
A Reference Architecture for Ontology Engineering Web
Environments

Una Arquitectura de Referencia para Ambientes Web de Ingenierı́a Ontológica

Germán Braun1,3, Elsa Estevez2,3, and Pablo Fillottrani2,4

1Universidad Nacional del Comahue,
{german.braun}@fi.uncoma.edu.ar

2Universidad Nacional del Sur,
{ece, prf}@cs.uns.edu.ar

3Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina.
4Comisión de Investigaciones Cientı́ficas (CIC), Provincia de Buenos Aires, Argentina.

Abstract

Ontology authoring, maintenance and use are never
easy tasks, mostly due to the complexity of real do-
mains and how they dynamically change as well as
different background possessed by modellers about
methodologies and formal languages. However, al-
though the needs for ontologies are well-understood,
not less important is to provide editing tools to manip-
ulate and understand them. In this context, this work
proposes and documents a reference architecture for
such tools running in web environments. Moreover, it
provides the rationale for boosting the collaborative
development of a novel tool based on this architecture,
named crowd. Previous surveys reveal that few Web-
based ontology engineering environments have been
developed and in addition, almost all of them are mere
visualisers, with limited graphical features and lacking
inference services.

Keywords: Ontology Engineering, Software Archi-
tectures.

Resumen

La definición, mantenimiento y use de ontologı́as son
tareas difı́ciles debido, en mayor medida, a la com-
plejidad inherente al mundo real y a cómo éste cambia
dinámicamente. Asismismo, también se debe a las
diferencias en conocimiento sobre metodologı́as y len-
guajes formales por parte de los modeladores. Sin
embargo, aunque la necesidad de crear y obtener on-
tologı́as es clave, es también importante contar con
herramientas para manipularlas y entenderlas. Este
trabajo propone y documenta una arquitectura de ref-
erencia para ambientes Web y ofrece los fundamentos
para impulsar el desarrollo colaborativo de la herrami-
enta crowd, la cual está basada sobre dicha architectura.
Revisiones previas de la literatura indican la existencia
de un número reducido ambientes para la Ingenierı́a
Ontológica basados en tecnoloǵıas Web, sin embargo,

casi en su totalidad son sólo visualizadores de modelos
con soporte gráfico limitado y ausencia de razonami-
ento lógico integrado.

Palabras claves: Ingenierı́a Ontológica, Arquitec-
turas de Software.

1 Introduction

Ontology authoring, maintenance and use are never
easy tasks, mostly due to the complexity of real do-
mains and how they dynamically change as well as
different background possessed by modellers about
methodologies and formal languages [1]. However,
although the needs for ontologies are well-understood,
not less important is to provide editing tools to manip-
ulate and understand them [2].

Ontology Engineering is a set of activities, method-
ologies, languages and tools related to the authoring,
maintenance, refinement, evaluation and use of onto-
logies. Authoring is key for the ontology engineering
and it requires to be backed by proper methodologies
for guiding users through the building process. In
particular, its complexity increases when such models
should be created from scratch or when they should be
merged to other ones in order to compose them. All of
these activities appear fragmented across several tools
adding a more important ingredient to the complexity
of the ontologies life cycle. The lack of an adequate
and seamless environment affects not only the uptake
of ontologies by new users, but also the quality of ar-
tifacts created by modellers. Previous surveys [3, 4]
reveal that a lot of ontology engineering environments
have been developed, but too few of them are web-
based systems and in almost all the cases they are
mere visualisers, with limited graphical features and
lacking of inference services. In fact, some of them
claim no well-accepted framework for common au-
thoring tasks exist because of a poor understanding of
the effectiveness of tools [2].

- ORIGINAL ARTICLE - 

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-22-



In this direction, new architectures for ontology en-
gineering environments must be prepared for envi-
sioned future changes while being easily extendable
and providing basic functionality. Thus, these archi-
tectures are for a family of systems and particular
members of this family can be constructed based on a
reference architecture containing explicit places where
extensions can take place. This work proposes and
documents a reference architecture for ontology en-
gineering web environments. Moreover, it provides
the rationale for boosting the collaborative develop-
ment of a novel tool based on this architecture, named
crowd. Documenting software architecture is essential
to work cooperatively in solving larger problems than
single groups could solve individually. At the same
time, it helps to define and evaluate quality attributes,
identify parts where systems could be extended and
communicate baselines and design decisions made to
let others use it properly [5, 6].

The rest of this article is structured as follows. Sec-
tion 2 explains the motivation of this research work
and previous results. Section 3 presents a survey on
related architectures. Section 4 describes our proposed
reference web architecture and section 5 gives details
about the first version of crowd. Finally, in section 6,
we summarise conclusions and discuss limitations and
future works.

2 Motivation and Background

Misunderstandings about some property-based distinc-
tions between ontologies and models have been under-
taken by a lot of different proposals [7]. These distinc-
tions were mainly based on the needs of formalisation
of conceptual models (p.e. UML, ER, ORM) for ex-
pressing ontologies and conversely the logic-based
reasoning capabilities provided by ontology languages
(p.e. OWL [8]) not captured by models. In particular,
despite obvious differences between the expressive-
ness of conceptual modelling languages (CMLs) and
ontology languages, many tools have partially valid-
ated this claim [9, 10, 11, 12]. Thus, the effectiveness
of using graphical syntax based on these conceptual
languages for expressing ontologies, even with com-
plex languages, is still been considered for ontology
engineering environments [3, 2]. Evidence for these
claims indicate that the common core of UML, (E)ER
and ORM 2 can be formalised in theALNI Descrip-
tion Logics (DL) [13] guaranteeing tractable reasoning
over them [14]. Even more, each language can express
full ALCQI while keeping reasoning capabilities.

At the same time, OWL notations have been also
proposed, which are mostly based on graphs [15, 16].
Aiming at the needs for an unified visual notations
for ontologies, these approaches claim that switch-
ing between tool can be confusing given the diversity
of visual representations. In addition, several tools
implement just a few ontology engineering activities

providing very different user interfaces, graphical and
formal languages and reasoning capabilities. These
last quotes give a real insight into going towards an
unified tool integrating not only the visual notations
and their common features, but also supporting other
activities of the ontology engineering altogether in a
single graphical and logical framework with a set of
core functionalities.

In this context of lacking of a holistic view, a web
tool called crowd [17, 18, 19] has been developed.
crowd is a multi-view web environment for ontology
development being supported by both Universidad
Nacional del Comahue1 and Universidad Nacional
del Sur2 in Argentina. The first intention behinds the
tool is to assist users to author and edit ontologies
and conceptual models adopting standard CMLs and
employing complete logical reasoning to verify the sat-
isfiability of specifications, infer implicit constraints
and suggest new ones. The leverage of automated
reasoning is enabled by a precise semantic definition
of all the elements of the diagrams. Hence, diagrams
constraints are internally translated into a logic-based
formalism capturing typical features of models. To
this end, the tool is fully integrated with a powerful
logic-based reasoning server acting as a background
inference engine. Moreover, since crowd is based
on a deduction-complete notion of reasoning support
relative to the diagram graphical syntax, users will
see the original model graphically completed with
all the deductions and expressed in the graphical lan-
guage itself. This includes checking class and rela-
tionship consistency, discovering implied class and
cardinality constraints. Empowered by web techno-
logies, crowd has been designed as a scalable and
maintainable architecture for adapting new reasoning,
query and documenting engines, graphical languages
and design methodologies. It has been conceived
from scratch as a graphical-centric tool for ontology
modelling, adopting standard languages and consider-
ing the possibility to expand its graphical primitives
for more expressiveness. The first version is avail-
able at http://crowd.fi.uncoma.edu.ar together
with its source code.

The road map followed to develop the first version
of crowd considered the features and related work
explained below:

(F1) Strong Theoretical Background of Graphical
Tools. [19, 20] crowd is based on a well-founded
structure, a heterogeneous algebra [21], describing
a family of sets such as a metamodel M for a non-
empty set of CMLs, a non-empty set L of the lan-
guages supported by M, a non-empty set of formal
languages FL for ontologies and a non-empty set E
of finitary operations for mapping primitives from
L to an ontology language from FL (whenever pos-
sible).

1http://faiweb.uncoma.edu.ar/
2https://cs.uns.edu.ar/home/

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-23-



(F2) Logic-Based Reasoning on Graphical Ontolo-
gies. [22, 9, 20] A full-flagged DL encoding of the
CMLs enables crowd to offer standard logic reason-
ing on graphical ontologies as a way to help users
along some of the ontology engineering activities.
This tool allows to graphically support powerful
OWL 2 features such as non-qualified and qualified
cardinality restrictions for any n natural number.

(F3) Ontology-Based Metamodelling. Graphical
views in crowd require a full specification of the
similarities and mismatches of the CMLs. In this con-
text, crowd is backed by a needed metamodel, named
KF [23], for operations of conversion, transformation
and approximation among models. Each ontology in
crowd is an instance of the KF-metamodel.

(F4) Ontology Multi-View. [18] Based on the
baselines of the KF-metamodel, crowd implements a
multi-view GUI for switching between them and thus
offering different ways to interact with the current
model.

(F5) Export OWL 2. crowd enables exporting full
descriptions of graphical ontologies in OWL syntax.
It also provides OWLlink [24] specifications in order
to get the inputs offered to off-the-shelf reasoners.

(F6) Import OWL 2. Importing in crowd is a two-step
process looking for extracting as many graphical ax-
ioms as possible from ontologies in OWL documents.
This novel process is supported by logic-based reas-
oning together with a SPARQL-DL [25] engine.

(F7) Ontology Documentation. Human-readable doc-
umentation of ontologies facilitates their understand-
ing, reuse and adoption by third-parts. In this sense,
crowd helps users documenting their ontologies by
invoking Widoco [26] and producing a full, enriched
version of their models.

(F8) Namespaces Definitions. crowd handles
namespace definitions through a novel treatment of
URIs and thus enabling the reuse of other vocabular-
ies in the same graphical model. It provides a modal
widget for prefixes and their values. Moreover, each
graphical primitive presents a dedicated widget to
enter its specific definition.

3 Related Architectures

Through literature and web search we have identi-
fied the following ontology editing tools that are, at
least to some degree, actively maintained: WebProtégé
[28], Protégé [29] -OWLViz3, OntoGraf4, SOVA5,

3http://protegewiki.stanford.edu/wiki/OWLViz

accessed July 2018
4http://protegewiki.stanford.edu/wiki/OntoGraf

accessed July 2018
5http://protegewiki.stanford.edu/wiki/SOVA ac-

cessed July 2018

NORMA [10, 30], ICOM [9], TopBraid Composer
[31], Graphol [16], OWLGrEd [11], Menthor [32],
NeOn Toolkit [33], VOWL [34], GrOWL [35], Onto-
Track [36], SWOOP [37], Hozo [38] and Graffo [39].
Five of them (VOWL, Graphol, Hozo, GrOWL and
Graffo) are mere ontology visualisers, while the re-
maining ones present (at least in the literature) some
degree of interactively and integration of logical sup-
port with graphical models. Moreover, OntoTrack,
GrOWL and SWOOP seem to be not publicly avail-
able to download or deprecated in order to run a demo
of the software.

However, none of them presents both interactive and
web support in the very same ontology engineering
environment as proposed by our novel architecture.
In the remaining, we conduct a comprehensive ana-
lysis over these tools (leaving OntoTrack, GrOWL
and SWOOP out of the scope of this work) by ad-
dressing the following aspects: (1) operating mode -
meaning standalone or web (or both); (2) graphical
language type - possible categories include ad-hoc
node-link notations, UML/EER/ORM 1/ORM 2 or
own languages; (3) graphical expressiveness - OWL
1, OWL 2, RDF or subsets of them, (4) non-graphical
expressiveness - underlying ontology languages sup-
ported OWL 1, OWL 2, RDF or subsets of them; (5)
integration of visual models and reasoning aiming at
identify tool that graphically complete original models
with all the deductions and expressed in the graph-
ical language itself (whenever possible) (✓/✗); and (6)
multi-view support, where diagrams could be shown in
more than one graphical language (✓/✗). In particular,
the aim of assessing such an integration is to pragmat-

ically justify the needs for the knowledge visualisation
process defined in [19]. Specifically, the graphical
and reasoning integration refers to a “back and forth”
transformation between a graphical model and a logic
formalisation capturing the semantics of this model.

As shown by the comparison, only OWLGrEd,
VOWL and WebProtégé offer some kind of web sup-
port. Nevertheless, the first two are mere visualisers
of UML-like and VOWL language, respectively, and
no editing possibilities. Conversely, WebProt́egé does
provide editing support, laying a strong emphasis on
collaborative development although visual notations
are absent. Other weak aspect of the surveyed tools
is the lack of multi-view. Multiple views of a model
allow to interoperate them as well as share and commu-
nicate them among different stakeholders [23]. Multi-
view in the context of a tool fully integrated with logic
reasoning also require multiple ways to encode graph-
ical models. This is also provided by the proposed
environment and is absent in the related tools. Integra-
tion of visual models and reasoning is slightly provided
by ICOM and NORMA (subsumptions, m..n,n = 1
cardinalities, disjunctions and equivalences) while in
remaining surveyed tools no integration exist or only
for subsumptions in few cases. With reference to onto-

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-24-



Table 1: Overview of ontology editors considering the criteria proposed.
Web
Standalone

Graphical
Language

Graphical
Expressiveness

Non-Graphical
Expressiveness

Graphical and
Logical
Integration

Multi
View

WebProtégé web ✗ ✗ OWL 1/OWL 2 ✗ ✗

Protégé
OWLViz standalone ad-hoc Node-link subsumption OWL 1/OWL 2

✓
*only
subsumption

✗

Protégé
OntoGraf standalone ad-hoc Node-link subsumption OWL 1/OWL 2 ✗ ✗

Protégé
SOVA standalone ad-hoc Node-link OWL 1 OWL 2

✓
*only
subsumption

✗

NORMA standalone ORM 2 ALCQI ALCQI ✓ ✗
ICOM standalone EER ALCI ALCQHI ✓ ✗

TopBraid
Composer standalone ad-hoc Node-link/

UML OWL 2 subset OWL 2
✓
*only
subsumption

✓

OWLGrEd both Extended-UML OWL 2 subset OWL 2 ✗ ✗
eddy -
Graphol standalone Graphol

*own language SROIQ(D) SROIQ(D) ✗ ✗

Menthor standalone OntoUML
*own language [27] OntoUML UFO [27] ✗ ✗

NeOn Toolkit standalone ad-hoc Node-link OWL 2 OWL 2
✓
*only
subsumption

✗

VOWL both VOWL
*own language OWL 2 OWL 2 ✗ ✗

Hozo standalone ad-hoc Node-link
role-concepts &
wholeness/relation
concepts

role-concepts &
wholeness/relation
concepts

✗ ✗

Graffo standalone ad-hoc Node-link OWL 2 OWL 2 ✗ ✗

logy engineering activities, only the classic standalone
Protégé is strong in the use of ontologies because is
highly extensible thanks to its very sophisticated plug-
in architecture. Table 1 shows the comparison.

4 crowd Architecture Views

In this work, we document and detail the architecture
of crowd offering three views: modules, component
and connectors and allocation. Each of them highlights
different aspects of implementation and the underly-
ing decisions for future and collaborative support. In
each view, we explain its motivation and its intended
meaning, and describe its principal parts based on the
chosen styles. For all the cases, we use UML notation.
Before introducing the architecture, we briefly explain
some assumptions made. First, we consider modules
as implementation units of software together with a set
of responsibilities. Likewise, components represent
elements such as objects, clients and servers. Finally,
artifacts represent files and software packages to be
installed and deployed in a running environment.

4.1 Module View

Motivation. The system is decomposed in implement-
ation units or modules, which can be related by is-
part-of, depend-on and is-a relations. Each module
provides a responsibility set aiming at defining the
role of such module in achieving certain functionality.
This view details how these units ensemble to form
one longer structure. Its intended use is to provide a
blueprint for the source code.
Architecture Styles. Decomposition, Uses and

Layered.
Description. The module view of crowd is a coher-
ent combination of architecture styles. First of all,
crowd is divided into layers, each one providing a set
of services to the other layer.

As depicted in Fig. 1, the upper layer groups a set
of modules related to the user interface of the tool. At
the same time, it is decomposed in implementation
units describing a containment relation and the de-
pendencies among them. The main module is the gui,
which depends on the packages views and model,
all of them for UML, EER and ORM support. The
first one provides the definition of templates and their
respective event handlers. The latter one manages
the underlying graphical models, their primitives and
the interaction with the graphical library by means of
respective UML, ORM and EER factories. Two spe-
cific modules support common features: model.uris
and views.common implements orthogonal function-
alities for the treatment of namespaces and common
templates and events of the GUI, respectively.

The bottom layer contains the modules required for
the processing of ontologies: translators. builders,
users management and interfaces with off-the-shelf
tools. The main module of this layer is translator,
which has a dual role orchestrating both the encod-
ing of graphical model into logic and processing on-
tologies extracted from OWL documents using spe-
cific strategies and builders. strategies de-
pend on CMLs and how they are encoded in logic,
while builders give the structure of documents

for different syntaxes. Lastly, translator contains
qapackages, which provides queries and parses their

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-25-



Figure 1: UML module view of crowd

answers when ontologies are processed by reasoners.
To this end, reasoner connects crowd to reasoning
systems and allows to create as many interfaces for
other tools as desired. In this sense, reasoner imple-
ments connectors for the documentation tool widoco
and a query engine sparql-dl. The decoder pack-
age is in charge of extracting ontologies from OWL
documents by means of SPARQL-DL. It invokes the
respective engine set with pattern queries that return
structural aspects of the current ontology. This module
implements key functionalities for managing URIs and
also depend on a strategy and a builder. Altogether,
translator, decoder and reasoner are used by
the common module, which is responsible for properly
combining them to built even more complex function-
alities. Fig. 2 illustrates the interaction among objects
in the OWL 2 importing scenario.

Finally, crowd includes simple modules for user and
model management.

4.2 Component-and-Connector View

Motivation. This kind of views complements the pre-
vious one by showing elements (components) that have
some run-time presence such as objects, and how these
elements communicate each other by means of con-
nectors (communication links, protocols). Connectors
define pathways of interaction between components,
which have a set of ports to connect them. The result-
ant view is a graph showing how the system works.
Architecture Styles. Call-Return.
Description. crowd has been conceived from scratch
as a client-server implementation. In this sense,
Client provides a user friendly interface to graph-
ical conceptual modelling running on a web browser

Figure 2: Communication diagram for importing OWL
2 ontologies. Arrows indicate name and direction
of message transmission between objects. Numbers
represent the sequence of messages passed between
objects.

and requires reasoning services of the Server running
on a web server. This tool follows the very same prin-
ciples of the web, where clients access information
from one or more servers distributed using the HTTP
protocol, which is a form of request/reply invocation.

The Fig. 3 depicts a Component-and-Connector
View (C&C) for the client side, its component and
the communication scheme between them and can be
described as followed. crowd supports widgets and
events for multiples diagram objects for standard lan-
guages. They are accessible through theGUI compon-
ent that handles different instances of GUIIMPL. Each
one of such instances is the representation of a spe-
cific interface, its events, widgets and diagram. An
Adapter component implements the Adapter struc-
tural pattern [40] for providing a bridge between an

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-26-



Figure 3: UML C&C view of the crowd client.

Table 2: Mapping between C&C and Module Views
for both client and server. (*) represent modules as
part of more than one run-time component.

C&C View Module View
Model, Factory, Uris model
GUI, GUIIMPL, Adapter gui
Widgets Set, Events Set views
*:Translator common, translator
*:Decoder common, decoder
OntoExtractor decoder
Strategy strategies
*:Builder builder
QAPackage qapackages
Off-the-shelf
Docs Generator widoco

Off-the-shelf Reasoner,
SPARQL-DL engine reasoner

User Management users

interface and a diagram (or Model), for instance an
UML diagram and its GUI. The Widget Set manages
all the widgets needed for a specific diagram and also
provides common ones to all the languages. Lastly, a
Factory component implements an Abstract Factory
pattern [40]. This factory defines an interface for creat-
ing the graphical elements of the standard languages of
crowd. It delegates this task to the underlying library
JointJS 6.

Moreover, the supported CMLs share some common
components such as uris, for the full treatment of
namespaces. An URI is an unique identifier for each
primitive of the ontologies. crowd keeps the track of
each primitive by specifying its (graphical) name, an
abbreviation (prefix) and an URL. An comprehensive
treatment of URIs is essential for the tool because
ontologies must be available through internet [1].

The Fig. 4 schematises the server, its sub-
components and connectors of the environment. For
simplicity of the diagram, only Reasoning elements
are fully expanded while details of Import ones are
hidden because they present similar C&C views. The
highlighted part of this scheme (in green) indicates
the importance of the logic-based reasoning systems

6https://www.jointjs.com/opensource

in backing the services of importing OWL ontologies
and reasoning over graphical models. In all the cases,
off-the-shelf tools provide communicating interfaces
or protocols such as OWL API [41] and OWLlink.
Both Traslator and Decoder components connects
to external engines. In particular, the OntoExtractor
component represents run-time objects implement-
ing the responsibilities defined for the decoder and
sparql-dl modules. It is in charge of processing the
outputs of SPARQL-DL queries sent to the respect-
ive engine, which aims at extracting both intentional
(TBox) and assertional (ABox) axioms from OWL on-
tologies. Such queries are defined in the specification
of SPARQL-DL language7 (see Fig. 5) and are pro-
cessed by an engine8 built on top of existing reasoners
and that can be fed with ontology documents in any
of its linearisations (OWL/RDF, OWL/XML, between
others).

Similarly, the components Strategy, Builder and
QAPackage communicate each other and implement
responsibilities associated to the module translator.
Translator also connects to external reasoning sys-
tems though the OWLlink protocol so that they are
fed with OWLlink files containing the OWL encod-
ing of an graphical ontology together with a set of
OWLlink queries for sanity checking of the ontology.
The output of this reasoning task is post-processed
by the QAPackage. Finally, the new OWL ontology
is sent to a Decoder instance to be after compared
against the original graphical one. In this sense, the de-
cision to integrate two different ways to query ontolo-
gies (OWLlink and SPARQL-DL) is in fact pragmatic
and is well-grounded in the well-known requirements
of interoperability: the use of standard protocols as
OWLlink to interconnect to other reasoning systems
and the support for the importing of OWL ontologies,
which requires of more expressive query languages to
extract as much knowledge as possible from OWL doc-
uments. Fig 6 presents a sequence diagram describing
a complete functionality of system and complements
the C&C view highlighting the right interactions in
run-time.

To summarise, Table 2 illustrates the mapping
between C&C and Module views showing which mod-
ules in the Module view contribute to the implementa-
tion of components shown in the C&C view.

4.3 Allocation View

Motivation. Allocation views present a mapping
between software and non-software elements. The
deployment view depicts the physical configuration of
the software architecture, in particular, how the com-
ponents of the architecture are allocated to physical
nodes. The install style maps the components of the
architecture to the structures in the file system of the

7http://derivo.de/en/resources/sparql-dl-api/

sparql-dl-syntax/
8http://derivo.de/en/resources/sparql-dl-api/

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-27-



Figure 4: UML C&C view of crowd server. Circles on top indicate services to be provided to clients.

Figure 5: UML sequence diagram for full reasoning service, input json example and SPARQL-DL queries.

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-28-



Figure 6: UML deployment and install scheme for the
centralised architecture of crowd.

running environment; while the work assignment style
shows the teams responsible for the development of
each of the software modules.
Architecture Styles. Deployment and Install.
Description. crowd is a centralised architecture so
that all the PHP artifacts, i.e. “.*php” files, are de-
ployed in a single HTTP server running Apache9 and
MySQL10 services. Off-the-shelf artifacts, “.*jar” files
for reasoning systems and SPARQL-DL engines, are
also installed in the same server and correspond to the
Reasoner component. Currently, server is x86 Intel
3GHz, running Apache v2.4.10, MySQL v5.6.4 on a
Debian GNU/Linux 8 jessie. In addition, PHP v7.0
and Java RE v1.8.0 are also deployed in such server.
Finally, multiplicity N..1 indicates the number of in-
stances of a client at each end of the communication
path. Such clients represent web browsers, which inter-
pret the HTML, CSS and JS artifacts, “.*html”, “.*css”
and “.*js” files of the user interface.

5 Evaluation: crowd v0.9

First version of crowd has been deployed at http:
//crowd.fi.uncoma.edu.ar. Its implementation
is the first one so that there are not yet performance
assessments of the overall system. The initial steps of
the development have been reported in [17, 18].

Currently, the crowd editor presents a workspace
for editing visual models in UML: classes, attributes,
generalisation and binary associations with n..m car-
dinalities, for n,m ≥ 1. Visual models can be encoded
in DL (and serialised in OWL 2) to be sent them to
reasoning systems for checking satisfiability and prop-
erties refinement. Released version of crowd man-
ages URIs and enables definition of namespaces for
re-using of other ontologies available across the web.
Users can log-in into crowd to host their diagrams

9https://httpd.apache.org/
10https://www.mysql.com/

although modelling tasks can be done but no state is
saved in our server. The interface is zoomable, that is,
the level of detail and size of the icons that represent
the model can be smoothly changed by pressing dedic-
ated options, which define a scale from 25% to 125%.
This allows the user to visualise big ontologies into
the same windows.

Complementary evaluations and applications of our
reference architecture beyond crowd have been re-
cently published in [42, 43]. The first one implements
a tool for validating visual Orthogonal Variability Mod-
els (OVM) in the context of Software Product Lines
(SPL). The second one implements a Visual Query
Language (VQL) based in UML for the SPARQL-DL
language.

6 Conclusions and Future Works

In this article, we have proposed and documented a
reference architecture for a web ontology engineering
environment. We described in details three comple-
mentary views merging different styles for each one:
modules (decomposition, layered, uses), component-
and-connectors (call-return) and allocation (deploy-
ment and install). The architecture described in this
paper addresses specific needs. In particular, decreas-
ing the cognitive effort of users when understanding,
integrating and using of ontologies. Moreover, it aims
at providing the rationale for boosting the collaborative
development of a novel tool based on this architecture,
named crowd.

Some limitations have been identified. CMLs lan-
guages are not enough expressive considering the un-
derlying expressiveness of reasoning systems. Users
could not visually represent disjoint and equivalence
constraints, among others logical axioms. Due to this,
we have considered two possible solutions: allowing
users to define logical expressions, which requires
knowledge about formal systems, or providing new
visual primitives with a precise semantic definition. In
this sense, crowd implements a text area for introdu-
cing OWL 2 statements as a temporary solution.

Future work involves releasing a new version of
crowd implementing the remaining primitives of UML
and (E)ER and full reasoning over these diagrams.
Moreover, we expect to extend crowd to other engin-
eering activities such as alignment and merging of
ontologies as well as managing of instances and in-
creasing compliance with W3C recommendations.

Competing interests

The authors have declared that no competing interests
exist.

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-29-



References

[1] R. Mizoguchi, Ontology Engineering Environ-
ments, pp. 275–295. Springer, 2004.

[2] M. Vigo, S. Bail, C. Jay, and R. Stevens,
“Overcoming the Pitfalls of Ontology Authoring:
Strategies and Implications for Tool Design,” In-
ternational Journal of Human Computer Studies,
2014.

[3] N. Achich, B. Bouaziz, A. Algergawy, and
F. Gargouri, “Ontology visualization: An over-
view,” in Intelligent Systems Design and Applic-
ations - 17th ISDA.

[4] N. M. Meenachi and M. S. Baba, “Article: Web
Ontology Language Editors for Semantic Web-
A Survey,” International Journal of Computer
Applications, 2012.

[5] D. Garlan, F. Bachmann, J. Ivers, J. Stafford,
L. Bass, P. Clements, and P. Merson, Document-
ing Software Architectures: Views and Beyond.
2nd ed., 2010.

[6] H. Gomaa, Software Modeling and Design:
UML, Use Cases, Patterns, and Software Archi-
tectures. Cambridge University Press, 1st ed.,
2011.

[7] C. Atkinson, M. Gutheil, and K. Kiko, “On the
Relationship of Ontologies and Models,” in Pro-
ceedings of the 2nd WoMM, 2006.

[8] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-
Schneider, and S. Rudolph, eds., OWL 2 Web
Ontology Language: Primer. W3C Recommend-
ation, 27 October 2009. Available at http:

//www.w3.org/TR/owl2-primer/.

[9] P. Fillottrani, E. Franconi, and S. Tessaris, “The
ICOM 3.0 intelligent conceptual modelling tool
and methodology,” Semantic Web, 2012.

[10] M. Curland and T. A. Halpin, “The NORMA
Software Tool for ORM 2,” in CAiSE Forum, Lec-
ture Notes in Business Information Processing,
Springer, 2010.

[11] K. Cerans, J. Ovcinnikova, R. Liepins, and
A. Sprogis, “Advanced OWL 2.0 Ontology Visu-
alization in OWLGrEd,” in DB&IS, 2012.

[12] R. Hodrob and M. Jarrar, “On Using a Graphical
Notation in Ontology Engineering,” 2012.

[13] F. Baader, D. Calvanese, D. L. McGuinness,
D. Nardi, and P. F. Patel-Schneider, eds., The De-
scription Logic Handbook: Theory, Implement-
ation, and Applications. Cambridge University
Press, 2003.

[14] P. R. Fillottrani and C. M. Keet, “Evidence-based
languages for conceptual data modelling profiles,”
in Proceeding of the 19th ADBIS, 2015.

[15] S. Negru, F. Haag, and S. Lohmann, “Towards
a unified visual notation for owl ontologies: In-
sights from a comparative user study,” in Pro-
ceedings of the 9th ICSS, 2013.

[16] M. Console, D. Lembo, V. Santarelli, and
D. F. Savo, “Graphol: Ontology representation
through diagrams,” in Informal Proceedings of
the 27th International DL, 2014.

[17] C. Gimenez, G. Braun, L. Cecchi, and L. Fillot-
trani, “crowd: A Tool for Conceptual Modelling
assisted by Automated Reasoning - Preliminary
Report,” in Proc. of the 2nd SAOA@JAIIO, 2016.

[18] G. Braun, C. Gimenez, P. Fillottrani, and L. Cec-
chi, “Towards conceptual modelling interoperab-
ility in a web tool for ontology engineering,” in
3rd SAOA@JAIIO, 2017.

[19] G. Braun, C. Gimenez, L. Cecchi, and P. Fil-
lottrani, “Towards a visualisation process for
ontology-based conceptual modelling,” in Proc.
of the IX ONTOBRAS, 2016.

[20] G. Braun, L. Cecchi, and P. Fillottrani, “Integrat-
ing graphical support with reasoning in a meth-
odology for ontology evolution,” in Proc. of the
1st JOWO@IJCAI, 2015.

[21] G. Birkhoff and J. D. Lipson, “Heterogeneous al-
gebras,” Journal of Combinatorial Theory, 1970.

[22] D. Berardi, D. Calvanese, and G. De Giacomo,
“Reasoning on UML class diagrams,” Artif. In-
tell., 2005.

[23] C. M. Keet and P. R. Fillottrani, “An ontology-
driven unifying metamodel of UML class dia-
grams, eer, and ORM2,” Data Knowl. Eng.,
2015.

[24] T. Liebig, M. Luther, O. Noppens, and M. Wessel,
“Owllink,” Semantic Web, 2011.

[25] E. Sirin and B. Parsia, “Sparql-dl: Sparql query
for owl-dl,” in In 3rd OWL Experiences and Dir-
ections Workshop (OWLED-2007, 2007.

[26] D. Garijo, “WIDOCO: A Wizard for Document-
ing Ontologies,” in ISWC 2017, 2017.

[27] G. Guizzardi, Ontological foundations for struc-
tural conceptual models. PhD thesis, University
of Twente, 2005.

[28] T. Tudorache, C. Nyulas, N. F. Noy, and M. A.
Musen, “Webprotégé: A collaborative ontology
editor and knowledge acquisition tool for the
web,” Semantic Web, 2013.

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-30-



[29] H. Knublauch, R. Fergerson, N. Noy, and
M. Musen, “The Protégé OWL plugin: An open
development environment for semantic web ap-
plications,” 2004.

[30] F. Sportelli, “NORMA: A software for intelligent
conceptual modeling,” in Proceedings of FOIS,
2016.

[31] TopQuadrant, “TopQuadrant — Products — Top-
Braid Composer,” 2011.

[32] J. L. R. Moreira, T. P. Sales, J. Guerson, B. F. B.
Braga, F. Brasileiro, and V. Sobral, “Menthor
editor: An ontology-driven conceptual modeling
platform,” in JOWO@FOIS, 2016.

[33] P. Hasse, H. Lewen, R. Studer, and M. Erdmann,
“The NeOn Ontology Engineering Toolkit,”
2008.

[34] S. Lohmann, S. Negru, and D. Bold, “The
protégévowl plugin: Ontology visualization for
everyone,” in The Semantic Web: ESWC 2014,
2014.

[35] S. Krivov, R. Williams, and F. Villa, “GrOWL: A
tool for visualization and editing of OWL ontolo-
gies,” J. Web Sem., 2007.

[36] T. Liebig, “Ontotrack: Fast browsing and easy
editing of large ontologies,” in In Proceedings of
2nd EON@ISWC, 2003.

[37] A. Kalyanput, B. Parsia, E. Sirin, B. Grau, and
J. Hendler, “Swoop: A ’web’ ontology editing
browser,” Journal of Web Semantics, 2005.

[38] K. Kozaki, Y. Kitamura, M. Ikeda, and
R. Mizoguchi, “Hozo: An Environment for
Building/Using Ontologies Based on a Funda-
mental Consideration of ”Role” and ”Relation-
ship”,” in 13th EKAW Conference, 2002.

[39] R. Falco, A. Gangemi, S. Peroni, D. M. Shotton,
and F. Vitali, “Modelling OWL ontologies with
graffoo,” in The Semantic Web: ESWC 2014,
2014.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides, Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., 1995.

[41] M. Horridge and S. Bechhofer, “The owl api: A
java api for owl ontologies,” Semant. web, 2011.

[42] n. Oyarzún, G. Braun, L. Cecchi, and P. Fillot-
trani, “A Graphical Web Tool with DL-based
Reasoning,” in Proc. of the XXVI CACIC, 2018.

[43] C. Gimenez, G. Braun, L. Cecchi, and P. Fil-
lottrani, “Towards a Visual SPARQL-DL Query
Builder,” in Proc. of the XXVI CACIC, 2018.

✗

✖

✔

✕

Citation: G. Braun, E. Estevez and P. Fillottrani. 
"A Reference Architecture for Ontology Engineering 
Web Environments", Journal of Computer Science 
& Technology, vol. 19, no. 1, pp. 22–31, 2019. 
DOI: 10.24215/16666038.19.e03
Received: July 18, 2018 Accepted: November 
26, 2018.
Copyright: This article is distributed under the 
terms of the Creative Commons License CC-BY-
NC.

Journal of Computer Science & Technology, Volume 19, Number 1, April 2019

-31-




