

¿EXISTE LIMIACIÓN POR FUENTE EN LA DETERMINACIÓN DEL RENDIMIENTO DE GERMOPLASMA MODERNO DE TRIGO?

Nicolás Rouillet¹, María Lujan Maydup¹, Santiago Martínez Alonso¹, José Vera Bahima¹, Mauro Bartolozi¹, María Gabriela Cano¹, Juan José Guiamet¹, Eduardo A Tambussi¹

¹Instituto de Fisiología Vegetal, Universidad Nacional de la Plata- CONICET. email: rouilletnicolas@gmail.com

INTRODUCCION

En cultivos de trigo, las limitaciones al rendimiento han sido enmarcadas según el enfoque de las relaciones fuente-destino. Entendemos por fuente a la capacidad del cultivo de producir foto-asimilados, la cual está conformada por el área fotosintética total y otras fuentes que funcionan como reservorios temporales de asimilados (1). La magnitud de los destinos (granos) es la capacidad de éstos de captar los asimilados, crecer y contribuir al rendimiento. En este marco conceptual se considera que el rendimiento de un cultivo puede estar limitado por la fuerza de la fuente, o bien estar restringido por los destinos. Al menos en variedades antiguas, se considera al trigo, limitado por destinos (2), aunque, algunas evidencias sugieren que en variedades modernas está comenzando a aparecer cierta limitación por fuente (3,4), Esto parece ser más acentuado en variedades de ciclo corto, posiblemente debido a una menor acumulación de asimilados pre-antesis (3). El objetivo de este trabajo fue estudiar si existe limitación por fuente en germoplasma moderno, y las posibles compensaciones que puedan ocurrir (*v.g.* cambios en el grado de retranslocación).

MATERIALES Y METODOS

Se sembraron (2015) tanto en macetas (7 L) como en campo cultivares comerciales de trigo panadero de uso extendido en Argentina (contrastando en la longitud de ciclo). Los cultivares utilizados fueron: ciclo corto: Tauro, León, ACA 909, SY 300, AGP Fast, 75 Aniversario, Biointa 1006 y Cronox. Ciclo largo: Le 2330, Lapacho, Baguette 601 y 801 P, Aca Cedro, Aca 360, Sy 110 y Biointa 3008. Los ensayos a campo fueron sembrados el 12 de junio de 2015 y 15 de Julio (para los ciclos largos y cortos, respectivamente) en la EEA de la FCAyF (UNLP) bajo condiciones de secano. Los cultivares fueron sembrados en parcelas de 7 surcos con un largo de 3.4 m. Se fertilizó con 100 kg ha⁻¹ de PDA (presiembra) y 200 kg ha⁻¹ de urea (en macollaje). Los ensayos realizados en macetas fueron sembrados el 20 de junio y 17 de julio (para los ciclos largos y cortos, respectivamente) en el Instituto de Fisiología Vegetal (UNLP- CONICET). Se utilizaron 15 macetas por cultivar (2 plantas por maceta). Los tratamientos, fueron realizados diez días después de antesis en el macollo principal y consistieron en desespiguillados del 25 y 50 por ciento. Se realizaron muestreos en distintos momentos para evaluar la retraslocación de materia seca almacenados en los tallos. En ambos experimentos se cuantificó el peso promedio de granos de la espiga principal. Se realizó, para cada cultivar, un análisis de la varianza utilizando el programa STATISTICA 7.

RESULTADOS y DISCUSIÓN

Se observaron diferencias significativas entre tratamientos para cada cultivar en los experimentos realizados en parcelas, donde 13 de 16 cultivares utilizados, respondieron significativamente frente a su control (Tabla 1).

Tabla 1: Respuesta del peso medio (PM) de grano en cultivares de trigo, a tratamientos desespiguillados de 25 y 50%. Letras distintas indican diferencias significativas del tratamiento vs su control. Los números en negrita indican el porcentaje de cambio calculado como (PMcontrol – PM tratamiento) /control *100

Experimento en parcelas					Experimento en macetas				
Peso medio de granos (mg)								70	Experimento en Macetas
Ciclo	Tratam Cultivar	Control	25%	50%	Control	25%	50%	60 50	- •
Largo	Le 2330	27.96a	29.62a (5.8)	29.50a (5.42)	39.75a	40.48a (1.8)	42.64a (7.3)	%	• • •
	ACA Cedro	38.68a	38.84a(0.1)	45.79b (18.9)	42.84a	47.99a (12.0)	47.25a (10.3)	05 0	• • • •
	Lapacho	34.82a	36.32a (4.4)	38.67b (11.2)	36.88a	41.95ab (13.8)	41.86b (13.5)	desespiguillado 50% ng) 8 8	l / ,
	Sy 110	42.74a	46.48a (9.5)	43.96a (3.1)	44.18a	53.87b (21.9)	55.22b (24.9)	pids 30	1
	Aca 360	41.61a	43.73ab (5.0)	45.54b (9.6)	47.85a	48.80a (1.9)	47.90a (0.1)	s dese	
	Bag 601	33.26a	36.03b (8.4)	37.75b (13.7)	38.99a	40.05a (2.7)	40.07a (2.7)	8 ⁵ 20	Experimento en Parcelas
	Bag 801	39.76a	43.01b (8.2)	46.81c (17.8)	43.81a	45.33a (3.4)	47.77a (9.0)	gran	Experimento en Farceias
	BioInta 3008	32.24a	34.71a (7.7)	38.47b (19.5)	39.39a	39.14a (-0.6)	44.89b (13.9)	oip 60	1
Corto	Sy 300	35.28a	37.37a (6.1)	41.55b (17.9)	45.66a	47.19a (3.3)	48.65a (6.5)	080	
	Aca 909	33.97a	38.14b (12.5)	39.61b (16.6)	48.20a	48.48a (0.5)	50.89a (5.6)	2 50	••••
	Klein Tauro	41.34a	45.18b (9.5)	45.33b (9.8)	48, 90a	50.49a (3.2)	54, 52a (11.5)		
	Klein Leon	40.61a	43.38ab (3.2)	45.99b (7.9)	51.12a	54.89ab (7.4)	57.75b (12.9)	40	-
	AGP	29.07a	33.51b (16.2)	36.56 b (27.1)	n/d	n/d	n/d		
	Buck 75 Aniv	34.77a	36.91ab (6.0)	38.54b (11.1)	46.15a	45.5a (-1.4)	47.41a (2.7)	30	1 🥍
	BioInta 1006	43.12a	44.88ab (4.1)	45.88b (5.5)	44.58a	48.11a (7.9)	48.14a (7.9)		
	DM Cronox	34.47a	34.33a (-0.2)	35.65a (3.8)	39, 21a	39.73a (1.3)	40, 33a (2.9)	20	20 30 40
Peso medio ara									

Figura 1. Relación entre el peso medio) del grano (PM) en espigas desespiguilladas (50%) vs PM de espigas control. corto.

Cuando se comparó el peso medio de grano del tratamiento de 50% de desespiguillado *vs.* control, se observó que la mayoría de los puntos se ubican por arriba de la relación 1:1 (ver Figura 1, panel inferior). En cambio, en los experimentos realizados en macetas solo

se registró un aumento significativo del peso medio de granos en 4 de los 15 cultivares analizados. Los porcentajes de cambio en el experimento realizado en parcelas no mostraron una diferencia clara cuando se contrastaron los ciclos (*i.e.* largo vs corto), es decir no hubo diferencias en el peso medio de granos de cultivares de ciclo corto y largo respectivamente. Los datos de retraslocación de materia seca no mostraron una tendencia clara entre cultivares ni entre tratamientos (datos no mostrados).

Los resultados obtenidos muestran una tendencia al aumento de peso medio del grano frente a reducciones de los destinos, lo que evidencia limitación por fuente durante el llenado de granos. Las condiciones supraóptimas de crecimiento del experimento en macetas, posiblemente dieron como consecuencia plantas con mayor tamaño de granos. Esto podría explicar la menor respuesta frente a los tratamientos de aumento de la relación fuente-destino. La compensación producto del aporte de los tallos al llenado de grano no parecen explicar la diferencia encontrada en cuanto a respuesta al desespiguillado, sugiriendo que existen otras causas involucradas (*v.g.* tasa fotosintética, demora de la senescencia).

BIBLIOGRAFIA

4 Acreche M **& Slafer** *G* (2009) Field Crops Res 110: 98–105 //1 **Blum** A (1998) Euphytica 100: 77-83.//3 **Gonzalez** F G et al. (2014) Crop Science 54:297-309// 2 **Kruk** B et al. (1997) Agric. Sci. 128, 273-281//5 **Sinclair** T R, **Jamieson** PD (2006) Field Crops Res 98:60–67