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Abstract A search for neutral Higgs bosons of the minimal
supersymmetric standard model (MSSM) and for a heavneu-
tral Z � boson is performed using a data sample corresponding
to an integrated luminosity of 3.2 fb−1 from proton–proton
collisions at

√
s = 13 TeV recorded by the ATLAS detector

at the LHC. The heavy resonance is assumed to decay to a
τ+τ− pair with at least one τ lepton decaying to final states
with hadrons and a neutrino. The search is performed in the
mass range of 0.2–1.2 TeV for the MSSM neutral Higgs
bosons and 0.5–2.5 TeV for the heavy neutral Z � boson. The
data are in good agreement with the background predicted by
the Standard Model. The results are interpreted in MSSM and
Z � benchmark scenarios. The most stringent constraints on
the MSSM mA–tan β space exclude at 95 % confidence level
(CL) tan β > 7.6 for mA = 200 GeV in the mmod+

h MSSM
scenario. For the Sequential Standard Model, a Z �

SSM mass
up to 1.90 TeV is excluded at 95 % CL and masses up to
1.82–2.17 TeV are excluded for a Z �

SFM of the strong flavour
model.
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1 Introduction

The discovery of a scalar particle at the LHC [1,2] has pro-
vided important insight into the mechanism of electroweak
symmetry breaking. Experimental studies of the new parti-
cle [3–7] demonstrate consistency with the standard model
(SM) Higgs boson [8–13]. However, it remains possible that
the discovered particle is part of an extended scalar sector,
a scenario that is favoured by a number of theoretical argu-
ments [14,15].

The minimal supersymmetric standard model (MSSM)
[16–20] is the simplest extension of the SM that includes
supersymmetry. The MSSM requires two Higgs doublets of
opposite hypercharge. Assuming that CP symmetry is con-
served, this results in one CP-odd (A) and two CP-even (h, H )
neutral Higgs bosons and two charged Higgs bosons (H±).
At tree level, the properties of the Higgs sector in the MSSM
depend on only two non-SM parameters, which can be cho-
sen to be the mass of the CP-odd Higgs boson, mA, and
the ratio of the vacuum expectation values of the two dou-
blets, tan β. Beyond tree level, additional parameters affect
the Higgs sector, the choice of which defines various MSSM
benchmark scenarios. In some scenarios, such asmmod+

h [21],
the top-squark mixing parameter is chosen such that the mass
of the lightest CP-even Higgs boson, mh , is close to the mea-
sured mass of the Higgs boson that was discovered at the
LHC. A different approach is employed in the hMSSM sce-
nario [22,23] in which the value of mh can be used, with
certain assumptions, to predict the remaining masses and
couplings of the MSSM Higgs bosons without explicit ref-
erence to the soft supersymmetry-breaking parameters. The
couplings of the MSSM heavy Higgs bosons to down-type
fermions are enhanced with respect to the SM for large tan β
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values, resulting in increased branching fractions to τ lep-
tons and b-quarks,1 as well as a higher cross section for
Higgs boson production in association with b-quarks. This
has motivated a variety of searches for a scalar boson in ττ

and bb final states at LEP [24], the Tevatron [25–27] and the
LHC [28–32].

Heavy Z � gauge bosons appear in several models [33–
37] and are a common extension of the SM [38]. Such Z �
bosons can appear in theories extending the electroweak
gauge group, where lepton universality is typically con-
served. A frequently used benchmark is the sequential stan-
dard model (SSM) [39], which contains a single additional
Z � boson with the same couplings as the SM Z boson. Some
models offering an explanation for the high mass of the top-
quark, predict instead that such bosons couple preferentially
to third-generation fermions [40–43]. A model predicting
additional weak gauge bosons Z � and W � coupling preferen-
tially to third-generation fermions is the strong flavour model
(SFM) [41,43].

Direct searches for high-mass resonances decaying to ττ

have been performed by the ATLAS [44] and CMS [45] col-
laborations using 5 fb−1 of integrated luminosity at

√
s =

7 TeV. ATLAS [46] updated the search with 20 fb−1 of
integrated luminosity at

√
s = 8 TeV. Indirect limits on Z �

bosons with non-universal flavour couplings have been set
based on measurements from LEP [47].

This paper presents the results of a search for neutral
MSSM Higgs bosons as well as high-mass Z � resonances
in the ττ decay mode using 3.2 fb−1 of proton–proton col-
lision data collected with the ATLAS detector [48] in 2015
at a centre-of-mass energy of 13 TeV. The search is per-
formed for the τlepτhad and τhadτhad decay modes, where τlep

represents the decay of a τ lepton to an electron or a muon
and neutrinos and τhad represents the decay to one or more
hadrons and a neutrino. The search considers narrow reso-
nances in the mass range of 0.2–1.2 TeV and tan β range of
1–60 for the MSSM Higgs bosons. For the Z � boson search,
the mass range of 0.5–2.5 TeV is considered. Higgs boson
production through gluon–gluon fusion and in association
with b-quarks is considered (Fig. 1a–c), with the latter mode
dominating for high tan β values. Hence both the τlepτhad and
τhadτhad channels are split into b-tag and b-veto categories,
based on the presence or absence of jets originating from b-
quarks in the final state. Since a Z � boson is expected to be
predominantly produced via a Drell–Yan process (Fig. 1d),
there is little gain in splitting the data into b-tag and b-veto
categories. Hence, the Z � analysis uses an inclusive selection
instead.

1 Throughout this paper the inclusion of charge-conjugate decay modes
is implied.

(a) (b)

(c) (d)

Fig. 1 Lowest-order Feynman diagrams for a gluon–gluon fusion and
b-associated production in the b four-flavour and c five-flavour schemes
of a neutral MSSM Higgs boson. Feynman diagram for Drell–Yan pro-
duction of a Z � boson at lowest order (d)

2 Data sample and Monte Carlo simulation

The ATLAS detector [48] at the LHC consists of an inner
tracking detector with a coverage in pseudorapidity2 up to
|η| = 2.5 surrounded by a thin superconducting solenoid
providing a 2 T axial magnetic field, electromagnetic and
hadronic calorimeters extending up to |η| = 4.9 and a muon
spectrometer covering |η| < 2.7. A new innermost layer
was added to the pixel tracking detector after the end Run-
1 at a radial distance of 3.3 cm from the beam line [49,50].
The ATLAS trigger system consists of a hardware-based first
level trigger, followed by a software-based high-level trigger
(HLT). The integrated luminosity used in this search, con-
sidering the data-taking periods of 2015 in which all relevant
detector subsystems were operational, is 3.2 fb−1. The lumi-
nosity measurement and its uncertainty are derived following
a methodology similar to that detailed in Ref. [51], from a cal-
ibration of the luminosity scale using x–y beam-separation
scans performed in August 2015.

2 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre of
the LHC ring, and the y-axis points upwards. Cylindrical coordinates
(r, φ) are used in the transverse plane, φ being the azimuthal angle
around the beam pipe. The pseudorapidity is defined in terms of the
polar angle θ as η = − ln tan(θ/2). Angular distance is measured in
units of �R ≡ �

(�η)2 + (�φ)2.
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Simulated events with a heavy neutral MSSM Higgs boson
produced via gluon–gluon fusion and in association with b-
quarks are generated with the POWHEG-BOX v2 [52–54]
and MADGRAPH5_aMC@NLO 2.1.2 [55,56] programs,
respectively. The CT10 [57] and CT10nlo_nf4 [58] sets of
parton distribution functions (PDFs) are used, respectively.
PYTHIA 8.210 [59] with the AZNLO [60] (A14 [61])
set of tuned parameters, or “tune”, is used for the parton
shower, underlying event and hadronization in the gluon–
gluon fusion (b-associated) production. The production cross
sections for the various MSSM scenarios are calculated using
SusHi [62] for gluon fusion production [63–75] and b-
associated production in the five-flavour scheme [76]; b-
associated production in the four-flavour scheme is calcu-
lated according to Refs. [77,78]. The final b-associated pro-
duction cross section is obtained by using the method in
Ref. [79] to match the four-flavour and five-flavour scheme
cross sections. The masses and the couplings of the Higgs
bosons are computed with FeynHiggs [80–84], whereas
the branching fraction calculation follows the procedure
described in Ref. [85]. In the case of the hMSSM scenario, the
procedure described in Ref. [23] is followed for the produc-
tion cross sections andHDECAY [86] is used for the branching
fraction calculation.

The Z � signals are simulated by reweighting a leading-
order (LO) Z/γ ∗ → ττ sample using the TauSpinner
algorithm [87–89] to account for spin effects in the τ decays.
The Z/γ ∗ → ττ sample, enriched with high invariant mass
events, is generated with PYTHIA 8.165 [90] using the
NNPDF2.3LO PDF set [91] and the A14 tune for the under-
lying event. Interference between the Z � signals and the SM
Z/γ ∗ production is not included.

The simulated backgrounds consist of the production of
Z+jets, W+jets, t t̄ pairs, single top quarks and electroweak
dibosons (WW/WZ/Z Z ). These are modelled with sev-
eral event generators as described below, while contribu-
tions from multi-jet production are estimated with data as
described in Sect. 5.

Simulated samples of Z+jets events for the τlepτhad and
τhadτhad channels and W+jets events for the τlepτhad chan-
nel are produced using POWHEG-BOX v2 interfaced to
PYTHIA 8.186 with the AZNLO tune. In this sample,
PHOTOS++ v3.52 [92,93] is used for final-state QED
radiation. A dedicated W+jets sample binned in pWT , pro-
duced using the SHERPA 2.1.1 generator [94], is used in
the τhadτhad channel in order to enhance the number of events
with high invariant mass. For this sample, matrix elements
are calculated for up to two partons at next-to-leading order
(NLO) and four partons at LO, merged with theSHERPA par-
ton shower model using the ME+PS@NLO prescription [95].
Spin correlation effects between the W boson and its decay
products are simulated with the TauSpinner program. All
W /Z+jets samples use the CT10 PDF set and are normalized

to the next-to-next-to-leading-order (NNLO) cross sections
calculated using FEWZ [96–98].

The POWHEG-BOX v2 program with the CT10 PDF set
is used for the generation of t t̄ pairs and single top quarks
in the Wt- and s-channels. Samples of t-channel single-
top-quark events are produced with the POWHEG-BOX v1
generator employing the four-flavour scheme for the NLO
matrix element calculations together with the fixed four-
flavour scheme PDF set CT10f4; the top-quark decay is simu-
lated with MadSpin [99]. For all samples of top-quark pro-
duction, the spin correlations are preserved and the parton
shower, fragmentation and underlying event are simulated
usingPYTHIA 6.428 [100] with the CTQ6L1 PDF set and
the corresponding Perugia 2012 tune [101]. Final-state QED
radiation is simulated using PHOTOS++ v3.52. The top-
quark mass is set to 172.5 GeV. The t t̄ production sample is
normalized to the NNLO cross section, including soft-gluon
resummation to next-to-next-to-leading-logarithm accuracy
(Ref. [102] and references therein). The normalization of the
single-top-quark event samples uses an approximate NNLO
calculation from Refs. [103–105].

Finally, diboson processes are simulated using the
SHERPA 2.1.1 program with the CT10 PDF. They are
calculated for up to one additional parton at NLO, depend-
ing on the process, and up to three additional partons at LO.
The diboson samples use the NLO cross sections SHERPA
calculates.

The simulation of b- and c-hadron decays for all sam-
ples, excluding those generated withSHERPA, usesEvtGen
v1.2.0 [106]. All simulated samples include the effect of
multiple proton-proton interactions in the same and neigh-
bouring bunch crossings (“pile-up”) by overlaying simu-
lated minimum-bias events on each generated signal or back-
ground event. These minimum-bias events are generated with
PYTHIA 8.186 [90,100], using the A2 tune [107] and the
MSTW2008LO PDF [108]. Each sample is simulated using
the full GEANT4 [109,110] simulation of the ATLAS detec-
tor, with the exception of the b-associated MSSM Higgs
boson signal, for which the ATLFAST-II [110,111] fast
simulation framework is used. Finally, the Monte Carlo (MC)
samples are processed through the same reconstruction soft-
ware as for the data.

3 Object reconstruction and identification

The primary vertex of each event is chosen as the proton–
proton vertex candidate with the highest sum of the squared
transverse momenta of all associated tracks. Electron can-
didates are reconstructed from energy deposits in the elec-
tromagnetic calorimeter associated with a charged-particle
track measured in the inner detector. The final electron candi-
dates are required to pass the “loose” likelihood-based iden-
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tification selection [112,113], to have a transverse energy
ET > 15 GeV and to be in the fiducial volume of the inner
detector, |η| < 2.47. The transition region between the barrel
and end-cap calorimeters (1.37 < |η| < 1.52) is excluded.

Muon candidates are reconstructed from track segments
in the muon spectrometer, matched with tracks found in the
inner detector within |η| < 2.5. The tracks of the final muon
candidates are refit using the complete track information from
both detector systems and are required to have a transverse
momentum pT > 15 GeV and to pass the “loose” muon
identification requirements [114].

Both the electrons and muons are required to pass a pT-
dependent isolation selection, which utilizes both calorimet-
ric and tracking information, with an efficiency of 90 %
(99 %) for transverse momentum of pT = 25 (60) GeV.
The isolation provides an efficiency that grows as a func-
tion of lepton pT, since the background from jets faking lep-
tons becomes less important as the lepton pT increases. The
contributions from pile-up and the underlying event activity
are corrected on an event-by-event basis using the ambient
energy density technique [115].

Jets are reconstructed from topological clusters [116] in
the calorimeter using the anti-kt algorithm [117], with a
radius parameter value R = 0.4. To reduce the effect of
pile-up, a jet vertex tagger algorithm is used for jets with
pT < 50 GeV and |η| < 2.4. It employs a multivariate
technique based on jet energy, vertexing and tracking vari-
ables to determine the likelihood that the jet originates from
pile-up [118]. In order to identify jets containing b-hadrons
(b-jets), a multivariate algorithm is used [119,120]. A work-
ing point that corresponds to an average efficiency of 70 %
for b-jets in t t̄ simulated events is chosen. The misidentifi-
cation rates for c-jets, τ -jets and jets initiated by light quarks
or gluons for the same working point and in the same sam-
ple of simulated t t̄ events are approximately 10, 4 and 0.2 %
respectively.

Hadronic decays of τ leptons are predominantly character-
ized by the presence of one or three charged particles, accom-
panied by a neutrino and possibly neutral pions. The recon-
struction of the visible decay products, hereafter referred to
as τhad−vis, starts with jets with pT > 10 GeV. The τhad−vis

candidate must have energy deposits in the calorimeters in
the range |η| < 2.5, with the transition region between the
barrel and end-cap calorimeters excluded. Additionally, they
must have pT > 20 GeV, one or three associated tracks and
an electric charge of ±1. A multivariate boosted decision tree
(BDT) identification, based on calorimetric shower shape and
track multiplicity of the τhad−vis candidates, is used to reject
backgrounds from jets. In this analysis, two τhad−vis identifi-
cation criteria are used: “loose” and “medium” with efficien-
cies measured in Z → ττ decays of about 60 % (50 %) and
55 % (40 %) for one-track (three-track) τhad−vis candidates,
respectively [121]. An additional dedicated likelihood-based

veto is used to reduce the number of electrons misidentified
as τhad−vis.

Signals in the detector can be used in more than one recon-
structed object. Objects that have a geometric overlap are
removed according to the following priorities:

• Jets within a �R = 0.2 cone around a selected τhad−vis

are excluded.
• Jets within a �R = 0.4 cone around an electron or muon

are excluded.
• Any τhad−vis within a �R = 0.2 cone around an electron

or muon is excluded.
• Electrons within a �R = 0.2 cone around a muon are

excluded.

The missing transverse momentum (Emiss
T ) is calculated

as the modulus of the negative vectorial sum of the pT of
all fully reconstructed and calibrated jets and leptons [122].
This procedure includes a “soft term”, which is calculated
based on the inner-detector tracks originating from the pri-
mary vertex that are not associated to reconstructed objects.

4 Search channels

4.1 τlepτhad channel

Events in the τlepτhad channel are recorded using single-muon
triggers and a logical-OR combination of single-electron trig-
gers. Single-electron triggers with pT thresholds of 24 GeV,
60 GeV and 120 GeV are used for the τeτhad channel. For the
τμτhad channel, a single-muon trigger with a pT threshold of
50 GeV is used if the muon pT is larger than 55 GeV and a
single-muon trigger with a pT threshold of 20 GeV is used
otherwise. The triggers impose electron and muon quality
requirements which are tighter for the triggers with lower pT

thresholds.
Events must have at least one identified τhad−vis candidate

and either one electron or one muon candidate which is geo-
metrically matched to the HLT object that triggered the event.
Events with more than one electron or muon fulfilling the cri-
teria described in Sect. 3 are rejected in order to reduce the
backgrounds from Z/γ ∗ → 

 production, where 
 = e, μ.
The selected lepton must have a transverse momentum pT >

30 GeV and pass the “medium” identification requirement.
The τhad−vis candidate is required to have pT > 25 GeV,

pass the “medium” BDT-based identification requirement
and lie in the range |η| < 2.3. The latter requirement is moti-
vated by a larger rate of electrons misidentified as τhad−vis

candidates at higher |η| values: the rate is above 10 % for
|η| > 2.3, while it ranges from 0.5 to 3 % for lower |η| val-
ues. If there is more than one τhad−vis candidate, the candidate
with the highest pT is selected and the others are treated as
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Fig. 2 The distributions of a mT(
, Emiss
T ) in the τlepτhad channel and

b �φ(τhad−vis,1, τhad−vis,2) for the τhadτhad channel for the inclusive
selection with the criterion for the variable displayed removed. The label

“Others” in b refers to contributions due to diboson, Z(→ 

)+jets and
W (→ 
ν)+jets production. Bins have a varying size and overflows are
included in the last bin of the distribution on the left

jets. Finally, the identified lepton and the τhad−vis are required
to have opposite electric charge.

Subsequently, the following selection requirements are
applied:

• �φ(τhad−vis, 
) > 2.4.

• mT(
, Emiss
T ) ≡

�
2pT(
)Emiss

T

�
1 − cos �φ(
, Emiss

T )
�

< 40 GeV.
• For the τeτhad channel, events are vetoed if the invariant

mass of the electron and the visible τ lepton decay prod-
ucts is in the range 80 < mvis(e, τhad−vis) < 110 GeV.

The requirement on �φ(τhad−vis, 
) gives an overall
reduction of SM backgrounds with little signal loss. The
requirement on mT(
, Emiss

T ), the distribution of which is
shown in Fig. 2a, serves to remove events that originate from
processes containing a W boson: in signal events, the missing
transverse momentum is usually in the same direction as the
τlep, resulting in a low value of mT(
, Emiss

T ). The require-
ment onmvis(e, τhad−vis) reduces the contribution of Z → ee
decays, where an electron is misidentified as a τhad−vis can-
didate. These selection criteria define the inclusive τlepτhad

selection.

4.2 τhadτhad channel

Events in the τhadτhad channel are selected by a trigger that
requires a single τhad−vis satisfying the “medium” τhad−vis

identification criterion with pT > 80 GeV. The leading
τhad−vis candidate in pT must geometrically match the HLT
object. A pT requirement is applied to the leading τhad−vis

candidate, pT > 110 GeV, and to the sub-leading τhad−vis

candidate, pT > 55 GeV. Furthermore, the leading (sub-
leading) τhad−vis candidate has to satisfy the “medium”
(“loose”) τhad−vis identification criterion. Events with elec-
trons or muons fulfilling the loose selection criteria described
in Sect. 3 (with the exception of the isolation requirement)
are vetoed to reduce electroweak background processes and
guarantee orthogonality with the τlepτhad channel.

The leading and sub-leading τhad−vis candidates must have
opposite electric charge and have a back-to-back topology in
the transverse plane, �φ(τhad−vis,1, τhad−vis,2) > 2.7. The
distribution of �φ(τhad−vis,1, τhad−vis,2) before this require-
ment is shown in Fig. 2b. This selection defines the inclusive
τhadτhad selection.

4.3 Event categories

In the search for Z � bosons, the event selections described
in Sects. 4.1 and 4.2 result in a signal selection efficiency3

varying between 0.8 % (2.0 %) at mZ � = 500 GeV and 3.4 %
(3.8 %) at mZ � = 2.5 TeV for the τlepτhad (τhadτhad) chan-
nel. In the search for the H/A bosons, events satisfying the
inclusive selection are categorized to exploit the two different
signal production modes as follows:

• b-veto: no b-tag jets in the event,
• b-tag: at least one b-tag jet in the event.

3 The term “signal selection efficiency” refers to the fraction of signal
events decaying to τlepτhad or τhadτhad that are subsequently recon-
structed within the detector acceptance and pass the selection require-
ments.
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In the b-veto category, the H/A signal selection efficiency
varies between 2 % at mA = 200 GeV and 7 % at mA =
1.2 TeV for the gluon–gluon fusion production mode in the
τlepτhad channel, and from 0.1 to 15 % in the τhadτhad channel
for the same mass range. In the b-tagging category, the signal
selection efficiency varies from 0.5 % at mA = 200 GeV to
2% at mA = 1.2 TeV for the b-associated production mode
in the τlepτhad channel, and from 0.1 to 6 % in the τhadτhad

channel.

4.4 Di-tau mass reconstruction

The di-tau mass reconstruction is critical in achieving good
separation between signal and background. However, its
reconstruction is challenging due to the presence of neutrinos
from the τ lepton decays. The mass reconstruction used for
both the τhadτhad and τlepτhad channels is the total transverse
mass, defined as

mtot
T =

�
m2

T(Emiss
T , τ1) + m2

T(Emiss
T , τ2) + m2

T(τ1, τ2),

(1)

where mT(a, b) is defined as

mT(a, b) = �
2pT(a)pT(b)[1 − cos �φ(a, b)] (2)

and τ refers to the visible decay of the τ lepton (
 or τhad−vis).
More complex mass reconstruction techniques were investi-
gated, but they did not improve the expected sensitivity.

5 Background estimation

The background processes can be categorized according to
whether the electron/muon and/or the τhad−vis are correctly
identified. Backgrounds from processes with correctly iden-
tified τhad−vis, electrons and muons, or where the τhad−vis

is due to a misidentified electron/muon in the τlepτhad chan-
nel, are estimated from simulation. Data-driven techniques
are used for processes where the τhad−vis, or both the lepton
and τhad−vis are misidentified. The background contributions
originating from processes where only the lepton is misiden-
tified are found to be negligible.

5.1 τlepτhad background estimate

The main backgrounds in the τlepτhad channel arise from
Z → ττ production, followed by processes with a misiden-
tified τhad−vis in the b-veto category and t t̄ production, with
either a true τ lepton or a jet misidentified as a τhad−vis, in
the b-tag category.

Background processes where the τhad candidate, or both
the lepton and τhad candidates, arise from misidentified jets

are dominated by W+jets (t t̄) and multi-jet processes, for
the b-veto (b-tag) category. A data-driven “fake factor” (FF)
technique is used to estimate the contribution of these pro-
cesses to the signal region. The fake factors are derived sep-
arately for the b-veto and b-tag categories using fake factor
control regions (see Table 1) dominated by a particular back-
ground process (Pr), and are defined as:

FF(Pr) = N (nominalτhad−visID, Pr)

N (anti-τhad−visID, Pr)
, (3)

where N (nominalτhad−visID, Pr) is the number of τhad−vis

candidates in data satisfying the “medium” τhad−vis identifi-
cation criterion and N (anti-τhad−visID, Pr) is the number of
τhad−vis candidates failing this criterion but meeting a loose
requirement on the BDT score. The latter requirement defines
the “anti-τhad” sub-region, which selects the same kind of
objects mimicking τhad−vis candidates as those fulfilling the
identification criteria. The true τhad contamination in the fake
factor control regions is subtracted using simulation. In all
the control regions, the fake factors are parameterized as a
function of the transverse momentum and number of tracks
of the reconstructed τhad−vis object.

The fake factor for W+jets and t t̄ backgrounds, FF(W+
jets/t t̄), is measured in a fake factor control region that is
identical to the signal region, except that the mT(
, Emiss

T )

selection criterion is reversed tomT(
, Emiss
T ) > 60 (70)GeV

for the τμτhad (τeτhad) channel. The purity of the W+jets
background in the b-veto category of the control region is
about 95%, while in the b-tag category both the W+jets and
t t̄ processes contribute. The fake factor value for the b-tag
category was found to be compatible with the value corre-
sponding to the b-veto category. To improve the statistical
precision, the fake factor measured in a control region with-
out requirements on the number of b-tags is used for the b-tag
category. The same fake factor is used in the search for the Z �
boson. For multi-jet events (MJ), the fake factor FF(MJ) is
measured in a fake factor control region defined by inverting
the isolation requirement on the electron or muon. The purity
of multi-jet events in this control region exceeds 99 %. The
fake factors are derived separately for the b-veto and b-tag
categories by requiring nob-tag and at least oneb-tag, respec-
tively. For the Z � analysis, nob-tag requirement is considered.

The shapes and normalization of background contribu-
tions in the signal region are then estimated by applying these
fake factors to events that pass the anti-τhad region selec-
tion but otherwise satisfy all signal region requirements. In
this analysis, the fake factors are combined and weighted by
the predicted contribution of each background process to the
anti-τhad region:

FF(comb) = FF(W + jets/t t̄) × rW/t t̄ + FF(MJ) × rMJ,

(4)
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Table 1 Description of the
control regions used in the
τlepτhad and τhadτhad channels

τlepτhad signal region �φ(τ, 
) > 2.4, mT(
, Emiss
T ) < 40 GeV,

Veto 80 < me,τ < 110 GeV for τeτhad,

Nb-tag ≥ 1 (b-tag category), Nb-tag = 0 (b-veto category) or

no requirement (Z � category)

W+jets/t t̄ fake factor control
region

mT(
, Emiss
T ) > 70 (60) GeV for τeτhad (τμτhad),

different τhad−vis identification for anti-τhad sub-region

t t̄ validation region Nb-tag ≥ 1, mT(
, Emiss
T ) > 100 GeV

Multi-jet fake factor control region Invert e, μ isolation requirement,

different τhad−vis identification for anti-τhad sub-region

Multi-jet control region for mT(
, Emiss
T ) < 30 GeV, no e, μ isolation requirement,

rMJ estimation no τhad−vis passing loose identification,

Njet ≥ 1 (b-veto category), Njet ≥ 2 (b-tag category)

Control region for correction of
electrons misidentified as τhad−vis

80 < me,τ < 110 GeV for 1-track τhad−vis

90 < me,τ < 100 GeV for 3-track τhad−vis

τhadτhad selection �φ(τhad−vis,1, τhad−vis,2) > 2.7,

Nb-tag ≥ 1 (b-tag category), Nb-tag = 0 (b-veto category) or

no requirement (Z � category)

Multi-jet fake factor control region Pass single-jet trigger, leading τhad−vis fails medium identification,

no tracks, nor charge requirements for leading τhad−vis,

p
τhad−vis ,2
T

p
τhad−vis ,1
T

> 0.3, no �φ(τhad−vis,1, τhad−vis,2) requirement

Fake-rate control region Pass single-muon trigger, isolated muon with pT > 55 GeV,

τhad−vis with pT > 50 GeV, �φ(μ, τhad−vis) > 2.4,
�

L=μ,τ cos �φ(L , Emiss
T ) < 0 (for b-veto category only)

W → μν control region for Pass single-muon trigger, isolated muon with pT > 110 GeV,

W+jets mtot
T correction τhad−vis with pT > 55 GeV

where rMJ denotes the fraction of multi-jet events in the anti-
τhad region and rW/t t̄ = 1−rMJ. This neglects the differences
between the fake factors for W+jets/t t̄ and other processes,
such as Z production. The parameter rMJ is estimated, sepa-
rately for the b-veto and b-tag categories, in two steps using a
data-driven method. First, the rates at which jets are misiden-
tified as electrons or muons are measured from the ratio
of leptons passing and failing the lepton isolation require-
ment in a region enriched in multi-jet events. This multi-jet
control region is defined in Table 1. The predicted multi-jet
rate is then applied to events in the anti-τhad sub-region that
also fail the lepton isolation, in order to calculate rMJ as a
function of τhad−vis pT separately for the τeτhad and τμτhad

channels. When the fake factor is applied to the anti-τhad

sub-region events, the contributions from correctly identi-
fied τhad−vis and from electrons and muons misidentified as
τhad−vis candidates are subtracted using the default MC sim-
ulation described in Sect. 2.

Background processes where the electron or the muon
is identified as a τhad−vis object are modelled using sim-
ulation. The main source of such backgrounds is Z(→

ee)+jets events in the τeτhad channel, which are reduced using
the mvis(e, τhad) mass-window veto described in Sect. 4.1.
To account for mismodelling of electrons misidentified as
τhad−vis objects in Z → ee+jets events, the simulation is
corrected as a function of the lepton η using data control
regions defined by reversing the mass-window criterion, as
listed in Table 1. The correction amounts to 15 % for three-
track τhad−vis, while for the one-track τhad−vis objects the cor-
rection varies from 20 % in the barrel region to up to 200 %
in the end-cap region.

The mtot
T distributions in the τlepτhad channel are shown

in Fig. 3a, b for the W+jets control region and the t t̄ valida-
tion region, respectively. The latter is identical to the b-tag
category definition, except for themT(
, Emiss

T ) requirement,
which is reversed to mT(
, Emiss

T ) > 100 GeV.

5.2 τhadτhad background estimate

The dominant background process for the τhadτhad channel
is multi-jet production, the cross section of which is several
orders of magnitude higher than that of the signal processes.
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Fig. 3 The distributions of mtot
T in a the τlepτhad channel W+jets con-

trol region, b the t t̄ validation region of the τlepτhad channel, c the
τhadτhad channel b-veto same-sign validation region and d the τhadτhad
channel b-tag same-sign validation region. The various control and val-
idation regions are defined in Table 1. The data are compared to the
background prediction and a hypothetical MSSM H/A → ττ signal

(mA = 500 GeV and tan β = 20). The Monte Carlo statistics of the
signal is limited in the background-dominated regions. The label “Oth-
ers” in c and d refers to contributions due to diboson, Z(→ 

)+jets
and W (→ 
ν)+jets production. The background uncertainty includes
statistical and systematic uncertainties. The bins have a varying size and
overflows are included in the last bin of the distributions

Despite the large suppression of this background thanks to
the event selection, a sizeable contribution of events with two
jets misidentified as τhad−vis candidates remains. A fake fac-
tor technique is used to normalize and model this background.
Fake factors parameterized as a function of pT(τhad−vis)

and the number of tracks are derived from a control region
enriched with multi-jet events, described in Table 1. The fac-
tors are derived independently for the b-tag and b-veto cate-
gories in the search for H/A bosons, and inclusively in the
search for Z � bosons. They are then applied to data events
where the leading τhad−vis has passed the τhad−vis identifica-
tion requirement in the signal region, while the sub-leading
τhad−vis candidate has passed only a loose requirement on the

BDT score. The contributions from non-multi-jet production
processes are subtracted using simulation.

For t t̄ andW+jets events, along with other simulated back-
ground processes, the probability of a jet being misidentified
as a τhad−vis is modelled with a “fake-rate” technique. The
rates of jets being misidentified as a τhad−vis are measured
from data as a function of the transverse momentum and
number of tracks of the reconstructed τhad−vis. The fake-rate
control regions are described in Table 1 and are enriched in
W (→ μν)+jets for the b-veto category and t t̄ events for the
b-tag category,

The fake rate is then applied to the simulated events as a
weight for each of the reconstructed τhad−vis that does not
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match geometrically a true τ lepton. Fake rates derived in
the fake-rate control region of the b-tag category are used
for simulated t t̄ and single top quark events, while fake
rates obtained in the b-veto control region are applied to
the remaining processes. An additional weight is applied to
W → τν+jets events as a function of mtot

T , to improve the
modelling of the kinematics of the W+jets simulated events.
The reweighting function is derived by fitting the ratio of the
data to the simulation for the W (→ μν)+jets process in an
additional W → μν control region, defined in analogy with
the inclusive signal selection and described in Table 1.

A same-sign validation region, enriched with events where
at least one jet is misidentified as a τhad−vis, is obtained by
inverting the opposite-sign requirement of the two τhad−vis

candidates. Distributions of mtot
T in the τhadτhad channel

same-sign validation region are shown in Fig. 3c, d. The
good performance multi-jet background estimation method
is demonstrated by the agreement of the data with the back-
ground prediction.

6 Systematic uncertainties

The signal efficiency and the background estimates are
affected by uncertainties associated with the detector simu-
lation, the signal modelling and the data-driven background
determination.

The integrated luminosity measurement has an uncer-
tainty of 5 % and is used for all MC samples. Uncertainties
related to the detector are included for all signal and back-
grounds that are estimated using simulated samples. These
uncertainties are also taken into account for simulated sam-
ples that are used in the derivation of data-driven background
estimates. All instrumental systematic uncertainties arising
from the reconstruction, identification and energy scale of
τhad−vis candidates, electrons, muons, (b-)jets and the soft
term of the Emiss

T measurement are considered. The effect of
the energy scale uncertainties on the objects is propagated to
the Emiss

T determination. The electron, muon, jet and Emiss
T

systematic uncertainties described above are found to have a
very small effect.

Systematic uncertainties resulting from the data-driven
background estimates are derived as follows. In the τlepτhad

channel, the combined fake-factor method includes uncer-
tainties in the W+jets/t t̄ fake factors, the multi-jet fake
factors, and the rMJ estimation. For the W+jets fake fac-
tors the main uncertainties arise from the dependence on
�φ(τhad−vis, Emiss

T ), from the difference between the rel-
ative contributions of quark- and gluon-initiated jets fak-
ing τhad−vis in the control region and the signal region, and
from the contamination by backgrounds other than W+jets
in the control region, which are estimated using simula-
tion. The uncertainty is parameterized as a function of the

anti-τhad−vis pT and amounts approximately to 17 % for jets
misidentified as one-track τ candidates and varies between
16 and 34 % for jets misidentified as three-track τ candi-
dates. Uncertainties related to non-W+jets events were stud-
ied and have no significant impact on the fake-factor deter-
mination. For the multi-jet fake factors and rMJ, the uncer-
tainty is dominated by the number of data events in the
control region and the subtraction of the remaining non-
multi-jet backgrounds using simulation. Typical values of
the total uncertainties for rMJ are between 7 and 20 % and
for the multi-jet fake factors between 10 and 20 %, depend-
ing on the channel and the τhad−vis candidate pT. In addi-
tion, the effect on the background estimate due to the anti-
τhad region definition is examined. The loose τhad−vis iden-
tification requirement used in the definition of this region
is varied to estimate the corresponding uncertainty, which
is 5 and 1 % in the τeτhad and the τμτhad channel, respec-
tively.

In the τhadτhad channel, the uncertainty in the fake-factor
measurement used for the multi-jet background estimation
is obtained as the sum in quadrature of the statistical uncer-
tainty of the measurement and the difference between the
fake factors determined from same-sign and from opposite-
sign events. The fake rates for jets misidentified as τhad−vis are
determined from data. The main systematic uncertainty arises
from the statistical uncertainty of the fake-rate measurement
and it ranges from 7 to 30 % as a function of the τhad−vis pT.
In the τhadτhad channel, the uncertainty in the parameters of
the function used to reweight the W → τν+jets background
is propagated to the mtot

T distribution, where its effect ranges
from 5 to 20 %.

Theoretical cross-section uncertainties are considered for
all backgrounds estimated using simulation. For Z+jets
and diboson production, uncertainties of 5% and 6% are
used, respectively, combining PDF+αS and scale variation
uncertainties in quadrature. For t t̄ [102] and single top-
quark [123,124] production, a 6% uncertainty is assigned
based on scale, PDF and top-quark mass uncertainties.
Additional uncertainties related to initial- and final-state
radiation modelling, tune and (for t t̄ only) the choice of
the hdamp parameter value in POWHEG-BOX v2, which
controls the amount of radiation produced by the parton
shower, were also taken into account [125]. The uncertainty
in the fragmentation model is evaluated by comparing t t̄
events generated withPOWHEG-BOX v2 interfaced to either
HERWIG++ [126] or PYTHIA6. The POWHEG+HERWIG++
and aMC@NLO+HERWIG++ generators are used to estimate
the uncertainty in generating the hard scatter. The variation
of the b-tag category acceptance for these uncertainties is
from −10 to +30 % (−33 to +38 %) in the τlepτhad (τhadτhad)
channel.

Uncertainties related to signal modelling are discussed
in the following. Uncertainties due to the factorization
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and renormalization scale choices are estimated from the
effect on the signal acceptance of doubling or halving
these factors either coherently or oppositely. Uncertain-
ties due to the initial- and final-state radiation, as well as
multiple parton interaction for the signal are also taken
into account. These uncertainties are estimated from the
PYTHIA8 A14 tune [61] for the b-associated produc-
tion and the AZNLO PYTHIA8 tune [60] for the gluon–
gluon fusion production. The envelope of the variations
resulting from the use of the alternative PDFs in the
PDF4LHC15_nlo_100 [127] set is used in order to estimate
the PDF uncertainty for gluon–gluon fusion production. For
theb-associated production uncertainty, a comparison among
NNPDF30_nlo_as_0118_nf_4 [127], CT14nlo_NF4 [58],
MSTW2008nlo68cl_nf4 [128] and CT10_nlo_nf4 [57] PDF
sets is employed. Since no statistically significant effect
on the shape of the reconstructed mass distribution is
observed, each contribution is taken solely as a normaliza-
tion uncertainty. The total uncertainty ranges between 15 and
25 %.

7 Results

The parameter of interest is the signal strength, μ. It is defined
as the ratio of the observed to the predicted value of the
cross section times branching fraction, where the prediction
is evaluated for a particular MSSM or Z � assumption. Hence,
the value μ = 0 corresponds to the absence of a signal,
whereas the value μ = 1 indicates the presence of a signal as
predicted by the theoretical model under study. To estimate
μ, a likelihood function constructed as the product of Poisson
probability terms is used. Signal and background predictions
depend on systematic uncertainties, which are parameterized
as nuisance parameters and are constrained using Gaussian
probability distributions. For the MSSM Higgs boson search
a binned likelihood function is constructed in bins of the
mtot

T distributions, chosen to ensure sufficient background
statistics in each bin. The search for a Z � boson is a counting
experiment, summing the number of events above a certain
mtot

T threshold. The threshold is chosen for each Z � mass
hypothesis to maximize the expected significance and ranges
from 400 GeV at low Z � mass to 750 GeV at high Z � mass.
The asymptotic approximation is used with the test statistic
q̃μ [129] to test the compatibility of the data with the assumed
signal.

The number of observed τlepτhad and τhadτhad data events,
along with the predicted event yields from background
and signal processes, in the signal regions are shown in
Table 2. The observed event yields are compatible with the
expected event yield from SM processes, within uncertain-
ties. The mtot

T mass distributions are shown in Fig. 4. The
results from the τlepτhad and τhadτhad channels are com-

Table 2 Observed number of events and background predictions in the
b-tag and b-veto categories for the τeτhad, τμτhad and τhadτhad channels.
The background predictions and uncertainties are obtained from the sta-
tistical procedure discussed in Sect. 7. In the τlepτhad channel, the pro-
cesses other than “Jet → 
, τhad−vis fakes” require a true hadronically
decaying τ lepton or an electron or muon misidentified as a τhad−vis. The
expected signal yields for themmod+

h scenario are shown for comparison

b-tag category b-veto category

τeτhad channel

Z → ττ+jets 42 ± 7 4500 ± 250

Jet → 
, τhad−vis fakes 128 ± 18 5400 ± 350

Z → 

+jets 3.6 ± 1.5 590 ± 120

t t̄ and single top quark 115 ± 16 35 ± 5

Diboson 0.33 ± 0.07 44 ± 4

Total prediction 289 ± 24 10600 ± 360

Data 275 10619

ggH mA = 500 GeV, tan β = 20 0.020 ± 0.010 1.2 ± 0.2

bbH mA = 500 GeV, tan β = 20 6.4 ± 1.7 7.4 ± 1.9

τμτhad channel

Z → ττ+jets 42 ± 6 5500 ± 300

Jet → 
, τhad−vis fakes 109 ± 14 2760 ± 170

Z → 

+jets 5.2 ± 0.6 830 ± 50

t t̄ and single top quark 136 ± 15 40 ± 5

Diboson 0.34 ± 0.07 55 ± 5

Total prediction 293 ± 19 9200 ± 300

Data 312 9163

ggH mA = 500 GeV, tan β = 20 0.016 ± 0.005 1.1 ± 0.2

bbH mA = 500 GeV, tan β = 20 3.3 ± 1.3 6.4 ± 1.7

τhadτhad channel

Z → ττ+jets 1.9 ± 0.3 146 ± 20

Multi-jet 17 ± 3 396 ± 16

W → τν+ jets 1.1 ± 0.2 45 ± 7

t t̄ and single top quark 11 ± 3 4.5 ± 0.9

Others 0.13 ± 0.03 6.3 ± 0.8

Total prediction 31 ± 4 598 ± 21

Data 23 628

ggH mA = 500 GeV, tan β = 20 0.034 ± 0.014 2.2 ± 0.7

bbH mA = 500 GeV, tan β = 20 8 ± 3 15 ± 5

bined to improve the sensitivity to H/A and Z � boson
production.

The fractional contributions of the most important sources
of systematic uncertainty to the total uncertainty in the signal
cross-section measurement are shown for two signal assump-
tions: Table 3 (top) represents an MSSM Higgs boson hypoth-
esis (mA = 500 GeV, tan β = 20) and Table 3 (bottom) cor-
responds to an SSM Z � boson hypothesis (mZ � = 1.75 TeV).
As shown in this table, the sensitivity of the search is limited
by statistical uncertainties.
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Fig. 4 The distribution of mtot
T for the b-veto category of the a τlepτhad

and b τhadτhad channels, the b-tag category of the c τlepτhad and d
τhadτhad channels, and the inclusive category of the e τlepτhad and f
τhadτhad channels. The label “Others” in b, d and f refers to contribu-
tions due to diboson, Z(→ 

)+jets and W (→ 
ν)+jets production.
For the b-veto and b-tag categories, the binning displayed is that enter-

ing into the statistical fit discussed in Sect. 7, while the predictions and
uncertainties for the background and signal processes are obtained from
the fit under the hypothesis of no signal. The inclusive category distri-
butions are shown before any statistical fit. Overflows are included in
the last bin of the distributions
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Table 3 Fractional impact of the most important sources of systematic
uncertainty on the total uncertainty of the signal strength, for (top) the
MSSM signal hypothesis of mA = 500 GeV, tan β = 20, (bottom) the
Z �

SSM signal hypothesis of mZ � = 1.75 TeV. For each source of uncer-

tainty, F± = ± σ 2
source
σ 2

total
is defined as the positive (negative) fractional

contribution to the signal strength uncertainty

Source of uncertainty F− (%) F+ (%)

MSSM analysis

t t̄ and single-top-quark backgrounds
normalization

−13 +11

τhad−vis energy scale −3 +8

τhad trigger −0.5 +10

Signal acceptance −6 +1.9

Jet-to-τhad−vis fake rate (τlepτhad) −1.5 +2.4

Multi-jet background (τhadτhad) −0.4 +0.3

t t̄ background modelling −0.1 +1.0

Jet-to-τhad−vis fake rate (τhadτhad) −0.2 +0.2

Jet-to-vertex association −0.1 +0.1

Statistics (data and simulation) −75 +65

Z �
SSM analysis

τhad−vis energy scale −13 +5

Pile-up −0.015 +1.3

Z+jets backgrounds cross section
and acceptance

−0.3 +0.4

Signal PDF −0.3 +0.5

Jet-to-τhad−vis fake rate (τhadτhad) −0.3 +0.3

τhad−vis identification −0.19 +0.18

Luminosity −0.16 +0.15

W → τν+jets background
reweighting (τhadτhad)

−0.17 +0.10

Statistics (data and simulation) −85 +92

The data are found to be in good agreement with the pre-
dicted background yields and hence the results are given as
exclusion limits. These are set using the modified frequen-
tist method known as CLs [130]. Observed and expected
95 % confidence level (CL) upper limits on the cross sec-
tion times branching fraction for the production of a single
scalar boson H/A decaying to ττ , as a function of the mass
of the boson mH/A, are shown in Fig. 5a, b. The limits are
calculated for both the gluon–gluon fusion and b-associated
production modes, using a combination of the τlepτhad and
τhadτhad channels and assuming the natural width of the boson
to be negligible compared to the experimental resolution (as
expected over the probed MSSM parameter space). The low-
est excluded cross section times branching fraction values

range from σ × BR = 1.4 pb at mH/A = 200 GeV to
σ × BR = 0.025 pb at mH/A = 1.2 TeV for a scalar
boson produced via gluon–gluon fusion. Similarly, for the
b-associated production mechanism the lowest excluded val-
ues range is from σ × BR = 1.6 pb at mH/A = 200 GeV to
σ × BR = 0.028 pb at mH/A = 1.2 TeV.

The observed and expected 95 % CL limits on tan β as a
function of mA, for the combination of τlepτhad and τhadτhad

channels in the MSSM mmod+
h and hMSSM scenarios are

shown in Fig. 5c, d. The expected limit in the mmod+
h scenario

is compared to the expected limits from the individual τlepτhad

and τhadτhad channels. For themmod+
h figure, lines of constant

mh and mH are shown. For the hMSSM scenario, the exclu-
sion arising from the SM Higgs boson coupling measure-
ments of Ref. [131] is also shown, in addition to the ATLAS
Run-1 H/A → ττ search result of Ref. [28]. The tan β con-
straints in the hMSSM scenario are stronger than those in the
mmod+

h scenario. This is due to the presence of low-mass neu-
tralinos in the mmod+

h scenario that reduce the H/A → ττ

branching fraction and which are absent in the hMSSM sce-
nario. In the hMSSM scenario, the most stringent constraints
on tan β for the combined search exclude tan β > 7.1 for
mA = 200 GeV and tan β > 39 for mA = 1 TeV at the 95 %
CL. In the MSSM mmod+

h scenario, the 95 % CL upper limits
exclude tan β > 7.6 for mA = 200 GeV and tan β > 47
for mA = 1 TeV. The feature of the expected limits in the
hMSSM scenario exclusion plot at around mA = 350 GeV
is due to the behaviour of the branching ratio A → ττ

close to the A → t t̄ kinematic threshold. Some sensi-
tivity of the search is also expected around tan β ∼ 1,
mA ∼ 200 GeV due to the increase of the gluon–gluon fusion
cross section induced by the increased coupling to the top
quark.

In the search for the Z � boson, the observed number of
events in the signal regions of the τlepτhad and τhadτhad chan-
nels are consistent with the SM predictions. The resulting
95% CL upper limits are set on the cross section times
branching fraction as a function of the mass and shown in
Fig. 6a. These results are interpreted in the context of the
SSM and SFM in Fig. 6a, b, respectively. The resulting
observed (expected) lower limit on the mass of the Z �

SSM
boson is 1.90 (1.84) TeV. In the search for the Z �

SFM boson,
results are presented as a function of sin2 φ, where φ is the
mixing angle between the two SU(2) gauge eigenstates of
the model. Masses below 1.82–2.17 TeV are excluded in
the range 0.1 < sin2 φ < 0.5, assuming no μ − τ mix-
ing. For the value of sin2 φ = 0.03, the lower limit on
the mass of a Z �

SFM boson is 2.12 TeV, extending the lim-
its from previous direct and indirect searches by more than
200 GeV.
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Fig. 5 The observed and expected 95 % CL upper limits on the pro-
duction cross section times branching fraction of a scalar particle are
shown for the combination of the τlepτhad and the τhadτhad channels.
The production mechanism of H/A → ττ is assumed to be a gluon–
gluon fusion orb b-associated production. For comparison, the expected
limits for the individual channels, τlepτhad and τhadτhad, are shown as
well. The observed and expected 95 % CL limits on tan β as a func-

tion of mA are shown in c for the MSSM mmod+
h scenario and d for the

hMSSM scenario. For comparison, the expected limits from the indi-
vidual channels, τlepτhad and τhadτhad, are given in c, while the observed
and expected limits from the ATLAS Run-1 analysis in Ref. [28] are
shown in d. Dashed lines of constant mh and mH are shown in red and
blue, respectively

8 Conclusions

A search for neutral Higgs bosons of the minimal supersym-
metric standard model (MSSM) and for a Z � gauge boson
decaying to a pair of τ leptons is performed using a data
sample corresponding to an integrated luminosity of 3.2 fb−1

from proton–proton collisions at
√
s = 13 TeV recorded

by the ATLAS detector at the LHC. The search finds no
indication of an excess over the expected background in the
channels considered. Limits are set at the 95 % CL, which
provide constraints in the MSSM parameter space. Model-
independent upper limits on the production cross section
times the ττ branching fraction of a scalar boson versus its
mass, in both the gluon–gluon fusion and b-associated pro-
duction modes, are presented. The upper limits on the cross

section times branching fraction range from 1.4 (1.6) pb at
mH/A = 200 GeV to 0.025 (0.028) pb at mH/A = 1.2 TeV
for a scalar boson produced via gluon–gluon fusion (b-
associated production). In the context of the MSSM mmod+

h
scenario, the most stringent 95 % CL upper limit on tan β for
the combined search is tan β < 7.6 for mA = 200 GeV. This
analysis extends the limits of the previous searches for the
mass range mA > 500 GeV. The search for a Z � boson is
interpreted in the context of the sequential standard model
(SSM) and the strong flavour model (SFM). Upper limits at
the 95 % CL are set on the cross section times branching frac-
tion as a function of the Z � mass. The observed lower limit
on the Z � mass is 1.90 TeV for a Z �

SSM and ranges from
1.82 to 2.17 TeV as a function of the sin2 φ parameter for a
Z �

SFM.
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Fig. 6 The 95 % CL upper limit on the cross section times branching
fraction for a Z � → ττ in a the Sequential Standard Model and 95%
CL exclusion on b the SFM parameter space, overlaid with indirect lim-

its at 95 % CL from fits to electroweak precision measurements [132],
lepton flavour violation [133], CKM unitarity [134] and Z -pole mea-
surements [41]
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