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Abstract

The process e

e~ — WTW™y is studied using the data collected by the L3 detector at LEP. New results, corresponding to

an integrated luminosity of 427.4 pb_1 at centre-of-mass energies from 192 to 207 GeV, are presented.
The WHW ™y cross sections are measured to be in agreement with Standard Model expectations. No hints of anomalous

quartic gauge boson couplings are observed. Limits at 95% confidence level are derived using also the process e

© 2002 Published by Elsevier Science B.V.

Te™ - viyy.

1. Introduction

The increase of the LEP centre-of-mass energy well
above the W boson pair-production threshold opens
the possibility of studying the triple boson production
process eTe” — WTW™y. We report on the cross
section measurement of this inclusive process where
the photon lies inside a defined phase space region.

The three boson final state gives access to quar-
tic gauge boson couplings represented by four-boson
interaction vertices as shown in Fig. la. At the LEP
centre-of-mass energies the contribution of four-boson
vertex diagrams, predicted by the Standard Model of
electroweak interactions [1,2], are negligible with re-
spect to the other competing diagrams, mainly initial-
state radiation. The study of the WTW~y process is
thus sensitive to anomalous quartic gauge couplings
(AQGC) in both the WTW~Zy and WTW~yy ver-
tices. The presence of AQGC would increase the cross
section and modify the photon energy spectrum of the
WHTW™y process. This search is performed within the
theoretical framework of Refs. [3,4].

The existence of AQGC would also affect the
ete”™ — vDyy process via the WTW™ fusion dia-
gram, shown in Fig. 1b, containing the WTW~yy

1 Supported by the German Bundesministerium fiir Bildung,
Wissenschaft, Forschung und Technologie.

2 Supported by the Hungarian OTKA fund under contract
numbers T019181, F023259 and T024011.
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(b)

Fig. 1. Feynman diagrams containing four-boson vertices leading to
the (a) WFW~y and (b) vy y final states.

vertex [5]. The reaction ete™ — vvyy is dominated
by initial-state radiation whereas the quartic Standard
Model contribution from the WTW™ fusion is negli-
gible at LEP. Also in this case the presence of AQGC
would enhance the production rate, especially for the
hard tail of the photon energy distribution and for pho-
tons produced at large angles with respect to the beam
direction.

The results are based on the high energy data sam-
ple collected with the L3 detector [6]. Data at the
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centre-of-mass energy of /s = 189 GeV, correspond-
ing to an integrated luminosity of 176.8 pb~!, were
already analysed [7] and are used in the AQGC analy-
sis. In the following, particular emphasis is given to
the additional luminosity of 427.4 pb~! recorded at
centre-of-mass energies ranging from /s = 192 up to
207 GeV.

The results derived on AQGC from the WrW~y
and vvyy channels are eventually combined.

Studies of triple gauge bosons production and
AQGC were recently reported for both the WTW™y
[8] and Zy y [9] final states.

2. Monte Carlo simulation

The dominant contributions to the WTW~y final
state come from the radiative graphs with photons
emitted by the incoming particles (ISR), by the decay
products of the W bosons (FSR) or by the W’s
themselves (WSR).

In this Letter, the signal is defined as the phase
space region of the et e™ — WT W~y process where
the photon fulfills the following criteria:

e E, > 5 GeV, where E, is the energy of the
photon,

e 20 <6, < 160°, where 6, is the angle between
the photon and the beam axis,

e a, > 20°, where oy is the angle between the
direction of the photon and that of the closest
charged fermion.

These requirements, used to enhance the effect of
possible AQGC, largely contribute to avoid infrared
and collinear singularities in the calculation of the
signal cross section.

In order to study efficiencies, background contam-
inations and AQGC effects, several Monte Carlo pro-
grams are used.

The KORALW [10] generator, which does not in-
clude either the quartic coupling diagrams or the WSR,
performs initial state multi-photon radiation in the
full photon phase space. FSR from charged leptons
in the event up to double bremsstrahlung is included
using the PHOTOS [11] package. The JETSET [12]
Monte Carlo program, which includes photons in the
parton shower, is used to model the fragmentation

and hadronization process. The KORALW program is
used in the analysis for the determination of efficien-
cies. PYTHIA [13] is used to simulate the background
processes: ete” — Z/y — qq(y), ete” — ZZ —
4f(y) and ete™ — Zee — ffee(y).

The EEWWG [4] program is used to simulate the
effect of AQGC. It includes O(«) calculations for vis-
ible photons but is lacking the simulation of photons
collinear to the beam pipe and of FSR. The net ef-
fect of collinear photons, included by implementing
the EXCALIBUR [14] collinear radiator function, is
to move the effective centre-of-mass energy towards
lower values, reducing the expected signal cross sec-
tion by about 18%.

Other Monte Carlo programs which include WSR
or full O(x) corrections, such as YFSWw3 [15]
and RACOONWW [16], are used to cross check the
calculations.

For the simulation of the eTe™ — vbyy process
in the framework of the Standard Model the KO-
RALZ [17] Monte Carlo generator is used. NUNUGPV
[18] is also used to cross check the results, and found
to be in agreement with KORALZ. The effects of
AQGC are simulated using the EENUNUGGANO pro-
gram [5]. The missing higher order corrections due to
ISR in EENUNUGGANO are also estimated by imple-
menting the EXCALIBUR collinear radiator function.

The response of the L3 detector is modelled with
the GEANT [19] detector simulation program which
includes the effects of energy loss, multiple scattering
and showering in the detector materials and in the
beam pipe. Time dependent detector inefficiencies are
taken into account in the simulation.

3. WTW~y event selection and cross section

The selection of WHW ™y events follows two steps:
first semileptonic WHW— — qqev or qquv, and fully
hadronic WHW~ — qqqq events are selected [20],
then a search for isolated photons is performed.

The photon identification in WHW™ events is op-
timized for each four-fermion final state. Photons are
identified from energy clusters in the electromagnetic
calorimeter not associated with any track in the cen-
tral detector and with low activity in the nearby region
of the hadron calorimeter. The profile of the shower
must be consistent with that of an electromagnetic par-
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Fig. 2. Distributions at the centre-of-mass energies /s =
189-207 GeV of (a) the photon energy, (b) the cosine of the an-
gle of the photon to the beam axis and (c) the cosine of the angle of
the photon to the closest charged lepton or jet.

ticle. Experimental cuts on photon energy and angles
are applied, reflecting the phase space definition of the
signal.

Fig. 2 shows the distributions of £, 6,,, and o, for
the full data set, including the data at /s = 189 GeV.
Here, o, is defined as the angle of the photon with
respect to the closest identified lepton or hadronic jet.
Good agreement between data and Standard Model
expectations is observed. Fig. 3 shows the distributions
of E,, for the data collected at \/s = 192-202 GeV and
/s =205-207 GeV, respectively.

Table 1 summarizes the selection yield. In total 86
WTW~y candidate events are selected at /s = 192—
207 GeV. The Standard Model expectation, inside the
specified phase space region, is of 87.8 £ 0.8 events.

The quantity eww, representing the selection ef-
ficiencies for the WTW~ — qqlv and qqqq decay
modes, ranges from 70 to 87%. The quantity ¢, is
the photon identification efficiency inside the selected
phase space region. This efficiency takes into account
small effects of events migrating from outside the sig-
nal region into the selected sample due to the finite de-

20 b) L 3

Data 205 — 207 GeV

,,,,,,,,,, a /A" =0.4 GeV™®

Events/2.5 GeV

Fig. 3. Distributions of the photon energy for the semileptonic
qqev, qquv and fully hadronic WTW~y decay modes corre-
sponding to the data collected at (a) /s = 192-202 GeV and (b)
/5 =205-207 GeV. The cross-hatched area is the background com-
ponent from WW, ZZ, Zee, and qq(y) events. The FSR distribution
includes the contribution of photons radiated off the charged fermi-
ons and photons originating from isolated meson decays. Distribu-
tions corresponding to non-zero values of the anomalous coupling
ap /A2 are shown as dashed lines.

tector resolution. Its value ranges from 52 to 80%, the
lowest efficiencies being obtained in the fully hadronic
sample where the high multiplicity makes the photon
identification more difficult. The overall selection effi-
ciency eww X & is around 45% for all final states.

The WTW™y cross sections are evaluated channel
by channel and then combined according to the Stan-
dard Model W boson branching fractions. The data
samples at v/s = 192-196 GeV, /s = 200-202 GeV
and /s = 205-207 GeV are respectively merged.
They correspond to the luminosity averaged centre-of-
mass energies and to the integrated luminosities listed
in Table 1.

The results, including the published value at /s =
189 GeV [7], are:

O‘WWy(188.6 GeV)
=0.29+£0.08 £ 0.02 pb
(osm = 0.233 £0.012 pb),
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Table 1

Number of observed events, Ngaa, WTW™ and WFW™y selection efficiencies, sww and ey, expected total number of events, N. P

and background estimates, N, op

TOT?

Bkgr® for the various decay channels according to the Standard Model prediction. The background estimates

include FSR and misidentified photons. All uncertainties come from Monte Carlo statistics. The average centre-of-mass energies, (1/s), and the

integrated luminosity of the three subsamples are also listed

(W/5) Channel Nata EWW £y N’T')(()pT N;T{%T
194.4 GeV qqevy 4 0.748 + 0.007 0.613 +0.023 3.76 £ 0.14 1.41 £0.09
(113.4pb~ 1) qquvy 6 0.731 +0.007 0.728 £ 0.026 45240.15 1.68 £ 0.09
qqqqy 9 0.865 =+ 0.004 0.537+0.013 12.89 = 0.34 5224028
2002 GeV qqevy 5 0.726 + 0.007 0.631 0.023 428 40.14 1.47 £0.08
(119.8 pb~ 1) qquvy 4 0.712 +0.007 0.744 + 0.025 5.50 £ 0.16 2.0740.10
qqaqy 18 0.836 % 0.004 0.521+0.012 13.71 £0.29 5314028
206.3 GeV qqevy 7 0.700 % 0.005 0.626 £ 0.024 6.58 £ 0.22 221+40.13
(1942 pb=1) qquvy 4 0.714 % 0.005 0.787 £ 0.026 9.5440.26 3.48+£0.16
qqqqy 29 0.823 +0.005 0.540 +£0.011 26.97 £0.50 12.11 £0.39
owwy (194.4 GeV) 05 [ 04/ 02,/
=0.23+0.10£0.02 pb F L3
04
(oM = 0.268 £ 0.013 pb), g [ e om
owwy (200.2 GeV) =~ o3 @ sm
z [ - a/At
=0.39£0.12£0.02 pb = sl .
o U F e'e” - WWy
(osm =0.30540.015 pb), F E >5GeV
0.1 [ 8. > 20°
owwy (206.3 GeV) : o >20°
C Y
_ P P o RIS AU APUNUI PR R
=0.33+£0.09+£0.02 pb 160 170 180 190 200 210 220

(osm =0.323 +£0.016 pb),

where the first uncertainty is statistical and the second
systematic. The measurements are in good agreement
with the Standard Model expectations, osm, calculated
using EEWWG and reported with a theoretical uncer-
tainty of 5% [21]. Fig. 4 shows these results together
with the predicted total WHW ™y cross sections as a
function of the centre-of-mass energy.

The ratio between the measured cross section
omeas and the theoretical expectations is derived at
each centre-of-mass energy. These values are then
combined as:

Omeas

R =

=1.09£0.17 £ 0.09,
OSM
where the first uncertainty is statistical and the second
systematic.
The systematic uncertainties arising in the inclusive
We-pair event selections [20] are propagated to the fi-
nal measurement and correspond to an uncertainty of

Vs (GeV)

Fig. 4. Measured cross section for the process eTe™ — WTW~y
compared to the Standard Model cross section as a function of the
centre-of-mass energy, as predicted by the EEWWG Monte Carlo
within phase-space requirements. The shaded band corresponds
to a theoretical uncertainty of £5%. The three dash-dotted lines
correspond to the cross section for the indicated values of the
anomalous coupling aj, /A2 (in Gev—2 units).

0.008 pb for all the energy points. Additional system-
atic uncertainties due to the electromagnetic calorime-
ter resolution and energy scale are found to be negligi-
ble. The total systematic uncertainty is dominated by
the JETSET modelling of photons from meson decays
(%, ). Its effect has been directly studied on data [7]
comparing the photon rate in ete™ — Z — qq(y)
events with Monte Carlo simulations. A correction
factor of 1.2 & 0.1 is applied to the rate of photons
in the Monte Carlo simulation and its uncertainty is
propagated. This uncertainty, fully correlated among
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the data taking periods, amounts to 6% of the mea-
sured cross section.

4. Determination of anomalous quartic gauge
couplings

4.1. TheeTe™ — WTW™y process

In the framework of Refs. [3,4], the Standard Model
Lagrangian of electroweak interactions is extended
to include dimension-6 operators proportional to the
three AQGC: ag/A?, a./A? and a,/A?, where A?
represents the energy scale for new physics.

The two parameters ag/A? and a./A%, which are
separately C and P conserving, generate anomalous
WtW~yy and ZZyy vertices. The term a,/A2,
which is CP violating, gives rise to an anomalous con-
tribution to the WHW~Zy vertex. Indirect limits on
ao/A? and a./ A? were derived [22], but only the study
of WFW~y events allows for a direct measurement
of the anomalous coupling a,/A?. These couplings
would manifest themselves by modifying the energy
spectrum of the photons and the total cross section
as shown in Figs. 3 and 4, respectively. The effect in-
creases with increasing centre-of-mass energy. These
predictions are obtained by reweighting the KORALW
Monte Carlo events by the ratio of the differential dis-
tributions as calculated by the EEWWG and KORALW
programs [7].

The derivation of AQGC is performed by fitting
both the shape and the normalization of the photon
energy spectrum in the range from 5 to 35 GeV. Each
of the AQGC is varied in turn fixing the other two to
Zero.

The combination of all data, including the results at
/s =189 GeV [7], gives:

ap/A* =0.00040.010 GeV 2,

ac/A* = —0.013 £ 0.023 GeV 2,
an/A? = —0.002 +0.076 GeV 2,

where systematic uncertainties are included.
At the 95% confidence level, the AQGC are con-
strained to:
—0.017 < ap/A? < 0.017 GeV 2,
—0.052 < a. /A% < 0.026 GeV~2,

10
e Data 192 - 207 GeV
% — Standard Model
(O s / 2 _ -2
a, /A" =0.05 GeV
N\
n
c
L5
i
0 4= ; - .—u—}
20 40 60 80

Recoil Mass (GeV)

Fig. 5. Recoil mass spectrum of the acoplanar photon pair events
selected at /s = 192-207 GeV.

—0.14 < a, /A% <0.13 GeV 2.

All these results are in agreement with the Standard
Model expectation. The sign of the ag and a, AQGC,
obtained with the EEWWG reweighting, is reversed
according to the discussions in Refs. [23,24].

4.2. Theete™ — vbyy process

The sensitivity of the ete™ — vDyy process to the
ag/A* and a./A?> AQGC, through the diagrams shown
in Fig. 1b, is also exploited. Events with an acoplanar
multi-photon signature are selected [25]. In this Letter
we report on results from data at /s = 192-207 GeV.

Fig. 5 shows the two-photon recoil mass, Mec,
distribution, with the predicted AQGC signal for a
non-zero anomalous coupling ag/A?. The number of
selected events in the Z peak region, defined as 75 <
Miec < 110 GeV, is 43 in agreement with the Standard
Model expectation of 47.6 +0.7.

The AQGC signal prediction is reliable only for
recoil masses lower than the mass of the Z boson as the
interference with the Standard Model processes is not
included in the calculation. Requiring Mye. < 75 GeV,
no event is retained by the selection in agreement with
the Standard Model expectation of 0.35 £ 0.05 events.

A reweighting technique based on the full matrix
elements as calculated by the EENUNUGGANO Monte
Carlo, is used to derive the AQGC values. Including
the results at /s = 183 GeV and /s = 189 GeV [7],
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the 95% confidence level upper limits are:

—0.031 < ag/A? <0.031 GeV 2,
—0.090 < a./A% < 0.090 GeV~2,

where only one parameter is varied at a time.

The dominant systematic uncertainty comes from
the theoretical uncertainty of 5% [21] in the calcula-
tion of anomalous cross sections.

4.3. Combined results

The results obtained from the WrW~y and viyy
processes are combined. No evidence of AQGC is
found and 95% confidence level limits are obtained
separately on each coupling as:

—0.015 < ag/A? < 0.015 GeV 2,
—0.048 < a./A% < 0.026 GeV~2,
—0.14 < a, /A% < 0.13 GeV 2.

Appendix A

The results on the ete™ — W W™y cross sections
are also expressed for a different phase space region
defined by:

E, >5GeV,

| cos(6y,)] < 0.95,

cos(ay) < 0.90,

My = Mw £+ 21w, where My are the two fermi-
on-pair invariant masses.

The results read:

owwy (188.6 GeV)
=0.2040.09 +0.01 pb
(osm = 0.190 £ 0.010 pb),
owwy (194.4 GeV)
=0.1740.1040.01 pb
(osm =0.219£0.011 pb),
owwy (200.2 GeV)
=0.4340.1340.02 pb
(osm = 0.242 £ 0.012 pb),
owwy (206.3 GeV)

—0.13£0.08£0.01 pb
(osm = 0.259 +0.013 pb),

where the first uncertainty is statistical, the second
systematic and the values in parentheses indicate the
Standard Model predictions.
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