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Abstract  26 

Climate change will increase the occurrence of flash floods as a consequence of 27 

extreme rain events, creating alternate periods of drought and flooding during the growing 28 

season. We analyzed the responses of two willow clones with contrasting responses to 29 

flooding (clone B: Salix matsudana x Salix alba hybrid; clone Y: Salix alba) to different 30 

combinations of stress treatments: continuous flooding or drought for six weeks, or cyclic 31 

treatments of two weeks of stress separated by two weeks of watering at field capacity. 32 

Drought reduced growth, stomatal conductance and total leaf area in both clones, but 33 

flooding did not. Flooding reduced the root/shoot ratio in both clones. The hydraulic 34 

conductivity of the main stem was significantly reduced by drought only in clone Y. The area 35 

of the vessels was decreased by both drought and flooding, but the number was increased 36 

only by drought. The occurrence of drought before flooding reduced the vessel area, but the 37 

opposite treatment did not. An episode of drought after one of flooding is more stressful than 38 

the opposite situation, especially for clone Y that could not adjust its water transport capacity 39 

during the drought period. 40 

 41 

 42 

Key words: water stress, hydraulic conductivity, vessels, stomatal conductance, root to 43 

shoot ratio 44 

45 
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Introduction 46 

Climate change will increase the occurrence of flooding episodes in several areas of 47 

the world (Kreuswieser and Rennenberg 2014, Cavalcanti et al. 2015). The riparian zones 48 

are particularly susceptible to an increased risk of flooding and drought under climate 49 

change, causing modifications in plant community composition and species richness 50 

(Garssen et al. 2014, Garssen et al. 2015). Willows (Salix spp.) can colonize and grow 51 

successfully on areas periodically disturbed by flooding, like floodplains (Karrenberg et al. 52 

2002) and tidal wetlands (Markus-Michalczyk et al. 2016 a). In consequence, willows are 53 

natural candidates for developing forest plantations in flood prone areas that are marginal for 54 

agriculture. There is an increased demand for forest-derived products for different uses, 55 

including the supply of biomass for energy production. To fulfill this demand, willow 56 

plantations are being developed in areas that can experience alternate short periods of 57 

drought and flash flooding during the growing season. To improve the success of plantations 58 

in disturbed areas, it is necessary to gain a better understanding of the physiological 59 

responses of willows growing under these particular combinations of environmental stresses.  60 

Willow responses to drought and flooding have been previously analyzed separately, 61 

and the responses are different according to the genotype and the duration of the stress 62 

episode (Li et al 2004, Wikberg and Ögren 2004). It has been shown that willow responses to 63 

continuous drought are different from those under cyclic drought (Bonosi et al. 2010). 64 

Meanwhile, the responses of different tree species to a flooding event may vary if they 65 

suffered from a previous episode of flooding. In poplars, the occurrence of a pre-conditioning 66 

flooding period improved waterlogging tolerance (Bejaoui et al. 2012). In willows, the 67 

combination of drought and flooding has been addressed to a lesser extent than both 68 

stresses separately (Nakai et al. 2010, Nakai and Kisanuki 2011). Some morphological 69 

responses to drought are the opposite of those to flooding. For instance, drought increases 70 

the root/shoot ratio while flooding reduces it (Kozlowzki 1997, Markus-Michalczyk et al. 2016 71 

b). In this context, a previous episode of flooding that reduced root biomass could be 72 

detrimental for a plant experiencing drought later. It has been shown that drought 73 
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susceptibility in willows is related to their vulnerability to cavitation (Wikberg and Ögren 2007, 74 

Savage and Cavender-Bares 2011, Ogasa et al. 2013). Flooding can alter water transport in 75 

tropical trees (Herrera et al. 2008), and reduce vessel size and hydraulic conductivity in 76 

Quercus robur (Copini et al. 2016). But nothing is known about the effects of a combination 77 

of both stresses on the hydraulic conductivity of willows.  78 

The aim of this work is to analyze the responses of two willow clones to drought, 79 

flooding and the alternation of these stresses. In a previous work, we identified willow 80 

genotypes with contrasting tolerance to flooding (Cerrillo et al. 2013). We expect that these 81 

clones will modify their physiology in different ways to acclimate to drought, flooding and the 82 

alternative ocurrence of these stresses. 83 

We hypothesize that: 1 – The clones will differ in their tolerance to the alternation of 84 

drought and flooding stress; and 2 – The order of occurrence of drought and flooding 85 

episodes will modify the growth, water transport capacity, xylem anatomy, gas exchange and 86 

leaf area dynamics of willows in different ways. 87 

 88 

 89 

Materials and Methods 90 

Plant material and growth conditions 91 

The clones used in this work were obtained in a breeding program from INTA 92 

(Instituto Nacional de Tecnología Agropecuaria, Argentina), they were a hybrid Salix 93 

matsudana x Salix alba “Barrett 13-44 INTA” (clone B); and an open pollinated S. alba clone, 94 

“Yaguareté INTA CIEF” (clone Y).  Clone B showed susceptibility to long periods of flooding 95 

in the field (Cerrillo et al. 2013), while clone Y was more tolerant to flooding in such 96 

conditions (T. Cerrillo, personal communication). Both clones have a similar sprouting date, 97 

making growth comparisons straightforward. 98 

One-year-old cuttings of 20 cm length were planted in 4.5 L pots filled with a 1:1 99 

sand/soil mixture in a greenhouse in the city of La Plata, Argentina (34° 54’ S). The 100 
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maximum irradiance at midday was 1600 µmoles photons m-2 s-1. There was no 101 

supplemental artificial light added to increase the irradiance or alter the natural photoperiod. 102 

The planting date was August 13th, 2012, and one cutting per pot was planted. The 103 

pots were placed in a randomized design with 6 replicates for each clone and treatment 104 

level. The plants were surrounded by a border row that was not used for measurements. 105 

Plants were watered to keep the soil at field capacity (FC) until the beginning of the stress 106 

treatment. Bud flush occurred in both clones between August 30th and September 4th. After 107 

sprouting and before starting the treatment, 50 ml of complete Hoagland solution was added 108 

weekly to the pots to ensure an adequate nutrient availability. To avoid pests, the trees were 109 

treated every two weeks with an insecticide (o,s dimethyl-acethyl phosphoroamydotiathe). 110 

Before the beginning of the treatment, cuttings were pruned and only one shoot was kept, in 111 

order to minimize the variability induced by different number of shoots per tree. Flooding was 112 

induced by placing the pots with the trees into a sealed 7 L pot filled with tap water up to 113 

approximately 10 cm above soil level; water was added when necessary to keep this level. 114 

Drought was induced by watering the plants with 50 ml of water every other day.  115 

The stress treatment started on October 31th, 2012, and the different combinations 116 

were applied as follows: 1 - watered to field capacity (FC); 2 - six weeks of continuous 117 

drought (Drought);  3 - two weeks of drought, two weeks watered to field capacity, two weeks 118 

of drought (D-FC-D); 4 - two weeks of drought, two weeks watered to field capacity, two 119 

weeks of flooding (D-FC-F); 5 - two weeks of flooding, two weeks watered to field capacity, 120 

two weeks of drought (F-FC-D); 6  - two weeks of flooding, two weeks watered to field 121 

capacity, two weeks of flooding (F-FC-F) ; 7 - six weeks of continuous flooding (Flooding). 122 

The period of watering at field capacity was included because it is possible to go from 123 

drought to flooding immediately, but not the other way around, because after flooding the soil 124 

will be saturated for several days, even without any watering. 125 

 126 

Growth, water consumption and gas exchange measurements  127 
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Total shoot height (cm) was measured once a week with a graduate stick. At the 128 

beginning of the experiment, the last completely expanded leaf was tagged with a color wire, 129 

and all leaves below this mark were counted every week, providing a measurement of the 130 

abscission of basal leaves in each treatment.  131 

Stomatal conductance was measured on seven different dates with a Decagon SC1 132 

porometer on the abaxial side of the latest fully expanded leaf. The measurements were 133 

carried out on cloudless days without any artificial light supplements, between 11.30 am and 134 

01.30 pm, and the average irradiance during those measurements was 1150 µmoles m-2 s-1. 135 

Six repetitions were measured for each clone and treatment. 136 

The dry weight of leaves, stems and roots was determined at the end of the 137 

experiment, after drying them at 65°C to constant weight. The total leaf area (cm2) was 138 

measured at the end of the experiment by scanning the leaves and determining their area 139 

using the software IMAGE J (http://rsbweb.nih.gov/ij/, Schneider et al. 2012).  140 

The water consumption (WC) of the whole plant was estimated as follows: Two days 141 

before the end of the experiment, the pots were sealed with a double plastic bag, and 142 

weighted. The last day, they were weighted again and the difference in weight gave an 143 

estimation of the water consumed by the plant. 144 

 145 

Hydraulic conductivity measurements 146 

Hydraulic conductivity was measured in four plants of each clone and treatment at the 147 

end of the experiment. Measurements were taken on the stem segment immediately above 148 

the latest expanded leaf at the beginning of the experiment. This part of the stem was 149 

selected because it was still growing, and would eventually reflect changes due to the 150 

stresses imposed. In the early morning, shoots were cut under water and taken to the 151 

laboratory in water buckets and kept in water until measurements were performed that same 152 

day. The stem segment to be measured was re-cut under water, and connected to the 153 

hydraulic head. Degassed and deionized water was perfused through one of the ends of the 154 

segments. The pressure gradient was 0.011 MPa, and in this situation, the embolisms (if 155 
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present) were not removed. When the flux achieved a steady state, the water extruding from 156 

the segments was collected in a pre-weighted tube. The time spent on water collection was 157 

also measured (minimum 13 minutes, maximum 58 minutes). The water flux was estimated 158 

by weighing the tubes on a digital balance. For the measurements, the segments were 159 

decorticated. The total length of the segments and the diameter of both extremes were 160 

measured with a digital caliper, and the xylem area was calculated with the mean of both 161 

diameters; the pith area was not subtracted because the whole decorticated area was 162 

conductive. The values of the hydraulic conductivity per unit stem length (kh), the specific 163 

hydraulic conductivity per unit of xylem area (ks) and the specific hydraulic conductivity per 164 

unit leaf area (kl) were calculated according to the modified Poiseuille’s law (Cruiziat et al. 165 

2002). 166 

 167 

Anatomical analysis 168 

The anatomical analysis was carried out on the same stem segment used to measure 169 

the hydraulic conductivity. To determine wood anatomy, the entire cross-sections (20 µm) of 170 

stem segments were cut using a sliding microtome, then stained in safranin (1%), 171 

dehydrated, and mounted in Entellan® for microscopic analysis. Images were captured with 172 

a digital camera (Olympus DP71) mounted on a research microscope (Olympus BX50, 173 

Japan). The captured images were analyzed for the following parameters, using the image 174 

analysis software to count/size and measure objects ImagePro Plus v. 6.3, Media 175 

Cybernetics USA: vessel lumen diameter (µm), vessel area (AV, µm2) and vessel number 176 

(NV, n°/mm2).  177 

 178 

Statistical Analysis 179 

Most data did not meet the ANOVA assumptions of normality and equality of 180 

variance, and this could not be improved by data transformation. In consequence, the 181 

Kruskal-Wallis rank sum test was used for the analysis. The statistical analysis was carried 182 
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out with the R software 3.2.2 (R Core Team, 2015) using the package agricolae version 1.2-3 183 

for the Kruskal-Wallis test.  184 

For the Principal Components Analysis (PCA), the data were centered and 185 

standardized. The variables included in the PCA were: RSR (root to shoot ratio); NV (number 186 

of vessels); AV (area of vessels); kh (hydraulic conductivity per unit stem length), ks 187 

(hydraulic conductivity per unit of xylem area); kl (hydraulic conductivity per unit leaf area), 188 

NBL (number of basal leaves); WC (water consumption); TLA (total leaf area); TDW (total dry 189 

weight); Hf (final height, day 41); gs (stomatal conductance measured on day 41).  190 

 191 

 192 

Results 193 

Gas exchange measurements 194 

 During the flooding periods, there were no significant differences in stomatal 195 

conductance (gs, Fig.1) between control and flooded plants of clone Y. In some dates, gs 196 

was significantly reduced in flooded plants of clone B compared to control treatment. 197 

However, gs was reduced during the drought periods in all treatments including drought in 198 

both clones. The reduction was more pronounced in the permanent drought treatment, 199 

whereas in the cyclic drought treatments, gs recovered to the levels of controls when plants 200 

were watered to field capacity. These results show that the treatments were effective at 201 

inducing drought stress in the willow clones. Growth in height showed the same pattern, 202 

being reduced only in the drought treatments (Supplementary Fig.1). 203 

 204 

Growth measurements 205 

The number of basal leaves indicate the occurrence of leaf area adjustment through 206 

leaf abscission (Fig. 2).  Leaf shedding was scarce on control and flooded plants, while 207 

abscission was enhanced by drought in both clones, causing the reduction in total leaf area 208 

at the end of the experiment (Supplementary Fig.2). In the F-FC-D and D-FC-F treatment, 209 

leaf shedding occurred mainly during the drought periods. The reduction in the number of 210 
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basal leaves for the cyclic drought treatments was more pronounced in clone Y than in clone 211 

B.  212 

Total dry weight (Fig.3) was significantly reduced compared to controls under 213 

continuous drought, D-FC-D, and F-FC-D. In D-FC-F treatment, the reduction was significant 214 

only for clone Y. Continuous flooding and F-FC-F did not reduce the total dry weight in either 215 

of the clones. 216 

 In spite of the similar value of total dry weight in control plants, the dry matter 217 

partitioning was different in both clones. Clone B invested more in roots than clone Y, and 218 

consequently had a significantly higher RSR (Fig. 3). Both clones significantly reduced RSR 219 

under flooding, applied either in the continuous (Flooding) or cyclic form (F-FC-F). In the 220 

other treatments, there were no statistically significant differences in root/shoot ratio 221 

compared to control plants.   222 

 223 

Hydraulic conductivity and xylem anatomy 224 

The hydraulic conductivity measured as kh, ks or kl (Fig. 4) was similar in the control 225 

plants of clone B and Y. All three parameters were reduced in the D-FC-D and F-FC-D 226 

treatments, but these differences were statistically significant only in clone Y.  227 

The gs / ks ratio (Table 1) was calculated using the values of gs at the end of the 228 

experiment. This ratio gives an insight of the capacity to maintain water balance under 229 

drought stress (Wikberg and Ögren 2007). Clone B significantly reduced this ratio for 230 

drought, F-FC-D and D-FC-D treatments, while in clone Y the reduction was only significant 231 

in D-FC-D. 232 

The area (AV) and number of vessels per mm2 (NV) were measured in the same 233 

stem segment used to determine hydraulic conductivity (Fig. 5). The response of the 234 

diameter and area of the vessels to the different treatments was similar, in consequence only 235 

the area data is shown. In field capacity plants, clone B had a higher NV and of a smaller 236 

size than those of clone Y, but the differences were significant only for the number. In clone 237 

B, NV increased significantly only under continuous drought, while there were no differences 238 
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in the other treatments. In clone Y, NV increased significantly in drought, D-FC-D, D-FC-F 239 

and F-FC-F compared to controls, while there were no changes in F-FC-D and flooding 240 

treatments (Fig. 5, and S.Fig.3). AV decreased significantly in treatments drought, D-FC-D, 241 

D-FC-F and flooding in clone B, while there were no differences in F-FC-D and F-FC-F. In 242 

clone Y, AV was significantly reduced in the drought, D-FC-D, D-FC-F, F-FC-F and flooding 243 

treatments, and did not change in F-FC-D (Fig. 5).  244 

 We carried out a PCA analysis to explore the relationship between the variables 245 

measured in the different combinations of treatments (Fig. 6). For variables measured 246 

several times (gs, height and number of leaves), only the last measurement of the 247 

experiment was included in the analysis because they could be compared with the other 248 

variables measured at the end of the experiment. The first and second components together 249 

explained 78 % of the total variation. The variables WC, gs, NBL and TLA superposed with 250 

each other, lying within the first component. The root to shoot ratio (RSR) had a negative 251 

correlation with height (Hf) and total dry weight (TDW). The area and number of vessels (AV 252 

and NV) had the opposite tendency: one increased while the other decreased.  253 

 254 

 255 

Discussion 256 

Drought and flooding caused different degree of stress in willows. 257 

From our results, it is clear that flooding is a less stressful situation than drought for 258 

willows, because the flooded plants differ less from the field capacity treatment. This is 259 

clearly reflected in the PCA analysis, where the treatments are divided in two main groups 260 

along the first component. One group includes the drought treatments (drought, D-FC-D and 261 

F-FC-D); and the other group includes the FC, Flooding, F-FC-F and D-FC-F treatments. The 262 

reason is that several growth and physiological variables were reduced by drought compared 263 

to the field capacity treatment (gs, WC, TLA, TDW, NBL), but this did not happen with 264 

flooding. The treatments including both drought and flooding (D-FC-F and F-FC-D) grouped 265 

closer to the last treatment than to the first one. The second component of the PCA analysis 266 
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mainly reflected differences at clone level. This axis separated the clones because several of 267 

the variables shared were different from the beginning, or because they had different 268 

responses to the stress episodes (NV, AV, height, RSR, kl, ks). 269 

 270 

Flooding and drought caused different effects on willows growth. 271 

The main differences between treatments occurred in biomass accumulation and 272 

partition between plant organs. Flooding did not reduce TDW in any of the clones, while 273 

drought –continuous or cyclic– decreased it. In spite of having a similar total dry weight under 274 

well-watered conditions, the dry matter partitioning was different in both clones. Clone B 275 

allocated more biomass to the root system, whereas clone Y did so in the stem, resulting in 276 

differences in RSR. Under F and FCF treatments RSR was reduced in both clones compared 277 

to control plants, these results are similar to those of Salix alba where repeated flooding 278 

reduced root biomass (Markus-Michalczyk et al. 2016 b).  279 

In D, D-FC-D, F-FC-D and D-FC-F treatments, the RSR did not differ significantly 280 

compared to field capacity (Fig.3). This result was similar to the one described previously for 281 

Salix gracylistila, where RSR was similar in control and drought-stressed plants (Nakai et al. 282 

2010). The lack of a significant increase in RSR could be a factor increasing drought 283 

susceptibility of willows compared with other forest trees. An increased allocation of biomass 284 

to roots allows the exploration of a higher volume of soil, improving water extraction under 285 

drought conditions, but this response did not occur in our clones. In addition, it has been 286 

suggested that in Salix gracilistyla, a period of flooding sensitized plants to subsequent 287 

drought because of root damage (Nakai and Kisanuki 2011).  288 

The growth measurements closely correlate with total leaf area. Leaf area reduction is 289 

a mechanism to diminish the water consumption of the whole plant when the water supply is 290 

limited (Savage et al. 2009, Bonosi et al. 2010).  Salix species tend to experience extensive 291 

defoliation under drought, and it has been proposed that it is a mechanism to confine 292 

embolism to petioles and leaves (Savage and Cavender-Bares 2011). The D and FCD 293 

treatments showed the stronger reduction in leaf area due to leaf abscission. The reduction 294 
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in leaf area is not the only mechanism to reduce transpiration; stomatal closure is clearly 295 

relevant to the control of water loss in plants under drought, as Fig.1 shows. This fact is 296 

highlighted by the coincidence of TLA, gs and WC in the first component of the PCA 297 

analysis. This can explain why plants of the F-FC-D treatment experienced a sharper decline 298 

in gs and leaf abscission (NBL) in the drought period compared with the D-FC-F treatment 299 

(Fig. 1 and 2). 300 

 301 

The order of occurrence of drought and flooding episodes caused different acclimation 302 

responses of water transport capacity in willows. 303 

 Drought, flooding and drought followed by flooding caused a significant reduction in 304 

vessel size compared to non-stressed plants, but flooding followed by drought did not. 305 

The reduction in xylem vessel size and the increase in vessel number are well- 306 

documented drought responses in several species, including Populus (Fichot el al. 2009). 307 

Smaller vessels in general have higher resistance to embolism, increasing drought tolerance. 308 

This development is not surprising, since drought resistance correlates with sensitivity to 309 

xylem cavitation in willows (Wikberg and Ögren 2004, Ogasa et al. 2013). We found a 310 

reduction in AV and an increase in NV in drought and D-FC-D treatments, indicating that 311 

both clones can acclimate to drought stress. Vessel size was reduced in the flooding 312 

treatment, but without a significant increase in NV (Fig. 5). This fact could explain the lower 313 

hydraulic conductivity observed in the same treatment, albeit it is not statistically significant 314 

(Fig.4). The smaller vessel area in flooded plants may indicate an adaptation to a reduction 315 

in water uptake caused by flooding, as found in Quercus robur (Copini et al. 2016). In 316 

Campsiandra laurifolia, there was a reduction in hydraulic conductivity in the first stages of 317 

seasonal flooding, but this fact was reversed later in the season (Herrera et al. 2008).  318 

The D-FC-F treatment caused a reduction in vessel size in both clones, but in the F-319 

FC-D treatment the vessel area was not reduced. Since both drought and flooding alone 320 

caused a reduction in vessel area, the results in F-FC-D are surprising. Clearly, the order of 321 

occurrence of the stresses caused different responses in this trait. In F-FC-D treatment, 322 
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clone B experienced a 50 % drop in kl compared to field capacity treatment but in clone Y, kl 323 

was decreased to 10 % compared with the same treatment. The reduction in hydraulic 324 

conductivity can be due to loss of vessel functionality through embolism or the reduction in 325 

vessel size or number in the xylem formed during the stress. Clone B demonstrated a 326 

reduced gs / ks ratio under the F-FD-D treatment, while clone Y was unaffected (Table 1). 327 

This effect occurs only in F-FC-D treatment, while the other drought treatments clone Y can 328 

reduce the gs / ks ratio, as other willows species do to acclimate to moderate drought 329 

(Wikberg and Ögren 2007). This difference in response may be due to clone Y having an 330 

increased sensitivity to embolism. The cause for the greater sensibility to embolism in clone 331 

Y is probably the lack of reduction of vessel size, although other reasons cannot be 332 

discarded. It has been suggested that the vulnerability to cavitation in poplars is related to 333 

the porosity of the vessel pit membrane (Fichot et al. 2015); accordingly this or other xylem 334 

traits are responsible for the higher susceptibility of clone Y to embolism.  335 

 336 

The clones had contrasting responses to flooding and drought. 337 

In a revision evaluating stress tolerance in 806 tree and shrubs species, a negative 338 

correlation has been found between drought and waterlogging tolerance, implying a trade-off 339 

between tolerance to these stresses (Niinemeets and Valladares 2006).  Our results seem to 340 

be in line with the hypothesis of a trade – off between drought and flooding tolerance. The 341 

flood tolerant clone Y was more drought sensitive, experiencing extensive defoliation and a 342 

steep reduction of its water transport capacity under water shortage. On the other hand, flood 343 

sensitive clone B (Cerrillo et al. 2013) retained a greater water transport capacity under 344 

drought stress. It has been proposed that there are two possible strategies to cope with 345 

drought in tree saplings: a low resistance to cavitation combined with lack of osmotic 346 

adjustment and high abscission rate (desiccation avoidance), and a higher resistance to 347 

cavitation combined with osmotic adjustment and leaf area retention (desiccation tolerance, 348 

Yazaki et al. 2010). Willows seem to fit in the first strategy, because they are more sensitive 349 

to cavitation than other tree species (Savage and Cavender-Bares 2011, Ogasa et al. 2013) 350 
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and experience extensive defoliation under drought (Savage et al. 2009, Bonosi et al. 2010). 351 

Both clones can reduce leaf area and gs under drought, but this is not enough to prevent 352 

embolism in clone Y. In several temperate species, including Salix, a low cavitation 353 

resistance is compensated by a higher recovery capacity through vessel refilling (Ogasa et 354 

al. 2013). It is possible that clone Y has a reduced capacity to repair embolism, while clone B 355 

is more efficient refilling the vessels and maintaining its water transport capacity under 356 

drought. The architecture of clone B, with more biomass allocated to roots than shoot also 357 

helps this clone to cope with water shortage. On the other hand, clone Y has a lower root to 358 

shoot ratio, and this could explain the higher growth in height of this clone under field 359 

capacity or waterlogged conditions.  360 

.  361 

Conclusion 362 

 Our first hypothesis stated that the clones will differ in their tolerance to the alternation 363 

of drought and flooding stress. It proved correct for the F-FC-D treatment, since clone B was 364 

more tolerant than clone Y under this treatment, while there was no difference between the 365 

clones in the D-FC-F treatment. Regarding the second hypothesis, water transport capacity, 366 

xylem anatomy and leaf area dynamics were affected in different ways in F-FC-D and D-FC-367 

F treatments. For willows, the occurrence of a drought episode after one of flooding is more 368 

stressful than the opposite situation, especially for clone Y that is not able to adjust its water 369 

transport capacity during the drought period. 370 

 371 

 372 
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Table 1 Ratio between stomatal conductance (gs, mmoles m-2 s-1) and hydraulic conductivity 

per unit xylem area (ks, g H2O m MPa-1 s-1 m-2) under Field Capacity, Drought, D-FC-D, D-

FC-F, F-FC-D, F-FC-F and Flooding, at the end of the experiment. Mean values: plus minus 

one standard error of the mean. Treatments followed by the same letter did not differ 

according to the Kruskal-Wallis test (p< 0.05). 

 

Treatment Clone  B Clone  Y 

Field Capacity(FC) 0.31  + 0.08 bcd 0.49  + 0.18 abc 

Drought (D) 0.07  + 0.03 ef 0.22  + 0.05 cdef 

D-FC-D 0.06  + 0.02 ef 0.14  + 0.07 def 

D-FC-F 0.52  + 0.12 ab 0.61  + 0.06 a 

F-FC-D 0.07  + 0.05 f 0.43  + 0.16 abc 

F-FC-F 0.27  + 0.08 bcd 0.66  + 0.02  a 

Flooding(F) 0.24  + 0.02 bcde 0.84  + 0.32 a 
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Legends to the figures 

Fig. 1 Stomatal conductance (gs) of plants of two willow clones growing under different water 

regimes and their combinations. FC: field capacity. Vertical bars: standard error of the mean. 

Means marked with an asterisk differ significantly from the field capacity treatment on the 

same date according to the Kruskal-Wallis test (p< 0.05). 

 

Fig. 2 Number of basal leaves (leaves completely expanded at the beginning of the 

experiment) of plants of two willow clones growing under different water regimes and their 

combinations. FC: field capacity. Vertical bars: standard error of the mean. Means marked 

with an asterisk differ significantly from the field capacity treatment on the same date 

according to the Kruskal-Wallis test (p< 0.05). 

 

Fig. 3 Dry matter partitioning in plants of two willow clones growing under different water 

regimes and their combinations: FC (field capacity), F (flooding) and D (drought). Treatments 

followed by the same letter did not differ according to the Kruskal-Wallis test (p< 0.05). The 

significance indicated is that of each compartment (root, shoot, leaves, and total dry weight). 

In italics: root/shoot ratios. Those values that differ significantly from controls according to the 

Kruskal-Wallis test (p< 0.05) are marked with asterisks. B: clone B. Y: clone Y. 

 

Fig. 4 Hydraulic conductivity per unit stem length (kl), hydraulic conductivity per unit xylem 

area (ks) and hydraulic conductivity per unit leaf area (kl) of two willow clones growing under 

different water regimes: FC (field capacity); F (flooding) and D (drought). Treatments 

followed by the same letter did not differ according to the Kruskal-Wallis test (p< 0.05). 

 

Fig. 5 Number and area of vessels in plants of clone B and clone Y under different water 

regimes: FC (field capacity); F (flooding) and D (drought). Treatments followed by the same 

letter did not differ according to the Kruskal-Wallis test (p< 0.05).  
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Fig. 6 Principal Components Analysis (PCA) of the different variables measured in the 

experiment. The variables included in the PCA were: RSR (root to shoot ratio); NV (number 

of vessels); AV (area of vessels); kh (hydraulic conductivity per unit stem length), ks 

(hydraulic conductivity per unit of xylem area); kl (hydraulic conductivity per unit leaf area), 

NBL (number of basal leaves); WC (water consumption); TLA (total leaf area); TDW (total dry 

weight); Hf (final height, day 41); gs (stomatal conductance measured on day 41). 
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S. Fig. 1 – Height of plants of two willow clones under different water regimes and their combinations: FC (field capacity); F 
(flooding) and D (drought). Vertical bars: standard error of the mean. 
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S. FIG.2 – Leaf area and water consumption in two willow clones under different water regimes: C (field capacity); F 
(flooding) and D (drought). Black: clone B, White: clone Y. Treatments followed by the same letter did not differ 
according to the Kruskal-Wallis test (p< 0.05). 
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Supplementary Figure 3 – Images of the vessels in the control treatment (Panel A clone 

B, panel B clone Y) and in the continuous drought (D, panel C clone B, panel D clone Y). 

Scale bar: 50 µm.  

A  B

C  D
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