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ABSTRACT

We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays
with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith
angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth
angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest
departure from isotropy appears in the >E 8 EeV energy bin, with an amplitude for the first harmonic in right
ascension =  ´a -r (4.4 1.0) 101

2, that has a chance probability = ´a -⩾P r( ) 6.4 101
5, reinforcing the hint

previously reported with vertical events alone.

Key words: astroparticle physics – cosmic rays

1. INTRODUCTION

The distribution of the arrival directions of cosmic rays,
together with the spectrum and composition indicators, are the
main observables to try to understand their origin and nature.
The dipolar component of the large scale distribution of cosmic
rays has been measured by different experiments at energies
below 1017 eV (Amenomori et al. 2005, 2009; Guillian
et al. 2007; Abdo et al. 2009; Aglietta et al. 2009; IceCube
Collaboration 2011, 2012; Aartsen et al. 2013; Curcio
et al. 2013), and has been searched for at higher energies by
Hayashida et al. (1999) and the Pierre Auger Observatory. In
the EeV (º1018 eV) range the estimation of the large scale
anisotropies can be useful to understand the transition from a
Galactic to an extragalactic cosmic ray origin. The first hints of
a change in the phase of the modulation in the right ascension
distribution of arrival directions, happening around 1 EeV, are

indeed suggested by the observations (The Pierre Auger
Collaboration 2011a; Sidelnik 2013). At the highest energies,
the presence of a significant dipole in the extragalactic cosmic
ray distribution is a likely possibility. In particular, a dipolar
flux could result from cosmic rays propagating diffusively in
the extragalactic turbulent magnetic fields. This could happen if
the amplitude of the field is large and/or if the cosmic rays have
a component with large electric charge (Harari et al. 2014). A
large angular scale anisotropy in the arrival direction distribu-
tion is also expected in the case that magnetic deflections are
small if the cosmic ray sources are distributed similarly to the
matter in the universe, due to the fact that in our local
neighborhood matter is distributed inhomogeneously. These
inhomogeneities lead in particular to the non-vanishing
acceleration of the Local Group which is responsible for the
peculiar velocity that gives rise to the observed dipole of the
Cosmic Microwave Background (CMB) (Erdogdu et al. 2006).
In fact, the non-isotropic distribution of the nearby extra-
galactic cosmic ray sources would lead to an excess of flux
toward the direction with the highest concentration of nearby
sources and this would contribute to the dipolar component of
the large scale distribution of arrival directions. The maximum
redshift from which extragalactic cosmic rays can arrive at
Earth progressively decreases as the energy threshold increases.
This is a consequence of the energy losses due to pair

92 Now at Konan University.
93 Also at the Universidad Autonoma de Chiapas on leave of absence from
Cinvestav.
94 Now at Unidad Profesional Interdisciplinaria de Ingeniería y Tecnologías
Avanzadas del IPN, México, D.F., Mexico.
95 Now at Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas,
Mexico.
96 Also at Vrije Universiteit Brussels, Belgium.
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production and photopion production by interactions with
CMB photons in the case of protons, and to photodisintegration
with the CMB and infrared backgrounds in the case of heavier
nuclei (Greisen 1966; Zatsepin & Kuz’min 1966). Thus, the
overall contribution of nearby sources becomes increasingly
more important as the energy increases, leading to a larger
expected anisotropy at higher energies.

The Pierre Auger Observatory has reported studies of the
flux modulation in right ascension (The Pierre Auger
Collaboration 2011a; Sidelnik 2013) and in both declination
and right ascension (The Pierre Auger Collabora-
tion 2012, 2013; de Almeida 2013) from the analysis of events
with zenith angles smaller than 60°. Upper limits on the low ℓ
multipolar amplitudes have also been reported from a joint
analysis of the Pierre Auger Observatory and the Telescope
Array data, taking advantage of the full sky coverage (The
Pierre Auger & Telescope Array Collaborations 2014). In this
paper we present an extension of the Pierre Auger Observatory
studies including also for the first time inclined events with
zenith angles between 60° and 80°. Given the location of the
Pierre Auger Observatory at a latitude - ◦35 .2, events arriving
with zenith angles up to 60° cover sky directions with
declinations d ⩽ ◦24 .8, corresponding to a fraction of 71% of
the sky. By extending the zenith range up to 80°, declinations
up to d ⩽ ◦44 .8 are observed, extending the accessible fraction
of the sky to 85%.

Large angular scale modulations of the flux are studied by
performing two Rayleigh analyses, one on the right ascension
and another on the azimuth distribution, that are sensitive to
modulations in the right ascension and declination respectively.
This method is particularly useful to analyze the combined
vertical plus horizontal data set as it is insensitive to small
spurious modulations in the exposure as a function of the zenith
angle, that could result from a difference between the energy
calibration of the vertical and horizontal events.

2. PIERRE AUGER OBSERVATORY AND DATA SET

The Pierre Auger Observatory (The Pierre Auger Collabora-
tion 2004) consists of an array of 1660 water-Cherenkov
detectors covering 3000 km2 on a triangular grid of mostly
1.5 km spacing, the surface detector (SD). It also has 4 sites
with 27 telescopes overlooking the array to observe the
fluorescence light emitted by the showers (The Pierre Auger
Collaboration 2010a), which allows a calorimetric measure-
ment of the shower energy deposited in the atmosphere and is
thus particularly useful for the calibration of the SD energy
reconstruction. In contrast to the SD, the fluorescence detector
(FD) has a smaller duty cycle of 13%.

2.1. Data Set

In this work, events recorded with the SD from 2004 January
1 to 2013 December 31 with zenith angle up to 80° are
analyzed. The quality cut imposed on events with q ⩽ 60
requires that all six neighbors of the water-Cherenkov detector
with the largest signal be active at the time the event was
recorded. In the case of events with q > 60 the condition is
defined differently and requires instead that the station nearest
to the reconstructed core and its six neighbors be active. We
also remove periods of instability on the data acquisition to
have a reliable estimate of the detection exposure. The total
geometric exposure, which applies to energies above full

efficiency of the SD detector, is 48,029 km2 sr yr in this period.
The directional exposure as a function of the declination is
shown in Figure 1 for events with zenith angle smaller than
60°, hereafter referred to as vertical events, for events with
zenith from 60° to 80°, referred to as inclined events, and for all
events. For vertical events full efficiency is attained at 3 EeV
(The Pierre Auger Collaboration 2010b), while for inclined
events, it is attained at 4 EeV. We will restrict the analysis to
events with ⩾E 4 EeV for which trigger effects are absent.
The event direction is determined from a fit to the arrival

times of the shower front at the SDs. The angular resolution
depends on the number of stations involved in the event. For
the energies considered in this study it is always better than

◦0 . 8. The energy reconstruction procedure is different for events
above and below 60°. For vertical events the shower size at
1000 m from the shower axis, S (1000), is used. From S (1000)
the surface energy estimator S38, corresponding to the signal
that would have been measured had the shower arrived with a
zenith angle of 38°, is obtained using the constant intensity cut
method (The Pierre Auger Collaboration 2008). The S38 energy
estimator is calibrated to the energy measured by the
fluorescence detector for a subset of events detected by both
the SD and the fluorescence one. The energy resolution is better
than 17% (Pesce 2011). The constant intensity cut method
exploits the fact that for full efficiency and an isotropic flux the
arrival direction distribution qdN d sin2 should be constant. As
discussed in Appendix A of The Pierre Auger Collaboration
(2012) a small deviation of this behavior, proportional to

q+ d ℓ(1 sin cos )z obs , is expected when a dipolar component
along the Earth rotation axis dz is present for an observation
latitude ℓobs. This small modulation in the zenith angle
distribution is not accounted for in this analysis. However, as
it does not affect the distribution in azimuth nor in right
ascension, which are the basis of the large scale anisotropy
analysis performed, it does not affect the results presented in
this paper. Inclined showers require a specific energy
reconstruction method because they are dominated by muons
at ground. This method is based on the fact that the shape of the
muon distribution is universal for a given shower direction and
that only the overall normalization of the muon distribution
depends on the shower energy. This allows us to define the
energy estimator N19 as the overall normalization of a particular
event with respect to a reference muon distribution, con-
ventionally chosen to be the average muon density for primary
protons of 1019 eV simulated with QGSJetII-03. Once the
shower arrival direction is obtained, N19 is reconstructed by

Figure 1. Directional exposure as a function of the declination, computed as in
Sommers (2001). The long-dashed blue line corresponds to the vertical events,
the short-dashed red one to the inclined events and the solid black line to the
full data set.
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fitting the measured signals at the surface stations to the
expected muon patterns (The Pierre Auger Collaboration 2014).
Then, the energy of the cosmic rays is calibrated using a sub-
sample of events reconstructed with both the fluorescence and
surface array techniques, similarly to what is used to calibrate
vertical events. The average energy resolution is 19.3%. The
systematic uncertainty in the energy scale associated with the
fluorescence detector energy assignment, applying to both
vertical and inclined events, is 14% (Verzi 2013).

For ⩾E 4 EeV the number of inclined events is 15,747,
while that of vertical events is 54,467. The resulting ratio
between the inclined and vertical integrated flux is
0.289± 0.003. Meanwhile, the expected ratio for a fully
efficient detector and an isotropic flux is 0.293. The
consistency of these ratios indicates that the energy calibrations
of both data sets are compatible. This is expected as both
energy estimators are calibrated with the energy measured by
the fluorescence detector.

2.2. Atmospheric and Geomagnetic Field Effects

As the amplitudes of the large scale modulations to be
measured are rather small, at the few percent level, it is very
important to carefully account for spurious effects that can
modulate the flux. Variations in the array effective size due to
the deployment and dead times of the detectors are taken into
account by introducing a weighting factor in the Rayleigh
analysis, as discussed in the next section. Furthermore, due to
the steepness of the energy spectrum, even small changes in the
energy estimator as a function of time or the local angular
coordinates would distort significantly the counting rate of
events above a given energy. In particular, the atmospheric
conditions affect the shower size S (1000) due to two effects.
As a larger (smaller) pressure corresponds to a larger (smaller)
column density traversed, an air shower will be at a more (less)
advanced stage of development when it arrives at the ground.
Also the air density affects the Molière radius and hence the
lateral profile of the showers. These atmospheric effects are
here accounted for by correcting the energy estimator of
vertical events, S (1000), according to the weather conditions
present at the time each event was recorded (The Pierre Auger
Collaboration 2009). If not accounted for, the weather
variations would bias the energy assignments typically by
±1% between the hot and cold periods of each day, and hence
could affect the rates from opposite sides of the sky by up to
about ±2% during a day, affecting the determination of the
dipolar component in the direction orthogonal to the Earth
rotation axis, ^d . However, once averaged over several years,
strong cancellations take place and the net effect of accounting
for the weather corrections is to remove a spurious ^d
component of about 0.5%.

The atmospheric conditions mainly affect the electromag-
netic component of the showers, which is prominent in showers
with zenith angles below 60°. For the more inclined showers
the muonic component is dominant and the atmospheric effects
are hence expected to be negligible. We have checked this
assumption by measuring the flux modulation as a function of
the solar time, where no intrinsic modulation of the flux is
expected but where spurious modulations due to weather
conditions are maximized. No significant solar modulation is
indeed observed in inclined showers and thus no weather
correction is applied to showers with zenith angles above 60°.

Another effect that influences the shower size at 1000 m is
the deflection of the shower particles in the geomagnetic field.
Such deflections break the circular symmetry of the shower
around its axis and lead to an azimuthal modulation of
S (1000), as has been studied in detail for events with q < 60
in The Pierre Auger Collaboration (2011b). If not taken into
account in the energy estimator, this would induce an
azimuthally dependent bias on the energy determination,
leading to a spurious pseudo-dipolar pattern in the flux above
a given energy threshold. This spurious dipolar component
would point along the Earth’s rotation axis with an amplitude
dz of about 2% when events with zenith angles up to 60° are
considered (The Pierre Auger Collaboration 2011b). In order to
account for this effect and get an unbiased energy estimator, the
measured shower size signal S (1000) is related to the one that
would have been observed in the absence of the geomagnetic
field, and the latter is used to construct S38 (The Pierre Auger
Collaboration 2011b). The reconstruction of events with
q > 60 takes into account the geomagnetic field effect already
in the expected muon distributions used to reconstruct the
energy estimator N19, and thus no further correction is needed
for the inclined events.

3. MODIFIED RAYLEIGH METHOD

When combining two different data sets covering different
regions of the sky, such as the vertical and inclined samples
considered here, a small difference in the energy cross-
calibration of the samples could give rise to a difference in
the measured fluxes in those regions, which could translate in
to a spurious large scale modulation. We will hence adopt a
method that is essentially insensitive to these effects, studying
the large scale distribution of the arrival directions by
performing a classical Rayleigh analysis (Linsley 1975) over
both the right ascension and the azimuth angle distributions.
The analysis is slightly generalized by weighting each event by
a factor that takes into account small modulations in the
exposure arising from the variations in the operating size of the
array as a function of time, and for the effects of a small net tilt
of the array surface (The Pierre Auger Collaboration 2012).
The number of active detector cells n t( )cell (number of active

detectors having their six neighbors active) is constantly
monitored at the Observatory. The total number of active cells,
Ncell, as a function of the sidereal time a0 (measured by the
right ascension of the zenith at the center of the array) and its
relative variations, DNcell, are obtained from

åa a

a
a

= +

D =

( )N n j T

N
N

N

( ) ,

( )
( )

, (1)

j
cell 0 cell 0 sid

cell 0
cell 0

cell

with ò a aá ñ = -N T d N ( )
T

cell sid
1

0 0 cell 0
sid , where Tsid corresponds to

the duration of the sidereal day. The small modulation in right
ascension of the flux induced by these variations is accounted
for by weighting each event by a factor aµ D -w N ( )i

i
cell

1
0 . The

modulation in the total period of time considered has an
amplitude of 0.24%, with the phase of the maximum at
a = 440 . If not accounted for this modulation would lead to a
spurious dipole component ~^d 0.2%. Note that the corre-
sponding modulation at the solar frequency has instead a much
larger amplitude of 3.5%, and it is the cancellation over the
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years, for 10 yr of continuous operation of the Observatory, that
leads to the small resulting amplitude at the sidereal frequency.

The geometric aperture of a horizontal array is given by
a qN a( ) ( )cell 0 cell , where q q=a ( ) 1.95 cos kmcell

2 (The Pierre
Auger Collaboration 2010b). However, the fact that the height
above sea level of the array of detectors has a small average tilt
of about ◦0 . 2 toward a direction 30° from the east to the south
(f = - 30tilt ) modulates the effective cell area according to

q f q f f q= é
ëê + - ù

ûú( )a ( , ) 1.95 1 0.003 tan cos cos . (2)cell tilt

For energies above full efficiency the tilt effect can be taken
into account by including in the weight of each event a factor

q f f+ - -[1 0.003 tan cos ( )]tilt
1 and neglecting the mod-

ulation in ϕ in the exposure. If not accounted for the tilt would
lead to a spurious dipole component ~d 0.2%z .

The Fourier coefficients of the modified Rayleigh analysis in
right ascension (ai of each event) are then given by

å åa a= =a a

= = ( ) ( )a w k b w k
2

cos ,
2

sin , (3)k
i

N

i i k
i

N

i i
1 1

where the sums run over the number of events N in the
considered energy range, the weights are given by

a q f fº D + - -w N[ ( )(1 0.003 tan cos ( ))] ,i
i

i icell 0 tilt
1 and

the normalization factor is = å = wi
N

i1 . The amplitude ark
and phase j a

k of the event rate modulation are estimated as

j= + =a a a a
a

a( ) ( )r a b
k

b

a
,

1
arctan . (4)k k k k

k

k

2 2

The weight factors wi are very close to 1 in the present analysis,
and thus the probability a⩾P r( )k that an amplitude equal to or
larger than ark arises from an isotropic distribution can be safely
approximated by the cumulative distribution function of
the Rayleigh distribution k= -a⩾P r( ) exp ( )k 0 , where
k = a r( ) 4k0

2 .
The Fourier coefficients for the Rayleigh analysis in azimuth

are given by the same expressions, just changing α by ϕ.
Notice that after having accounted for the modulation induced
by the tilt and the geomagnetic effect, the azimuthal
distribution is expected to be uniform for energies above full
efficiency for an isotropic distribution of cosmic rays. The
amplitude fb1 is actually sensitive to asymmetries between the
northern and southern local flux, and thus gives information on
the dipolar component along the Earth’s rotation axis.

We restrict the analysis to the first two harmonics k = 1, 2.
The first harmonic coefficients in right ascension and azimuth
are enough to reconstruct the dipole in the hypothesis that the
higher order multipole contributions are negligible, as will be
done in Section 4.1. The second harmonic coefficients (k = 2)
are sensitive to the quadrupole component (and higher order
multipoles) of the cosmic ray distribution. The presence of an

equatorial dipole component leads to non-vanishing Rayleigh
coefficients aa1 and/or ab1 and hence to a non-vanishing
amplitude ar1 . In general, in an expansion in spherical
harmonics ( d a d aF = å -a Y π( , ) ( 2 , )ℓ m ℓm

ℓm
, ), all the

terms aℓm with = m k contribute to the aak and abk
coefficients. Then, when neglecting aℓm with >ℓ 1, the two
Rayleigh coefficients aa1 and ab1 are sufficient to determine the
two multipoles a1 1. However if we want to also reconstruct
the quadrupole, neglecting only the aℓm with >ℓ 2, then the
four Rayleigh coefficients aa1 , ab1 , aa2 and ab2 are not sufficient
to determine the six multipoles a1 1, a2 1 and a2 2. The
missing information can be recovered by considering also the
first order Rayleigh coefficients of the events coming from the
southern hemisphere and from the northern hemisphere
separately, as discussed in the Appendix. Finally the aℓ0
coefficients can be obtained from the Rayleigh analysis in
azimuth up to order ℓ.
We consider energies above the full efficiency of inclined

events, splitting them into two bins, 4–8 EeV and >E 8 EeV,
updating the results for the large scale anisotropy for the two
highest energy bins reported in The Pierre Auger Collaboration
(2011a, 2012), Sidelnik (2013), de Almeida (2013) with a
larger sky coverage and nearly twice the number of events.

3.1. Right Ascension Distribution

In this section we present the results for the Rayleigh
coefficients in right ascension and we will discuss the
determination of the dipole in the next section. In particular,
aa1 and ab1 will be used to reconstruct the equatorial dipole in

Section 4.1, while aa2 and ab2 probe the quadrupole.
The results for the modified Rayleigh analysis are quoted in

Table 1 including the aak and abk coefficients with their

statistical uncertainty s = 2 , the amplitude ark and phase
j a

k , as well as the probability that a larger or equal amplitude
arises by chance from an isotropic distribution.
In the lower energy bin, between 4 and 8 EeV, all the

coefficients are consistent with zero within their uncertainties,
and there is no evidence for departures from isotropy in the
right ascension distribution. In the higher energy bin, >E 8
EeV, the first harmonic has an amplitude = ar 0.044 0.0101 ,
with a chance probability to arise from an isotropic distribution
of = ´a -⩾P r( ) 6.4 101

5. The phase j a
1 points to 95°. Both

the amplitude and the phase are in agreement with previous
measurements reported in The Pierre Auger Collaboration
(2011a), Sidelnik (2013). Due to the larger statistics, arising
both from the larger time period considered as well as from the
inclusion of the inclined events with q < < 60 80 , the
significance of the measurement has grown to about s4 . The
amplitude of the second harmonic is less significant, with a 2%
probability to arise by chance. We show in Figure 2 the ratio of
the observed number of events to the mean number as a

Table 1
Rayleigh Analysis in Right Ascension

E (EeV) N k aak
abk

ark j a
k

a⩾P r( )k

4–8 50,417 1 0.0030 ± 0.0063 0.0008 ± 0.0063 0.0031 15° 0.88
K K 2 −0.0012 ± 0.0063 −0.0004 ± 0.0063 0.0013 99° 0.98

>8 19,797 1 −0.004 ± 0.010 0.044 ± 0.010 0.044 95° ´ -6.4 10 5

K K 2 0.009 ± 0.010 0.027 ± 0.010 0.028 36° 0.021
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function of the right ascension, together with the first harmonic
and the first plus second harmonics results.

A useful test to check if the systematic effects are well
controlled is to repeat the analysis at the solar and the
antisidereal frequencies. Each sidereal day is slightly shorter
than the solar day by about 4 minutes, so that the sidereal year
has 366.25 days. The antisidereal time is an artificial time scale
in which the day is longer than a solar day by about 4 minutes,
and therefore has 364.25 days per year. The weather and array
size variations have the largest effect in producing spurious
modulations at the solar frequency where the effects are not
cancelled under the integration over several full years. No
physical phenomena are expected to occur in the antisidereal
frequency, however the combination of solar and seasonal
systematic distortions could produce a spurious modulation in
the antisidereal time. We report in Table 2 the amplitude of the
Fourier transform of the arrival times of the events obtained
after applying the weather correction and weighting the events
with the factor to account for the modulation of the number of
active detectors at the solar (365.25 cycles/year) and
antisidereal (364.25 cycles/year) frequencies. No signs of
spurious effects appear for any of the energy bins.

As a check that no large weather effect is present in the
inclined events data set (q > 60 ), we also performed the
Rayleigh analysis at the solar frequency for all inclined events
with ⩾E 4 EeV. The amplitude obtained is

= r 0.012 0.0111
solar , showing no sign of the presence of a
weather modulation.

3.2. Azimuth Distribution

A dipolar component of the flux along the rotation axis of
the Earth gives rise to a non-vanishing fb1 coefficient.
Moreover, in general, each fbk coefficient with odd k and each
fak coefficient with even k receives contributions from all of the

aℓ0 multipole coefficients with ⩾ℓ k in a spherical harmonics
expansion ( d a d aF = å -a Y π( , ) ( 2 , )ℓ m ℓm

ℓm
, ). On the

other hand, the fak coefficients with odd k and the fbk with
even k probe asymmetries between the eastern and western
directions, which are expected to be zero when many full
sidereal days are integrated. The results of the Rayleigh
analysis in the azimuth angle are reported in Table 3.

The largest departure from isotropy appears for the fb1
coefficient in both energy bins, although with low statistical

significance (2.4% and 1.5% probability, respectively). The fa2
coefficient that probes the quadrupolar component is sub-
dominant (and compatible with zero) in both energy bins. The
fa1 and fb2 coefficients are compatible with zero, as expected.

4. DIPOLE RECONSTRUCTION

In this section the reconstruction of the dipole components
from the Rayleigh coefficients obtained in the last section is
performed, first in the simplified approximation that only the
dipole contribution to large scale anisotropies is relevant, which
is justified by the fact that the k = 2 coefficients determined in
the previous section are not significantly different from zero.
Then the reconstruction is performed considering also a
possible quadrupole contribution. The reconstruction of the
dipole (and quadrupole) components through this method does
not require a precise knowledge of the directional acceptance of
vertical and inclined events, which would depend on the
relative energy calibration of both samples. A miscalibration of
one of the samples would just lead to a slight shift of the energy
bins to which the events contribute, but without introducing a
spurious modulation in right ascension or azimuth that could
affect the determination of the dipole components.

4.1. Dipolar Pattern

A pure dipolar anisotropy can be parametrized as a function
of the arrival direction û as

F =
F

+( ) ( )u
π

d uˆ
4

1 · ˆ . (5)0

The observed arrival direction distribution is obtained by
convoluting the flux with the detector exposure w u( ˆ), giving

w= F( ) ( ) ( )dN

d
u u u

Ω
ˆ ˆ ˆ . (6)

As a function of the local coordinates (θ, ϕ, a0) the exposure ω
can be considered to be a function of θ only, as the effects of
the small modulation in ϕ and a0 are already accounted for in
the modified Rayleigh analysis. Assuming a general dipole
with maximum amplitude d in the right ascension and
declination direction (ad , dd), and writing the angular
dependence of the flux in terms of local coordinates,98 the
first harmonic amplitudes in ϕ can be expressed by means of

Figure 2. Observed number of events over the mean as a function of the right
ascension with 1σ error bars for >E 8 EeV. The black solid line shows the
first harmonic modulation from Table 1, while the blue dashed line shows the
combination of the first and second harmonics.

Table 2
First Harmonic Analysis in Solar and Antisidereal Frequencies

E (EeV) r1 j1 (h) ⩾P r( )1

Solar 4–8 0.0110 ± 0.0063 14 0.21
K >8 0.005 ± 0.010 17 0.86
Antisidereal 4–8 0.0046 ± 0.0063 8 0.76
K >8 0.017 ± 0.010 13 0.24

98 Using the fact that =d uˆ · ˆ d q q f+ℓ ℓsin (cos sin sin cos sin )d obs obs
d a+ cos cosd d q f a-( sin cos sin 0 q a+ ℓcos cos cosobs 0
q f a- )ℓsin sin sin cosobs 0 d a+ cos sind d q f a(sin cos cos 0
q a+ ℓcos cos sinobs 0 q f a- )ℓsin sin sin sin .obs 0
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integrals of the flux as

ò ò
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where in the last terms the integrals over ϕ and a0 have been
performed, dz is the dipole component along the Earth’s
rotation axis, d=d d sinz d , ℓobs is the latitude of the

Observatory, and we denoted by òq q q qº
q

q
f d f( ) sin ( )

min

max .

The coefficient fa1 vanishes as anticipated, while fb1 is related
to dz by

q

q
=

+
fb

d ℓ

d ℓ

cos sin

1 sin cos
, (10)

z

z
1

obs

obs

where we have used that qsin 1 can be estimated as the mean
value of qsin ( ) of the events themselves, qá ñsin , and similarly

q qá ñcos 1 cos . Finally, for qá ñ d ℓsin cos 1z obs , the
dipole component along the Earth’s rotation axis can be
obtained to linear order as q= á ñfd b ℓ(cos sin )z 1 obs .

On the other hand, the equatorial component of the dipole
can be recovered from the Rayleigh analysis in right ascension,
to linear order in the dipole amplitude, through

dá ña
^ d r cos1 , where dá ñcos is the mean cosine declination
of the events (The Pierre Auger Collaboration 2011a).

The resulting dipole components from the Rayleigh
coefficients determined in the last section are reported in
Table 4. The dipole component along the Earth’s rotation axis
dz, the equatorial component ^d , the total amplitude d, as well
as the direction a d( , )d d are quoted for the two energy bins.

All of the dipole components obtained in both energy bins
are compatible with the ones previously reported in The Pierre
Auger Collaboration (2012), de Almeida (2013) within the
systematic uncertainties. The dipole amplitude in the higher
energy bin is also consistent with the upper limit to the dipole
amplitude at 99% CL reported by the joint analysis of the
Auger and TA data at energies above 8.5 EeV (The Pierre
Auger & Telescope Array Collaborations 2014). These bounds
depend on the dipole direction in the sky and range from 8%
for directions close to the equator to 13% for directions close to
the poles.

4.2. Dipole and Quadrupole Patterns

Assuming now that the angular distribution of the flux can be
well approximated by the combination of a dipole plus a
quadrupole, it can be parametrized as

åF =
F æ

è

çççç
+ +

ö

ø

÷÷÷÷÷
( )u

π
d u Q u uˆ

4
1 · ˆ

1

2
, (11)

i j
ij i j

0

,

with Qij the symmetric and traceless quadrupole tensor. From
the measured values of fb1 and fa2 obtained from the Rayleigh
analysis in ϕ performed in the previous section, dz and Qzz can
be determined through Equations (A.3) and (A.4), as discussed
in the Appendix. From the right ascension Rayleigh coeffi-
cients aa2 and ab2 (and taking into account that Qij is traceless)
the quadrupole coefficients Qxy, Qxx, and Qyy can be determined
through Equations (A.10) and (A.11) in the Appendix.
As aa1 results from a combination of contributions from dx

and Qxz, and
ab1 from a combination of dy and Qyz, two more

independent measurements are needed to determine the four
parameters. As discussed in the Appendix, a simple way of
separating dx and Qxz is through computing aa1 for the southern
and northern subsamples of events, aa S

1 and aa N
1 , obtained by

restricting the sums in Equation (3) to events with d < 0 and
d > 0, respectively. Similarly, dy and Qyz can be separated by
measuring ab S

1 and ab N
1 .

In Table 5 we report the first harmonics in right ascension for
the events coming from the southern and northern hemispheres
for the two energy bins considered.
In the energy bin between 4 and 8 EeV the amplitude in both

hemispheres is compatible with zero within the uncertainties.
This means that the fact that the ar1 amplitude for the full data
set vanishes as reported in Table 1 is not due to a cancellation
of two significant and opposite modulations in the northern and

Table 3
Rayleigh Analysis in Azimuth

E (EeV) N k fak
fbk

f⩾∣ ∣P a( )k
f⩾∣ ∣P b( )k

4–8 50,417 1 −0.0116 ± 0.0063 −0.0142 ± 0.0063 0.064 0.024
2 −0.0034 ± 0.0063 −0.0066 ± 0.0063 0.59 0.29

>8 19,797 1 −0.009 ± 0.010 −0.024 ± 0.010 0.35 0.015
2 −0.006 ± 0.010 0.008 ± 0.010 0.58 0.45

Table 4
Dipole Components and Directions in Equatorial Coordinates

E (EeV) dz ^d d dd ad

4–8 −0.027 ± 0.012 0.004 ± 0.008 0.027 ± 0.012 -   81 17 15° ± 115°
>8 −0.046 ± 0.019 0.057 ± 0.013 0.073 ± 0.015 -   39 13 95° ± 13°
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the southern hemispheres. For >E 8 EeV the modulation is
more significant and has the same phase in both hemispheres,
indicating that the dipolar contribution to the modulation
dominates over the quadrupolar one.

Table 6 reports the dipolar and quadrupolar reconstructed
components. In both energy bins the reconstructed dipolar
components are consistent with those reported in Table 4 in the
hypothesis of a pure dipolar anisotropy. Note that in Table 4 ^d
is consistent with 0 in the energy bin from 4 to 8 EeV, and so
are dx and dy in Table 6. For E> 8 EeV, ad is very close to 90°
in Table 4, and so d 0x and ^d dy . The most significant
quadrupole component is the Qxy one in the >E 8 EeV bin,
which according to Equation (A.10) is proportional to the
second harmonic in right ascension ab2 , whose amplitude has a
2% probability to arise by chance from isotropy (see Table 1).

We show in Figure 3 the sky maps in equatorial coordinates
of the flux of cosmic rays, in units of km−2 yr−1 sr−1, smoothed
in an angular window of 45° for the two energy bins
considered. The upper panel corresponds to the energy bin
between 4 and 8 EeV, while the lower panel corresponds to
>E 8 EeV. Notice the difference in the color scales of flux

variations appearing in the two plots. While for the high energy
bin the maximum flux is 21% larger than the minimum one, for
the lower energy bin this ratio is just 8%.

5. CONCLUSIONS

We presented the results of an analysis of the large angular
scale distribution of the arrival directions of the Pierre Auger
Observatory data including for the first time inclined events
with zenith angle between 60° and 80°. The inclusion of the
inclined events not only provides an increase of about 30% in
the number of events, but also leads to a larger fraction of the
sky covered, up to 85%. We performed two Rayleigh analyses,
in the right ascension and azimuth angles, that are sensitive to
the right ascension and declination modulation of the flux,
respectively. Two energy bins above the full efficiency for
inclined events were analyzed: from 4 to 8 EeV and above 8
EeV. No significant departure from isotropy is observed in the
distribution of events in the energy bin between 4 and 8 EeV.
For energies above 8 EeV the first harmonic in right ascension
has an amplitude =  ´a -r (4.4 1.0) 101

2 with a chance
probability = ´a -⩾P r( ) 6.4 101

5, reinforcing the hint
reported in Sidelnik (2013) with vertical events alone detected
up to the end of 2012.

The Rayleigh analysis in azimuth, sensitive to modulations
in the declination direction, gives first harmonic coefficients

= - fb 0.014 0.0061 for energies between 4 and 8 EeV and
= - fb 0.024 0.0101 for energies larger than 8 EeV. The

negative values in both energy bins correspond to a dipolar
component dz pointing to the south, although the amplitudes
have low statistical significance, with chance probabilities of
2.4% and 1.5%, respectively.

Under the assumption that the only significant contribution
to the anisotropy is from the dipolar component, the
observations above 8 EeV correspond to a dipole of amplitude
= d 0.073 0.015 pointing to a d =   ( , ) (95 13 ,

-   39 13 ). If a quadrupolar contribution is also included,
the resulting dipole is consistent with that obtained in the
previous case, although with a larger uncertainty, and the
quadrupole components obtained are not significant.

Table 5
First Harmonic in Right Ascension for Events Arriving from the Southern and Northern Hemispheres

E (EeV) Hem. N aa1
ab1

ar1 j a
1

a⩾P r( )1

4–8 S 40,256 0.0034 ± 0.0070 −0.0010 ± 0.0070 0.0036 344° 0.88
K N 10,161 0.001 ± 0.014 0.008 ± 0.014 0.008 79° 0.85

>8 S 15,878 −0.005 ± 0.011 0.042 ± 0.011 0.042 96° ´ -7.9 10 4

K N 3919 −0.001 ± 0.022 0.051 ± 0.022 0.051 91° 0.075

Table 6
Reconstruction with Dipole and Quadrupole Patterns

E (EeV) di Qij

4–8 = - d 0.012 0.030z = Q 0.028 0.052zz

K = d 0.003 0.010x = - Q 0.018 0.032xx

K = d 0.005 0.010y = - Q 0.001 0.019xy

K K = - Q 0.004 0.024xz

K K = Q 0.013 0.024yz

>8 = - d 0.021 0.048z = Q 0.046 0.083zz

K = - d 0.003 0.016x = Q 0.004 0.051xx

K = d 0.055 0.016y = Q 0.080 0.030xy

K K = Q 0.007 0.039xz

K K = - Q 0.004 0.039yz

Figure 3. Sky map in equatorial coordinates of flux, in km−2 yr−1 sr−1 units,
smoothed in angular windows of 45° and for the two energy bins.
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APPENDIX
RECONSTRUCTION OF DIPOLAR AND QUADRUPOLAR

COMPONENTS

We present here the reconstruction of the dipolar and
quadrupolar components in the case where the angular
distribution of the flux at Earth can be well approximated by
the combination of a dipole plus a quadrupole. In this case the
flux can be parametrized as in Equation (11).
Analogously to Equation (8) in this case fb1 and fa2 can be

written by direct integration in terms of dz and Qzz as

q

q q

= F
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Then, from the measured values of fb1 and fa2 , and using that to
leading order F π 10 , dz and Qzz can be determined as
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The right ascension Rayleigh coefficients are also obtained
from direct integration as

ò

ò

d d w d

a a d a

=

´ F

a

d

d

a d

d k

2
cos ( )

cos ( ) ( , ), (A.5)

k

π

0

2

min

max

where dmin and dmax are the minimum and maximum
declination considered (- 90 and 44.8 respectively, when
the full data set is considered). The coefficient abk is given by a
similar expression changing akcos ( ) to aksin ( ). Then,

d d d=
F

+
~ ~a

 ( )a d Q
2

cos cos sin , (A.6)x xz1
0

d d d=
F

+
~ ~a
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4
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0 2

where we denoted òd d d w d dº
~

d

d
f d f( ) cos ( ) ( )

min

max , and to

leading order F 1̃ 20 . From the last two equations, we
obtain that
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d
=

a

Q
b2

cos
, (A.10)xy

2

2

d
- =

a

Q Q
a4

cos
, (A.11)xx yy

2

2

where we have used that d
~
cos 1̃2 can be estimated by the mean

value dá ñcos2 of the events. Taking into account that the
quadrupole tensor is traceless, from Equations (A.4) and
(A.11) the three diagonal terms can be obtained.

The dx and Qxz components appear combined in aa1 (and
similarly dy and Qyz in

ab1 ), and cannot be disentangled by just
measuring the first harmonic amplitudes in right ascension for
the full data set, as both coefficients represent a modulation
proportional to acos . The difference is that the modulation
induced by dx is symmetric with respect to the equatorial plane
(same sign in the northern and southern hemispheres) while
that induced by Qxz is antisymmetric (opposite sign in the
northern and southern hemispheres). Then a simple way of
separating dx and Qxz is computing aa1 for the southern and
northern subsamples of events, aa S

1 and aa N
1 , restricting the

sums in Equation (3) to events with d < 0 and d > 0,
respectively. Similarly dy and Qyz can be separated by
measuring ab1

S and ab1
N. From Equations (A.6) and (A.7) we

can write

d d d= +aa d Qcos cos sin , (A.12)x xz1
S(N)

S(N) S(N)

d d d= +ab d Qcos cos sin , (A.13)y yz1
S(N)

S(N) S(N)

where á ñ· S and á ñ· N denote the mean values over the events
from the southern and northern hemispheres, respectively. We
can then estimate the corresponding dipolar and quadrupolar
components as

d d d d
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