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We have measured the cross-section of the production of single photon events in e + e -  collisions near the Z ° resonance. 
For an integrated luminosity of 9.6 pb -1, we have observed 202 single photon candidates with energy between 0.9 
and 3.5 GeV in the polar angular region between 45 ° and 135 °. Assuming that the only stable weakly interacting 
particles are light neutrinos with standard model couplings, we determine the number of light neutrino species to be 
Nv = 3.14 + 0.24 (stat.)4-0.12 (syst.). This corresponds to an invisible Z ° width of Finv = 524 + 40 4- 20 MeV. 

1. Introduction 

The  n u m b e r  o f  f e rmion  generat ions,  which  can be 

de t e rmined  f rom the n u m b e r  o f  light neutr inos ,  is 

among  the impor t an t  ques t ions  in the s tandard  model .  

l Deceased. 
2 Supported by the German 

Forschung und Technologie. 
Bundesministerium f'fir 

In  the  s tandard  mode l  the decay width  o f  the Z ° in to  

each neu t r ino  family  is calculated to be  F~v = 166 .8+  

1.5 M e V  where  the uncer ta in ty  corresponds  to a vari-  

a t ion o f  the top  mass be tween  90 and  250 G e V  [ 1,2]. 
Add i t iona l  genera t ions  or  o ther  new weakly interact-  

ing part icles wi th  masses below ½Mz, would  lead to 

a decay width  o f  the Z ° into invis ible  channels  larger 

than  the s tandard  mode l  p red ic t ion  for three famil ies  

while  a smal ler  va lue  could  be produced,  for exam-  
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Fig. 1. Lowest order Feynman diagrams contributing to 
e + e - --., v-f ly.  

pie, by the presence of  one or more right-handed neu- 
trinos mixed with the left-handed ones [3]. Thus the 
number  of  light neutrino generations N, ,  defined as 
the ratio between the measured invisible decay width 
of  the Z °, Fray , and the standard model  expectation 
F , r  for each neutrino family, need not to be an inte- 
ger number  and has to be measured with the highest 
possible accuracy. 

An indirect  determinat ion of  N~ has been made at 
LEP through the analysis of  the Z ° lineshape, sub- 
tracting from the total wid th  the visible part ial  ones. 
The latest result obta ined by L3 in this approach is 
N~ = 3.05 + 0.10 [4] where the errors come mainly 
from the uncertainty in the luminosity measurement  
and the selection of  the charged leptonic and hadronic 
final states. 

A direct method for measuring the Z ° width into 
neutrinos, and thus for counting the number  of  light 
neutrino types, is based on the measurement  of  the 
cross-section for the radiat ive process e+e - --, v-fy 
[5]. The signature of  such events is a single pho- 
ton arising from initial  state radiation. The diagrams 
which contribute to this process at tree level are shown 
in fig. 1. 

Near the Z ° resonance, the square of  the s-channel 

Z ° exchange terms (figs. la,  l b ) ,  summed over all 
the neutrino types, gives the main contr ibution to the 
cross-section and is proport ional  to N~. In the energy 
range scanned by LEP around the Z ° peak, the square 
of  the t-channel W exchange terms (figs. l c - l e )  and 
their interference with the Z ° terms contributes less 
than 3% to the total cross-section for three neutrino 
species. The contr ibution of  these terms is indepen- 
dent of  N~ because they give rise only to ve-fe pairs. 

The differential cross-section can be written as 

d2(r 
dEr d cos 0r = H (Er, cos 0y, s)  a0 (s ' ) ,  ( 1 ) 

where H is a radiator  function describing the initial 
state radiat ion of  a photon of  energy E~ at an angle 
0y with respect to the beam axis, s is the square of  the 
center of  mass energy, and tr0 (s ' )  is the cross-section 
for the process e+e - ~ v~, at the "reduced" center 
of  mass energy given by s '  = s(1 - 2 E y / v / S ) .  

The measurement  is optimally carried out at ener- 
gies at least 3 GeV above the Z ° mass where the ratio 
between the signal and QED background processes is 
maximal  and the full width of  the Z ° resonance is ex- 
ploited [1,6]. However, the LEP line-shape scanning 
at the Z ° resonance [ 7 ] has resulted in less favourable 
condit ions for our measurements,  requiring a trig- 
ger efficient for low energy photons (Ey > 1 GeV) .  
Around the Z ° pole, photons from e+e - ~ v - f l y  have 
low energies with a rapidly failing spectrum. The L3 
electromagnetic calorimeter is well suited for the de- 
tection of  such photons, providing an energy resolu- 
t ion better  than 1.5% for E~ > 2 GeV in combina- 
tion with an uncertainty on the absolute energy scale 
smaller than 4 MeV. 

A first measurement  of  the v ~ y  cross-section based 
on data taken at LEP in 1990 has been already pub- 
lished by the OPAL [8] and L3 [9] Collaboration. 
In this paper, we present results from data taken in 
1991 at center of  mass energies between 88.6 and 
93.8 GeV with a corresponding integrated luminosity 
of  9.6 pb - ] .  With respect to the analysis of  the 1990 
data, we have the benefit of  three major  improve- 
ments: 

( 1 ) an increased integrated luminosity: from 2.9 to 
9 .6pb-1;  

(2) a lower trigger threshold: from 1.5 to 0.9 GeV; 
(3) a dedicated trigger on isolated electrons from 

e + e -  ~ e + e -  y providing a measurement  of  the single 
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photon trigger efficiency. 

2. The L3 detector 

The L3 detector at LEP covers 99% of the full solid 
angle. It is designed to measure energy and position of 
leptons and photons with high precision. A detailed 
description of the detector and its performance can 
be found elsewhere [ 10] and here we only outline the 
features which are relevant to the present analysis. 

The detector consists of a time expansion cham- 
ber (TEC) for the tracking and vertex reconstruc- 
tion of charged particles, a high resolution electro- 
magnetic calorimeter made of about 11 000 bismuth 
germanium oxide (BGO) crystals, a hadron calorime- 
ter (HCAL) with uranium absorber and brass pro- 
portional wire chambers and a high precision muon 
spectrometer, consisting of three layers of multi-wire 
drift chambers, which measures the muon trajectory 
56 times in the bending plane (by the P-chambers) 
and 8 times in the non-bending direction (by the 
Z-chambers). A cylindrical array of 30 scintillation 
counters is installed in the barrel region between the 
BGO and the HCAL. All these detectors are inside 
a 12 m inner diameter solenoidal magnet which pro- 
vides a uniform magnetic field of 0.5 T along the beam 
direction. 

The polar angle acceptance of the BGO barrel ex- 
tends from 42.3 ° to 137.7 ° and is fully covered by the 
TEC. The BGO endcaps cover from 11.4 ° to 35.2 + 
and from 144.8 ° to 168.6 °, the HCAL from 6 ° to 174 ° 
and the muon spectrometer from 36 ° to 144 °. 

The minimum angle at which particles can be de- 
tected, critical to the suppression of QED background, 
is defined by the luminosity monitors. They consist 
of two electromagnetic calorimeters and two sets of 
proportional wire chambers, situated symmetrically 
on either side of the interaction point. Each calorime- 
ter is a finely segmented and azimuthally symmetric 
array of 304 BGO crystals covering the polar angular 
range 24.93 < 0 < 69.94 mrad. The energy resolution 
of the calorimeters is about 2% at 45 GeV, and the 
position resolution is 0.4 mrad in 0 and 8.7 mrad in ~b. 

Apart from the region below the minimum detec- 
tion angle, there is a region (hole) about 2 ° wide in 
0 between the luminosity monitors and the hadron 
calorimeter endcaps which is not covered by any de- 

tector. There is thus additional background from ra- 
diative Bhabha events when one of the particles es- 
capes undetected through this hole. Moreover up to 
about 9 ° the efficiency of the hadron calorimeter, for 
electrons and photons, is very poor because of two 
small lead rings installed in front of it in July 1991 to 
shield our tracking chamber from the beam halo. 

The response of the L3 detector is modelled us- 
ing the GEANT3 [11] detector simulation program 
which includes the effects of energy loss, multiple scat- 
tering and showering in the detector materials and in 
the beam pipe. Hadronic showers in the calorimeters 
are simulated with the GHEISHA [ 12 ] program. For 
each of the physical processes studied below, Monte 
Carlo events are passed through the detector simula- 
tion program and are reconstructed by the same pro- 
gram used to reconstruct the real ones. 

3. Single photon trigger 

The single photon trigger is entirely based on the 
BGO barrel. Each crystal has a separate output used 
for first level trigger purposes while the full digitized 
event is available to the third level trigger. 

These outputs are summed in trigger segments of 30 
crystals each, with a granularity of 32 segments in 
and 8 in 0. These 256 sums are digitised by the trigger 
FERA (Fast Encoding Readout ADC) and sent to the 
first level energy trigger processors which add the trig- 
ger signals at constant 0 and at constant ~b to obtain 
32 sums So and 8 sums 27~ respectively [13]. In or- 
der to suppress the contribution from coherent noise, 
the calculation includes only trigger segments above 
a 900 MeV threshold (called bias in the following). 

The first level single photon trigger requires the fol- 
lowing conditions: 

~v'~ nax and v,~nax > 900 MeV, 

Z~ ax and 2]~ ~x > 0.8.~V'tot, 

where 27~ ~x and S~  ax are respectively the largest O 
and ~ energy sum and 2]tot is the total energy seen by 
the trigger in the BGO barrel. In 1991, the first level 
single photon trigger rate was about 1 Hz, mainly due 
to electronic noise. 

The second level trigger does not apply any rejection 
for this channel, while the third level trigger requires 
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Fig. 2. Trigger efficiency curve as a function of the photon 
energy. 

a cluster in the BGO barrel with energy greater than 
500 MeV shared by more than 2 and less than 80 crys- 
tals. The typical output rate on tape under these trig- 
ger conditions was about 0.01 Hz. The third level trig- 
ger efficiency in the acceptance region exceeds 99.9% 
for photons above 900 MeV apart from geometrical 
inefficiency due to dead crystals. This is taken into 
account in the determination of  the event selection 
efficiency. 

We measure the single photon trigger efficiency in 
two ways. 

In the first, we use a sample of  radiative Bhabha 
events with an isolated electron in the BGO barrel. 
These events are collected under an independent trig- 
ger which requires a coincidence between a cluster in 
one of  the luminosity monitors and a large angle track 
in the vertex chamber. The single photon trigger effi- 
ciency is then measured by checking whether or not 
this trigger is also activated. The dark circles in fig. 2 
plot the efficiency found as a function of  the photon 
energy. The slight dip at 2 GeV is due to 15% of  seg- 
ments which have a 2 GeV bias. The errors represent 
68% CL intervals using binomial statistics. 

The single electron sample is also useful for checking 
the Monte Carlo program TEEG [ 14 ] which we use to 
estimate the dominant  QED background e + e -7  when 

only the photon is observed in the detector. 
The second way is based on a Monte Carlo simula- 

tion of  the trigger algorithm obtained by superimpos- 
ing the generated single photon on randomly triggered 
beam gate events. Thus the actual electronic noise o f  
the trigger channels as well as the FERA energy res- 
olution and pedestals fluctuations are taken into ac- 
count. 

The trigger efficiency curve from the Monte Carlo 
simulation is also shown in fig. 2. The errors corre- 
spond to the uncertainties in the model used to com- 
pute the efficiency. They include the statistical er- 
rors on the FERA resolution and the systematic error 
in the knowledge of  the shower development in the 
BGO. The trigger efficiencies above 900 MeV, aver- 
aged over the photon spectra at different CM ener- 
gies, range from 59% at the Z ° peak to 72% at 3 GeV 
above the peak. 

In the following analysis we use the efficiency curve 
computed from the Monte Carlo. We estimate a sys- 
tematic error of  1.3% on the determination of  the trig- 
ger efficiency by varying the simulated curve within 
the experimental point errors. 

4. Event selection 

The selection of  the Z ° --+ v-if7 candidates aims at 
identifying events with (a) a neutral electromagnetic 
energy deposit in the BGO and (b) no other activity in 
the detector apart from what is consistent with noise. 

The main sources of  background are single photon 
events from QED processes in which all other final- 
state particles, mainly produced at small polar angles, 
escape detection. Among these reactions, the domi- 
nant ones are radiative Bhabha scattering e+e - --, 
e + e -  y, two-photon processes e + e -  ~ e + e -  X, where 
X is a zt °, r/, r/', a2, f o r  g +g -7  and the process e+e - ---* 
7?7 [1,9]. 

We require the following: 
(a 1 ) An energy deposit in the BGO greater than 900 

MeV, at a polar angle between 45 ° and 135 °, shared 
between three or more crystals. 

(a2) The lateral shape of  the energy deposit to be 
consistent with the one expected from a single electro- 
magnetic particle coming from the interaction point. 

(b l )  No other deposited energy greater than 100 
MeV with three or more crystals in the BGO barrel 
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or endcaps. 
(b2) No charged tracks found in the TEC. 
(b3) Less than 1 GeV deposited in either luminosity 

monitor. 
(b4) Less than 3 GeV deposited in the HCAL. 
(b5) No tracks or segments of track seen in the 

muon spectrometer and no match found between the 
muon Z-chambers hits and the BGO energy deposit. 

Cut (al) defines our acceptance region for the 
events and cut (a2) ensures that the energy deposit is 
electromagnetic. Cut (b 1 ) reduces the contamination 
from two-photon production of resonances decaying 
in two or more photons, cut (b2) removes the sin- 
gle electron contamination and beam-gas or beam- 
wall events, cuts (b3) and (b4) (in the regions not 
covered by the BGO) reduce the e+e.-7 background. 

Cuts (a2), (bl),  (b2), (b4) and (b5) remove the 
contamination from the bremsstrahlung of cosmic 
rays nearly in time with the beam crossing. Due to 
the long integration time of the BGO (8 /~s starting 
at 2.8 /ts before the beam crossing), an out of time 
cosmic emitting a hard photon bremsstrahlung, when 
only the BGO is active, can simulate a single photon 
event. To evaluate a possible cosmic contamination 
from this source, we carried out an independent se- 
lection of cosmic ray events and then measured the 
effect of veto cuts (a2) and (bl) on this sample. The 
independent selection is based on the BGO segment 
signals which are used for level 1 triggering. Here we 
take advantage of the fact that the segment signal is 
sampled in a gate of 2/~s chosen so that if the event 
is in time the trigger will measure the same energy 
as the digital readout which is reconstructed offline. 
Thus the ratio between these two values gives an in- 
dication of how much out of time the event was. No 
events on this sample survive all the selection cuts 
and we estimate the contamination from out of time 
cosmic rays to be less than 3 events at 95% CL. 

After applying all our selection cuts we obtain a 
sample of 291 single photon candidates. 

The efficiency of the selection cuts (al) and (a2) 
computed from Monte Carlo and checked with the 
single electron sample is 0.92 while the efficiency of 
the veto cuts (bl)  to (b5) is 0.95. The latter was mea- 
sured by using randomly triggered beam gate events 
to study the effects of detector noise and also Monte 
Carlo events to estimate photon conversion, double 
initial state radiation and shower leakage from the 
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+ Oata 
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E 40 
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Fig. 3. Energy spectrum of the single photons along with the 
Monte Carlo predictions (eeX means the background from 
resonances produced via two-photon processes). 

BGO into the HCAL. The total efficiency, which in- 
cludes the trigger efficiency values given in section 3, 
ranges from 0.55 to 0.63 as a function of the center 
of mass energy. 

The energy spectrum of the single photon candi- 
dates is shown in fig. 3 together with the Monte Carlo 
prediction for the signal expected from three light 
neutrino families and the backgrounds. The main 
background contribution is due to the e+e-7 chan- 
nel, when both electron and positron escape through 
the beam pipe (Ey < 1.5 GeV) or one of the two goes 
undetected inside the hole or lead ring region just out- 
side the luminosity monitors (3.0 < Er < 7.0GeV) 
while the other stays in the beam pipe. It accounts for 
94 events. As a check of the e + e-7 contamination, we 
have also compared the number of single-tag single 
7 events. We found 97 events in the data while the 
TEEG program predicts 73 events. This difference 
has been taken into account in our systematical error. 

Other sources of smaller backgrounds are two- 
photon production of resonances, 7~7 and/H~7 final 
states. We estimate the sum of these backgrounds to 
be 15 events. Backgrounds from e+e - ~ e+e-e+e-7  
and e+e - ~ e+e-/~+~t-7 are found to be negligible. 
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Table 1 
Luminosity, observed and expected number of events in the energy range 0.9 < Er < 3.5 GeV and for a polar angle between 
45 ° and 135 °. The last column shows the corrected cross-section for e+e - --* vTy at each center of mass energy. 

N v~r N e+e-r N °ther back" a (pb) Eem (GeV) E (nb -1 Nobserved expected expected expected 

88.56 671 6 2.21 1.96 0.35 12+~ 2 
89.55 772 9 4.27 2.22 0.39 18+~ l 
90.25 632 11 5.16 1.78 0.32 31_+~ 5 
91.25 5763 116 92.41 14.42 2.96 375:4 
92.04 635 21 17.59 1.72 0.31 64+19 
93.05 678 26 29.63 1.80 0.33 66+127 
93.75 419 13 18.35 1.10 0.21 ~;9+21 " - -12  

total 9570 202 169.6 25.0 4.9 

5. Results 

The number  of  neutrino species is extracted from 
the number  of  candidates in the energy range 0.9 < 
Er < 3.5 GeV where the signal to background ratio is 
favourable. 

For  this energy range, table 1 shows the luminos- 
ity, the number  of  candidates and the uF7 expecta- 
t ion for three neutrino families computed with the 
Monte Carlo program N N G S T R  [15 ]. Also shown 
are the expected background from radiat ive Bhabha 
events and the total expected background from the 
other reactions (two-photon processes, e+e - ~ ~';P7 
and e+e - ~ # + / t - F ) .  

The last column of  table 1 shows the measured 
cross-sections corrected for acceptance and detector 
efficiency for the process e+e - ~ v~'?, when one pho- 
ton with energy above 0.9 GeV is emit ted in the po- 
lar angle range between 45 ° and 135 ° without restric- 
tions on possible emission o f  addi t ional  photons. The 
errors are only statistical and correspond to 68% CL. 

We extract the number  of  light neutrino families 
N~ by performing a maximum likelihood fit to the 
number  of  candidates shown in table 1. We use Pois- 
son probabil i t ies  calculated as a function of  the ex- 
pected number  of  signal plus background events. We 
compute for each CM energy the cross-section corre- 
sponding to different values of  N, between 2 and 4 
and use a straight line fit to get a parametr isat ion of  
the cross-section dependence on N,.  We use an im- 
proved Born approximat ion of  the analytical calcu- 
lation of  ref. [ 16 ], which agrees with N N G S T R  for 

N~ = 3 better  than 1% when a coherent set of  input  
parameters  is used. In this approach, we can allow the 
parameter  N~ to vary while keeping the total width 
fixed. 

Following eq. ( 1 ) the cross-section a0 (s) is written 
as 

12~z  sFeN~F~ 
ao(S) = M2 z ( s _  MzZ)2 +s2Fi/M~.2 z + Wterms ,  (2) 

where F~7 is the decay width of  the Z ° in a neutrino 
pair  with standard model  couplings, and Mz, Fz, and 
F~ are our measured values [4], for the Z ° mass, the 
total width and the electron partial  width respectively. 
The results of  the fit gives N~ = 3.14 -4- 0.24 (stat.) .  

The systematic errors in our analysis come from the 
determinat ion of  the trigger efficiency, which gives 
an uncertainty of  AN~ = +0.04, from the luminos- 
ity measurement,  AN~ -- +0.03, the determinat ion 
of  the selection efficiency, AN~ = -4-0.02, the back- 
ground substraction, AN~ = +0.09, and the cosmic 
ray contamination,  AN~ = +0.02. Moreover  from 
the errors on our measurements of  the Z ° parameters  
Mz, Fz, and F~, from the top mass variat ion and the 
theoretical uncertainty on the parametr isat ion in eq. 
(2) we estimate a contr ibution to the systematic error 
of  AN~ = +0.05. Adding all these systematic errors 
in quadrature,  our final result is 

N~ = 3.14 + 0.24 (stat.) + 0.12 (syst.). 

This corresponds to a Z ° invisible width of  

Env = 524 + 40 (stat.) & 20 (syst.) MeV. 
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Fig. 4. Corrected single photon cross-sections (45 ° < 
0 r < 135 ° and Er > 0.9GeV) as a function of the CM 
energy, compared with the predictions of ref. [16]. 

This improves our previous published result [9]. 
The corrected cross-section is shown in fig. 4 as a 
function of the CM energy along with the expectations 
from Nv = 2, 3, 4 and from our best fit. 

6. Conclusions 

We performed a direct determination of the num- 
ber of light neutr ino families by measuring the single 
photon cross-section at seven energies around the Z ° 
resonance. With an integrated luminosity of 9.6 p b -  ~, 
we observed 202 events with photon energies between 
0.9 and 3.5 GeV with an expected background of 
29.9 events. From a maximum likelihood fit, we de- 

termine the number  of light neutrinos with standard 
model coupling to be Nv = 3.14 + 0.24 ± 0.12. The 
corresponding value for the invisible decay width of 
the Z ° into any weakly interacting particle is F~nv = 

524 + 40 i 20 MeV. 
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