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Abstract

The L3+C muon detector at the CERN electron–positron collider, LEP, is used for the detection of very-high-energy cosmic c-ray
sources through the observation of muons of energies above 20, 30, 50 and 100 GeV. Daily or monthly excesses in the rate of single-muon
events pointing to some particular direction in the sky are searched for. The periods from mid July to November 1999, and April to
November 2000 are considered. Special attention is also given to a selection of known c-ray sources. No statistically significant excess
is observed for any direction or any particular source.
� 2006 Elsevier B.V. All rights reserved.

PACS: 98.70.Sa; 98.54.Cm

Keywords: Gamma-ray-point-sources; Muons; L3+C
1. Introduction

The energy spectrum of cosmic rays spans a very broad
range, from sub-GeV to energies larger than 1011 GeV.
No single mechanism of particle production and accelera-
tion at any astrophysical site can still explain this remark-
able feature. However, the fact that the energy spectrum
has a relatively smooth power law shape over 11 decades
in energy with two pronounced features, the knee at
�3 · 1015 eV and the ankle at �3 · 1018 eV, strongly sug-
gests some generic relationship between particles of differ-
ent energies. A reasonably detailed understanding of the
origin, acceleration and propagation of low energy cosmic
rays in the galactic disk has evolved over the recent years,
thanks to very detailed and accurate measurements of
elemental and isotopic abundances at sub-GeV and GeV
energies. With the results available from satellite-borne
detectors on cosmic c-rays, significant progress is being
made in our knowledge of cosmic ray sources at GeV ener-
gies [1]. However, studies at energies >100 GeV are very dif-
ficult with satellite-based detectors due to practical
constraints on detector size and exposure factor. Though
attempts have been made to detect sources at TeV energies
using the atmospheric Cherenkov radiation since late
1950’s, significant progress in the detection of sources has
been made only after the successful development and appli-
cation of imaging techniques. Among the sources so far
detected are supernova remnants, pulsars, X-ray binaries,
active galactic nuclei, and as more recently discovered, a
starburst- and a radio-galaxy. Most of the presently opera-
tional imaging telescopes have a detection energy threshold
above �150–300 GeV. Larger telescopes with improved
electronics and imaging resolution are being designed and
just start operation. These will work with a reduced energy
threshold of a few tens of GeV, which helps in bridging the
wide energy gap between the observations with satellite-
borne detectors and Cherenkov telescopes [2–5].

Observational studies with both these techniques, the
c-ray telescope aboard space-borne platforms at GeV
energies and the atmospheric Cherenkov telescope at TeV
energies, are constrained by the fact that a given telescope
can observe only a single source at a given time. In addi-
tion, the duty factor of the Cherenkov telescope is severely
limited to 68% due to the requirement of moon-less and
fog-less nights for observations. On the other hand, the
air shower technique offers the advantage of daily observa-
tions spread over 5–6 h on all sources within a well-defined
declination band accessible at the specific observational
site. However, the fact that the arrival angle of a shower
can be determined accurately only for relatively large
showers pushes the threshold for c-ray detection to ener-
gies higher than �1014 eV [6]. Detectors with very large
sensitive area such as MILAGRO [7] are now attempting
to reduce the energy threshold of ‘air shower’ type detec-
tors to TeV energies.

A high-energy muon tracking detector has the same
advantage as the air shower detector in terms of its daily
coverage of all sources within a well-defined declination
band. However, the sensitivity of a muon tracking-detector
is significantly smaller for detection of cosmic c-rays due to
the very small cross-section for photo-production of
charged pions in interaction of c-rays with air nuclei [8].
This disadvantage is partially offset by the fact that the
muon tracking-detector can have a lower energy threshold,
even lower than the presently operational Cherenkov tele-
scopes, if located at a shallow depth underground. There-
fore, muon tracking-detectors can be used with some
advantage in survey-type experiments, particularly for flar-
ing sources. Observations of intense bursts at TeV energies
from the AGN’s, Mkn 421 and Mkn 501, have highlighted
this aspect of cosmic c-ray sources in recent years [9].

The astrophysical significance of observations with the
muon tracking detectors was emphasized by the Soudan I
experiment [10] in 1985 when it reported observation of a
4.8 h modulated signal in the flux of muons (El > 650 GeV)
arriving from the direction of the powerful X-ray binary,
Cygnus X-3. A similar observation was reported by
the NUSEX collaboration [11] with muons of energy
P1.3 TeV. The assumption that the primary was a c was
also questioned. While several detections, each with rela-
tively low statistical significance, were reported in the
1980’s at TeV, PeV and EeV energies for Cygnus X-3 [12],
no group has reported detection of a signal from Cygnus
X-3 in the 1990’s and later [13–15], except SOUDAN II in
1991 [16]. These observations may be interpreted in terms
of an active phase for the source in the 1980’s and highlight
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the importance of monitoring the sky for flaring sources at
different energies and times [17].

The unique properties of the L3+C muon spectrometer
[18,19], offer a new opportunity to search for large flares
from known, as well as yet unknown sources at relatively
low energies at about 100–1000 GeV. This reach is also
due to the location at a shallow depth when compared to
other underground detectors such as MACRO [20]. The
ability to select a muon energy threshold with the L3+C
muon spectrometer makes it possible to optimize the sig-
nal-to-background ratio. It may be noted that observations
of muons with L3+C have a threshold energy sensitivity of
about 100 GeV to cosmic c-rays, an energy range not yet
well explored by Cherenkov telescopes, and up to now
not accessible to space-borne c-ray detectors. Based on
the flux of c-rays derived from Cherenkov telescopes mea-
surements [6] steady source signals are not expected to be
observed with the L3+C detector.

The L3+C muon spectrometer and the data taking are
presented in the next section. In Section 3 we discuss the
angular resolution of the L3+C muon spectrometer, the
procedure for the binning of the data and the determina-
tion of the background. The results obtained for some inter-
esting astrophysical sources are given in Section 4, and a
survey of the entire sky accessible to L3+C in Section 5.
The conclusions drawn from these observations are pre-
sented in the last section.

2. The L3+C muon spectrometer

The L3 detector (Fig. 1) [18,19] was designed to accu-
rately measure muons, electrons, photons and hadrons at
the large electron positron collider, LEP, at CERN. It con-
sisted of a huge solenoidal magnet of 1000 m3 volume with a
field of 0.5 T and a set of high precision drift chambers
arranged in octants. At 45 GeV/c the momentum resolution
is 4.6% for muons measured in one chamber octant only.
e-

e+

Outer Cooling Circuit

Muon Chambers

Silicon Detector

TECHadron Calorimeter

DoorCro
wn

Barrel Yoke

Main Coil

Inner Cooling Circuit

BGO Calorimeter

T0-Scintillator Tiles

Fig. 1. The L3 detector covered with the scintillators installed for timing
cosmic-ray muons.
This has been determined from muons from the decay of
Z bosons [19] produced in e+e- interactions of LEP. The
vertex detectors, electromagnetic and hadronic calorimeters
located in the central region of the L3 detector have not
been used for the cosmic-ray study. The addition of scintil-
lators on the top of the magnet, which provided the arrival
time of muons, as well as separate trigger and readout elec-
tronics, enabled the acquisition of cosmic muons indepen-
dent of the running of the L3 experiment and LEP. The
constancy of the efficiency of all scintillator modules was
monitored carefully, and the stability of the efficiency and
accuracy of the reconstruction of muon tracks was checked
as a function of time [21]. Chamber, scintillator, and trigger
efficiencies have been discussed in detail elsewhere [22]. The
arrival time of an event was recorded with an accuracy of
1 ls (GPS timing). Periods with instabilities or noise
induced by the operation of the LEP machine are excluded
from the analysis, which is supplemented by a final 10-day
run taken after the LEP accelerator had been stopped, in
order to understand the influence of synchrotron radiation
and other LEP-related backgrounds.

The spectrometer is located under only 30 m of overbur-
den, and the energy threshold for cosmic muons is about
15 GeV. The coordinates of the L3+C site are 6.02�E and
46.25�N, and the altitude is 450 m above sea level. Data
were taken during two periods, mid-July to November in
1999 and April to November in 2000. Overall, 1.2 · 1010

triggers were recorded, for an effective live-time of 312 days.

3. Search for cosmic c-ray sources

The muon rate is determined as a function of the right
ascension along thin declination bands. The direction-
dependent intensity of primary particles U is assumed to
be the sum of an isotropic part (background) and the con-
tribution of a few discrete sources (signal) with declination
dk and right ascension ak:

Uðd; a;E0Þ ¼
X

i

UiðE0Þ þ
X

k

/kðE0Þ
Dðd� dkÞDða� akÞ

cos dk
;

ð1Þ

where UiðE0Þ is the isotropic background intensity of pri-
mary of type i of energy E0 obtained through an integration:

UiðE0Þ ¼
1

4p

Z
Uiðd; a;E0ÞdX; ð2Þ

D is the Dirac d-function and /k(E0) is the intensity of the
kth point source of neutral particles, here assumed to be
c-rays. However, in an actual observation, the flux of
particles due to a source cannot be represented by a Del-
ta-function due to the finite angular resolution of the tele-
scope. Therefore U(d,a,E0) has to be convoluted with the
angular resolution S(Dh,E0), which represents the expected
distribution of the angular difference Dh between the
direction of the primary particles with energy E0 and the
measured direction of the muons generated by them. It
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Fig. 2. Distributions of the angular difference between the direction of
Monte Carlo generated muons at ground level with energies above 30 GeV
and the direction of the reconstructed muon track. Three sets for given
zenith angle ranges are displayed together with the result for any chosen
zenith angle.
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Fig. 3. The distribution of the angular difference of muons above 30 GeV
entering the matter layers above the detector and the outgoing muons for
a set of declination angles integrated over the whole range of accepted
zenith angle.
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includes the effect of multiple scattering in the overburden
and the angular reconstruction accuracy of the detector.
The dependence of S on the direction (d,h) (h is the nega-
tive hour angle, equal to a � ts, and ts is the sidereal time)
has been neglected here (see below) and the normalization
is chosen so thatZ

SðDh;E0ÞdX ¼ 1. ð3Þ

The number Nbkg
tot ðd; a; EcutÞ of muons above a fixed energy

threshold Ecut expected from the isotropic (background)
component of the primary flux and detected originating
from a given right ascension a and declination d can be ob-
tained, taking into account the detector’s live-time distribu-
tion as a function of the sidereal time, the direction- and
time-dependent detection efficiency as well as atmospheric
effects [21].

3.1. Angular resolution and pointing accuracy

The angular resolution of the detector itself is assured to
be better than a milliradian due to the use of precision drift
chambers. The effective angular resolution of the muon
telescope is determined by two factors, namely the opening
angle of the photo-produced pion in the c-air nucleus inter-
action, a marginal effect according to Monte Carlo estima-
tions [23,24] at the energies of interest here, and, most
important, the zenith angle dependent scattering of the
muon in the �30 m-thick layer of molass (sedimentary
rock) above the muon spectrometer. The angular resolu-
tion for the detected muon is first estimated from Monte
Carlo simulations based on GEANT 3 [25] by comparing
the direction of the muon with the direction reconstructed
after taking into account the multiple scattering in the
molass and the instrumental accuracies. Fig. 2 shows distri-
butions of the angle between the generated and recon-
structed angle directions for muons above 30 GeV as an
example, and for sets of different ranges of zenith angles,
as well as for all accepted zenith angles. Fig. 3 displays
again the angular difference of incoming muons above
30 GeV and the outgoing muons, but for a set of declina-
tion angles integrated over the whole range of accepted
zenith angle. This second plot shows that the angular bin
size selected for a given muon energy is only weakly depen-
dent on the source position for the given detector condi-
tions (see below).

The muon angular resolution has also been estimated
experimentally from the measurement of the angular differ-
ence h2l between muons from events containing two high
energy muons. The excellent agreement of the results
obtained from detailed Monte Carlo simulations with the
observed h2l distribution allowed an estimate of the angu-
lar resolution for single muons. These estimates of angular
resolution have been confirmed by the observation of a def-
icit in the flux of muons due to the shadowing of the cosmic
ray flux by the moon [26,27]. A detailed simulation of the
shadowing, including the deflection of protons in the geo-
magnetic field, has also confirmed the absolute pointing
accuracy of the L3+C muon telescope to be better than
0.1� and the angular resolution to be 0.2� for muons of
energy above 100 GeV. Simulations have further shown
that muons produced by high energy c-rays deviate, e.g.,
by less than �0.3� from the primary c-ray direction for
muon energies above 40 GeV.



Fig. 4. Example, ðHAÞ, of collected events representing the acceptance
distribution N(d,a � ts;Ecut) in local equatorial coordinates for a given
period and a muon energy threshold of 30 GeV. A pixel size of 1� is used.
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3.2. Angular bin size

The search for cosmic c-ray sources has been carried out
by using square bins in right ascension and declination.
Since the angular resolution of the detection depends on
the muon momentum, the optimal bin sizes for various
momentum thresholds have also been determined from
simulations. For a pure Gaussian-shaped angular resolu-
tion with standard deviation r�, it has been shown [28]
through simulations that the best signal/background ratio
is obtained for a circular bin of half-angle,

hopt ¼ ð1:58þ 0:7e�0:88N0:36Þr�; ð4Þ
where N is the number of background events. The bin with
half-angle of hopt contains nearly 72% of the signal events if
N is sufficiently large (N > 100). It has also been shown [28]
that for a square bin of same area as a circular bin, the sig-
nal to background ratio is only marginally (�1.5%) smal-
ler. Column (a) of Table 1 shows the fraction of events
contained within square bins of the specified size for four
different muon energy thresholds and any zenith angle be-
tween 0� and 60�. The hypothesis is made that muons are at
the center of the bin of the reconstructed direction after
passing through the molass and the detector.

If the spread in angle of the muons around the c-ray
direction, due to the pion transverse momentum, is
included, the fraction drops by about 10%, (column (b) of
Table 1). A relatively flat differential power law spectrum
with a spectral exponent b of�2.0 was assumed for primary
c-rays in the light of published observations of various
sources. This yields a slightly harder energy spectrum com-
pared to proton showers whose spectrum is assumed to be
steeper with an exponent of �2.7. The detector simulation
is based on proton-induced showers. After correcting for
this difference, the fraction of events expected to be con-
tained within the square bin is slightly increased as shown
in column (c) of Table 1.

3.3. Search procedure

To perform the point-source search, the acceptance dis-
tribution Nl(d,h;Ecut) in local equatorial coordinates is
established. As an example the distribution of the observed
muons with energies above 30 GeV for a given data acqui-
sition period is shown in Fig. 4. It is obtained from muons
Table 1
The optimized angular bin sizes obtained from simulations for different requi

Energy cut [GeV] Bin Size [�] Fraction of events [%] (a)

20 3.0 72.9
30 2.4 71.9
50 1.5 72.4
100 0.9 73.1

The fraction of all signal events contained in the bin are calculated. Column (
isotropically incident primary gammas with an energy spectrum proportion
acceptance. The effect of the transverse momentum of the secondary hadrons o
correcting for the difference of the detector simulation for protons and gamm
inside the detector acceptance and recorded according to
the detector’s direction-dependent efficiency and is repre-
sented by a two-dimensional histogram, HA, which covers
all directions with declination d > dmin. The size ps of the
bins of HA, called ‘‘pixels’’, is chosen so that

la ¼
2p
ps

and ld ¼
p=2� dmin

ps

; ð5Þ

are integers. The bin content Ni,j corresponds to the num-
ber of selected muon tracks seen in the particular pixel (i, j).

The background muon distribution Nbkg
tot ðd; a; EcutÞ is

determined in equatorial coordinates for the time interval
It, which can cover either the full period used to fill the his-
togram HA, or part of it. Also N bkg

tot ðd; a; EcutÞ is repre-
sented by a two dimensional histogram, HB, which
covers all directions of the sky with declination d > dmin

and has the same pixels as HA. Its bin contents are called
Nbkg

i;j and correspond to the number of background muon
tracks expected in the particular pixel cell. The number
of events as a function of the sidereal time N(ts) is
convoluted with the acceptance distribution N(d,h;Ecut)
to get the number of background muons:
rements on the muon, for four different muon energy-threshold values

Fraction of events [%] (b) Fraction of events [%] (c)

64.9 69.7
65.2 69.6
65.3 68.8
67.2 70.9

a): same conditions as for Fig. 2. Column (b): CORSIKA generation with
al to E�2

c and under zenith angles less than 60�, matching the detector
n the angular resolution is included. Column (c): Same as for (b), but after
as induced events (see text).
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Nbkg
tot ðd; a; EcutÞ ¼

Z 2p

0

NðtsÞ
N tot

� Nðd; ½a� ts�; EcutÞdts; ð6Þ

where Ntot is the total number of events.
Fig. 5 shows the expected background distribution

Nbkg
tot ðd; a; EcutÞ for a particular period and Ecut = 30 GeV.

The pixel size is 1�. This may be compared with the sky
map HC shown in Fig. 6 of the observed Nobs

tot ðd; a; EcutÞ dis-
tribution for the same period It of data taking. The two are
very similar. As an example, for a given declination band
Fig. 5. Expected HB background distribution Nbkg
tot ðd; a; EcutÞ in equato-

rial coordinates for a given period and a muon energy threshold of
30 GeV. A pixel size of 1� is used.
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°]

Fig. 6. Measured HC distribution Nobs
tot ðd; a; EcutÞ in equatorial coordi-

nates for a given period and a muon energy threshold of 30 GeV. A pixel
size of 1� is used.
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Fig. 7. Number of (a) expected and (b) observed events within a
declination band between 40� and 45�. (c) Relative difference of (a) and
(b).
(d = 40–45�) the difference of the two distributions is
shown in Fig. 7 as a function of a.

A search for a statistically-significant excess in a source
bin, relative to the expected background, is made on
several time scales, namely, daily, monthly and, for
the purpose of comparison with other results, on the
full set of selected data (corresponding to an effective
live-time of 150.6 days), for 20, 30, 50, 100 GeV. A two-
dimensional histogram Hobs

l ðd; a;EcutÞ for a specified
time period is created with bin contents, Nobs

i;j , which repre-
sent the number of observed events in the bin defined by
the elements (i, j). In order to assess the significance of a
possible excess in the observed distribution the probability
P is calculated for finding a number Nobs(d,a,Ecut) or
larger when the number of events expected from the back-
ground distribution is Nbkg(d,a,Ecut) using the Poisson
relation:

P ¼ 1�
XNobs

k¼0

e�Nbkg
Nk

bkg

k!
. ð7Þ

The probability P, calculated numerically, is hereafter rep-
resented through its base-10 logarithm, �logP.

Knowing the number of background events Nbkg and
the number of observed events Nobs, an upper limit on
the number of signal events Nsig is determined at the 90%
confidence level (CL) as
PNobs

n¼0 PoissonðnjN bkg þ N sigÞPNobs

n¼0 PoissonðnjN bkgÞ
¼ 0:1. ð8Þ

In order to compare with other experimental results, the
flux upper limits are estimated for the location of the



C
um

ul
at

iv
e 

tr
ia

ls

−log (P)

0 2 3

Fig. 8. Cumulative distribution of �logP for daily analysis of the 10
selected point sources. There is one entry per source and per analyzed
1 day interval. The muon threshold energy is 20 GeV. The dashed line
represents the expected distribution.

306 P. Achard et al. / Astroparticle Physics 25 (2006) 298–310
source to be at the zenith. It is assumed that the zenith-an-
gle dependence of the background and the source flux is
similar, such that the signal to background ratio is indepen-
dent of the direction. The upper limit on the muon flux is
then calculated using the relation,

/ul;vert
El>Ecut

¼ 1

F
N sig

Nbkg
/bkg;vert

El>Ecut
XbinX m; ð9Þ

where Xbin is the solid angle subtended by the search win-
dow, and F is the fraction of events which are reconstructed
in the square bin for a point source in the direction of the
center of the bin. The background vertical flux /bkg;vert

El>Ecut
is

calculated using the Monte Carlo shower simulation
CORSIKA [23] and a normalized muon flux of
0.3 · 10�4 cm�2 s�1 at 100 GeV [21]. Xm is a correction fac-
tor taking into account the momentum resolution of the
detector and varies between 0.94 and 1.0. It corresponds
to the ratio between the number of selected Monte Carlo
events with a generated energy larger than Ecut and the
number of selected Monte Carlo events with a recon-
structed energy larger than Ecut. For low energies this cor-
rection is negligible.

4. Search for signals from selected sources

Data are binned for the search for bursts of muon events
from 10 selected sources listed in Table 2, with a declina-
tion width (Dd) using the values given in the second column
of Table 1. In order to have a window of approximately the
same width in declination and right ascension, the width of
the right ascension bin is taken as Dd/cosd.

As emphasized earlier, the main advantage of muon tele-
scopes lies in the daily monitoring of all sources located
within the accessible declination band, and the potential
for detection of a large flare from any of these sources.
The search for intense flares is carried out by looking for
large excesses on shorter time scales, for example, 1 day.
Fig. 8 shows the distributions of the �logP values com-
bined for all the 10 sources for a threshold value of
20 GeV. The dashed line shows the expectation for the
Poisson distribution. Data for each day and for each of
the 10 sources contribute one entry to the distribution.
Table 2
Median upper muon flux limits with 90% CL for selected sources, and for da

Source El > 20 GeV 3� · 3�
[cm�2 s�1]

El > 30 GeV 2.4� · 2.4
[cm�2 s�1]

Mkn 421 3.6 · 10�8 1.5 · 10�8

Mkn 501 3.6 · 10�8 1.5 · 10�8

3C 273 8.1 · 10�8 3.5 · 10�8

Crab nebula 4.7 · 10�8 2.0 · 10�8

Cyg X-1 3.9 · 10�8 1.6 · 10�8

Cyg X-3 3.8 · 10�8 1.5 · 10�8

Her X-1 4.0 · 10�8 1.7 · 10�8

Geminga 4.9 · 10�8 2.1 · 10�8

1ES 1426+428 3.7 · 10�8 1.5 · 10�8

1ES 2344+514 3.2 · 10�8 1.4 · 10�8
No significant excess is observed. A similar conclusion is
reached for the other three energy cuts.

Instead of listing upper flux limits for each day analyzed
(which vary due to detector inefficiencies and source posi-
tions), median upper muon flux limits at 90% CL (Confi-
dence Level) for data collected during one day with
smooth running conditions are given in Table 2. The effec-
tive live-time involved for these results amounts to
150.6 days distributed over the full data aquisition time
July to November 1999 and April to November 2000.

In Table 3, a comparison is made between L3+C flux
limits obtained from the 1999 and 2000 periods and the
MACRO data [20] (2000) collected between February
1989 and December 2000. A comparison with results of
other underground experiments [29] can only be performed
with published data for steady or modulated emissions. In
Fig. 9, muon-flux limits and two values are compiled for
Cyg X-3 as an illustration. L3+C gives the only ‘‘steady’’
ta collected during one day with smooth running conditions

� El > 50 GeV 1.5� · 1.5�
[cm�2 s�1]

El > 100 GeV 0.9� · 0.9�
[cm�2 s�1]

5.2 · 10�9 1.3 · 10�9

5.2 · 10�9 1.3 · 10�9

11 · 10�9 3.1 · 10�9

6.6 · 10�9 1.6 · 10�9

5.6 · 10�9 1.4 · 10�9

5.3 · 10�9 1.3 · 10�9

5.7 · 10�9 1.5 · 10�9

7.4 · 10�9 1.8 · 10�9

5.4 · 10�9 1.3 · 10�9

5.0 · 10�9 1.4 · 10�9



Table 3
Upper muon flux limits (90% CL) for selected sources obtained from the full data aquisition period and compared to MACRO data (1989–2000)

Source L3+C El > 20 GeV
3� · 3� [cm�2 s�1]

L3+C El > 100 GeV
0.9� · 0.9� [cm�2 s�1]

MACRO El > 1000 GeV
half cone of 1� [cm�2 s�1]

Mkn 421 1.7 · 10�9 7.4 · 10�11 1.6 · 10�13

Mkn 501 2.0 · 10�9 7.3 · 10�11 3.4 · 10�13

3C 273 4.3 · 10�9 3.1 · 10�10 3.1 · 10�13

Crab nebula 6.2 · 10�9 1.2 · 10�10 3.6 · 10�13

Cyg X-1 2.8 · 10�9 9.8 · 10�11

Cyg X-3 3.1 · 10�9 8.6 · 10�11 2.4 · 10�13

Her X-1 3.3 · 10�9 1.8 · 10�10 2.8 · 10�13

Geminga 3.4 · 10�9 1.2 · 10�10 3.1 · 10�13

1ES 1426+428 2.8 · 10�9 1.7 · 10�10

1ES 2344+514 1.5 · 10�9 1.5 · 10�10
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Fig. 9. Comparison of muon-flux upper limits and measurements
obtained by different experiments searching for modulated signals from
Cyg X-3. The L3+C values are from a non-modulated signal search.
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muon flux limits for energy thresholds above 20, 30, 50 and
100 GeV. The extrapolation of the four flux limits to higher
energies lies below all other limits of modulated signals,
except the one measured by MACRO.

5. Sky survey

A survey of the sky is performed over different time
scales: 1 day, a few weeks, months. This search is performed
for four different muon energy thresholds, namely 20, 30, 50
and 100 GeV. The Poisson probability P to find a number
of events larger than or equal to Nobs, when the number
of background events is Nbkg, is calculated for each bin.

As discussed above, the size of the angular bin is opti-
mized through simulations and grouping pixels such that
�70% of the signal events are contained within the bin.

Fig. 10 shows the cumulative distributions for �logP

for all 1-day periods and for the four different muon energy
thresholds. No significant excess is seen. Similar plots are
obtained for each data taking period. Again for this survey
the typical upper limits on the flux of muons originating
from any direction of the northern hemisphere for data col-
lected during one day with smooth running conditions are
listed in Table 4 for one day lasting flares. Also given are
the limits for constant emission during the full data aquisi-
tion period, allowing again for a comparison with other
underground experiments.
6. Upper c-ray flux limits

Results and discussion in the preceding sections have
shown that ‘muon astronomy’ at energies above 20 GeV,
using the L3 muon telescope-cum-spectrometer located
underground at a shallow depth with excellent angular
and momentum resolution, has provided interesting upper
limits on the muon flux from potential flaring c-ray sources.
In order to relate the upper limit on the muon flux to an
upper limit on the c-ray flux, Monte Carlo simulations have
been performed with CORSIKA [23]. For this purpose,
muon detection-efficiency for muons above 20 GeV
observed with the L3+C spectrometer has been computed
for primary c-rays for different energies and arrival angles.
These simulations show that the muon detection-efficiency
is a linear function of the primary c-ray energy (see
Fig. 11) and practically no zenith angle dependence has
been observed for hzenith < 45�. These calculations have
been repeated assuming a relatively flat energy spectrum
for a primary c-ray flux with a differential power-law spec-
tral index of�2.0 and a cut-off at 100 TeV. Note that a stee-
per spectrum for primary c-rays is expected to yield
correspondingly lower number of muons. 4 · 106 gamma
showers (=Nc) generated for vertically incident primaries
with energies above 50 GeV have been analyzed to get the
number of muons produced (=Nl) with different energy
thresholds Ecut

l : 20; 30; 50 and 100 GeV. Table 5 presents
the results of these simulations.

Using the relation between the muon detection-efficiency
g(Ec)(=Nl/Nc), and the energy Ec of the primary c-ray
shown in Fig. 11, the observable muon flux, /l;vert

El>Ecut
l

, can

be calculated from the primary c-ray flux /c(Ec) as
follows:
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Fig. 10. Cumulative distributions of �logP for different muon threshold-energies. There is one entry for each direction and for each analyzed 1 day
period.

Table 4
Range of typical upper muon flux limits from any direction in the northern
hemisphere (see text)

Energy [GeV] One day periods
(90% CL) [cm�2 s�1]

Full period
(90% CL) [cm�2 s�1]

20 1.2 · 10�8 � 2.4 · 10�7 1.0 · 10�9 � 20 · 10�9

30 2.4 · 10�9 � 6.1 · 10�8 0.2 · 10�9 � 5 · 10�9

50 1.2 · 10�9 � 2.4 · 10�8 1.0 · 10�10 � 20 · 10�10

100 2.4 · 10�10 � 6.1 · 10�9 0.2 · 10�10 � 5 · 10�10

The limits depend on the coordinates of the virtual source position.
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Fig. 11. Muon detection-efficiency for muons above 20 GeV observed
with the L3+C spectrometer as a function of the primary energy for
vertically incident gamma rays.
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/l;vert
El>Ecut

l
¼
Z 1

Ec¼Ecut
l

/cðEcÞ � gcðEcÞdEc; ð10Þ

that is,

/l;vert
El>Ecut

l
¼
Z 1

Ec¼Ecut
l

/cðEcÞ � 1:15 � 10�5 � Ec dEc. ð11Þ

A comparison of the integrated yield of muons of energy
>20 GeV given in Table 5 for c-rays of energy >50 GeV
with the values of the yield shown in Fig. 11 for various dis-
crete energies shows that the effective average energy of pri-
mary c-rays is �750 GeV for the set of assumptions about
the spectrum mentioned above. The observable muon flux
is therefore �8 ·10�3 of the primary c-ray flux.
Using the results from the simulations shown in Table 5,
the upper limit on the c-ray Flux, /ul

Ec>50 GeV, has been esti-
mated from the observed upper limit on the muon flux,
/ul;vert

El>Ecut
l

through the simple relation:



Table 5
Results of the CORSIKA simulation for 4 · 106 vertically incident gamma
showers with primary energies above 50 GeV and a power energy
spectrum with index �2.0

Muon threshold
energy [GeV]

Number of
muons produced

Muon yield

20 31,157 7.8 · 10�3

30 18,426 4.6 · 10�3

50 8739 2.2 · 10�3

100 2929 7.4 · 10�4

1000 37 9.3 · 10�6

The number of muons produced, as well as the muon yield is listed as a
function of the muon energy-threshold energy.
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/ul
Ec>50 GeV ¼ /ul;vert

El>Ecut
l
� N c=Nl. ð12Þ

The resulting upper limits on the c-ray flux values with
90% CL obtained from observations on muons with ener-
gies above 20 GeV for selected sources, ranges between
4 · 10�6 and 1 · 10�5 cm�2 s�1 in the case of flares lasting
only one day, and between 2 · 10�7 and 8 · 10�7 cm�2 s�1

in the case of steady signals. The sky survey gives upper
flux limits of 3 · 10�5 and 2.5 · 10�6 cm�2 s�1 for the two
cases, respectively.

A comparison of these upper limits on the c-ray flux
with the flux values observed [13] using the Cherenkov
technique for some of the sources, for example, the AGN’s
Mkn 421 and Mkn 501, shows that the observations with
high energy muons can detect only very intense short dura-
tion bursts. As was pointed out earlier, the very small effi-
ciency is a result of not only the very small probability for
the production of muons by primary c-rays, but also the
relatively much smaller effective detection area of the muon
spectrometer as compared to the very large area over which
the Cherenkov photons, produced near the shower maxi-
mum in the upper atmosphere, are spread. The area of
the Cherenkov radiation pool, �100 m radius around the
projected core position of the shower on the ground, is
almost 300 times the effective area of the muon spectrome-
ter (�100 m2). In this sense, the observations on high
energy muons with a large area precision spectrometer
are similar to the observations with satellite-borne detec-
tors, for example, the EGRET detector on the CGRO
[30], as their effective c-ray detection area is also smaller
than the physical area of the detector. Unfortunately, the
effective detection area of satellite-borne detectors can
not be increased arbitrarily due to practical limitations.
They are relatively unsuitable for observations on the high
energy tail of the energy spectrum of c-ray sources which
carries very significant information on the physical process
generating the c-ray flux in the source.

However, the real value of the observations on high
energy muons for c-ray astronomy lies in its capability of
monitoring a large part of the sky with high efficiency on
daily basis, independent of the local atmospheric weather
conditions. The two major features of the Cherenkov tech-
nique, small field of view and small observational efficiency
due to frequent presence of the moon and clouds in the sky,
make this very powerful and highly successful technique
relatively unsuitable for monitoring vast areas of the sky
for as yet unknown high energy astrophysical sources
which may be flaring up in the high energy c-ray part of
the energy spectrum. The two techniques, the high energy
muon and the Cherenkov radiation, may therefore be con-
sidered complementary to each other. A small region of the
sky observed to be showing a flaring source in high energy
muons during the round-the-clock monitoring, can be
studied immediately afterwards in much greater detail
and with high precision with imaging Cherenkov telescopes
around the world.

7. Conclusions

The high-resolution muon spectrometer of the L3+C
experiment has been used for a search for cosmic sources
of very high energy c-ray emission during 312 days spread
over the periods, July to November 1999 and April to
November 2000. It has been shown that observations with
a precision muon spectrometer offers the possibility to search
for large flares on a day-to-day basis, unaffected by atmo-
spheric conditions unlike Cherenkov radiation telescopes.

Of the 10 interesting sources studied with data from the
L3+C spectrometer, no flaring signal has been detected
over the relatively short observation period and 90% CL
upper limits have been placed on the flux of muons of
energy >20, 30, 50 and 100 GeV. Also, sky surveys for
large flares from yet unknown sources have not revealed
any interesting episode at different time scales. For an
assumed energy spectrum of primary gamma rays upper
flux limits have been derived corresponding to a 20 GeV
muon threshold.
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