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Abstract

Doubly-charged Higgs bosons are searched for in e+e− collision data collected with the L3 detector at LEP at centre-of-mass
energies up to 209 GeV. Final states with four leptons are analysed to tag the pair-production of doubly-charged Higgs bosons.
No significant excess is found and lower limits at 95% confidence level on the doubly-charged Higgs boson mass are derived.
They vary from 95.5 to 100.2 GeV, depending on the decay mode. Doubly-charged Higgs bosons which couple to electrons
would modify the cross section and forward–backward asymmetry of the e+e− → e+e− process. The measurements of these
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quantities do not deviate from the Standard Model expectations and doubly-charged Higgs bosons with masses up to the order
of a TeV are excluded.
 2003 Published by Elsevier B.V.
1. Introduction

In the Standard Model of the electroweak inter-
actions [1] the masses of the fermions and bosons
are explained by the Higgs mechanism [2]. A con-
sequence of this mechanism is the existence of an
additional particle, the Higgs boson, which, to date,
has not been directly observed [3,4]. Extensions of
the Standard Model predict additional Higgs bosons
which can be lighter and hence accessible at current
experimental facilities. Among these, doubly-charged
Higgs bosons, H±±, are expected [5] in several scenar-
ios such as Higgs triplet models, left-right symmetric
models and, recently, little Higgs models [6].

Doubly-charged Higgs bosons can be light enough
[7] to be directly accessible in e+e− collisions at LEP
through the pair-production mechanism, depicted in
Fig. 1(a) and (b). In addition, they can contribute to
e+e− → e+e− scattering as sketched in Fig. 1(c), pro-
ducing measurable deviations in the cross section and
forward–backward asymmetries for masses of the or-
der of a TeV. This Letter describes the direct search for
pair-produced doubly-charged Higgs bosons and the
constraints derived from the precision measurement
of the e+e− → e+e− scattering. Data collected with
the L3 detector [8] at centre-of-mass energies,

√
s, up

to 209 GeV are used. Results from other LEP experi-
ments were recently reported [9].

The H±± couplings to charged leptons are para-
metrised by the parameters h``0 , where ` and `0 de-
note the charged lepton flavour. The search for pair-

1 Supported by the German Bundesministerium für Bildung,
Wissenschaft, Forschung und Technologie.

2 Supported by the Hungarian OTKA fund under contract
Nos. T019181, F023259 and T037350.

3 Also supported by the Hungarian OTKA fund under contract
No. T026178.

4 Supported also by the Comisión Interministerial de Ciencia y
Tecnología.

5 Also supported by CONICET and Universidad Nacional de La
Plata, CC 67, 1900 La Plata, Argentina.

6 Supported by the National Natural Science Foundation of
China.
produced doubly-charged Higgs bosons described be-
low assumes h``0 > 10−7 to ensure that the H±± de-
cays before entering the detector and he` < 10−3 to
suppress large contributions to the cross section from
the t-channel diagram of Fig. 1(b). The latter assump-
tion corresponds to a conservative estimate of the ex-
perimental sensitivities.

Doubly-charged Higgs bosons are conventionally
labeled as “left-handed” or “right-handed” [5], refer-
ring to different couplings rather than different he-

(a)

(b)

(c)

Fig. 1. (a) s-channel and (b) t-channel diagrams for the
pair-production of doubly-charged Higgs bosons, (c) u-channel
doubly-charged Higgs boson exchange in the e+e− → e+e−
process.



22 L3 Collaboration / Physics Letters B 576 (2003) 18–28
Table 1
Average centre-of-mass energies and corresponding integrated luminosities

√
s (GeV) 188.6 191.6 195.5 199.5 201.7 205.0 206.6

Luminosity (pb−1) 176.8 29.8 84.1 84.0 39.2 80.0 130.2
licities. Left-handed H±± couple to the Z boson and
the additional s-channel diagram results in a pair-
production cross section larger than for right-handed
H±±. The analysis discussed below concentrates on
the latter, less favourable, case. The cross section for
the e+e− → H++H−− process depends [10,11] only
on the mass of the doubly-charged Higgs boson, mH,
and on

√
s. For

√
s = 206 GeV, it varies from 1 pb for

mH = 60 GeV down to 0.1 pb for mH = 95 GeV.
Pair-production of doubly-charged Higgs bosons

produces events with four charged leptons whose
flavour depends on the h``0 coupling. In the following,
all six possible couplings are considered: hee, heµ,
heτ , hµµ, hµτ and hττ , with the hypothesis that only
one coupling at a time is different from zero, which
implies that both doubly-charged Higgs bosons in the
events have the same decay mode.

If the doubly-charged Higgs boson couples to elec-
trons, it contributes to the differential cross section of
the e+e− → e+e− process through interference with
the additional u-channel Feynman diagram depicted
in Fig. 1(c). This additional term is calculated [10] to
be proportional to

h2
ee

m2
H − u

,

where u = −s(1 + cosθ)/2 and θ is the electron
scattering angle. In the following, information on
hee and mH is extracted from the comparison of the
measured cross section and the forward–backward
asymmetry of the e+e− → e+e− process with the
Standard Model predictions and the doubly-charged
Higgs contribution.

2. Data and Monte Carlo samples

The search for pair-produced H±± uses 624.1 pb−1

of data collected at
√

s = 189–209 GeV. Table 1 de-
tails the average

√
s values for the different data tak-

ing periods and the corresponding integrated luminosi-
ties. Constraints on H±± contributions to the e+e− →
e+e− process are derived from these data and from an
additional 66.4 pb−1 collected at

√
s = 130–183 GeV.

For the optimisation of the selection and efficiency
studies, Monte Carlo events of the process e+e− →
H++H−− → `+`0+`−`0− are generated according to
the differential cross sections of Refs. [10,11]. Effects
of initial state radiation are included [12] in the
generation and final state radiation is modelled with
the PHOTOS [13] Monte Carlo. For each

√
s value

listed in Table 1, several mH points are considered:
mH = 45 GeV and from mH = 65 GeV up to the
kinematic limit

√
s/2, in steps of 5 GeV. For each mH

point, 5000 events are generated for each of the six
h``0 couplings. Decays of the tau leptons are described
with the TAUOLA [14] Monte Carlo program and
JETSET [15] is used to model hadrons produced in
these decays.

Standard Model processes are modelled with the
following Monte Carlo generators: KK2f [16] for
e+e− → qq̄(γ ), e+e− → µ+µ−(γ ) and e+e− →
τ+τ−(γ ), BHWIDE [17] for e+e− → e+e−(γ ), EX-
CALIBUR [18] for the four-fermion processes
e+e− → qq̄0eνe, e+e− → `+`−qq̄ and e+e− →
`+`−`0+`0−, PYTHIA [15] and KORALW [19] for
four-fermion final states of the e+e− → ZZ and
e+e− → W+W− processes, respectively, which are
not covered by the EXCALIBUR simulations and
PHOJET [20] and DIAG36 [21] for hadron and lep-
ton production in two-photon interactions, respec-
tively. The L3 detector response is simulated using the
GEANT program [22] which takes into account the
effects of energy loss, multiple scattering and show-
ering in the detector. Time-dependent detector ineffi-
ciencies, as monitored during the data taking periods,
are included in the simulations.

3. Search for pair-produced doubly-charged
Higgs bosons

The signature of the e+e− → H++H−− →
`+`0+`−`0− process consists of four leptons, whose
flavour depends on the h``0 coupling. For electrons,
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Table 2
Analyses used for the different couplings and the corresponding final states

Coupling H++H−− → Analyses

hee e+e+e−e− eeee, eeeγ
heµ e+µ+e−µ− eeµµ, eγµµ

heτ e+τ+e−τ− eeττ , ee–jet–jet, eγ –jet–jet
hµµ µ+µ+µ−µ− µµµµ, µµµ–MIP
hµτ µ+τ+µ−τ− µµ–jet–jet, µµττ

hττ τ+τ+τ−τ− ee–ττ , ee–jet–jet, eγ –jet–jet, µµ–jet–jet, µµττ , ττττ
muons or leptonically decaying tau leptons this signa-
ture is clean and little background is expected from
lepton pair-production and four-fermion processes.
Events with tau leptons which decay into hadrons have
a larger background from the four-fermion e+e− →
`+`−qq̄ process and from two-photon interactions.
The analysis proceeds from the identification of lep-
tons to the preselection of events compatible with the
signal signature. Finally, cuts on the lepton energies
and global event variables further reduce backgrounds.

Electrons are identified by requiring a well isolated
cluster in the electromagnetic calorimeter, formed
by at least two adjacent crystals, with an associated
track in the tracking chamber. The shower shape
of this cluster must be compatible with that of an
electromagnetic particle.

Muons are reconstructed by requiring tracks in
the muon spectrometer matched with tracks in the
central tracker. To reject cosmic background, muon
candidates must be in time with the beam crossing.

In addition to their leptonic decays, tau leptons are
identified by requiring low-multiplicity jets associated
with one, two or three tracks. Narrow and isolated
jets are selected by comparing their energy to that
deposited in 10◦ and 30◦ cones around the jet axes.

To increase the selection efficiency, two additional
classes of particles are considered: photons, which
correspond to electron candidates which fail the track
matching criteria, and minimum ionising particles in
the calorimeters, MIPs, having an associated track in
the central tracker, which tag muons.

Nine analyses are built which rely on the exclusive
identification of four leptons. They are denoted as:
eeee, eeeγ , eeµµ, eγµµ, eeττ , µµµµ, µµµ–MIP,
µµττ , and ττττ . Each analysis is used in the study of
one or more h``0 couplings, as summarised in Table 2.

In addition, three semi-inclusive selections are
devised to increase the selection efficiency for final
states with tau leptons decaying into hadrons. These
selections first identify an electron or a muon pair in
hadronic events, including the case in which one of
the electrons is tagged as a photon, and then force the
remaining particles of the event into two jets by means
of the DURHAM [23] algorithm. These two jets are
considered as tau lepton candidates. The selections
are denoted as: ee–jet–jet, eγ –jet–jet and µµ–jet–jet.
They are used for the analyses of the heτ , hµτ and hττ

couplings, as detailed in Table 2.

4. Event selection

Low-multiplicity events with more than three but
less than ten tracks and visible energy in excess of
0.3

√
s are selected. Two classes of events are ac-

cepted: events with at least three particles identified as
electrons, muons or tau leptons or events with two jets
and an electron or muon pair or one electron and one
photon. The numbers of events obtained by this pres-
election are given in Table 3, where the results of the
twelve different analyses are combined and presented
for the six h``0 couplings. Good agreement is observed
between data and Standard Model expectations.

Several discriminating variables are considered to
increase the sensitivity of the analysis.

• The energy of the most energetic lepton, E1, is
close to 0.5

√
s for the background from two-fermion

events, and peaks around 0.25
√

s for the signal, which
predicts a similar energy sharing for all leptons of the
event. A cut around E1 < 0.45

√
s is used by all twelve

selections. As an example, the distributions for the
eeeγ analysis are shown in Fig. 2(a).

• The energy of the second most energetic lepton
tends to be high for background events and peaked
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Table 3
Numbers of events observed in data, ND , expected from Standard Model processes, NB , and for a mH = 95 GeV signal, NS , after the
application of the preselection and final selection cuts. Final selection efficiencies, ε, for mH = 60–100 GeV are also given

Coupling Preselection Final results
ND NB NS ND NB NS ε (%)

hee 7 10.9 18.3 0 2.7 16.9 46–63
heµ 12 10.2 12.9 9 6.5 12.4 35–44
heτ 1308 1250 7.5 23 21.9 6.5 39–44
hµµ 0 1.0 10.6 0 0.7 9.2 28–32
hµτ 8 4.4 8.2 3 4.3 4.7 19–22
hττ 1318 1258 12.5 28 27.1 11.1 46–53

Fig. 2. Distributions for data, signal and background Monte Carlo of: (a) the energy of the most energetic lepton in the eeeγ analysis, (b) the
photon energy for the eγ –jet–jet analysis, (c) the energy of the third most energetic lepton for the eeµµ analysis and (d) the event transverse
momentum for the ee–jet–jet analysis. The arrows indicate the position of the cuts.
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around 0.25
√

s for the signal. A cut around 0.35
√

s

is applied for the ee–jet–jet and µµ–jet–jet analyses.
• The energy of the selected photon, Eγ , for initial

state radiation photons from fermion pair-production
has a high energy tail, as shown in Fig. 2(b) for the eγ –
jet–jet selection. A cut around Eγ < 0.3

√
s is applied

for all analyses which accept photons. For events of
the eeeγ and eγµµ analyses, an additional cut around
Eγ > 0.2

√
s is applied, to enforce the signal topology

which predicts lepton energies around 0.25
√

s.
• The energy of the third most energetic lepton,

E3, is low for the background from two-fermion
processes and non-resonant or single-resonant four-
fermion production and also peaks around 0.25

√
s for

the signal. A cut around E3 > 0.1
√

s is applied for
the eeµµ selection, whose distributions are shown in
Fig. 2(c).

• Events with jets in the final state suffer from
a potentially large background from two-photon pro-
cesses. This is reduced by requiring that an energy
less than 30 GeV is deposited in the calorimeters in
a 30◦ angle around the beam line and the projection
of the missing momentum vector on this direction
is less than 50 GeV. The presence of neutrinos in
tau lepton decays gives signal events a momentum
imbalance in the plane transverse to the beam axis, Pt ,
as shown in Fig. 2(d) for the ee–jet–jet analysis. A cut
Pt > 5 GeV is applied, further reducing events from
fermion pair-production and two-photon processes
which have small values of Pt .

The twelve selections listed in Table 2 are simulta-
neously applied and their yields are combined for the
six couplings. The nine selections without jets in the
final state are largely complementary, while a large
overlap is observed between the ee–jet–jet and eeττ

selections. Additional selections like eeγ γ and µ–
MIP–jet–jet are found not to increase the signal sen-
sitivity.

5. Results and interpretation

Table 3 compares the number of events observed
after final selection with the Standard Model expecta-
tions. Good agreement is observed and no evidence
is found for a signal due to doubly-charged Higgs
bosons. The number of expected signal events for
mH = 95 GeV and the selection efficiencies for the
range mH = 60–100 GeV are also given.

The sensitivity of the analysis is enhanced by the
reconstruction of the mass of the candidate Higgs
bosons. For each coupling, all pairings of leptons with
a flavour consistent with doubly-charged Higgs bo-
son decay are considered and their invariant and recoil
masses are calculated. The pairing with the smallest
difference between these two masses is retained and
their average is used as an estimate of mH. The dis-
tributions of the reconstructed mass for data, Standard
Model and signal Monte Carlo are presented in Fig. 3.
No structure possibly due to a doubly-charged Higgs
signal is observed.

Fig. 3. Distributions for data, signal and background Monte Carlo
of the reconstructed Higgs mass for the: (a) hee, (b) heµ, (c) heτ ,
(d) hµµ, (e) hµτ and (f) hττ couplings.
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Fig. 4. Observed and expected limits on the cross section of doubly-charged Higgs boson pair-production times its branching ratio in a given
final state as a function of mH for the: (a) hee, (b) heµ , (c) heτ and (d) hµµ couplings. The expected cross section for the s-channel production
of a right-handed doubly-charged Higgs boson is also shown.
In the absence of a signal, upper limits on the
production cross section of doubly-charged Higgs
bosons are derived as a function of mH and con-
verted to lower limits on mH. The log–likelihood ra-
tio technique [4] is used to calculate the observed and
expected 95% confidence level cross section limits,
presented, as a function of mH for the different cou-
plings, in Figs. 4 and 5. Cross sections between 0.1
and 0.01 pb are excluded, depending on mH and on
the coupling.

The limits include systematic uncertainties on the
signal efficiency and the background normalisation.
These follow from uncertainties in the determination
of the energy scale of the detector, on the event
selection and lepton identification criteria, on Monte
Carlo statistics and on the cross section of the Standard



L3 Collaboration / Physics Letters B 576 (2003) 18–28 27
Fig. 5. Observed and expected limits on the cross section of doubly-charged Higgs boson pair-production times its branching ratio in a given
final state as a function of mH for the: (a) hµτ and (b) hττ couplings. The expected cross section for the s-channel production of a right-handed
doubly-charged Higgs boson is also shown.
Table 4
Systematic uncertainties on the signal efficiencies and on the
background levels for the different couplings

Coupling Signal (%) Background (%)

hee 1.8 16.8
heµ 1.8 14.5
heτ 1.8 9.3
hµµ 1.8 15.1
hµτ 1.4 10.7
hττ 3.2 10.4

Table 5
Observed and expected limits on mH at 95% confidence level

Coupling Observed (GeV) Expected (GeV)

hee 100.2 100.1
heµ 99.8 99.7
heτ 97.2 95.5
hµµ 99.4 99.1
hµτ 95.5 93.8
hττ 97.3 97.6

Model background processes. Table 4 gives the total
systematic uncertainties for the different couplings.
These uncertainties reduce the sensitivity by a few
hundred MeV.

Lower limits on mH are extracted by comparing the
cross section upper limits with the known cross section
of the process e+e− → H++H−− [10,11]. The most
conservative scenario of a right-handed H±± and the
absence of a t-channel contribution to H±± production
is considered. The observed limits vary from 95.5 GeV
to 100.2 GeV, depending on the coupling and are listed
in Table 5 together with the expected ones.

6. Constraints from Bhabha scattering

The measurements of the cross sections and
forward–backward asymmetries of the e+e− → e+e−
process in 243.7 pb−1 of data at

√
s = 130–189 GeV

are described in Ref. [24] and found to be in good
agreement with the Standard Model predictions [25,
26]. Similar analyses are applied to 446.8 pb−1 of data
collected at

√
s = 192–209 GeV. The results are also

in good agreement with the Standard Model predic-
tions, and show no evidence for the exchange of a
doubly-charged Higgs boson.

A fit for hee is performed to the measured cross sec-
tions and forward–backward asymmetries for

√
s =

130–209 GeV and several hypotheses on the value of
mH. Experimental systematic uncertainties [24] and
uncertainties on the Standard Model predictions [27]
are taken into account in the fit. Upper limits on hee
at 95% confidence level are derived as a function of
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Fig. 6. Region in the hee vs. mH plane excluded by the study of the
e+e− → e+e− process.

mH and shown in Fig. 6. The exclusion region for
hee > 0.7 extends to the TeV scale and is comple-
mentary to that derived here from the search for pair-
production of doubly-charged Higgs bosons.
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