4-C8)	124,09(19)	123,9	∠(02-C8-C4)	124,1(5)	122,6
∠(C6-C5-C4)	121,9(2)	121,3	∠(N1-C8-C4)	114,2(5)	114,8
∠(C5-C6-C1)	119,6(2)	119,6	∠(N2-C9-N1)	118,5(4)	116,9
∠(O2-C8-N1)	120,8(2)	122,7	∠(N2-C9-S)	121,7(4)	125,1
∠(O2-C8-C4)	121,95(19)	122,4	∠(N1-C9-S)	119,6(4)	118,1
∠(N1-C8-C4)	117,21(18)	114,9	∠(C9-N1-C8)	125,7(5)	125,1
∠(N2-C9-N1)	115,48(18)	117,2	∠(C9-N2-C10)	121,8(5)	120,0
∠(N2-C9-S1)	126,72(17)	127,6	∠(C9-N2-C11)	123,0(4)	124,2
∠(N1-C9-S1)	117,78(15)	115,2	∠(C10-N2-C11)	114,9(5)	115,3
∠(N2-C10-C14)	113,0(2)	112,9	∠(C1-O1-C7)	118,6(5)	118,9
∠(N2-C10-C12)	113,5(2)	110,6	Ф (СЗ-С4-С8-О2)	157,8(6)	161,5
∠(C14-C10-C12)	113,7(3)	112,1	Ф (С5-С4-С8-О2)	-21,7(8)	-17,5
∠(N2-C11-C13)	111,6(3)	114,5	Φ (C3-C4-C8-N1)	-19,4(7)	-18,7
∠(N2-C11-C15)	110,1(2)	112,2	Φ (C5-C4-C8-N1)	161,2(5)	162,4
∠(C13-C11-C15)	113,5(3)	113,1	Φ (N2-C9-N1-C8)	-54,7(7)	-55,1
∠(C8-N1-C9)	120,67(18)	124,2	Φ (S-C9-N1-C8)	129,2(5)	126,7
∠(C9-N2-C11)	119,59(19)	122,4	Φ (O2-C8-N1-C9)	-5,4(9)	12,0
∠(C9-N2-C10)	125,24(18)	122,3	Φ (C4-C8-N1-C9)	171,8(5)	-167,8
∠(C11-N2-C10)	114,80(18)	115,1	Φ (N1-C9-N2-C10)	-179,6(5)	171,8
∠(C1-O1-C7)	118,8(2)	118,9	Φ (S-C9-N2-C10)	-3,7(7)	-10,2
Ф (С5-С4-С8-О2)	-6,2(3)	17,5	Φ (N1-C9-N2-C11)	-6,0(7)	-16,3
Ф (С3-С4-С8-О2)	175,3(2)	-161,3	Φ (S-C9-N2-C11)	170,0(4)	161,7
Φ (C5-C4-C8-N1)	175,52(19)	-162,6	Ф (С6-С1-О1-С7)	-0,5(8)	-0,5
Φ (C3-C4-C8-N1)	-3,0(3)	18,6	Ф (С2-С1-О1-С7)	-179,5(5)	179,8
Φ (O2-C8-N1-C9)	14,1(3)	-15,4	-	-	-
Φ (C4-C8-N1-C9)	-167,55(18)	164,8	-	-	-
Φ (N2-C9-N1-C8)	-105,8(2)	64,7	-	-	-
Φ (S-C9-N1-C8)	75,8(2)	-117,4	-	-	-
Φ (N1-C9-N2-C11)	-179,47(18)	-170,9	-	-	-
Φ (S-C9-N2-C11)	-1,2(3)	11,5	-	-	-
Φ (N1-C9-N2-C10)	-6,8(3)	14,4	-	-	-
Φ (S-C9-N2-C10)	171,42(16)	-163,2	-	-	-

 Tabla 4A. 19. Longitudes de enlace [Å] y ángulos [°] AntBu y DifEt.

Derem	AntB	AntBu		DifEt	DifEt		
Param.	Exp.	Calc.	Param.	Exp.	Calc.		
r(C1-C2)	1,393(2)	1,411	r(C1-C2)	1,5270(18)	1,537		
r(C1-C14)	1,400(2)	1,411	r(C1-C21)	1,525(2)	1,531		
r(C1-C15)	1,502(2)	1,505	r(C1-C11)	1,527(2)	1,528		
r(C2-C3)	1,418(3)	1,432	r(C2-O)	1,2174(1)	1,222		

r(C2-C7)	1,442(2)	1,444	r(C2-N1)	1,3706(1)	1,378
r(C3-C4)	1,357(4)	1,368	r(C3-N2)	1,3154(1)	1,335
r(C4-C5)	1,411(4)	1,422	r(C3-N1)	1,3986(1)	1,411
r(C5-C6)	1,331(4)	1,366	r(C3-S)	1,6708(1)	1,674
r(C6-C7)	1,419(3)	1,429	r(C4-N2)	1,4578(1)	1,461
r(C7-C8)	1,386(3)	1,396	r(C4-C5)	1,507(2)	1,524
r(C8-C9)	1,383(3)	1,396	r(C11-C16)	1,381(2)	1,399
r(C9-C10)	1,433(3)	1,429	r(C11-C12)	1,391(2)	1,400
r(C9-C14)	1,438(2)	1,442	r(C12-C13)	1,380(3)	1,392
r(C10-C11)	1,348(4)	1,366	r(C13-C14)	1,369(4)	1,394
r(C11-C12)	1,404(4)	1,423	r(C14-C15)	1,371(4)	1,393
r(C12-C13)	1,354(3)	1,368	r(C15-C16)	1,395(3)	1,395
r(C13-C14)	1,426(3)	1,431	r(C21-C22)	1,389(2)	1,397
r(C15-O)	1,213(2)	1,225	r(C21-C26)	1,390(2)	1,398
r(C15-N1)	1,363(2)	1,380	r(C22-C23)	1,383(3)	1,393
r(C16-N2)	1,314(2)	1,337	r(C23-C24)	1,387(3)	1,394
r(C16-N1)	1,4041(1)	1,411	r(C24-C25)	1,366(3)	1,393
r(C16-S)	1,6715(1)	1,676	r(C25-C26)	1,385(3)	1,394
r(C17-N2)	1,461(2)	1,460	∠(C2-C1-C21)	106,57(11)	110,4
r(C17-C18)	1,520(3)	1,533	∠(C2-C1-C11)	112,86(12)	111,1
r(C18-C19)	1,510(3)	1,532	∠(C21-C1-C11)	113,02(11)	114,2
r(C19-C20)	1,504(4)	1,531	∠(O-C2-N1)	123,00(13)	123,1
∠(C2-C1-C14)	122,36(14)	121,4	∠(0-C2-C1)	121,81(12)	122,7
∠(C2-C1-C15)	118,82(15)	119,9	∠(N1-C2-C1)	115,15(11)	114,2
∠(C14-C1-C15)	118,73(15)	118,6	∠(N2-C3-N1)	116,51(12)	115,9
∠(C1-C2-C3)	123,77(16)	123,4	∠(N2-C3-S)	124,27(10)	125,9
∠(C1-C2-C7)	118,57(16)	118,9	∠(N1-C3-S)	119,22(10)	118,3
∠(C3-C2-C7)	117,65(18)	117,7	∠(N2-C4-C5)	108,93(14)	110,3
∠(C4-C3-C2)	121,1(2)	121,2	∠(C16-C11-C12)	118,24(16)	118,8
∠(C3-C4-C5)	120,7(3)	120,9	∠(C16-C11-C1)	124,37(14)	122,1
∠(C6-C5-C4)	120,4(3)	120,0	∠(C12-C11-C1)	117,33(14)	119,0
∠(C5-C6-C7)	121,6(2)	121,1	∠(C13-C12-C11)	120,9(2)	120,8
∠(C8-C7-C6)	122,52(18)	121,4	∠(C14-C13-C12)	120,5(2)	120,0
∠(C8-C7-C2)	118,94(17)	119,4	∠(C13-C14-C15)	119,40(19)	119,6
∠(C6-C7-C2)	118,53(19)	119,2	∠(C14-C15-C16)	120,6(2)	120,4
∠(C9-C8-C7)	122,52(15)	122,0	∠(C11-C16-C15)	120,3(2)	120,4
∠(C8-C9-C10)	123,06(17)	121,5	∠(C22-C21-C26)	118,89(15)	118,7
∠(C8-C9-C14)	119,30(17)	119,4	∠(C22-C21-C1)	120,77(13)	122,9
∠(C10-C9-C14)	117,64(19)	119,2	\angle (C26-C21-C1)	120,28(13)	118,4
\angle (C11-C10-C9)	121,8(2)	121,0	$\angle (C23-C22-C21)$	120,38(10)	120,4
\angle (C10-C11-C12)	120, 1(2) 121 0(2)	120,0	$\angle (C22 - C23 - C24)$	120,00(10)	120,4
∠(C12-C12-C11) /(C12-C12-C14)	121,0(<i>2)</i> 121 1/2)	121,0	∠(C2J-C24-C2S) /(C2J-C25_C26)	120 43(17)	120.1
∠(C12-C13-C14) ∕(C1-C1 <u>4-</u> C13)	123 44(16)	123.2	∠(C25-C26-C21)	120,33(15)	120,1 120 Q
∠(C1-C14-C9)	118.29(16)	118.9	\angle (C2-N1-C3)	126.89(12)	129.4
∠(C13-C14-C9)	118,27(17)	117.9	∠(C3-N2-C4)	125,47(13)	123.6
. /	• • • /		. ,	, , ,	

∠(O-C15-N1)	123,20(1)	123,1	Ф(С11-С1-С2-N1)	-125,5(1)	-131,1
∠(0-C15-C1)	121,35(15)	122,6	Ф(С11-С1-С2-О)	56,8(2)	49,5
∠(N1-C15-C1)	115,45(14)	114,3	Ф(С21-С1-С2-N1)	109,8(1)	101,0
∠(N2-C16-N1)	116,04(14)	115,4	Ф(С21-С1-С2-О)	-67,8(2)	-78,3
∠(N2-C16-S)	126,05(12)	126,6	Ф(С2-С1-С11-С12	-173,7(1)	97,9
∠(N1-C16-S)	117,89(11)	118,0	Ф(С2-С1-С11-С16)	9,0(2)	-81,1
∠(N2-C17-C18)	111,00(17)	113,2	Ф(С21-С1-С11-С12)	-52,7(2)	-136,0
∠(C19-C18-C17)	113,3(2)	112,2	Ф(С21-С1-С11-С16)	130,1(2)	45,0
∠(C20-C19-C18)	112,2(3)	112,9	Ф(С2-С1-С21-С22)	72,6(2)	37,0
∠(C15-N1-C16)	128,38(14)	129,6	Ф(С2-С1-С21-С26)	-104,7(1)	-144,3
∠(C16-N2-C17)	126,06(16)	124,5	Ф(С11-С1-С21-С22)	-51,9(2)	-88,8
Ф (С14-С1-С2-С3)	178,8(2)	-177,4	Ф(С11-С1-С21-С26)	130,8(1)	90,0
Ф (С14-С1-С2-С7)	-0,1(3)	1,1	Ф(С1-С2-N1-С3)	-177,3(1)	-179,0
Φ (C2-C1-C15-N1)	96,3(2)	68,6	Ф(О-С2-N1-С3)	0,4(2)	0,4
Ф (С2-С1-С15-О)	-83,7(2)	-112,2	Φ(N2-C3-N1-C2)	-1,0(2)	-1,1
Φ (C14-C1-C15-N1)	-87,1(2)	-113,1	Φ(S-C3-N1-C2)	179,5(1)	179,2
Ф (С14-С1-С15-О)	92,9(2)	66,1	Ф(N1-C3-N2-C4)	-178,8(1)	-179,5
Ф (С1-С15-N1-С16)	179,5(1)	-178,0	Ф(S-C3-N2-C4)	0,7(2)	0,2
Φ (O-C15-N1-C16)	-0,5(3)	2,8	Ф(С5-С4-N2-С3)	171,8(2)	179,6
Φ (N2-C16-N1-C15)	1,3(2)	-2,1	-	-	-
Φ (S-C16-N1-C15)	-177,5(1)	178,2	-	-	-
Φ (N1-C16-N2-C17)	175,9(2)	179,3	-	-	-
Φ (S-C16-N2-C17)	-5,4(3)	-1,0	-	-	-
Φ (N2-C17-C18-C19)	-173,3(2)	-179,7	-	-	-
Ф (С18-С17-N2-С16)	-100,4(2)	-90,2	-	-	-
Ф (С17-С18-С19-С20)	-176,4(2)	179,7	-	-	-

Tabla A4.20. Principales desplazamientos químicos experimentales y calculados (método GIAO, B3LYP/6-311+g(2d,p))

1 ப	MIso2 Mm2		m2	DifEt		AntBu		M	f2	
	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.
N2-H					10,5	10	10,9	10		
N1-H			8,6	8	9,0	8	8,9	8	8,8	
C- <u>H</u> Ar	8-7		7-6	8-7	7	8-7	8-7	8-7	7-6	
					¹³ C					
C=S			180	194	179	190	179	191	182	
C=O	164		163	168	173	178	170	176	163	
C-C	131-		163-	133-	137-	148-	131-	138-	162-	
Ar	114		114	141	128	133	124	131	114	

Los valores expresados se presentan en ppm y están aproximados. Ar, aromático.,

ANEXO 5

Tabla A5.1. Frecuencias experimentales, calculadas y asignación tentativa de los modos de vibración de **UDO-NIs**.

Modo	Experimental ^a	Calculado ^b	Asignación ^d	
------	---------------------------	------------------------	-------------------------	--

	IR°	Raman ^c		
v1			3610(114)	v(N1H1)
ν2	3295(d)		3570(66)	v(N2H2)
ν3			3208(3)	v _{sim} (CH) Ar
v4			3192(9)	v _{sim} (CH) Ar
v5	3277(m)		3189(18)	$v_{sim}(CH)$ Ar
v6			3177(10)	V _{acim} (CH) Ar
ν7			3175(9)	v_{asim} (CH) Ar
v8			3166(1)	v_{asim} (CH) Ar
v9			3163(<1)	v_{asim} (CH) Ar
v10	3215(m)		3110(16)	$v_{asim}(CH_3)$
v11	3100(m)		3105(30)	$v_{asim}(CH_3)$
v12	2969(m)		3097(50)	$V_{acim}(CH_3)_2$
v13			3084(5)	$V_{asim}(CH_3)_2$
v14			3069(2)	$v(CH-(CH_3)_2)$
v15			3025(19)	$V_{sim}(CH_3)_2$
v16	2940(d)	2940(<1)	3021(15)	$v_{sim}(C14H_3) + v_{sim}(C15H_3)$
v17	1689(md)	1695(<1)	1756(570)	v(C11=O)
v18	1675(mf)	1676(34)	1731(313)	v(C12=O)
v19			1659(<1)	v(CC) Ar
v20			1630(3)	v(CC) Ar
v21			1612(6)	v(CC) Ar
v22	1551(mf)	1540(9)	1551(309)	v(C12-N2)
v23	1510(f)	1511(10)	1543(67)	v(CC) Ar
v24			1510(20)	$\delta(CH_3)_2$
v25	1490(f)		1500(29)	$\delta(CH_3)_2$
v26			1491(8)	δ(CH) Ar
v27			1490(6)	$\delta(CH_3)_2$
v28			1487(1)	$\delta(CH_3)_2$
v29			1470(4)	δ (CH) Ar
v30		1436(17)	1440(17)	δ(N1-H)
v31		,	1426(13)	δ (CH) Ar
v32			1422(11)	$\omega(CH_3)_2$
v33			1402(13)	$\omega(CH_3)_2$
v34			1391(4)	ω(C13H)
v35			1389(2)	v(CC) Ar
v36			1370(4)	δ(CH) Ar
v37	1322(d)	1321(4)	1357(29)	ω(C13H)
v38	1283(m)	1284(15)	1334(215)	δ(N2-H)
v39			1287(23)	δ(CH) Ar
v40	1253(f)	1254(26)	1257(290)	v(N1C12)
v41			1240(16)	δ(CH) Ar
v42	4004/0		1225(82)	δ(CH) Ar
v43	1234(†)		1192(58)	v(N2C13)
v44			1190(1)	δ(CH) Ar
v45			1183(2)	ω(CH ₃) ₂
v46	1218(d)		1172(34)	δ(CH) Ar
v47	1206(d)		1166(48)	δ(CH) Ar

v48	1171(d)	1166(4)	1146(26)	$\nu(H\underline{C}-(\underline{C}H_3)_2)$
v49			1090(3)	$ u$ (CC) Ar + δ (CH) Ar
v50			1069(5)	ν(C12N1) + ν(C12N2)
v51			1045(7)	ν(CC) Ar
v52		1076(7)	1008(6)	δ (CCC) Ar
v53			1001(<1)	γ(CH) Ar
v54			997(<1)	γ(CH) Ar
v55			976(<1)	γ(CH) Ar
v56		1028(8)	957(<1)	$v(CH-(CH_3))$
v57			944(<1)	γ(CH) Ar
v58			936(<1)	$\omega(CH-(CH_3)_2)$
v59			934(2)	ω(CH ₃)
v60			881(3)	γ(CH) Ar
v61			868(2)	ν (CH–(CH ₃)
v62			856(<1)	δ(CCC) Ar
v63	812(d)	813(4)	823(24)	γ(CH) Ar
v64			807(2)	δ(CCC) Ar
v65	780(f)	789(37)	798(111)	γ(CH) Ar
v66	751(md)	752(<1)	784(46)	γ(N1H)
v67			769(3)	$\delta(C12=0) + \gamma(C11=0)$
v68			749(<1)	ν(CH) Ar
v69	683(d)		736(19)	$\rho(N2C12=0) + \rho(N1C11=0)$
ν70	662(d)	662(19)	710(21)	γ(N1H)
ν71	644(md)		680(9)	γ(N1H) + δ(CCC) Ar
ν72			663(12)	γ (N1H) + δ (CCC) Ar
ν 7 3			618(10)	γ(CC) Ar
ν74		518(21)	562(15)	γ (CC) Ar + δ (CCC) Ar
ν75	508(md)	508(26)	527(12)	δ(CCC) Ar
ν76			513(3)	δ(CCC) Ar
ν77			480(1)	γ(CC) Ar
v78			472(<1)	γ (CC) Ar
ν79			454(4)	$\delta(CH - (CH_3)_2)$
v80			438(9)	γ (CH) Ar + γ (N2H)
v81			429(33)	γ(N2H)
v82			409(11)	γ(N2H)
v83			399(2)	ρ(CC) Ar
v84			362(7)	$\rho(CH_3)_2$
v85			355(2)	$\rho(CH_3)_2$
v86			271(2)	$\omega(CH_3)_2$
v87			264(5)	$\rho(CH_3)_2$
v88			238(8)	γ (CH) Ar + ω (CH ₃) ₂
v89			229(<1)	$\rho(CH_3)_2$
v90			180(3)	γ(CC) Ar
v91			164(1)	$\rho(CH-(CH_3)_2)$
v92			164(2)	γ(N1H) + γ(C11=O)
v93			121(8)	γ(N1H)
v94			108(2)	$\omega(CH-(CH_3)_2)$
v95			71(3)	γ(N2H) + γ(C11=O)

v96	 	51(1)	γ(N2H) + γ(C12=O)
v97	 	41(<1)	γ(C12=O) + ω(CH ₃) ₂
v98	 	27(<1)	γ(CH) Ar + ρ(CH ₃) ₂
v99	 	21(<1)	$\rho(CH-(CH_3)_2)$

^a en cm⁻¹. ^b B3LYP/6-311++g(d,p), intensidad calculada en paréntesis (km mol⁻¹). ^c f, fuerte; m, medio; d, débil; md, muy débil. ^dv, δ , γ , ω , ρ y τ representa stretching, deformación en el plano, deformación fuera del plano, aleteo, balanceo y torsión, respectivamente.

 Tabla A5. 2. Frecuencias experimentales, calculadas y asignación tentativa de los modos de vibración de UDO-MBt.

Experimental ^a		h			
Modo	IR°	Raman ^c	Calculado [®]	Asignación ^ª	
ν1	3365(H)		3634(35)	v(N1-H)	
ν2	3293(m)		3503(224)	ν(N2-H)	
ν3			3211(7)	$v_{sim}(CH)$ Ar	
ν4			3199(3)	$v_{sim}(CH)$ Ar	
ν5			3196(<1)	$v_{\sf asim}(\sf CH)$ Ar	
ν6			3171(8)	$v_{\sf asim}(\sf CH)$ Ar	
ν7			3141(19)	$v_{asim}(C7H_3)$	
ν8		3084(20)	3100(20)	$v_{asim}(CH_2)$	
ν9	3208(md)	3076(17)	3085(48)	$v_{asim}(C13H_3)$	
v10	3135(md)	3016(<1)	3081(52)	$v_{asim}(C12H_2) + v_{asim}(C13H_3)$	
v11	2958(md)	2962(10)	3075(31)	$v_{asim}(C7H_3)$	
v12			3058(27)	$v_{asim}(C11H_2)$	
v13			3040(39)	$v_{sim}(C10H_2)$	
ν14		2939(32)	3028(11)	$v_{asim}(C12H_2)$	
v15	2935(md)	2935(31)	3020(40)	$v_{sim}(C13H_3)$	
v16	2843(md)	2909(12)	3013(55)	$v_{sim}(C7H_3)$	
v17		2875(6)	3012(22)	$v_{sim}(C11H_2)$	
v18		2860(5)	3003(15)	$v_{sim}(C10H_2)$	
v19	1691(mf)	1703(<1)	1770(526)	v(C9=O3)	
ν20	1674(mf)	1671(73)	1709(213)	v(C8=O2)	
v21	1608(f)	1609(96)	1645(211)	v(CC)Ar	
ν22	1579(m)	1578(41)	1607(2)	v(CC)Ar	
ν23	1544(f)	1534(<1)	1584(594)	δ(N2-H) + ν(N2-C9)	
ν24			1547(7)	δ(CH) Ar	
v25			1512(11)	$\delta(CH_2)_3$	
ν26		1522(9)	1503(22)	δ(C7H ₃)	
ν27			1500(7)	δ(C13H ₃)	
ν28			1499(9)	$\delta(CH_2)_3 + \delta(C13H_3)$	
v29			1494(16)	δ(C13H ₃)	
v30	1482(f)		1492(433)	ν(C8-N1) + δ(N1H)	
v31			1489(5)	$\delta(C12H_2) + \delta(C11H_2)$	
ν32		1434(30)	1479(15)	δ(C10H ₂)	
v33	1468(H)		1474(100)	ω(C7H ₃)	

v34	1442(d)		1446(16)	v(CC) Ar
v35			1415(6)	ω(C10H ₂) + ω(C13H ₃)
v36	1421(md)	1419(88)	1407(15)	$\omega(CH_2)_{3 \text{ sim}}$
v37			1385(1)	$\omega(CH_2)_{3 \text{ asim}}$
v38	1376(d)		1347(26)	v(CC) Ar
v39	1317(md)	1317(15)	1345(38)	$\tau((CH_2)_3)$
v40			1336(3)	δ(CH) Ar
v41		1303(4)	1330(7)	τ((CH ₂) ₃)
v42			1297(2)	$\omega(CH_2)_{3 sim}$
v43	1276(f)	1274(100)	1292(104)	v(C7-O1)
v44			1265(1)	$\tau((CH_2)_3)$
v45	1276(mf)	1253(70)	1262(662)	$v(C8-C4) + \delta(N1H)$
v46	1249(mf)		1242(223)	v(C9-N2) + v(C9-N1)
v47			1203(3)	ω(C7H ₃)
v48	1222(f)		1196(288)	δ(CH) Ar
v49			1189(8)	ρ(CH ₂) ₃
v50			1168(<1)	τ(C7H ₃)
v51			1155(16)	v(C10-N2)
v52	1189(m)	1187(49)	1141(23)	δ(CH) Ar
v53	1116(md)	1118(12)	1129(22)	δ(C10C11C12)
v54			1102(4)	ν(C9-N1) + ν(C10-N2)
v55			1058(1)	v(C11-C12) + v(C11-C10)
v56	1028(d)		1054(69)	v(C7-O1)
v57			1024(2)	δ (CCC) Ar
v58		1059(<1)	1007(3)	ν(C12-C13) + ν(C11-C10)
v59			985(2)	γ(CH) Ar
v60			978(2)	τ((CH ₂) ₃)
v61			964(<1)	γ(CH) Ar
v62			914(4)	δ(O2C9N2) + τ((CH ₂) ₃)
v63			912(<1)	ω(C13H ₃)
v64	963(md)		893(11)	δ(C8N1C9)
v65	948(md)		855(39)	γ(CH) Ar
v66			825(<1)	γ(CH) Ar
v67			811(5)	γ(CCC) Ar
v68			796(<1)	ρ((CH ₂) ₃)
v69	909(md)	907(39)	779(33)	γ(CC) Ar + γ(C8=O2)
ν70	890(md)	895(42)	768(13)	γ(C9=O3)
ν71			741(4)	ρ((CH ₂) ₃)
ν72	839(d)		718(23)	γ(CC) Ar
ν73			691(<1)	γ(N2H)
ν74	767(m)	766(20)	663(32)	δ (CCC) Ar + γ(N2H)
ν75			647(10)	δ (CCC) Ar
ν76		636(15)	612(61)	δ (CCC) Ar
ν77		616(13)	597(82)	γ(N1-H)
ν78			538(2)	γ(CC) Ar
ν79			511(9)	γ(CH) Ar
v80		503(8)	483(18)	δ(N2C10C11)
v81			426(3)	δ(C11C12C13)

v82	 	425(<1)	γ(CC) Ar
v83	 	416(5)	δ(C8N1C9)
v84	 445(6)	369(10)	δ(C10C11C12)
v85	 	332(4)	ρ(C8=O2) + ρ(C9=O3)
v86	 	308(<1)	γ(CC) Ar
v87	 311(13)	287(9)	δ(C9N2C10)
v88	 	242(2)	ω(C13H ₃)
v89	 	229(<1)	ω(C7H ₃)
v90	 	214(5)	ω(C13H ₃)
v91	 	209(2)	ω(C7H ₃)
v92	 	174(6)	ω(C10H ₂) + ω(C13H ₃)
v93	 	147(1)	γ(N1H) + ω(C13H ₃)
ν94	 	126(13)	γ (C8=O2) + γ (C9=O3) + γ (N1H)
v95	 	113(<1)	ρ((CH) ₂) ₃
v96	 	95(<1)	ω(C13H ₃)
v97	 	87(<1)	γ(C7H ₃)
v98	 	68(<1)	ω(C10H ₂)
v99	 	56(<1)	γ(N2H) + ω(C10H ₂)
v100	 	36(<1)	γ(CH) Ar
v101	 	20(<1)	γ(CH) Ar
v102	 	18(<1)	$\gamma((CH)_2)_3 + \gamma(CH_3)$

^a en cm⁻¹. ^b B3LYP/6-311++g(d,p), intensidad calculada en paréntesis (km mol⁻¹). ^c f, fuerte; m, medio; d, débil; md, muy débil. ^dv, δ , γ , ω , ρ y τ representa stretching, deformación en el plano, deformación fuera del plano, aleteo, balanceo y torsión, respectivamente.

 Tabla A5. 3. Frecuencias experimentales, calculadas y asignación tentativa de los modos de vibración de UDO-MMCf.

Modo	Experin	nental ^a		Asignación ^d
WOUD	IR۵	Raman ^c	Calculauo	Asignation
ν1			3630(43)	v(N1-H)
ν2	3273(d)		3423(326)	v(N2-H)
ν3			3248(8)	$v_{sim}(CH)$ Ar
ν4		3204(<1)	3213(7)	$v_{sim}(CH)$ Ar
ν5			3207(3)	v _{asim} (CH) Ar
ν6			3199(2)	$v_{sim}(CH)$ Ar
ν7			3197(<1)	v _{asim} (CH) Ar
ν8	3080(md)	3083(10)	3179(9)	$v_{asim}(CH) Ar$
ν9			3172(9)	$v_{asim}(CH) Ar$
v10			3153(5)	$v_{asim}(C16H_3)$
v11	2959(md)		3143(18)	$v_{asim}(C7H_3)$
v12	2933(md)		3078(30)	$v_{asim}(C7H_3)$
v13		3017(<1)	3068(10)	$v_{asim}(C16H_3)$
v14			3023(14)	v _{sim} (C16H ₃)
v15	2834(md)	2835(<1)	3015(54)	$v_{sim}(C7H_3)$
v16	1698(mf)		1774(494)	v(C9=O3)

v17	1666(d)	1668(50)	1708(129)	v(C8=O2)
v18			1648(33)	v(CC)Ar
v19	1603(m)	1611(51)	1640(299)	v(CC)Ar
v20	1579(mf)	1576(72)	1619(660)	$v(N2C9) + \delta(N2H)$
v21			1605(28)	v(CC)Ar
v22	1558(m)	1556(<1)	1588(341)	$\delta(N2H) + v(CC) Ar$
v23			1548(7)	δ(CH) Ar
v24			1504(24)	$\delta(C7H_3)$
v25			1503(57)	$\delta(C16H_3) + \delta(C7H_3)$
v26			1500(17)	δ(C16H ₃)
v27			1494(11)	δ(C7H ₃)
v28	1481(m)		1491(572)	$v(N1C8) + \delta(N1H)$
v29			1475(24)	ω(C7H ₃)
v30	1461(m)		1474(59)	ω (C7H ₃) + δ (CH) Ar
v31	1438(m)		1468(116)	ω(C16H ₃) + δ(CH) Ar
v32	1378(md)		1447(19)	$v(CC)$ Ar + $\delta(CH)$ Ar
v33			1418(1)	ω(C16H ₃)
v34	1312(md)		1347(63)	v(CC) Ar
v35			1336(1)	δ(CH) Ar
v36			1326(60)	v(CC) Ar
v37	1277(d)		1296(80)	v(C10-N2) + v(C101)
v38	1261 ^H (f)		1293(28)	v(C10-N2) + v(C101)
v39	1253(f)	1263(100)	1264(683)	v(C4-C8)
v40	1231(m)	1228(9)	1234(218)	v(C9-N2)
v41	1190(m)	1192(15)	1220(193)	v(C9-N1)
v42			1212(1)	v (ArC-C16H ₃) Ar + δ (CH) Ar
v43			1203(5)	ω(C7H ₃)
ν44	1113(d)	1192(15)	1196(375)	δ(CH) Ar
v45	1007 ^H (md)		1172(14)	δ(CH) Ar
v46			1167(<1)	τ(C7H ₃)
v47			1146(2)	δ(CH) Ar
v48	920(md)		1127(54)	ν(N1C8) + δ(N1H)
v49	884(md)		1102(15)	$v(CC) Ar + \delta(CH) Ar$
v50	846(d)	858(32)	1053(76)	v(C1-O1)
v51			1051(<1)	τ(C16H ₃)
v52	769(m)	760(8)	1033(69)	δ(CCC) Ar
v53			1023(8)	δ(CCC) Ar
ν54	762(d)		996(18)	ω(C16H ₃) + ν(C9N1)
v55			989(1)	γ(CH) Ar
v56			985(3)	γ(CH) Ar
v57			964(<1)	γ(CH) Ar
v58			929(8)	δ(O2C8N1)
v59			015(2)	
v00			915(2)	γ(ΟΠ) ΑΙ
v60			864(14)	γ(CH) Αι δ(C9N2C10)
v60 v61	 	 	864(14) 856(41)	γ(CH) Ai δ(C9N2C10) γ(CH) Ar
v60 v61 v62	 	 	864(14) 856(41) 824(<1)	γ(CH) A δ(C9N2C10) γ(CH) Ar γ(CH) Ar
v60 v61 v62 v63	 	 	864(14) 856(41) 824(<1) 812(1)	

v65	716(md)		793(35)	γ(CH) Ar
v66	700(md)		780(57)	γ(N1/2-H) + γ(C8=O2)
v67			755(4)	γ(N1/2-H) + γ(C9=O3)
v68			751(14)	ν(Ar-Cl) + γ(C9=O3)
v69	686(md)		742(41)	γ(N2-H)
ν70			720(10)	γ(CH) Ar
v71			701(2)	γ(N2-H) + γ(CH) Ar
ν72			648(7)	δ(CCC) Ar
v73	640(md)	638(8)	622(8)	δ(CCC) Ar
ν74	619(d)		613(93)	δ(CCC) Ar + γ(N1H)
ν75		609(15)	593(75)	γ(N1-H)
ν76			577(<1)	γ(CH) Ar
ν77			550(3)	δ(CCC) Ar
ν78			522(12)	$\delta(CCC) + \gamma(CH) Ar$
v79		540(<1)	509(<1)	γ(CC) Ar + γ(CH) Ar
v80			504(1)	γ(CC) Ar + γ(CH) Ar
v81			489(12)	ρ(CH) Ar
v82			436(4)	δ(N1C9N2) + ρ(C8=O2)
v83			424(<1)	γ(CC) Ar + γ(CH) Ar
v84		415(6)	396(2)	δ (CCC) Ar + ρ (CH) Ar
v85			377(14)	δ(CCC) Ar
v86			336(6)	ρ(CH) Ar
v87		327(12)	314(<1)	ω(C7H ₃)
v88			312(<1)	ρ(C16H ₃)
v89			294(3)	γ(C7H ₃) + γ(CH) Ar
v90			261(3)	ρ(C16H ₃) + γ(C9=O3)
v91			228(2)	ρ(C7H ₃)
v92			222(8)	ρ(C7H ₃)
v93			218(5)	ω(C7H ₃) + γ(CC-H) Ar
ν94			175(5)	ho(CC) Ar + $ ho(CH)$ Ar
v95			163(<1)	ρ(C16H ₃) + ρ(C7H ₃)
v96			153(<1)	ρ(C16H ₃)
v97			124(13)	γ(N1H) + γ(C=O3/O2)
v98			115(1)	ρ(C16H ₃)
v99			109(<1)	γ(N1/2-H) + ρ(C7H ₃)
v100			85(<1)	γ(CH) Ar
v101			59(<1)	γ(CC) Ar
v102			48(<1)	v(CC) Ar + v(CH) Ar
v103			33(<1)	v(CC) Ar + v(CH) Ar
v104			21(<1)	γ(CC) Ar
v105			17(<1)	γ(CC) Ar

^a en cm⁻¹. ^b B3LYP/6-311++g(d,p), intensidad calculada en paréntesis (km mol⁻¹). ^c f, fuerte; m, medio; d, débil; md, muy débil. ^dv, δ , γ , ω , ρ y τ representa stretching, deformación en el plano, deformación fuera del plano, aleteo, balanceo y torsión, respectivamente.

Tabla A5. 4. Coordenadas atómicas $(x10^4)$ y parámetros de desplazamiento equivalente isotrópico ($Å^2 \times 10^3$) para **UDO-NIs**. U(eq) es definido como un tercio de la traza del tensor. Uij ortogonalizado.

Átomo	X	у	Z	U(eq)
C11	7451,0(15)	8026(5)	5886,6(15)	38,0(7)
C12	7167,4(16)	9463(5)	5481,4(15)	46,9(8)
C13	7489,8(19)	11238(6)	5234,0(16)	55,4(10)
C14	8096(2)	11580(6)	5395,3(18)	56,8(10)
C15	8417,4(16)	10143(5)	5804,9(16)	46,0(8)
C16	9057,6(19)	10446(6)	5967,0(19)	62,1(10)
C17	9367(2)	9032(8)	6339(2)	68,9(11)
C18	9061,1(18)	7188(7)	6567(2)	66,2(11)
C19	8445,7(17)	6832(6)	6428,0(18)	53,1(9)
C110	8099,9(15)	8300(5)	6050,3(14)	39,2(8)
C111	7069,9(15)	6306(5)	6196,2(15)	39,3(8)
C112	6152,4(16)	3899(5)	5973,8(15)	40,9(8)
C113	5645,7(16)	1784(5)	6831,5(17)	44,7(8)
C114	5457(2)	2356(8)	7516(2)	81,7(14)
C115	5884(2)	-470(6)	6789(3)	87,1(14)
N11	6622,5(12)	5387(4)	5808,2(12)	41,0(6)
N12	6104,2(13)	3337(4)	6592,7(13)	47,6(7)
011	7128,0(11)	5823(4)	6769,1(11)	51,4(6)
012	5802,8(11)	3225(4)	5548,5(11)	58,6(7)
C21	4993,7(15)	1309(5)	4098,6(15)	41,2(8)
C22	5242,8(17)	-267(6)	4479,9(15)	53,6(9)
C23	4861(2)	-1911(6)	4738,6(19)	64,9(11)
C24	4238(2)	-1931(6)	4599,9(19)	63,6(11)
C25	3954,1(17)	-307(5)	4227,6(15)	48,5(9)
C26	3305,4(19)	-273(7)	4107,7(19)	61,5(10)
C27	3044,2(19)	1340(7)	3761(2)	69,6(12)
C28	3412,6(19)	3000(7)	3516(2)	67,7(11)
C29	4040,2(17)	3014(6)	3617,2(19)	56,6(10)
C210	4336,6(15)	1360(5)	3974,1(15)	41,4(8)
C211	5418,3(15)	2901(5)	3782,0(15)	41,4(8)
C212	6324,9(14)	5315(5)	4009,6(15)	39,8(8)
C213	6861,0(15)	7256(5)	3139,3(17)	43,8(8)
C214	6620(2)	9543(6)	3148(2)	75,3(12)
C215	7052(2)	6538(6)	2473,5(19)	71,2(12)
N21	5851,6(11)	3837(4)	4176,4(11)	40,4(6)
N22	6390,5(13)	5753(4)	3386,9(12)	46,0(7)
O21	5384,6(10)	3270(4)	3199,1(11)	55,3(6)
022	6650,3(11)	6068(4)	4441,8(10)	54,2(6)

Tabla A5. 5. Parámetros de desplazamiento ansiotrópico ($Å^2 \times 10^3$) para **UDO-NIs**. El factor del desplazamiento ansiotrópico toma la forma: $-2\pi^2[h^2a^{*2}U11+2hka^*b^*U12+...]$.

Átomo	U11	U22	U33	U23	U13	U12
C11	43,5(19)	37,7(18)	32,8(16)	0,2(14)	-0,6(16)	3,1(15)
C12	51(2)	46(2)	43,7(19)	2,0(16)	-1,2(18)	5,4(16)
C13	70(3)	47(2)	50(2)	13,9(17)	3(2)	11,6(19)
C14	71(3)	43(2)	56(2)	5,6(17)	12(2)	-4,4(19)
C15	53(2)	45(2)	40,3(17)	-3,8(16)	6,5(17)	-5,8(17)
C16	63(3)	62(2)	61(2)	-4(2)	7(2)	-20(2)
C17	49(2)	84(3)	74(3)	3(2)	-6(2)	-12(2)
C18	52(2)	79(3)	68(3)	13(2)	-9(2)	1(2)
C19	47(2)	57(2)	55(2)	10,6(18)	0(2)	0,7(18)
C110	44(2)	42,7(18)	30,6(16)	-3,5(14)	3,6(16)	-1,0(15)
C111	38,1(19)	42(2)	37,5(19)	4,2(14)	-2,0(16)	6,5(15)
C112	42,9(19)	44,0(19)	35,8(18)	2,7(15)	0,8(17)	2,9(15)
C113	48(2)	44(2)	42,3(19)	-1,8(15)	4,7(18)	-2,1(16)
C114	108(4)	83(3)	54(2)	-2(2)	23(3)	-14(3)
C115	90(3)	50(3)	121(4)	5(2)	33(3)	2(2)
N11	45,5(16)	45,5(16)	32,1(13)	6,8(12)	-2,3(13)	-4,3(13)
N12	55,0(18)	52,0(18)	35,6(15)	6,5(13)	-4,0(14)	-11,6(14)
O11	53,7(15)	60,4(16)	40,1(13)	12,2(11)	-8,6(12)	-6,6(12)
O12	62,8(16)	77,8(18)	35,3(13)	3,4(12)	-5,0(13)	-24,4(13)
C21	45(2)	45,8(19)	33,2(17)	1,7(15)	5,0(16)	-6,9(15)
C22	53(2)	62(2)	45(2)	12,1(19)	3,6(18)	0(2)
C23	81(3)	56(3)	58(2)	16,3(19)	13(2)	-1(2)
C24	74(3)	56(3)	60(3)	4,0(19)	19(2)	-21(2)
C25	54(2)	51(2)	39,5(18)	-9,3(16)	9,1(18)	-14,2(18)
C26	57(2)	70(3)	58(2)	-14(2)	14(2)	-26(2)
C27	42(2)	92(3)	75(3)	-19(3)	4(2)	-12(2)
C28	51(2)	74(3)	78(3)	2(2)	-6(2)	-1(2)
C29	45(2)	63(2)	61(2)	8,4(19)	-5(2)	-9,3(19)
C210	43(2)	46(2)	35,2(17)	-6,1(15)	5,1(16)	-8,3(15)
C211	39,2(19)	48(2)	37(2)	4,0(15)	-1,7(17)	0,5(16)
C212	35,7(18)	46,5(19)	37,2(18)	5,3(15)	0,7(16)	0,9(15)
C213	43,6(18)	47(2)	41,3(18)	6,8(16)	-0,2(17)	-5,4(15)
C214	89(3)	55(3)	82(3)	11(2)	12(3)	7(2)
C215	90(3)	70(3)	54(2)	7(2)	23(2)	-12(2)
N21	38,7(15)	52,9(17)	29,6(13)	9,2(12)	1,7(13)	-7,7(13)
N22	48,1(17)	58,6(17)	31,2(14)	6,5(13)	-2,6(13)	-16,2(13)
O21	47,9(14)	80,6(17)	37,5(13)	13,3(12)	-4,7(12)	-17,7(12)
O22	53,5(15)	74,1(17)	35,1(13)	1,7(12)	-3,4(12)	-23,5(13)

Tabla A5. 6. Coordinación de hidrógeno (x10⁴) y parámetros de desplazamiento isotrópico ($Å^2 \times 10^3$) para **UDO-NIs**.

Átomo	X	У	z	U(eq)
H12	6750	9254	5368	56
H13	7287	12190	4957	66
H14	8304	12782	5233	68

H16	9267	11653	5812	74
H17	9785	9276	6446	83
H18	9280	6193	6816	79
H19	8250	5598	6585	64
H113	5272	1890	6558	54
H11A	5815	2246	7795	123
H11B	5137	1380	7662	123
H11C	5299	3803	7526	123
H11D	5950	-845	6344	131
H11E	5583	-1435	6977	131
H11F	6273	-581	7020	131
H11	6631	5773	5409	49
H12A	6356	3919	6866	57
H22	5670	-257	4571	64
H23	5034	-2972	5002	78
H24	3993	-3055	4756	76
H26	3053	-1372	4269	74
H27	2614	1340	3685	83
H28	3227	4108	3282	81
H29	4280	4132	3448	68
H213	7230	7180	3421	53
H21A	6242	9631	2898	113
H21B	6930	10484	2964	113
H21C	6536	9969	3586	113
H21D	7201	5079	2492	107
H21E	7379	7457	2315	107
H21F	6697	6617	2188	107
H21	5834	3480	4578	48
H22A	6145	5126	3115	55

Tabla A5. 7. Coordenadas atómicas $(x10^4)$ y parámetros de desplazamiento equivalente isotrópico $(Å^2 \times 10^3)$ para **UDO-MBt**. U(eq) es definido como un tercio de la traza del tensor. Uij ortogonalizado.

Átomo	x	У	Z	U(eq)
C1	8806(6)	3606(2)	7308,1(16)	61,5(8)
C2	7580(8)	4113(3)	7797,6(18)	82,4(11)
C3	5698(7)	4749(3)	7561,8(17)	77,3(10)
C4	4958(6)	4889,4(19)	6828,0(14)	54,4(7)
C5	6179(6)	4374(2)	6347,0(15)	58,5(8)
C6	8110(6)	3740(2)	6579,2(16)	60,4(8)
C7	11887(8)	2433(3)	7118(2)	86,5(11)
C8	2926(6)	5595(2)	6619,6(15)	57,4(7)
C9	-538(6)	6114,9(19)	5623,7(15)	55,2(7)
C10	-3497(7)	7367(2)	5742,8(19)	74,7(9)
C11	-2632(13)	8085(4)	5260(4)	176(3)
C12	-4630(30)	8562(7)	4887(6)	288(6)

C13	-3230(40)	9195(6)	4371(5)	437(14)
N1	1561(5)	5563,0(16)	5931,2(12)	55,7(6)
N2	-1240(5)	6794,8(17)	6003,3(13)	63,8(7)
O1	10667(5)	2997,9(16)	7599,1(12)	78,5(7)
02	2500(5)	6177,7(16)	7044,2(12)	79,4(7)
O3	-1670(5)	5935,7(15)	5013,4(11)	77,2(7)

Tabla A5. 8. Parámetros de desplazamiento ansiotrópico ($Å^2 \times 10^3$) para **UDO-MBt**. El factor del desplazamiento ansiotrópico toma la forma: $-2\pi^2[h^2a^{*2}U11+2hka*b*U12+...]$.

Átomo	U11	U22	U33	U23	U13	U12
C1	60,8(17)	60,9(19)	59,8(18)	13,7(14)	-5,3(14)	-5,4(14)
C2	100(3)	96(3)	48,0(18)	6,0(17)	-5,0(17)	19(2)
C3	93(2)	85(2)	50,8(18)	-5,9(16)	-4,5(16)	17,5(19)
C4	56,1(16)	57,4(17)	47,3(15)	-0,4(12)	-4,2(12)	-7,8(13)
C5	60,5(17)	68,9(19)	44,2(15)	3,9(13)	-2,3(12)	-4,3(15)
C6	59,8(17)	65,0(19)	55,1(17)	0,3(14)	1,6(13)	1,8(14)
C7	84(2)	87(3)	88(3)	20(2)	10(2)	19(2)
C8	59,2(17)	60,1(18)	50,5(16)	-6,6(13)	-3,1(13)	-7,4(14)
C9	62,7(17)	52,3(16)	48,7(15)	-0,9(13)	-1,6(13)	-3,7(13)
C10	84(2)	63(2)	74(2)	-1,2(17)	-5,0(17)	11,1(17)
C11	156(5)	94(4)	254(8)	58(5)	-73(5)	6(3)
C12	450(18)	173(9)	226(10)	84(8)	-28(10)	20(11)
C13	1060(40)	132(7)	156(7)	62(6)	221(15)	61(14)
N1	61,7(14)	55,2(14)	48,0(13)	-6,6(10)	-2,8(10)	2,7(11)
N2	70,4(16)	61,3(15)	56,4(15)	-8,9(12)	-6,5(12)	7,1(12)
01	84,9(16)	78,9(16)	68,6(14)	17,9(12)	-4,0(12)	14,1(12)
O2	92,7(17)	77,1(16)	62,4(14)	-22,6(11)	-15,9(11)	15,0(12)
O3	98,1(16)	70,4(15)	55,8(12)	-12,7(10)	-22,1(11)	15,7(12)

Tabla A5. 9. Coordinación de hidrógeno (x10⁴) y parámetros de desplazamiento isotrópico ($Å^2 \times 10^3$) para **UDO-MBt**.

Átomo	X	У	z	U(eq)
H2	8035	4022	8292	99
H3	4908	5091	7899	93
H5	5692	4455	5852	70
H6	8932	3406	6243	72
H7A	10471	2088	6848	130
H7B	13188	2051	7391	130
H7C	12828	2777	6789	130
H10A	-4249	7629	6154	90
H10B	-4951	7023	5475	90
H11A	-1437	8484	5559	211
H11B	-1526	7822	4915	211
H12A	-5625	8898	5218	346
H12B	-5937	8179	4605	346

H13A	-1527	8941	4257	656
H13B	-2857	9749	4608	656
H13C	-4452	9282	3932	656
H1	2061	5153	5656	67
H2A	-322	6899	6419	77

 Tabla A5. 10. Tabla de distancia de enlaces experimentales y calculados (Å) UDO-NIs.

Áto	mo	Exp.	Calc.	Áto	omo	Calc.	Exp.
C11	C12	1,364(4)	1,3825	C21	C22	1,363(4)	1,3825
C11	C110	1,435(4)	1,4349	C21	C210	1,425(4)	1,4349
C11	C111	1,487(4)	1,5021	C21	C211	1,491(4)	1,5021
C12	C13	1,395(5)	1,4096	C22	C23	1,411(5)	1,4096
C13	C14	1,353(5)	1,3712	C23	C24	1,359(5)	1,3712
C14	C15	1,407(5)	1,4184	C24	C25	1,405(5)	1,4184
C15	C16	1,419(5)	1,4192	C25	C26	1,406(5)	1,4192
C15	C110	1,423(4)	1,4339	C25	C210	1,418(4)	1,4339
C16	C17	1,341(5)	1,3718	C26	C27	1,351(6)	1,3718
C17	C18	1,399(6)	1,4123	C27	C28	1,390(6)	1,4123
C18	C19	1,362(5)	1,3743	C28	C29	1,355(5)	1,3743
C19	C110	1,408(5)	1,4213	C29	C210	1,413(5)	1,4213
C111	011	1,227(3)	1,2249	C211	O21	1,228(4)	1,2249
C111	N11	1,371(4)	1,3785	C211	N21	1,362(4)	1,3785
C112	O12	1,226(4)	1,2179	C212	O22	1,224(4)	1,2179
C112	N12	1,329(4)	1,3486	C212	N22	1,322(4)	1,3486
C112	N11	1,405(4)	1,4302	C212	N21	1,406(4)	1,4302
C113	N12	1,459(4)	1,4653	C213	N22	1,463(4)	1,4653
C113	C115	1,491(5)	1,5299	C213	C215	1,502(5)	1,5299
C113	C114	1,513(5)	1,5342	C213	C214	1,509(5)	1,5342

 Tabla A5. 10. Tabla de ángulos experimentales y calculados (°) UDO-NIS.

Átomo			Exp.	Calc.	Átomo			Exp.	Calc.
C12	C11	C110	119,7(3)	119,9	C22	C21	C210	120,2(3)	119,9
C12	C11	C111	119,4(3)	118,9	C22	C21	C211	119,4(3)	118,9
C110	C11	C111	120,8(3)	121,1	C210	C21	C211	120,2(3)	121,1
C11	C12	C13	121,5(3)	121,5	C21	C22	C23	120,8(3)	121,5
C14	C13	C12	120,3(3)	119,8	C24	C23	C22	119,4(4)	119,8
C13	C14	C15	120,9(3)	120,9	C23	C24	C25	122,0(4)	120,9
C14	C15	C16	121,8(3)	120,9	C24	C25	C26	122,1(3)	120,9
C14	C15	C110	119,5(3)	119,7	C24	C25	C210	118,5(3)	119,7
C16	C15	C110	118,7(3)	119,4	C26	C25	C210	119,4(3)	119,4
C17	C16	C15	121,6(4)	120,9	C27	C26	C25	120,7(4)	120,9
C16	C17	C18	119,8(4)	119,8	C26	C27	C28	120,5(4)	119,8
C19	C18	C17	120,8(4)	120,9	C29	C28	C27	120,5(4)	120,9
C18	C19	C110	121,1(4)	120,8	C28	C29	C210	121,2(4)	120,8

C19	C110	C15	117,9(3)	118,1	C29	C210	C25	117,7(3)	118,1
C19	C110	C11	124,0(3)	123,7	C29	C210	C21	123,4(3)	123,7
C15	C110	C11	118,1(3)	118,1	C25	C210	C21	118,9(3)	118,1
011	C111	N11	122,2(3)	122,7	O21	C211	N21	123,1(3)	122,7
O11	C111	C11	122,4(3)	122,8	O21	C211	C21	121,2(3)	122,8
N11	C111	C11	115,3(3)	114,4	N21	C211	C21	115,6(3)	114,4
012	C112	N12	123,5(3)	126,4	O22	C212	N22	124,8(3)	126,4
012	C112	N11	118,9(3)	118,1	O22	C212	N21	118,5(3)	118,1
N12	C112	N11	117,5(3)	115,5	N22	C212	N21	116,6(3)	115,5
N12	C113	C115	111,8(3)	111,3	N22	C213	C215	108,5(3)	111,3
N12	C113	C114	109,9(3)	109,2	N22	C213	C214	111,3(3)	109,2
C115	C113	C114	111,4(4)	112,4	C215	C213	C214	112,4(3)	112,4
C111	N11	C112	128,9(3)	130,0	C211	N21	C212	128,2(3)	130,0
C112	N12	C113	123,4(3)	121,7	C212	N22	C213	123,0(3)	121,7