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mgarcia@frc.utn.edu.ar

Abstract. A neural network model for spectrogram magnitude predic-
tion is presented. It has one convolutional layer that computes the short-
time Fourier transform. By choosing the magnitude of the spectrum as
output and discarding the phase, it is possible to avoid complex number
operations. The structure of the network and coefficients computation
for this alternative are presented in detail. The model coefficients can
be directly computed or trained with the gradient descent algorithm. In
both cases, the results are satisfactory, but the obtained weights are dif-
ferent. An analysis of the differences is made. The main contribution of
this article is to show that the proposed model is trainable. Consequently,
the coefficients can be adapted to particular problems.
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1 Introduction

The spectrogram is a representation of the variation of the frequency spectrum
of a signal. This variation can occur in time (audio, earthquake waves, etc.),
space (images) and other domains.

In machine learning, it is common to use the spectral information data to find
non-obvious features in the source domain. The frequency spectrum of a signal
is obtained through the Fourier Transform (FT). For discrete data, the compu-
tational basis of spectral analysis is the Discrete Fourier Transform (DFT).

In the following paragraphs of this introduction, some key concepts will be
stated.

Discrete Fourier Transform. The DFT converts a finite sequence of N com-
plex numbers (samples) {xn} := x0, x1, ..., xN−1 into a sequence of K = N
complex numbers {Xk} := X0, X1, ..., XN−1.

Xk =
N−1∑

n=0

xn e
−i2πkn/N (1)
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According to the Euler’s formula,

Xk =
N−1∑

n=0

xn [cos(−2πkn/N) + i sin(−2πkn/N)] (2)

It is important to note that the DFT is a linear operator [1]. The DFT can
then be defined as the linear map F : CN → CN such that X = F(x) with the
following matrix representation.

X = Fx

where

x =
[
x0 x1 x2 . . . xN−1

]ᵀ
,

X =
[
X0 X1 X2 . . . XN−1

]ᵀ

and according to equation 1,

F =




1 1 1 . . . 1

1 e−
i2π
N e−2 i2πN . . . e−(N−1) i2πN

1 e−2 i2πN e−4 i2πN . . . e−2(N−1) i2πN

1
...

...
. . .

...

1 e−(N−1) i2πN e−2(N−1) i2πN . . . e−(N−1)2 i2πN




For the case of equation 2,

F = FC + iF S

where

FC =




1 1 1 . . . 1

1 cos(−1 i2πN ) cos(−2 i2πN ) . . . cos(−(N − 1) i2πN )

1 cos(−2 i2πN ) cos(−4 i2πN ) . . . cos(−2(N − 1) i2πN)

1
...

...
. . .

...

1 cos(−(N − 1) i2πN ) cos(−2(N − 1) i2πN ) . . . cos(−(N − 1)2 i2πN )




F S =




0 0 0 . . . 0

0 sin(−1 i2πN ) sin(−2 i2πN ) . . . sin(−(N − 1) i2πN )

0 sin(−2 i2πN ) sin(−4 i2πN ) . . . sin(−2(N − 1) i2πN)

0
...

...
. . .

...

0 sin(−(N − 1) i2πN ) sin(−2(N − 1) i2πN ) . . . sin(−(N − 1)2 i2πN )



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Spectrogram. The magnitude of the Short-Time Fourier Transform (STFT),
yields the spectrogram. In the case of a discrete signal of length L, the STFT
is simply the DFT of length N segments, where N < L, of the signal. The
result is a complex matrix S with the magnitude and phase of the signal for
each frequency in each segment (time). Generally, the columns in the matrix
represent the time dimension and the rows represent the different frequencies.
The choice of the N value depends on the goal of the spectral representation.
For small N values, high definition is obtained in the time dimension and low
definition is obtained in the frequency dimension, while for high N values, the
effect is reversed. The segments can be overlapped on m samples, for m between
0 and N − 1.

Convolutional Neural Networks. Each neuron of a convolutional neural
network (CNN) performs a linear transformation of the input vector before an
activation function. The output of the neuron j is defined as:

yj = g(
N∑

i=0

wij xi)

where
g() is the activation function
xi is the input i
wij is the synaptic weight corresponding to the input i of the neuron j
w0j is the bias. (x0 = 1).

Each layer of a CNN is composed of kernels. All kernels have the same number
of neurons. Within each kernel, the neurons share the synaptic weights, but
each one has its own receptive field (neurons connect to a limited set of inputs).
Neurons of the same location in each kernel share the receptive field, that is, they
connect to the same inputs. In this way, the output of a CNN layer is the discrete
convolution of the inputs and the weights of each kernel. Once the network is
trained, each kernel specializes in recognizing or transforming a certain pattern
of the input.

1.1 Objectives

The objective of this work is to design an artificial neural network that predicts
the spectrogram and to train the network with audio data. For this, the network
must calculate the DFT.

The weights of the network can be set with the elements of the matrix F or
be trained.

The main contribution of this work is the calculation of the synaptic weights
by training. Demonstrating that the network can learn the coefficients of the
DFT, suggests that other representations of the signal, better suited to the
classification needs, could also be learned.
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2 Motivation and related work

There are many deep learning works that use the magnitude of the frequency
spectrum as input [2–4]. This article shows that it is possible to compute the
same information by adding layers at the beginning of the deep network. The
advantage is that the calculation of the spectrum can be adapted to a particular
case.

Moreira et al. proposed the calculation of the DFT with cellular neural net-
works in [5]. They divide the weights into two groups that represent the real
and imaginary parts. The training is not carried out, the weights are directly
assigned.

Velik, in [6], predicts the DFT with weights calculated from complex expo-
nential functions, also directly assigned, and reports that the neural network
cannot be trained.

On the other hand, Anderson and Mallat [7] propose the replacement of
the DFT by the Deep Scattering Spectrum (DSS) technique, based on wavelet
transforms, because DSS is able to represent invariant characteristics over time
(or space in the case of the images). Sometimes these deviations in time are
significant for recognition. Our work is carried out in the field of vocal quality
classification, where a deviation of the vibration frequency of the vocal cords is
important [8].

3 Methods and Materials

3.1 Data

The neural network was designed to predict the spectrogram magnitudes of two
seconds audio signals.

The audios are part of the Voice Disorders Database (VDD) [9], recorded by
the Universidad Politécnica de Madrid in collaboration with the Hospital Uni-
versitario Pŕıncipe de Asturias. The audio files contain approximately 2 seconds
of a sustained vowel /a/. These were recorded from people with vocal pathologies
and healthy people.

Inputs. The audios are in WAV format with a sample rate of 25000 samples
per second. All files where duration ≥ 2 seconds were selected. Then the 50000
central samples were taken.

The input data is defined as 430 vectors of length L = 50000. 300 vectors
were randomly chosen for training and 130 for validation.

Outputs. The outputs are calculated as the absolute value of the STFT of the
inputs, with segments of size N = 1760 and overlap m = 1540 elements. It im-
plies a 220 elements displacement by transformation. The module is calculated
in order to obtain the spectrogram magnitude. The spectrogram calculated in
this way has 220 columns (time) and 881 rows (frequency). Due to the nature
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of the audios (voices in the usual pitch), the energy is concentrated almost com-
pletely in the first 200 rows (0-2826 Hz). For this reason, it was decided to train
the network to predict only the magnitude of rows 1 to 200 of the spectrogram.
For this case K = 200.

Then, the output is a vector of size 200 × 220. Note that the output values
are in R because the module of the spectrum is taken.

3.2 Neural Network

To obtain the output defined in the previous section, the neural network must
consist of two parts, one that calculates the STFT and another that obtains the
absolute value. If the operation of calculating the absolute value is not included
in the network, it is not possible to perform the training with the data as defined.

The STFT computation is done with a convolution layer, where the synaptic
weights are the elements of the matrix F and the activation function is linear.
This is possible because both, the DFT and the operation performed by each
neuron, are linear transformations. It is important to note that the values of the
matrix F are constant.

There are two ways to implement the calculation, depending on whether the
DFT equation 1 or 2 is chosen. If the matrix F , corresponding to the equation
1 is used, the weight matrix W consisting in the complex coefficients wij , will
have size N ×K. In the case of the equation 2, W , of size N × 2K will consist
in the (real) values of the matrices FC and F S .

In terms of efficiency, there is no difference between the two alternatives.
For this work the second one is chosen because, since the output only conserves
information of the spectrum magnitude, it is possible to avoid complex numbers
operations. This could be a practical advantage because, among the neural net-
works software libraries, there is still no (in general) support for the complex
numbers [10]. For the rest, the two approaches are equivalent.

Convolution layer. In order to calculate the STFT with a convolution layer,
it is convenient to write the equation 2 in the following way.

Xk =

N−1∑

n=0

xn cos(−2πkn/N) +

N−1∑

n=0

i xn sin(−2πkn/N) (3)

In matrix form,

X = FCx + iF Sx

Fig. 1 shows the proposed neuronal model. It can be seen that the output of
the convolutional layer contains FCx and F Sx values. These are the convolution
of the input and each one of the 2K(400) kernels.

In the case of the direct assignment of the synaptic weights (without train-
ing), the first K kernels take the values of the K columns of matrix FC , and
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Fig. 1. Artificial neural network model that receives audio as input and predicts the
magnitude of the spectrogram.

remaining kernels take the values of F S columns. In this model, the neurons do
not have the w0j weight because the DFT has no term independent. Formally,
the assignment of the weights is done as follows:

wijk = fCik (4)

wij(k+K) = fSik (5)

where

wijk is the synaptic weight of the input i of the neuron j of the kernel k.

fCik is the element in the row i and column k of FC .

fSik is the element in the row i and column k of F S .

Since the weights of neurons at the same kernel are shared, only one set of
weights per kernel is stored. Note that there is not subindex j in the second
terms of the equations 4 and 5. Then, the weights matrix W has size N × 2K
(1760× 400).

Magnitude of the spectrum. From equation 3, the magnitude of the fre-
quency spectrum is as follows.
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|Xk| =
∣∣∣∣∣
N−1∑

n=0

xn cos(−2πkn/N) +
N−1∑

n=0

i xn sin(−2πkn/N)

∣∣∣∣∣

=

√√√√
(
N−1∑

n=0

xn cos(−2πkn/N)

)2

+

(
N−1∑

n=0

xn sin(−2πkn/N)

)2

(6)

The results of the summations in the equation 6 are the scalars in the location
k of the FCx and F Sx vectors. Thus,

|Xk| =
√

(FCx)
2
k + (F Sx)

2
k

where (FCx)k and (F Sx)k are the kth elements in FCx y F Sx vectors
respectively.

The output of the convolution layer of the model in Fig. 1 is an array contain-
ing the vectors FCx and F Sx corresponding to all segments in the input signal.
After the convolution, four operations arranged in layers are carried out. The
first operation is a change in the form of the array in order to simplify the third
operation, the second calculates the square of each element, the third adds pairs
of values corresponding to the same frequency (k) and time segment, and finally,
the calculation of the square root of each element is performed. The result is a
matrix of size 200× 220 with the magnitudes of the spectrum elements.

Training. Instead of assigning the weights directly, these can be trained through
the gradient descent method on the mean squared error (MSE) function. The
calculation of the gradient includes the derivatives of the three last layers (oper-
ations) of the model. In the next section, the results of this process are presented
and compared with those obtained through direct assignment.

4 Results

Below, the result of 30,000 training cycles of the proposed model is shown. The
weights were initialized with random values between −106 and 106 uniformly
distributed. The optimization method Adam [11] was used with the parameters
provided by the authors. The weights were updated in batches of size 300 (the
whole of training data). The calculations were performed on an NVIDIA Titan
Xp GPU donated through NVIDIA’s GPU Grant Program.

The MSE reached on validation data was 1.41 × 10−6 (9.79 × 10−6% of the
mean expected output), while for the same model with directly assigned weights
an MSE < 10−9 was achieved. Fig. 2 shows the expected output for one vector
in validation dataset and the output obtained by the network after the training.
At first glance there are no differences.
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Fig. 2. Output (spectrogram) of the Neural network. Expected output (left) and output
obtained with trained weights (right). At first glance there are no differences.

The result obtained by training is widely satisfactory. A comparison be-
tween the theoretical weights, calculated from the equations of the DFT, and
the trained ones is presented below.

In Fig. 3 It can be seen the values of FC and F S for weights assigned directly
(theoretical) and for trained weights. In all cases it is clearly observed that the
upper rows of the transposed matrices represent the low frequencies and lower
rows represent high frequencies.

Fig. 3. Transposed matrices of coefficients. FC with theoretical weights (a), F S with
theoretical weights (b), FC with trained weights (c) and F S with trained weights (d).

It is also evident that the two groups, theoretical and trained weights, present
different image patterns. The trained weights have a ”messy” appearance. The
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origin of this phenomenon is that TDF performs a decomposition of the input
into a weighted sum of the sinusoidal signals found in the matrices FC and F S .
The training method, for each value of k, finds a pair FC and F S formed by
sine waves with a 90◦ phase offset allowing the desired decomposition, but this
solution is not necessarily the same as the equation 3.

Fig. 4 shows three examples of trained vs. theoretical weights for particular
values of k. Note that, for both theoretical and trained weights there is always a
90◦ phase shift between FC and F S . This can be checked by calculating mod =√
F 2
C + F 2

S for any value of k. For theoretical weights, obviously mod = 1, while

for trained weights a value very close to 1 is always obtained. In this way, an
orthogonal base is found to perform the decomposition.

Fig. 4. Trained synaptic weights (thin lines) and theoretical weights (thick lines) for
k = 2, 5 and 7. The values of FC are shown in red and the values of F S in blue.

5 Conclusion

It is concluded that a neuronal model is able to calculate the DFT, both for theo-
retical and trained weights, and that the trained weights do not necessarily tend
towards the theoretical ones, although they share frequency and orthogonality
condition. In addition, a convolutional network with the presented characteristics
can be trained to calculate the spectrogram of the input signal. If the expected
output is the magnitude of the spectrum, it is possible to avoid the operations
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10 M.A. Garćıa and E.A. Destéfanis

of complex numbers by adding operations in layers that calculate the Euclidean
distance between the components of the same frequency.

The advantage of training the model is that it can be adapted to particular
problems. For example, in the STFT computation it is common to use a window
that softens the signal ends. These functions can be achieved with the proposed
network by attenuating the ends of the weights. There are several window func-
tions, but for a particular problem a different one may be better.

Then, to solve a particular problem, the weights can be initialized with ran-
dom values, theoretical weights of the DFT or theoretical weights modified by
some function (window function for example) and then, trained to find the op-
timal combination for the problem.
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8. Garćıa, M.A., Destéfanis, E.A.: Deep neural networks for shimmer approximation
in synthesized audio signal. In: Argentine Congress of Computer Science, Springer
(2017) 3–12

9. Arias-Londoño, J.D., Godino-Llorente, J.I., Markaki, M., Stylianou, Y.: On com-
bining information from modulation spectra and mel-frequency cepstral coefficients
for automatic detection of pathological voices. Logopedics Phoniatrics Vocology
36(2) (2011) 60–69

10. Trabelsi, C., Bilaniuk, O., Zhang, Y., Serdyuk, D., Subramanian, S., Santos, J.F.,
Mehri, S., Rostamzadeh, N., Bengio, Y., Pal, C.J.: Deep complex networks. arXiv
preprint arXiv:1705.09792 (2017)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

51


	05-Spectogram Prediction with Neural Networks

