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Abstract

A determination of the number of light neutrino families performed by measuring the cross section of single photon
production in eqey collision near the Z resonance is reported. From an integrated luminosity of 100 pby1, collected during
the years 1991–94, we have observed 2091 single photon candidates with an energy above 1 GeV in the polar angular region
458-u -1358. From a maximum likelihood fit to the single photon cross section, the Z decay width into invisible particlesg

Ž . Ž .is measured to be G s498"12 stat "12 sys MeV. Using the Standard Model couplings of neutrinos to the Z, theinv
Ž . Ž .number of light neutrino species is determined to be N s2.98"0.07 stat "0.07 sys . q 1998 Published by Elseviern

Science B.V. All rights reserved.

1. Introduction

The determination of the number of light neutrino
families, N , is one of the most fundamental resultsn

1 Also supported by CONICET and Universidad Nacional de
La Plata, CC 67, 1900 La Plata, Argentina.

2 Also supported by Panjab University, Chandigarh-160014,
India.

3 Supported by Deutscher Akademischer Austauschdienst.
4 Supported by the German Bundesministerium fur Bildung,¨

Wissenschaft, Forschung und Technologie.
5 Supported by the National Natural Science Foundation of

China.
6 Supported by the Hungarian OTKA fund under contract num-

bers T14459, T19181 and T24011.
7 Supported also by the Comision Interministerial de Ciencia y´

´Technologia.

obtained by the four LEP experiments. It has been
derived from the measurement of the Z decays into
light neutrinos, which form the invisible Z width,

Ž . w xG . In the Standard Model SM 1 , the number ofinv
neutrino families is given by N sG rG wheren inv nn

G is the decay width of the Z into each neutrinonn

family. The invisible width is also of interest because
it is sensitive, in addition to the existence of further
neutrino generations or any other pair of stable
weakly interacting particles with mass less than
m r2, to possible processes outside the StandardZ
Model, some of which are not currently accessible to
experiments otherwise. Furthermore G is also sen-inv
sitive to non-standard couplings of the known neutri-
nos to the Z and to phenomena such as the existence
of right-handed neutrinos, mixing with the left-
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handed ones, which could lead to a non-integer Nn

w x2 . Thus different, precise and complementary mea-
surements are needed to address the above issues.

An indirect determination of G has been madeinv
at LEP through the analysis of the Z lineshape,
subtracting the visible partial widths from the total
one. The published result obtained by L3 in this

w xapproach is N s2.98"0.05 3 .n

A direct measure of the Z invisible width, and
thus of the number of light neutrino types, is based
on the measurement of the cross section for the

q y w xradiative process e e ™nng 4 . The signature of
such events is a single photon from initial state
radiation. Near the Z resonance, the cross section for
this process is approximately proportional to N sincen

the contribution from t-channel W exchange is small.
This method is complementary in many respects to
the indirect one. For instance in the indirect ap-
proach, exotic yet ‘‘visible’’ Z decays, not properly
taken into account in the hadronic or in the leptonic
selections, would give a contribution to G whereasinv
they would not affect the present analysis.

Measurements of the cross section of the process
q y w xe e ™nng have been performed at LEP 5–7 and

w xat lower energies 8 . The single photon events have
w xalso been used to search for new phenomena 9 . The

current world average on the number of neutrino
families from the study of this reaction is N s3.09n

w x"0.13 10 . In this paper we present a new measure-
ment of the number of the neutrino families based on
data collected with the L3 detector through the years
1992–94, corresponding to a total integrated lumi-

y1 w xnosity of 90.3 pb . The published 1991 data 6 are
also used in the fit that gives the final number of
neutrino families which is thus based on an overall
luminosity of 100 pby1.

2. Single photon trigger

The L3 detector and its performance are described
w xin detail in 11 . Concerning the hermeticity, the

coverage is as follows: the polar angle acceptance of
the BGO barrel electromagnetic calorimeter extends
from 42.38 to 137.78; the BGO endcaps cover 11.48
to 35.28 and 144.88 to 168.68; the hadron calorimeter
Ž .HCAL covers 68 to 1748 and the muon spectrome-
ter covers 368 to 1448. The minimum angle at which
particles are detected, critical for the suppression of

QED background, is defined by the luminosity moni-
Ž .tors LUMI . They cover the polar angular range

1.48-u-3.98 on both sides of the interaction point.
The region between the luminosity monitors and the
hadron calorimeter endcaps is covered by two small
lead rings instrumented with scintillator counters
Ž .ALR , leaving only a small region in between LUMI
and ALR where particles can escape undetected.

Events with a low energy single photon in the
BGO barrel are triggered by the first level energy
trigger with a dedicated algorithm. The trigger is
satisfied if an isolated energy deposit exceeding 1
GeV is found. Details of the trigger algorithm are

w xdescribed in 12 .
The trigger efficiency is determined in two ways:

from data and from a detailed simulation of the
single photon trigger. The first method uses a sample
of radiative Bhabha events with an isolated electron

Žin the BGO barrel the single electron control sam-
.ple , which is triggered by requiring the coincidence

of a charged track and an energy exceeding 30 GeV
in one of the luminosity monitors. The second one
uses unbiased triggers as input of a dedicated simula-

w xtion program 5,6 .

Fig. 1. The trigger efficiency as a function of the photon energy in
1992 and 1994.
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Fig. 1 shows the trigger efficiency as a function
of the photon energy derived from the two methods
for the 1992 and the 1994 data taking periods respec-
tively. The agreement of the simulation with the
single electron data at the level of 1%, once folded
with the single photon energy spectrum, justifies the
use of the simulated curve also for periods where the
statistics are limited.

3. Event selection

q yThe experimental signature of the e e ™nng

events is an electromagnetic shower and an other-
wise ‘‘empty’’ detector as defined below.

The main sources of background are radiative
QED processes, in which all other final-state parti-
cles, mainly produced at small polar angles, escape
detection. Among these reactions, the dominant ones
are radiative Bhabha scattering eqey™ eqeyg , the
process eqey™ ggg , and the two-photon pro-
cesses eqey™ eqeyX, where X is a p 0,h,h X, a , f2

q y w xor l l g 13 . A potential source of background
events is also represented by cosmic muons. Due to

Žthe long integration time of the BGO 8 ms starting
.2.8 ms before the beam crossing , an out of time

cosmic muon emitting hard photon bremsstrahlung,
when only the BGO is active, can fake a single
photon event. This background is evaluated from the
data, as described later.

In order to suppress contributions from these
backgrounds, the following requirements are applied
to the cluster found in the electromagnetic calorime-
ter:
.1 an energy deposit in the BGO greater than 1 GeV

and less than 10 GeV, at a polar angle between
458 and 1358, shared amongst at least five crys-
tals;

.2 the lateral shape of the energy deposit must be
consistent with that expected from a single elec-
tromagnetic particle originating from the interac-
tion point.

The detector is then required to be otherwise
‘‘empty’’ as defined by the following criteria:
.3 no other energy deposits in the BGO, consisting

of 3 or more contiguous crystals and exceeding a
total energy of 100 MeV;

. Ž .4 no tracks in the central tracking chamber TEC ;

.5 less than 1.5 GeV deposited in either luminosity
monitor;

.6 no signal in the ALR;

.7 less than 3 GeV deposited in the HCAL;

.8 no tracks measured in the muon spectrometer.
.Requirement 3 reduces the contamination from

two-photon production of resonances decaying into
.two or more photons; requirement 4 removes the

single electron contamination and beam-gas or
. . . Žbeam-wall events; requirements 5 , 6 and 7 in the
. q yregions not covered by the BGO reduce the e e g

. . .background. Requirements 2 , 4 , and 8 remove the
contamination from the bremsstrahlung of cosmic
rays.

The energy spectrum of the single photon candi-
dates in the period 1992–94 is shown in Fig. 2
together with the Monte Carlo prediction for the
signal expected from three light neutrino families
and the backgrounds. The main background contribu-
tion is due to the eqeyg channel, when both elec-
tron and positron escape through the beam pipe
Ž .E -1.5 GeV or one of the two leaves undetectedg

Žbetween the ALR and the LUMI 3.0 GeV- E -g

Fig. 2. The energy spectrum of the selected single photon candi-
dates. The Monte Carlo predictions for the period 1992-94 are
shown by different histograms.
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Table 1
Summary of the selected data sample and of the expected number
of events. The 1991 data were the subject of our previous

w xpublication 6

'Year s HLL d t Observed Expected events
y1Ž . Ž .GeV pb events q yN N N Totalnng e e g other back .

MC

1991 88.56- 9.57 202 169.6 25.0 4.9 199.5
93.75

1992 91.34 20.52 456 381.3 60.1 9.0 450.4
1993 91.32 4.12 99 74.8 10.8 2.0 87.6
1993 89.45 8.25 77 46.5 19.6 3.9 70.0
1993 91.21 9.25 180 152.4 23.6 4.3 180.3
1993 93.04 8.30 375 370.7 20.9 3.8 395.4
1994 91.22 39.88 702 596.1 93.8 16.9 706.8

Total 99.89 2091 1791.4 253.8 44.8 2090.0

.4.5 GeV while the other stays in the beam pipe.
Smaller sources of remaining backgrounds are ggg

events and two-photon produced resonances.
In Table 1 we report the summary of the selected

data sample along with the number of expected
signal events for N s3, the background comingn

from the radiative Bhabha and the other minor back-
grounds for the six sub-period samples defined for
the years 1992–94. The number of events for 1991

w xdata are taken from our previous publication 6 .

4. Systematic errors

The main sources of systematic errors on the
cross section are evaluated by performing the fit,
described in the next section, with the parameters
changed according to their maximum variation. They
are summarised in what follows.

Trigger efficiency: the systematic error on the
trigger efficiency is evaluated by varying the param-
eters entering in the trigger simulation, like calibra-
tion constants of the trigger channels, their resolution
and the conversion factor with respect to the energy
of the photon. The curves obtained for several choices
of the parameters are convoluted with the single
photon spectrum. From this we estimate a 1.2% of
systematic uncertainty on the trigger efficiency. This
estimate is confirmed by the single photon trigger
efficiency measured using the single electron sample.

Background subtraction: the background mainly

comes from the process eqey™ eqeyg . It is simu-
lated by the Monte Carlo generator described in Ref.
w x14 . It is a first order generator that can be used in
two ways exploiting the same matrix element: a
single photon configuration, where the photon is in
the barrel region and the two electrons stay at small
angle, hence describing background events, and a
single electron configuration where one electron is at
large angle while the other two particles remain at
small angles, hitting one of the two luminosity moni-

Ž .tors single electron sample . The cross section of the
latter process is more than one order of magnitude
larger than the single photon configuration and these
events are used to study the accuracy of the Monte
Carlo generator to reproduce the data. The single
electron event selection is the same as the single

.photon one, once we replace requirement 4 by
.demanding a TEC track and requirement 5 by ask-

ing for at least 30 GeV in one of the luminosity
monitors. Fig. 3 shows for this sample the cosine of
the polar angle of the charged tracks in the barrel
multiplied by the sign of their charges. The data are
compared with the expectation from the processes

Fig. 3. The cosine of the single electron detected in the BGO
barrel multiplied by the sign of its charge, Q .e
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q y q y q y q y q y w xe e ™ e e g and e e ™ e e e e 15 . The
electrons from radiative Bhabha events are preferen-
tially scattered at low angles, while the electrons
coming from the four electron final state have a flat
angular distribution. The data are well reproduced by
the two Monte Carlos justifying the use of the
Bhabha Monte Carlo in the background subtraction.
The difference in normalisation between data and

Ž .Monte Carlo amounts to 1.7"0.2 %.
A more stringent test is given by the analysis of

the single photon - single tag events, that is a single
photon in the barrel plus a signal with more than 30
GeV in one of the luminosity monitors, which is
close to the background events where no signal in
the luminosity monitors is required. The cross sec-
tion for this process, which is only triggered by the
single photon trigger, is approximately 20 pb. By
comparing the data with the expected events from

q y q y q y w xthe processes e e ™ e e g , e e ™ ggg 16 ,
and the two-photon ones we estimate an error in the
background subtraction of 6%. It takes into account
the Monte Carlo generator accuracy, the trigger effi-
ciency and the detector simulation. The largest con-
tribution comes from the position of the luminosity
monitors which has to be reproduced as accurately as
possible in the Monte Carlo description of the detec-
tor setup.

Selection efficiency: the selection described in the
previous section is based on two main sets of re-
quirements: the electromagnetic and the veto ones.

The efficiency to select electromagnetic showers,
studied with a single electron sample obtained relax-

.ing requirement 2 , is 96.1% for the data and 98.5%
for the Monte Carlo. This difference is due to ineffi-
cient crystals present in the data and not in the
simulation and to a not accurate enough description
of the lateral shower profile of low energy photons.
To correct this effect the Monte Carlo events are
weighted by the ratio of the two efficiencies. By
changing the single electron sample used and by
varying the electromagnetic requirements around the
nominal ones we estimate an error of 0.5% on the
correction factor.

The efficiency of the veto requirements is mea-
sured studying unbiased trigger events, which give
the level of noise in the detector. It is determined for
the individual data taking periods, and the average is
96.0%. By changing the veto requirements around

the nominal ones, we estimate an error on the veto
efficiency of 0.5%.

The selection efficiency for single photon events,
measured by applying all requirements to a single

Ž .photon Monte Carlo sample, is 92.1"0.3 % within
.the phase space defined by requirement 1 . The error

is dominated by the statistics of the sample used. The
total error on the selection efficiency is 0.8%.

Energy scale: the error on the energy scale is
estimated by comparing the mass of the p 0 and h

w xmeasured in hadronic events 17 , with their standard
w xvalues 10 . The energy range of these photons is the

same as the one of the single photon events studied.
The error on the energy scale is 0.8%.

Monte Carlo generators: we use for the signal the
w xMonte Carlo generator NNGSTR described in 18 . It

takes into account the complete second order dia-
grams describing the process, including electroweak
corrections. The cross section is compared with an
analytical calculation based on the structure function

w xapproach 19 . This yields an error on the predicted
cross section of 0.7%.

Cosmic ray background: to estimate the possible
cosmic ray contamination a sample of potential sin-
gle photon events produced by out of time cosmic
muons is selected. The selection is based on TDCs of
the scintillator counters which have a gate of 10ms.
In addition the event timing is inferred by the ratio
of the photon energy measured by the fast trigger
ADC with respect to the digital readout recon-
structed offline. Due to the different integration time
of the two ADCs, the ratio is equal to one for events
in time with the beam crossing and it is less than one
otherwise. In case the scintillators and the above
ratio give consistent values the event is selected as
an out of time cosmic. As a cross check we applied
the same selection to the single electron control
sample. No events were selected as out of time
cosmic candidates.

. . .We applied the requirements 2 , 4 and 8 to the
out of time cosmic sample. No events of the sample
survive the selection requirements. We extrapolate
this result to the single photon sample, obtaining a
contamination of at most 0.25%.

Luminosity and G error:nn

The error on the luminosity measurement has
been improved during the years going from 1% in
1991, to 0.6% in 1992 and to less than 0.2% in
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Table 2
Breakdown of the systematic error contributions to G and Ninv n

Ž .Systematic error source DG MeV DNinv n

Trigger efficiency 8.4 0.050
Background subtraction 4.8 0.029
Selection efficiency 4.0 0.024
Energy scale 4.0 0.024
Monte Carlo generators 3.5 0.021
Cosmic ray background 1.7 0.010
Luminosity error 1.8 0.011
G theoretical error – 0.004nn

Fit procedure 2.5 0.015

Total error 12.3 0.073

w x1993–94 3,20 . By averaging these errors with the
corresponding integrated luminosity we estimate an
overall error of 0.37%.

The computation of G depends on electroweaknn

corrections which are sensitive to m and m .top Higgs
w xWith m s175.6"5.5 GeV 21 and m s300top Higgs
w xGeV, varied between 69.5 GeV 22 and 1000 GeV,

we obtain G s167.2"0.2 MeV. Errors due tonn

other SM parameters are negligible.
Fit procedure: the experimental errors on m , GZ Z

w xand G 3 , which are used in the fit described later,e
give the error on G and N reported in Table 2.inv n

The contribution to G and N of the variousinv n

sources of systematic errors are summarised in Table
2.

5. Results and conclusions

The measured cross sections of the process eqey
Ž .™ nng g , defined in the phase space volume

1 GeV-E -10 GeV and 458-u -1358, areg g

listed in Table 3. The total efficiency, including the
trigger efficiency, is also given in Table 3. It takes
also into account the inefficiency due to emission of
additional photons. The measured cross sections are

'shown as a function of s in Fig. 4, where the cross
sections measured at 7 different energies in 1991 are
added after the rescaling to the 1992–94 phase space
volume. The errors are statistical only and corre-
spond to 68% C.L.

w xIn the structure function approach 19 the cross
section can be written as the convolution of a radia-

Table 3
q y Ž .Total efficiency and corrected cross section for e e ™ nng g

at each center of mass energy

' Ž . Ž .Year s GeV Efficiency s pb

Ž . Ž .1992 91.34 0.572 32.9"1.8 stat "0.6 sys
Ž . Ž .1993 91.32 0.594 35.2"4.1 stat "0.6 sys
Ž . Ž .1993 89.45 0.578 11.2"1.8 stat "0.3 sys
Ž . Ž .1993 91.21 0.570 28.8"2.5 stat "0.5 sys
Ž . Ž .1993 93.04 0.602 70.1"3.9 stat "1.1 sys
Ž . Ž .1994 91.22 0.505 29.4"1.3 stat "0.5 sys

Ž .tor function with an effective cross section s s ,0
which can be expressed in terms of G :inv

12p sG Ge inv
s s sŽ .0 2 22 2 2 2mZ sym qs G rmŽ .Z Z Z

qW exchange terms
w xwhere m , G , and G are our measured values 3 ,Z Z e

for the Z mass, the total width and the electron
partial width, respectively. In this way, we can allow
G to vary while keeping the total width fixed. Weinv

ŽFig. 4. The corrected single photon cross section 458-u -1358g'.and E )1 GeV as a function of s , compared with the predic-g

w xtion of Ref. 19 . Solid lines correspond to N equal to two, threen

and four respectively, while the dashed line corresponds to the
result of our fit.
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extract the invisible width by performing a maxi-
mum likelihood fit to the number of candidates
shown in Table 1. We use Poisson probabilities
calculated as a function of the expected number of
signal events, which depends on G , plus back-inv
ground events. The result of the overall fit to the 13
cross section measurements, along with the system-
atic errors discussed in the previous section and
summarised in Table 2, yields:

G s498"12 stat "12 sys MeV.Ž . Ž .inv

Assuming the Standard Model coupling of the
neutrino pairs to the Z, we determine the number of
light neutrino families to be:

N s2.98"0.07 stat "0.07 sys .Ž . Ž .n

This is in agreement with the L3 result from the
w xline shape method 3 . It improves our previous

w xresults 5,6 and the present world average on the
number of light neutrino families determined with

w xthe single photon method 10 .
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