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Abstract. A Domain Generation Algorithm (DGA) is an algorithm to
generate domain names in a deterministic but seemly random way. Mal-
ware use DGAs to generate the next domain to access the Command
Control (C&C) communication channel. Given the simplicity and veloc-
ity associated to the domain generation process, machine learning detec-
tion methods emerged as suitable detection solution. However, since the
periodical retraining becomes mandatory, a fast and accurate detection
method is needed. Convolutional neural network (CNN) are well known
for performing real-time detection in fields like image and video recogni-
tion. Therefore, they seem suitable for DGA detection. The present work
is a preliminary analysis of the detection performance of CNN for DGA
detection. A CNN with a minimal architecture complexity was evaluated
on a dataset with 51 DGA malware families as well as normal domains.
Despite its simple architecture, the resulting CNN model correctly de-
tected more than 97% of total DGA domains with a false positive rate
close to 0.7%.
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1 Introduction

A domain generation algorithm (DGA) is used to dynamically generate a large
number of pseudo random domain names and then selecting a small subset of
these domains for the Command Control (C&C) communication channel. The
idea behind the dynamic nature of DGA was to avoid the inclusion of hard-coded
domain names inside malware binaries, complicating the extraction of this infor-
mation by reverse engineering [7]. The first DGA detection attempts depended
on published lists of domains already detected as DGA. However, given the
simplicity and velocity associated to the domain generation process, detection
approaches that relied on static domain blacklists were rapidly rendered ineffec-
tive [5]. Nowadays, DGA detection methods can be classified in two main groups:
(A) Context-based or (B) Lexicographical-based . The so-called context-based
approaches mostly rely on the use of context information such as the responses
from the DNS servers. A typical example would the fact that DGA domains are
not usually registered and therefore the DNS response is usually NXDomain. On
the other hand, lexicographical approaches classify the domains by studying the
statistical properties of the characters conforming the domain name.
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Regarding Lexicographical approaches, Natural Language Processing (NLP
emerged as one of the most useful techniques for detecting DGA, specially in
the analysis of the n-gram frequency distribution of domain names. An n-gram
is defined as a contiguous sequence of n items from a given sequence of text. It is
possible to use greater values for n than 1. In the simpler form, when n = 1, the
single character frequency distribution is generated. The assumption is that DGA
domains will have a different n-gram distribution than normal domain names.
An example of n-gram based DGA detection are [12, 9] that compares uni-grams
and bi-grams distribution using the Kullback-Leibler (K-L) divergence.

Several other DGA detection approaches extended the idea of using the infor-
mation provided by domain names properties (including n-gram distributions)
to train a machine learning classifier such as Random Forest[1] or Linear Re-
gression[12]. Recently, to avoid the need of designing the right set of features
for training machine learning classifiers, some authors explored the application
of Deep Learning (DL) techniques. In particular the application of Long-Short-
Term-Memory (LSTM) networks [2]. When applied to the text analysis prob-
lem, the internal design of LSTM cell is capable to capture combinations of
characters that are important to discriminating DGA domains from non-DGA
domains. This flexible architecture generalizes manual feature extraction like n-
grams, but instead learns dependencies of one or multiple characters, whether
in succession or with arbitrary separation.

Despite the good results reported, LSTM networks have proved to be diffi-
cult to train under some particular cases [6]. The aforementioned issue together
with the considerable time required during training could be the major obsta-
cle for the massive adoption of LSTM networks in DGA detection. The fact is
that DGA techniques change over the time and the periodical retraining of the
network becomes mandatory. However, if the presence of long-term dependency
patterns in DGA domain names is ignored, it is possible to apply another well-
known Deep Learning technique: Convolutional Neural Networks (CNN). CNN
are simply neural networks that use convolution in place of general matrix mul-
tiplication in at least one of their layers. CNN have been successfully applied
in a many practical applications mainly related to image and video recognition.
When applied to text analysis the convolution is applied over one dimension and
denoted as 1D-CNN. The main advantage of 1D-CNN are they can be trained
much faster than LSTM (up to 9X times faster than LSTM) and similarly to
LSTM, 1D-CNN are capable of learning representations for groups of characters
without being explicitly told about the existence of such groups. However, they
can’t deal with patterns with arbitrary separation.

In the present work we focus on analyzing the DGA detection performance of
a 1D-CNN. Similarly to [11], we are interested in evaluating the performance of a
network with a minimal architecture complexity. Hence, the considered network
architecture consists of just a minimal extra layers in addition to the Convolu-
tional Layer. Evaluation is conducted on a dataset containing 51 different DGA
families as well as normal domain names from the Alexa corpus and the Bam-
benek feeds. Two different DGA schemes, including the recent word-based, are
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Table 1. The complete network architecture including the corresponding output di-
mensions and activation function used in each layer

Layer (type) Activation Function

input (Input Layer) -
embedding (Embedding) -
conv1d (Conv1D) relu
dense 1 (Dense) relu
dense 2 (Dense) sigmoid

included in the dataset. Word-based DGA consists of concatenating a sequence
of words from one or more wordlists, resulting in less randomly appealing domain
name and thus more difficult to detect [7].

The hypothesis presented in this work is that despite the 1D-CNN limita-
tions, they can learn the common properties from the different DGA generation
schemes and the resulting detection performance is within the range required for
real-world scenarios.

The main contributions of the present article are:

– An analysis of the advantages and limitations of a simple 1D-CNN learning
model for detecting DGA.

– The detailed evaluation of 1D-CNN on a extended dataset that includes
domain names from 51 different real malware DGA following different gen-
eration schemed as well as normal domains from two different sources.

The rest of this paper is organized as follows: Section 2 describes the network
architecture, Section 3 details the experiments design and results while Section 4
discusses the importance of the results, and finally in Section 5, we presents the
conclusions.

2 The Neural Network Architecture

The Neural Network Architecture model is a 1D Convolutional Neural Network
(CNN). This CNN is composed of three main layers. The first one is an Em-
bedding layer, then there is a Conv1D layer, and finaly a Dense fully connected
layer. The first two layers are the most relevant components of the architecture
regarding the problem of detecting DGA domains. Both layers are responsible for
learning the feature representation in order to feed the third Dense and fully con-
nected layer. Beside the three layers previously described, the complete Neural
Network Architecture includes some other layers for dealing with the dimensions
output of the Conv1D layer as well as layers for representing the input domain
and the output probability. A detail of the complete architecture together with
the used activation functions is shown in Table 1, whereas the three main layers
are described in the following subsections.
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2.1 Embedding Layer

A character embedding consists in projecting l-length sequences of input char-
acters into a sequence of vectors Rlxd, where l has to be determined from the
information provided by the sequences in the training set and d is a free parame-
ter indicating the dimension of the resulting matrix [11]. By using an Embedding
layer in the architecture, the neural network learns in an efficient manner the
optimal set of features that represent the input data.

2.2 1D Convolutional Layer

The Conv1D layer refers to a convolutional network layer over one dimension. For
the DGA detection problem, such dimension consists of the length of the domain
name sequence. The convolutional layer is composed of a set of convolutional
filters that are applied to different portions of the domain name. A visual example
of the feature extraction process for a 1D Conv layer is shown in Fig. 1. The
figure depicts a 1D convolutional layer constructing 256 filters (features) (nf =
256), with a window (kernel) size of 4 (ks = 4) and a stride length value of 1
(sl = 1). The layer selects from groups (also referred as patches) of 4 characters
to apply the convolutional filters, and continues shifting one character at a time
(stride value) applying the same convolutions filter over the rest of the sequence.
Consequently, the neural network generates 4-grams features. These features
represent the discriminative power of these group of letters in the domain names.
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Fig. 1. Feature extraction process of the 1D convolutional layer

By applying the same filter all over the sequence the required computation
time is considerable reduced when compared with traditional Multilayer Percep-
tron layers. Additionally, since a convolutional kernel independently operates on
each 4-gram it is possible to go over the entire input layer concurrently. This
paralellization and its consequent low computing time is one of the major ben-
efits of using convolutional networks instead of other deep learning approaches
usually used for text processing such as Long Short Term Memory (LSTM) [3,
10, 11].
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2.3 Dense Layers

The features extracted by both previous layers are be used by traditional Mul-
tilayer Perceptron Network (MLP) to output the probability of a given domain
belongs to DGA or Normal class. MLP is composed of two layers: A first fully
connected layer of size hn (Dense layer ) connected to a second Dense layer
of size 1 used for actually giving the probability output about the considered
domain.

3 Experimental Design

The analysis focused on the detection performance considering the DGA and
normal domains, as well as the detection performance on the different malware
families included in the dataset. Several standard performance metrics for net-
work detection evaluation were used. These metrics correspond to True Positive
Rate (TPR) and False Positive Rate (FPR). TPR is computed as the ratio
between the number of correctly detected DGA domains and the total number
of DGA domains. Whereas FPR is computed as the ratio between the number
of normal domains that are incorrectly classified as DGA and the total number
of normal domains.

The evaluation of the 1D-CNN DGA detection method was carried out fol-
lowing the usual machine learning methodology. A dataset containing both DGA
and normal domains was split in a 70:30 ratio. To guarantee the independence
of the results, the 70% of the datasetset was used for tuning the 1D-CNN hyper-
parameters (training set). Whereas the remaining 30% (testing set) was used
for testing the performance of the 1D-CNN DGA detection model on unseen
domains.

3.1 Dataset Description

The 1D-CNN detection method was evaluated on a dataset containing both DGA
and normal domain names. The normal domain names were taken from the Alexa
top one million domains. An additional 3,161 normal domains were included in
the dataset, provided by the Bambenek Consulting feed. The later group is
particularly interesting since it consists of suspicious domain names that were
not generated by DGA. Therefore, the total amount of domains normal in the
dataset is 1,003,161 . DGA domains were obtained from the repositories of DGA
domains of Andrey Abakumov 3 and John Bambenek 4. The total amount of
DGA domains is 1,915,335, and they correspond to 51 different malware families.
The list of malware families and the amount of domains selected can be seen in
Table 2.

The DGA generation scheme followed by the malware families includes the
simple arithmetical (A) and the recent word based (W) schemes. Under the
arithmetic scheme, the algorithm usually calculates a sequence of values that

3 https://github.com/andrewaeva/DGA
4 http://osint.bambenekconsulting.com/feeds/
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Table 2. Episode frequency and generation scheme for the DGA Malware Families in
the dataset used for training and testing the 1D-CNN for DGA detection method. (A)
stands for Arithmetic generation scheme while (W) for word-based

Family Scheme Freq. Family Scheme Freq. Family Scheme Freq.

bamital (A) 904 cryptolocker (A) 112,809 padcrypt (A) 1,920
p2p (A) 4,000 proslikefan (A) 100 murofet (A) 49,199
bedep (A) 706 dircrypt (A) 570 necurs (A) 81,920
post (A) 220,000 dyre (A) 26,993 newgoz (A) 1,666
chinad (A) 256 fobber (A) 600 nymaim (A) 20,225
conficker (A) 99,996 gameover (A) 12,000 pushdo (A) 94,278
corebot (A) 840 geodo (A) 1,920 pykspa (A) 25,727
goz (A) 1,667 hesperbot (A) 192 qadars (A) 1,600
kraken (A) 9,660 locky (A) 9,028 qakbot (A) 60,000
ramdo (A) 102,000 ramnit (A) 91,978 ranbyus (A) 23,167
rovnix (A) 53,632 shiotob (A) 12,521 symmi (A) 4,448
shifu (A) 2,554 virut (A) 11,994 sisron (A) 60
zeus (A) 1,000 vawtrak (A) 300 simda (A) 28,339
tinba (A) 193,912 tempedreve (A) 225 pykspav1 (A) 18
pykspav2F (A) 800 pykspav2R (A) 200 banjori (W) 439218
suppobox (W) 8185 matsnu (W) 100127 volatile (W) 996
beebone (W) 210 cryptowall (W) 94 madmax (A) 2

have a direct ASCII representation usable for a domain name. On the other
hand, word-based consists of concatenating a sequence of words from one or
more wordlists.

3.2 Hyper Parameters Tuning

Adjusting the network hyper-parameters is perhaps the most difficult task in
the application of neural networks. For the proposed 1D-CNN architecture sev-
eral hyper parameters needed to be adjusted. Among all the possible hyper-
parameters, we particularly focused on finding the optimal values related to the
Embedding, Conv1D and Dense layers. A traditional grid search was conducted
through a specified subset on the training set. For a robust estimation, the
evaluation of each parameter combination was carried out using a k-fold cross
validation with k = 10 folds. The The 1D-CNN was trained using the back prop-
agation algorithm [8] considering the Adaptive Moment Estimation optimizer [4].
The 1D-CNN training was carried out during 10 epochs.

Table 3 shows the parameter combinations with the better performance de-
tection in terms of the F1-Score.
Table 3. Best Hyper-parameters subset. For space reason only the first parameter
combination is shown. The parameters combination with the higher average F1-Score
was chosen for all the remaining experiments.

avg. F1 sd nf ks sl d l hn parameters

0.9797 0.0050 256 4 1 100 45 512 5,612,705
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3.3 Evaluation on Unseen Domains

The present section details the results after evaluating the 1D-CNN with the
hyper-parameters selected from previous section. In this case, complete training
set was used for training the 1D-CNN and then tested on the remaining 30% of
the dataset. The metrics described in subsection 3 were calculated on testing set
with a decision boundary threshold set to 0.90. In terms of the two considered
classes (i.e Normal or DGA), the resulting TPR value was around 97% of total
DGA present in the dataset while the FPR was 0.7% of total normal domains.

Regarding the FPR discriminated by normal domains types, the 1D-CNN
DGA detection algorithm has correctly detected as normal almost the 100% of
total Alexa domains. However, for the case of the Bambenek domains, the false
positive rate increased to 16%.

In Fig. 2 we show the TPR per DGA malware family and its DGA generation
scheme (red for arithmetic and blue for word based). The diameter of the circle
around each point provides a visual idea about the absolute frequency of DNS
requests that belong to that malware family in the training set. In general, most
of the DGA were detected with TPR values close to 0.75 no matter the DGA
generation scheme used. The only three exceptions were Cryptowall with TPR
value of 0.16, Virut with 0.56 and Suppobox malware with 0.47.

Fig. 2. True Positive Rate per DGA malware family

4 Discussion

It seems that the 1D-CNN detection method was capable of extracting common
patterns present in arithmetic-based DGA generation algorithms of the different
malware families. The previous claim could be an explanation of the good results
observed in malware families with very low episode frequency. That is the case
of families such as chinad and bamital, which with less than 1000 examples
showed a TPR greater than 90%.
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Fig. 3. Character Frequency Distribution for not detected DGA malware

The situation was different for the word-based DGA schemes. As can be seen
in the boxplot located at the right of Fig. 2, the 75% of TPR for arithmetic-based
DGA were concentrated between 1 and 0.92. On the other hand, in the case of
word-based, the 75% of TPR values were between 1 and 0.58. It seems clear that
TPR for malware families using the arithmetic-based generation scheme were
significantly better than word-based. Since the word-based generation scheme
aim at imitating the look of the normal domains, such poor results are expected.

There was, however, some unexpected results that deserved a deeper analysis.
In particular, results showed for the Matsnu malware family, a word-based DGA
with a 0.92 TPR and the case of Virut, an arithmetic-based DGA with a 0.57
TPR.

In the case of Virut, the poor performance can be explained by the the
Frequency Character Distribution (FCD) of the generated DGA domains. The
Fig. 3 shows the FCD for the Virut DGA malware (in black) and compare them
with FCD for normal domains (in white). Notice that for ease of comparison
only characters present in DGA domains were included in the normal FCD.

Despite not being a word-based DGA, Virut vowels frequency is consider-
able higher when compared with the rest of the characters. Moreover, such vowel
frequency in DGA domains shows similarities with the normal FCD. The simi-
larities with normal FCD could difficult the discrimination process carried out
by the 1D-CNN detection method. Such process is even more complicated since
Virut a small number of episodes included in the dataset.

In the case of Matsnu, the high TPR could not be explained by the FCD,
since, as expected, Matsnu FCD shared similarities with normal FCD. After
inspecting several aspects of the DGA, we found that domain name length was
the discriminative feature between normal and Matsnu domain names. Domains
names generated by Matsnu were considerable larger than normal domains. In
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Fig. 4 we compare the Character Length Distribution (CLD) of Matsnu and
normal domains. As can be seen, the Matsnu domains are significant larger than
normal domains. On the other hand, the suppobox malware (shown also in Fig.
4) has a CLD close to normal domains. Since not only CLD but also FCD are
similar to normal domains, suppobox domains become very difficult to detect.

Fig. 4. character length distribution of Matsnu, Suppobox and normal domains names

5 Concluding Remarks

In the present work, we explored the viability of 1D-CNN for lexicographical
DGA detection. A network with a minimal architecture complexity was evalu-
ated on a dataset containing domains names generated by 51 different malware
families as well as normal domains. Malware families included two different DGA
generation scheme: (1) the most common arithmetic-based and (2) the recent
and more difficult to detect Word-based. The dataset was properly split in train-
ing and testing sets. A hyper-parameters grid search was conducted on training
set and the best resulting model was then evaluated on the testing set.

Despite its simple architecture, the resulting 1D-CNN model correctly de-
tected more than 97% of total DGA domains with a FPR around 0.7%. Such
results make it suitable for real-life networks. Inspecting the malware family
results, we observed that the 75% arithmetic-based DGA showed TPR values
between 1 and 0.92. Such values were observed even in malware families with
low frequency episode, confirming the hypothesis that a 1D-CNN can learn the
common properties from the different DGA generation families, at least under
the arithmetic-based generation scheme. On the other hand, in the case of word-
based, the 75% of TPR values were between 1 and 0.58. Such high variability
in the TPR results responds to the high TPR for malware such as Matsnu and
the low TPR for malware such as suppobox and cryptowall. By analyzing the
FCD and CLD we detected than even tough both shared the FCD with normal
domains, Matsnu showed a significant increment in the length of the domains,
a situation that makes it easily detectable. Different was the case of malware
such as suppobox, that shared both FCD and LCD with normal domains, and
consequently was very difficult to detect.

To sum up, despite the good results shown by 1D-CNN, we observed that it
could be very difficult to detect word-based DGA that share the CLD and FCD
with normal domains. Therefore, as the word-based generation scheme become
more precise in imitating normal domains the detection could be extremely hard.
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Moreover, it is possible that such particular cases be outside the capabilities
of detection methods following a lexicographical approach. Consequently, an
alternative strategy could be necessary.
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