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From 2540 Z ° ---, r + r  - events, we determine the inclusive decay branching fractions of the r-lepton into one 
and three charged particles to be 0.856 ± 0.006 (stat.) + 0.003 (syst.) and 0.144 + 0.006 (stat.) 4- 0.003 (syst.), 
respectively. The leptonic branching fractions are measured to be 0.175 + 0.008 (stat.) 5:0.005 (syst.) for r ---, ltuuur 
and 0.177 4- 0.007 (stat.) 4- 0.006 (syst.) for r ~ eueur. We determine the r lifetime both from three-prong decays 
using the decay length and from one-prong decays using the impact parameter. The results from the two independent 
methods agree and yield a combined value of [0.309 4- 0.023 (s tat . )+ 0.030 (syst.)] × 10-1as. 

Introduction 

The  decays o f  heavy leptons are well sui ted to study 

the strength and structure o f  the weak charged cur- 

rent. Since the p ioneer ing  search for sequent ia l  heavy 

leptons by m e a s u r e m e n t  o f  e-/~ final states [ 1 ], and 

the subsequent  d iscovery  o f  the r - lepton in e+e  - re- 

act ions [2],  much  in format ion  about  its proper t ies  

has been accumula ted  [3].  

The  L3 col labora t ion  has previously  presented  the 

Supported by the German Bundesministerium f'tir 
Forschung und Technologie. 

measuremen t s  o f  the cross sections for e+e  - -~ Z ° --, 

r + r  - [4] at energies a round the Z ° resonance.  Here  

we analyze the same event  sample  to measure  the 

topological  and leptonic  branching fract ions o f  the 

r decay and the r l ifetime. Since our  selection o f  r 

candidates  used for the cross section measu remen t  

is largely based on ca lor imetr ic  in fo rmat ion  ra ther  

than charged mult ipl ici ty,  the topological  branching  

fract ions can be extracted with small  systemat ic  bi- 

ases. Because o f  the high center-of-mass  energy of  

LEP, the background cont r ibu t ion  f rom low mult i -  

pl ici ty hadronic  events  is small. The  good resolut ion 
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of the central detector yields a measurement of the 
z lifetime competitive with previous high statistics 

determinations at lower energies [5]. 

The L3 detector 

The L3 detector consists of a central tracking 
chamber, a high-resolution electromagnetic calorime- 

ter composed of BGO crystals, a ring of scintillation 
counters, a uranium and brass hadron calorimeter 
with proportional wire chamber readout, and an ac- 

curate muon chamber system. These detectors are 
installed in a 12 m diameter magnet which provides 
a uniform field of 0.5 T along the beam direction. 

The central tracking chamber is a time expansion 
chamber (TEC) which consists of two cylindrical lay- 
ers of 12 and 24 sectors, with 62 wires measuring the 
R/~ coordinate. The chamber is separated from the 
beam line by two concentric beryllium tubes of 1.5 
mm thickness. The first coordinate is measured at a 
distance of 109.8 mm from the beam line, the last one 
at a distance of 427.2 mm. The single-wire resolution 
is 58 /tm averaged over the entire cell. The double- 
track resolution is 640 #m. The fine segmentation of 
the BGO detector and the hadron calorimeter allow 
us to measure the direction of taus from the thrust 
axis of tau decay products with an angular resolution 
of 1.8 °. The muon detector consists of 3 layers of 
precise drift chambers. 

For the present analysis, we use the data collected 
in a fiducial region covered by the electromagnetic 
barrel calorimeter, i.e. - 0 .7  < cos0x < 0.7, where 0T 
is the polar angle of the event 's thrust axis. 

A detailed description Of each detector subsystem, 
and its performance, is given in ref. [6]. 

Determination of the topological branching fractions 

The event selection [4] of Z ° ~ r+ r  - is mainly 
based on calorimetric quantities. The selection crite- 
ria are: 

(1) The total energy deposited in the electromag- 
netic calorimeter is required to be greater than 2 GeV 
and less than 60 GeV. 

(2) The number  of clusters reconstructed in the 
electromagnetic calorimeter must be less than 13 and 

/3  

Fig. 1. Display ofa Z ° ~ r+r  - event in the central track- 
ing chamber of L3. Hits and reconstructed tracks in the 
TEC are shown, Used hits are shown as dots, and unused 
hits as crosses. The polar histogram represents the energy 
depositions in the BGO calorimeter. One r decays into 
an electron, while the other r decays into three charged 
hadrons. 

the number  of charged tracks in the TEC must be less 

than 9. 
(3) The event is required to have at least one scin- 

tillation counter hit within 6 ns of the beam gate. 
(4) The event must contain at least two and at most 

three jets, each with an energy greater than 3 GeV. 
(5) The acollinearity angle between the two most 

energetic jets must be less than 14 ° . 
(6) The event is required to have no more than 

one isolated muon and, in addition, the muon must 

have a momentum of less than 0.88Ebeam. 
(7) If the shower profile of a jet is consistent with an 

electron or a photon, the energy deposited in the BGO 
associated with that jet must be less than 0.88Ebeam. 

There are 2540 events passing these cuts, which cor- 
respond to an efficiency of 75.4% within the fiducial 
region [4]. Fig. 1 shows an example o f a  Z ° ~ z+z - 
event as observed in the L3 central tracking chamber 
and electromagnetic calorimeter, where one r decays 
into an electron and the other into three charged 
hadrons. The three tracks from this decay are clearly 
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separated. 
For the multiplici ty measurement we require that 

there be at least one well measured track present in 
the event. A well measured track for this analysis 
fulfills the following criteria: (a) a good circle fit in 
the R / ~  projection with a length of  at least 216 mm; 
(b) at least 30 out of  a maximum of  62 hits used in 
the track fit; (c) distance of  closest approach (DCA) 
to average beam posit ion less than 10 mm. The event 
is then divided into two hemispheres, separated by 
the plane normal to the thrust axis. The multiplicity 
is counted in each hemisphere. 

The efficiencies to detect the one-prong, three- 
prong or five-prong decays of  the tau are calculated 
with Monte Carlo simulations [7]. The detector sim- 
ulation includes the effects of  the chamber 's  reso- 
lution, double-track resolution and efficiency as ob- 
served during the 1990 running period. Applying the 
selection described above, the probabil i t ies ei to ac- 
cept a decay from each of  the three topological chan- 
nels i = 1,3, 5 are determined to be (74.5 ± 0.3)%, 
(80.7 ± 0.6)% and (76.5 ± 1.6)%, respectively, in- 
side the fiducial region. The error bars are statistical 
errors only. The simulation also allows a determi- 
nation of  the probabil i t ies e,j to observe j tracks, 
when i charged particles were produced in the de- 
cay. For background estimation, also Z ° decays into 
e+e - , / l + / t  - and hadrons are simulated and submit- 
ted to the same selection criteria as r + r  - candidates. 
This simulation determines the small fractions ck ac- 
cepted from the three background channels k as well 
as the probabil i t ies dkj to observe j tracks from these 
sources. All other background sources are negligible. 
The predict ion of  the observed multiplici ty distribu- 
tion 

rte xpec,ed ( j  ) 

( 1 -- ~ Ck ) ~]i  BR, e~ij  + ~ k  Ck~k; 
= n~, (1) 

(1 - ~ k  ck ) ~ i  BRie i  + ~-,k ck 

where n~ is the total number  of  z decays included 
in the sample, is then fitted to the observed multi- 
plicity distr ibution.  The free parameters  of  the fit are 
the branching fractions BR~ and BR3 for z decays 
into one and three charged particles respectively. The 
branching fraction into five charged particles is then 
given as BR5 = 1 - B R j  -BR3.  Fig. 2a shows the mea- 
sured charge multiplici ty distr ibution.  Note the large 

peaks at one and three prongs as expected. However, 
because of  the difficulty simulating the double-track 
resolution in the regions on borders of  TEC sectors, 
the Monte Carlo is in only fair agreement with our 
observations. We therefore choose to el iminate the 
border  regions which are within 15 mrad of  the an- 
ode and cathode plane of  TEC sectors from our fidu- 
cial region. After the cut, the Monte Carlo reproduces 
the measured double-track resolution well. Our track 
efficiency then drops, as seen in fig. 2b, but we are 
able to simulate the charge multiplicity distr ibution 
well as seen from the better agreement between data 
and Monte Carlo in the figure. The Z 2 of  the fit is 
2.0 for 4 degrees of  freedom. The cut changes the 
fitted branching fractions by less than their statistical 
errors. 

A contribution to the systematic error on the mea- 
sured branching fractions comes from the uncertainty 
in the Monte Carlo determinat ion of  the parameters  
ei, ~ij and ~kj of  the fitting function. Their  errors pro- 
duce uncertainties in the three branching fractions of  
+0.0015, ±0.0006 and +0.0005. Varying the back- 
ground fractions ck within one standard deviat ion 
changes the results by &0.002, +0.002 and ±0.001. 
The influence of  the exclusion of  regions around the 
anode and cathode planes has been studied by varying 
the cut between l0 mrad and 20 mrad. The result- 
ing variations of  the branching fractions are -+-0.002, 
+0.002 and ±0.001. The effect of  the excluded re- 
gions depends slightly on the kinematics of  the decays 
into three or more charged particles. To estimate the 
magnitude of  this dependence, the dominant  decays 
of  r + -~ al u~ -~ 3 charged particles + neutrals and 
r + -~ nnu~ ~ 3 charged particles + neutrals were 
simulated separately. Varying the ratio of  the two 
decay modes by its uncertainty produced negligible 
systematic changes in BR3 (+0.0002).  The resulting 
topological branching fractions are then 

BR( r  ± -~ 1 charged particle + neutrals) 

= 0.856 4- 0.006 ± 0.003, 

BR( r  ± ~ 3 charged particles + neutrals) 

= 0 .1444-0 .006+0 .003 .  

The first error is statistical, the second is systematic. 
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Fig. 2. The charged multiplicity distribution for observed r decay candidates (points) compared to the best fit of the expected 
distribution (histogram), where the different hatchings show the contributions from one-prong and three-prong z decays as 
well as backgrounds from Z ° ---, e+e - ,  /~+#- and hadrons: (a) before exclusion of the boundary regions; (b) after exclusion 
of the boundary regions as described in the text. 

Thus 

BR(r  ± --, 5 charged particles + neutrals) 

< 0.0034 (95% CL). 

These results are in agreement with the current world 
averages [3]. 

Determination of the leptonic branching fractions 

To identify electrons and muons from r decay ad- 
ditional selection criteria are applied to our r sample. 
The criteria are applied independently in each hemi- 
sphere of the event. 

To identify muons, we require a reconstructed track 
in the muon chambers with a momentum greater than 
2 GeV which extrapolates back to the interaction 
point within 10 cm along and transverse to the beam 
direction. A candidate is then accepted as a muon if 

the energy deposited in the hadron calorimeter is less 
than 6 GeV. 

To identify electrons we require that the shower 
profile of a candidate in the electromagnetic calorime- 
ter be consistent with that expected from a purely 
electromagnetic shower. The energy deposited in the 
hadron calorimeter is required to be less than 5 GeV. 
And there must be at most one good track which 
matches the center-of-gravity of the cluster within 8 
mrad in the transverse plane. 

After applying the above criteria, 624 events with 
at least one muon and 686 events with at least one 
electron have been found and used for the calculation 
of the branching fractions. The selection efficiencies 
and background fractions from other channels as es- 
t imated from Monte Carlo simulation are shown in 
table 1. The numbers are given as fractions of the 
total number  of r events produced inside the fiducial 
region, where exactly one r decays leptonically. 

Figs. 3 and 4 show the spectra of electrons and 
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Fig. 3. The energy distribution for electrons from selected 
r decays (points) compared to the distribution expected 
from Monte Carlo (histogram). The distribution has been 
acceptance corrected and background events are subtracted. 

Table 1 
Selection efficiencies from Monte Carlo for leptonic z de- 
cays, hadronic r decays and dilepton background processes. 

t r ~ g  r ~  hadrons Z ° ~ g + e . -  

# 63.0% 2.0% 0.4% 
e 60.6% 3.9% 1.0% 

muons from r decay compared with the expectations 
determined by Monte Carlo. The distributions have 
been corrected for acceptance and the backgrounds 

have been subtracted. 
The final branching fractions after taking into ac- 

count the efficiency corrections and background sub- 
tractions are determined to be 

BR(r  ~ #vuv~) 

= 0.175 ± 0.008 ± 0.005, 

BR(r  ~ ev~v~), 

= 0.177 i 0.007 i 0.006, 

320 
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Fig. 4. The momentum distribution for muons from selected 
r decays (points) compared to the distribution expected 
by Monte Carlo (histogram). The distribution has been 
acceptance corrected and background events are subtracted. 

where the first error is statistical, the second system- 
atic. This systematic error was estimated by varying 
the cuts and the background fractions by their esti- 
mated uncertainties to account for any imperfections 

in the Monte Carlo simulation. The results are in 
excellent agreement with the current world average 
values of 0.178 + 0.004 and 0.177 + 0.004, respec- 
tively [3 ]. 

The measured ratio, F(z  ~ #vuv~)/F(r 
every) = 0.986 + 0.063, is in agreement with the 
expectation of 0.973 from e - # - r  universality in the 

weak charged current [8 ]. 
These measurements can be used to estimate the 

value of the strong coupling constant, as (Q2) at Q2 = 
m 2. The quantity R/~aO is defined as the ratio 

T 
R h a  d = 

F ( r ~ h a d r o n s  v~) 1 - B[ - B ~  

F ( r  ~ every) B~ 

Using the leptonic branching fractions, we ob- 
r "1 ~qA +0.25 tain Rua d . . . . .  -0.23" Rhad has been computed in 

perturbative QCD to third order in C~s [9]. Both 
non-perturbative effects, which have been found to 
be small, and weak corrections have been calcu- 

457 



Volume 265, number 3,4 PHYSICS LETTERS B 15 August 1991 

lated [10,11 ]. Using the theoretical expression for 
R~,ad [ 11 ], we derive 

~s(Q 2 = m~) 0 34 +0.07 
= • - 0 . 0 9 '  

A comparison with the number  ~s(Q 2 = m 2) = 
0.125 ± 0.041 [4], obtained from a measurement  of  
the ratio RZad defined in analogy t o  R~acl , confirms the 
running of  ~s as predicted by QCD. Extrapolating the 
~s values from Q2 = m 2 to m 2 yields [12,3] 

= ~ + 0 . 0 0 7  ~ts (rn 2 ) 0.11,,_0.012 . 

This number  is in agreement with our determina-  
tion of  the strong coupling constant from an anal- 
ysis of  the topology of  hadronic Z ° decays, ~s = 
0 . 1 1 5 ± 0 . 0 0 9  [13]. 

L i f e t i m e  m e a s u r e m e n t  f rom t h r e e - p r o n g  decays 

To determine the lifetime of  the r-lepton, we first 
use its decays into three charged particles. In this de- 
termination,  we measure the decay distance of  the 
r using the average posit ion of  the beam spot as its 
origin and the vertex determined from the decay prod- 
ucts as its decay point. All these measurements  are 
made in the plane transverse to the beam direction. 

The average posit ion of  the beam spot in the L3 
intersection point  is measured for each LEP fill using 
good quality tracks in hadronic events. Its posit ion is 
determined by minimizing the sum of  the squared dis- 
tances of  well measured high transverse momentum 
tracks to a common origin. This method yields the 
average beam posit ion within each fill with a mean 
uncertainty of  less than 46 pm, as est imated from 
the variat ions in the vertical beam posit ion between 
consecutive LEP fills. 

The size of  the beam spot is de termined from 
high transverse momentum tracks from the reactions 
e+e - --* e+e - and e+e - ~ Zt+/z - .  The distr ibution 
of  their DCA to the average beam posit ion measures 
the size of  the beam spot folded with the experimen- 
tal resolution on track parameters  as well as average 
beam position. The distance between the two tracks at 
the average beam posit ion measures the experimen- 
tal resolution on the DCA alone. By unfolding the 
contr ibut ions from the size of  the beam spot and the 
experimental  resolution we obtain an effective RMS 

beam spot size of  a ,  = ( 196 + 5) p m  in the horizon- 
tal direction and o 3, = (24 + 25) p m  in the vertical 
direction. These numbers contain the uncertainty in 
the determinat ion of  the mean beam position. 

The average RMS error on the distance of  clos- 
est approach is CrDCA = (144 + 1) p m  for particle 
momenta  of  45 GeV. For lower momenta,  a small 
addi t ional  contr ibution from multiple scattering in- 
side the beryllium beam pipe is taken into account. 

In selecting three-prong decays of  the r for the life- 
t ime measurement,  we make the following addit ional  
requirements to the sample of  2540 events: 
- There must be three well measured tracks in one 
hemisphere,  as determined by the event 's  thrust axis, 
with a maximum opening angle between any two of  
15 °" 
- There must be one or three tracks in the opposite 
hemisphere. 
- All tracks must have at least two hits in the inner 
layers of  the chamber. 
- The vertex from the three charged tracks must be 
determined with a Z 2 probabil i ty  larger than 5% and 
with an error along the direction of  flight of  less than 
10 ram. 
After these addit ional  criteria, a total of  251 candi- 
dates for three-prong decays remain. The background 
from other reactions in this sample is determined by 
Monte Carlo to be less than one event. 

Fig. 5 shows the distr ibution of  the distance be- 
tween the average posit ion of  the beam spot and the 
r decay vertex - the decay distance distr ibution - for 
these candidates.  The sign of  the decay distance is 
defined such that decay vertices in the r-product ion 
hemisphere acquire a positive sign and those in the 
opposite hemisphere a negative sign. The measured 
projection of  the decay distance onto the transverse 
plane is then divided by sin Or, where 0T is the pro- 
duction angle approximated by the polar angle of  the 
event 's  thrust axis. Also shown in fig. 5 is the result 
of  an unbinned maximum likelihood fit, which uses 
an event probabil i ty density p proport ional  to the 
theoretical decay distance distr ibution folded with a 
gauss±an resolution 

1 /e_~-/%_(x_a,)2/2~Zdx ' (2) 
p ( d , ) -  x/~ai2 

0 
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Fig. 5. The decay length distribution for r decays into 
three charged particles (points) compared to the expected 
distribution (line) determined by an unbinned maximum 
likelihood fit. 

where 2 is the r decay length and 2~ is the decay dis- 
tance measured in event i. The error on this distance, 
a~, takes into account the contributions from both 
the size of  the beam spot and the error on the decay 
vertex as determined from the covariance matrices of  
the track parameters.  

The likelihood function is then the product of  these 
probabil i ty densities for all events and is maximized 
with respect to the decay length 2. Using the average 
momentum of r-leptons in our sample of (98.8 + 
0.1 )% of  the beam energy, as determined from Monte 
Carlo including radiative corrections, we thus obtain 
a first result for the r lifetime 

r~ = (0.302 i 0.036) x lO-12S, 

where the error is statistical only. 
Systematic errors in this measurement  occur mainly 

by miscalibrat ion of  the central tracking chamber and 
by systematic under or overest imation of  the decay 
distance error rr,. Varying the two main parameters 
of  the chamber 's  t ime-distance relation, i.e. the drift 
velocity and the zero point  of  the drift t ime mea- 
surement,  by the est imated systematic uncertainties 
(0.2% and 5 ns, respectively) around their  calibrated 
values, we obtain a relative variat ion of  the deter- 
mined decay length of  2% and 2.5%, respectively. 
Systematically scaling the error a, of  the decay length 

in each event by a factor deviating from one by ~20%, 
we observe a relative variat ion of  the decay length of  
±5%. This factor is est imated to cover uncertainties 
in the determinat ion of  the track parameter  errors as 
well as systematic deviations of  the single-hit posit ion 
error from its est imated behavior. We thus conclude 
that this method determines the r lifetime with a 
systematic uncertainty of  :L0.021 × 10- ~ 2 s. 

Lifetime measurement from one-prong decays 

As a second, independent  method we determine 
the r lifetime from a measurement of  the impact pa- 
rameter  in one-prong decays. The impact parameter  
6 of  a track is given by the DCA to the average beam 
posit ion in a fill, signed positive if the track intersects 
with the event 's  thrust axis in the direction of  flight 
of  the r and signed negative if  it intersects opposite 
to this direction. It is d ivided by sin OT, 0T being the 
r ' s  production angle, since the DCA is measured in 
the projection onto the transverse plane. 

The candidates for this measurement  are selected in 
the same way as those for three-prong decays, except 
that exactly one track is required in each hemisphere 
of  the event and that each track must have a DCA 
to the average beam position of  less than 1.5 mm. 
The sample then consists of  2566 candidates for r 
decay into one charged particle with an est imated 
background of  ( 1.35 ± 0.70)%. 

Fig. 6 shows the distr ibution of  the impact param- 
eter 6, for these events. The sample is subjected to 
an unbinned maximum likelihood fit with an event 
probabil i ty density analogous to eq. (2) to determine 
the average impact parameter  6: 

o ~  

i e ~/6e ~ 6')2/"~2, dx .  (3) 
J 
o 

Here, ai is the error of  the impact parameter  measure- 
ment, folded with the RMS size of  the beam spot in 
the flight direction of  the r. The resulting average im- 
pact parameter  value for the data is 6 = (64-}-6)/zm. 

The conversion of  the quanti ty 6 into a r lifetime 
is less direct than in the case of  the decay distance 
measurement  and proceeds via Monte Carlo. For  this 
purpose, high-statistics samples of  e+e - ~ Z ° 
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Fig. 6. The impact parameter distribution for r decays into 
one charged particle (points) compared to the expected 
distribution (line) determined by an unbinned maximum 
likelihood fit. 

r + r  - with r lifetimes between 0.004 x 10-12s and 
0.604 × 10-12s have been generated, the detector re- 
sponse simulated [7] and the simulated events run 
through the same analysis as the data. The relation 
between the average impact  parameter  J and the life- 
t ime r~ is thus determined to be 

6 = [ ( -1 .4 - t -  1.9) + ( 2 0 7 + 6 ) r ~ ( 1 0 - 1 2 s ) ]  ztm. (4) 

The bias for a lifetime of  zero can be cross-checked 
using the dis tr ibut ion of  a sample of  tracks from 
hadronic Z ° decays fulfilling cuts analogous to those 
for r decays, which yields 30 = (7 + 4) #m. 

This method thus yields a r l ifetime 

r~ = (0.318 + 0.028) x lO-12S, 

where the error is statistical only. The expected &dis-  
t r ibution corresponding to the best fit is overlayed on 
fig. 6. A systematic error is again est imated by varying 
the parameters  of  the t ime-distance relation as above 
to cover the influence of  the chamber  calibration. 
An error of  ! 0 .018  × 10-12s f rom the uncertainty of  
the drift velocity and of  +0.010 × 10-~2s from the 
t ime-zero results. In addit ion,  a systematic error of  
+0.014 × 10-~2s from the uncertainty in the param- 
eters of  eq. (4) has to be taken into account. The 
uncertainty of  the beam posit ion per fill is included 
in the impact  errors ai entering into the l ikelihood cal- 
culation. If  the track parameter  errors are varied by 

the est imated systematic uncertainties o f + 7 %  around 
their  values determined from ee and/t /~ events, the 
resulting lifetime changes by +0.026 × 10-~2s. We 
thus est imate a total systematic error for the impact 
parameter  method of  +0.037 × 10-12s. 

Since the samples for both methods are exclusive, 
the two results can be combined.  The systematic er- 
rors from calibration and error determinat ion are cor- 
related, while the others are not. Taking into account 
this correlation, we obtain a combined result for the 
r l ifetime 

r~ = (0.309 ± 0.023 + 0.030) x 10-12s, 

where the first error is statistical, and the second 
systematic. This result agrees with the current world 
average of  (0.303 + 0.008) × 10-12s [3]. The mea- 
surement also agrees with the theoretical expectation 
from the standard model 

( G~'~ Z (mu ] SBR(r ~ eueu~) ' 
r ,  = r ,  \G~:J ,,m~/ (5) 

where r~, is the measured muon lifetime and GF ~ 
and G~ are the Fermi coupling constants of /~  and 
r. This relation is affected by s tandard model  ra- 
diat ive corrections only at the percent level [14]. 
Using our own result on the r branching fraction 
into electrons, the relation predicts a r lifetime of  
(0.283 + 0.016 ) × 10-12s for equal coupling constants 
to the weak charged current. Converting relation (5) 
into a measurement  of  the coupling constant ratio, 
we obtain 

G.__~ = 1.04 i 0.07. Gb 

Conclusions 

We have analyzed Z ° --* r + r  - decays and deter- 
mined the topological and leptonic branching frac- 
tions as well as the r lifetime. The results are in good 
agreement with previous measurements  at lower ener- 
gies. They are also compatible  with expectations from 
the standard model  based on the assumption of  e -~t - r  
universality of  the weak charged current couplings. 
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