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System-time entanglement in a discrete time model
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Universidad Nacional de La Plata, C.C. 67, La Plata (1900), Argentina

We present a model of discrete quantum evolution based on quantum correlations between the
evolving system and a reference quantum clock system. A quantum circuit for the model is provided,
which in the case of a constant Hamiltonian is able to represent the evolution over 2n time steps
in terms of just n time qubits and n control gates. We then introduce the concept of system-
time entanglement as a measure of distinguishable quantum evolution, based on the entanglement
between the system and the reference clock. This quantity vanishes for stationary states and is
maximum for systems jumping onto a new orthogonal state at each time step. In the case of a
constant Hamiltonian leading to a cyclic evolution it is a measure of the spread over distinct energy
eigenstates, and satisfies an entropic energy-time uncertainty relation. The evolution of mixed
states is also examined. Analytical expressions for the basic case of a qubit clock, as well as for the
continuous limit in the evolution between two states, are provided.

PACS numbers: 03.65.Ta,03.65.Ud,06.30.Ft,03.67.-a

I. INTRODUCTION

Ever since the foundations of quantum mechanics, time
has been mostly considered as an external classical pa-
rameter. Various attempts to incorporate time in a fully
quantum framework have nonetheless been made, start-
ing with the Page and Wootters mechanism [1] and other
subsequent proposals [2, 3]. This subject has recently re-
ceived increasing attention in both quantum mechanics
[4–8] and general relativity [9, 10], where this problem
is considered a key issue in the connection between both
theories. In the present work we introduce a simple dis-
crete quantum model of evolution, which on one hand,
constitutes a consistent discrete version of the formalism
of [1, 9], while on the other hand, provides a practical
means to simulate quantum evolutions. We show that a
quantum circuit for the model can be constructed, which
in the case of a constant Hamiltonian is able to simu-
late the evolution over N = 2n times in terms of just
n time-qubits and O(n) gates, providing the basis for a
parallel-in-time simulation.

We then introduce and discuss the concept of system-
time entanglement, which arises naturally in the present
scenario, as a quantifier of the actual distinguishable evo-
lution undergone by the system. Such quantifier can be
related to the minimum time necessarily elapsed by the
system. For a constant Hamiltonian we show that this
entanglement is bounded above by the entropy associ-
ated with the spread over energy eigenstates of the ini-
tial state, reaching this bound for a spectrum leading
to a cyclic evolution, in which case it satisfies an en-
tropic energy-time uncertainty relation. Illustrative an-
alytical results for a qubit-clock, which constitutes the
basic building block in the present setting, are provided.
The continuous limit for the evolution between two arbi-
trary states is also analyzed.

II. FORMALISM

A. History states

We consider a bipartite system S + T , where S repre-
sents a quantum system and T a quantum clock system
with finite Hilbert space dimension N . The whole system
is assumed to be in a pure state of the form

|Ψ〉 = 1√
N

N−1∑

t=0

|ψt〉|t〉 , (1)

where {|t〉, t = 0, . . . , N − 1} is an orthonormal basis
of T and {|ψt〉, t = 0, . . . , N − 1} arbitrary pure states
of S. Such state can describe, for instance, the whole
evolution of an initial pure state |ψ0〉 of S at a discrete
set of times t. The state |ψt〉 at time t can be recovered
as the conditional state of S after a local measurement
at T in the previous basis with result t:

|ψt〉〈ψt| =
TrT [|Ψ〉〈Ψ|Πt]

〈Ψ|Πt|Ψ〉 , (2)

where Πt = 1⊗|t〉〈t|. In shorthand notation |ψt〉 ∝ 〈t|Ψ〉.
If we write

|ψt〉 = Ut|ψ0〉, t = 0, . . . , N − 1 , (3)

where Ut are unitary operators at S (with U0 = 1), the
state (1) can be generated with the schematic quantum
circuit of Fig. 1. Starting from the product initial state
|ψ0〉|0〉, a Hadamard-like gate [11] at T turns it into the

superposition 1√
N

∑N−1
t=0 |ψ0〉|t〉, after which a control-

like gate
∑

t Ut ⊗ |t〉〈t| will transform it in the state (1).
A specific example will be provided in Fig. 2.
From a formal perspective, the state (1) is a “static”

eigenstate of the S + T translation “super-operator”

U =
N∑

t=1

Ut,t−1 ⊗ |t〉〈t− 1| , (4)
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|ψ0〉 UT

|0〉 H

S

T

FIG. 1. (Color online) Schematic circuit representing the gen-
eration of the system-time pure state (1). The control gate
performs the operation Ut on S if T is in state |t〉, while the

Hadamard-type gate H creates the superposition ∝
∑N−1

t=0
|t〉.

where Ut,t−1 = UtU
†
t−1 evolves the state of S from t−1 to

t (|ψt〉 = Ut,t−1|ψt−1〉) and the cyclic condition |N〉 ≡ |0〉,
i.e. UN,N−1 = U †

N−1, is imposed. Then,

U|Ψ〉 = |Ψ〉 (5)

showing that the state (1) remains strictly invariant un-
der such global translations in the S + T space.
Eq. (5) holds for any choice of initial state |ψ0〉 in (1).

The eigenvalue 1 of U has then a degeneracy equal to the
Hilbert space dimension M of S, since for M orthogonal
initial states |ψj0〉, 〈ψj0|ψl0〉 = δjl, the ensuing states |Ψl〉
are orthogonal due to Eq. (3):

〈Ψl|Ψj〉 = 1

N

N−1∑

t=0

〈ψlt|ψjt 〉 = 〈ψl0|ψj0〉 = δlj . (6)

The remaining eigenstates of U are of the form |Ψk〉 =
1√
N

∑N−1
t=0 ei2πkt/N |ψt〉|t〉 with k integer and represent

the evolution associated with operators Ukt = ei2πkt/NUt:

U|Ψk〉 = e−i2πk/N |Ψk〉 , k = 0, . . . , N − 1 . (7)

All eigenvalues λk = e−i2πk/N are M -fold degenerate by
the same previous arguments. The full set of N eigen-
values and a choice of MN orthogonal eigenvectors of U
are thus obtained. We may then write, for general Ut,

U = exp[−iJ ] , (8)

with J hermitian and satisfying J |Ψk〉 = 2π k
N |Ψk〉 for

k = 0, . . . , N − 1. In particular, the states (1) satisfy

J |Ψ〉 = 0 , (9)

which represents a discrete counterpart of the Wheeler-
DeWitt equation [9, 12, 13] determining the state |Ψ〉 in
continuous time theories [9]. In the limit where t be-
comes a continuous unrestricted variable, the state (1)
with condition (3) becomes in fact that considered in [9].
Note, however, that here J is actually defined just mod-
ulo N , as any J satisfying J |Ψk〉 = 2π( kN +nk)|Ψk〉 with
nk integer will also fulfill Eq. (8).
All |Ψk〉 are also eigenstates of the hermitian oper-

ators U± = i
1∓1

2 (U ± U†)/2, with eigenvalues cos 2πk
N

and sin 2πk
N respectively, i.e. 1 and 0 for the states (1).

The latter can then be also obtained as ground states
of −U+. An hermitian operator H similar to −U+ but

with no cyclic condition (H = −Ũ+ + IS ⊗ IT , with

Ũ = U −U †
N−1|0〉〈N−1|+ 1

2IS⊗ (|0〉〈0|+ |N−1〉〈N−1|)
was considered in [6] for deriving a variational approxi-
mation to the evolution.

B. Constant evolution operator

If Ut,t−1 = U ∀ t, then

Ut = (U)t = exp[−iHt] , t = 0, . . . , N − 1 , (10)

whereH represents a constant Hamiltonian for system S.
In this case the state (1) can be generated with the first
step of the circuit employed for phase estimation [11], de-
picted in Fig. 2. If N = 2n, such circuit, consisting of just
n time qubits and m = log2M system qubits, requires
only n initial single qubit Hadamard gates on the time-
qubits if initialized at |0〉 (such that |0〉T ≡ ⊗nj=1|0j〉 →
⊗nj=1

|0j〉+|1j〉√
2

= 1√
N

∑N−1
t=0 |t〉 for t = ∑n

j=1 tj2
j−1), plus

n control U2j−1

gates acting on the system qubits, which

perform the operation U t|ψ0〉 =
∏n
j=1 U

tj2
j−1 |ψ0〉. A

measurement of the time qubits with result t makes S
collapse to the state |ψt〉 = e−iHt|ψ0〉.

FIG. 2. (Color online) Circuit representing the generation of
the system-time state (1) for Ut = (U)t and N = 2n. The

n control gates perform the operation U
t = U

∑n
j=1

tj2
j−1

on
the system after writing t in the binary form t =

∑n

j=1
tj2

j−1,
while the n Hadamard gates lead to a coherent sum over all
values of the tj ’s, i.e., over all t from 0 to 2n − 1.

In addition, if U in (10) satisfies the cyclic condition
UN = 1, which implies that H should have eigenvalues
2πk/N with k integer, Eq. (4) can be written as

U = U ⊗ V = exp[−i(H ⊗ 1T + 1S ⊗ P )] , (11)

where V = exp[−iP ] =
∑N
t=1 |t〉〈t − 1| is the (cyclic)

time translation operator. Its eigenstates are the discrete
Fourier transform (FT) of the time states |t〉,

V |k̃〉 = e−i2πk/N |k̃〉, |k̃〉 = 1√
N

N−1∑

t=0

ei2πkt/N |t〉 , (12)
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for k = 0, . . . , N − 1, such that P is the “momentum”
associated with the time operator T :

T |t〉 = t|t〉 , P |k̃〉 = 2π
k

N
|k̃〉 . (13)

Hence, J = H ⊗ 1T + 1S ⊗ P adopts in this case the
same form as that of continuous theories [9].

C. System-Time entanglement

Suppose now that one wishes to quantify consistently
the “amount” of distinguishable evolution of a pure quan-
tum state. Such measure can be related to a minimum
time τm (number or fraction of steps) necessarily elapsed
by the system. If the state is stationary, |ψt〉 ∝ |ψ0〉 ∀ t,
the quantifier should vanish (and τm = 0) whereas if all
N states |ψt〉 are orthogonal to each other, the quantifier
should be maximum (with τ = N − 1), indicating that
the state has indeed evolved through N distinguishable
states. We now propose the entanglement of the pure
state (1) (system-time entanglement) as such quantifier,
with τm an increasing function of this entanglement. In
Figs. 1–2, such entanglement is just that between the
system and the time-qubits, generated by the control Ut.
We first note that Eq. (1) is not, in general, the

Schmidt decomposition [11] of the state |Ψ〉, which is

|Ψ〉 =
∑

k

√
pk|k〉S |k〉T , (14)

where |k〉S(T ) are orthogonal states of S and T
(µ〈k|k′〉µ = δkk′ ) and pk the eigenvalues of the reduced
states of S and T ,

ρS(T ) = TrT (S)|Ψ〉〈Ψ| =
∑

k

pk|k〉S(T )〈k| . (15)

The entanglement entropy between S and T is then

E(S, T ) = S(ρS) = S(ρT ) = −
∑

k

pk log2 pk , (16)

where S(ρ) = −Trρ log2 ρ is the von Neumann entropy.
Eq. (16) satisfies the basic requirements of an evolution

quantifier. If the state of S is stationary, |ψt〉 = eiγt |ψ0〉
∀ t, the state (1) becomes separable,

|Ψ〉 = |ψ0〉(
1√
N

∑

t

eiγt |t〉) , (17)

implying E(S, T ) = 0. In contrast, if |ψt〉 evolves through
N orthogonal states, then |Ψ〉 is maximally entangled,
with Eq. (1) already its Schmidt decomposition and

E(S, T ) = Emax(S, T ) = log2N . (18)

It is then natural to define the minimum time τm as

τm = 2E(S,T ) − 1 , (19)

which takes the values 0 and N − 1 for the previous ex-
treme cases. The vast majority of evolutions will lie in
between. For instance, a periodic evolution of period
L < N with N/L integer, such that |ψt+L〉 = eiγ |ψt〉 ∀ t,
will lead to

|Ψ〉 = 1√
L

L−1∑

t=0

|ψt〉|tL〉, |tL〉 =
√
L

N

N/L−1∑

k=0

eiγk|t+ Lk〉 ,

(20)
with 〈t′L|tL〉 = δtt′ . Hence, its entanglement E(S, T )
will be the same as that obtained with an L dimensional

effective clock, as it should. Its maximum value, obtained
for L orthogonal states, will then be log2 L, in which case
τm = L− 1.
The Schmidt decomposition (14) represents in this con-

text the “actual” evolution between orthogonal states,
with pk proportional to the “permanence time” in each
of them. A measurement on T in the Schmidt Basis
would always identify orthogonal states of S for different
results (and viceversa), with the probability distribution
of results indicating the “permanence” in these states. If
in Eq. (1) there are nk times t where |ψt〉 ∝ |k〉S , with∑
k nk = N and |k〉S orthogonal states, then

|Ψ〉 =
∑

k

√
nk
N

|k〉S(
1√
nk

∑

t/|ψt〉∝|k〉S

eiγt |t〉) ,

which is the Schmidt decomposition (14) with pk ∝ nk,
i.e. proportional to the total time in the state |k〉S . Note
also that Eqs. (14)–(16) are essentially symmetric, so that
the roles of S and T can in principle be interchanged.
Quadratic entanglement. A simple quantifier for the

general case can be obtained through the entanglement
determined by the entropy S2(ρ) = 2(1 − Tr ρ2), which
is just a linear function of the purity Tr ρ2 and does not
require the evaluation of the eigenvalues of ρ [14–16] (pu-
rity is also more easily accessible experimentally [17]).
We obtain, using ρS = 1

N

∑
t |ψt〉〈ψt|,

E2(S, T ) = S2(ρT ) = S2(ρS) = 2(1− Tr ρ2S)

= 2N−1
N (1 − 1

N(N−1)

∑

t6=t′
|〈ψt|ψt′〉|2) , (21)

which is just a decreasing function of the average pairwise
squared fidelity between all visited states. If they are
all proportional, E2(S, T ) = 0 whereas if they are all
orthogonal, E2(S, T ) = 2N−1

N is maximum. If S and T
are qubits E2(S, T ) is just the squared concurrence [18]
of |Ψ〉.

D. Relation with energy spread

In the constant case (10), we may expand |ψ0〉 in the
eigenstates of U or H , |ψ0〉 =

∑
k ck|k〉 with H |k〉 =

Ek|k〉, such that |ψt〉 =
∑

k cke
−iEkt|k〉 and

|Ψ〉 = 1√
N

∑

k,t

cke
−iEkt|k〉|t〉 =

∑

k

ck|k〉|k̃〉T , (22)
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with |k̃〉T = 1√
N

∑
t e

−iEkt|t〉. We can always assume all

Ek distinct in (22) such that ck|k〉 is the projection of
|ψ0〉 onto the eigenspace with energy Ek. In the cyclic
case UN = 1, with Ek = 2πk/N , k = 0, . . . , N − 1, the

states |k̃〉T become the orthogonal FT states (12) (|k̃〉T =

| − k̃〉). Eq. (22) is then the Schmidt decomposition (14),
with pk = |ck|2 and

E(S, T ) = −
∑

k

|ck|2 log2 |ck|2 . (23)

For this spectrum, entanglement becomes then a mea-

sure of the spread of the initial state |ψ0〉 over the eigen-

states of H with distinct energies. The same holds in
the quadratic case (21) where E2(E, T ) = 2

∑
k |ck|2(1−

|ck|2). If there is no dispersion |ψ0〉 is stationary and
entanglement vanishes while if |ψ0〉 is uniformly spread
over N eigenstates it is maximum (E(S, T ) = log2N).
While Eq. (23) also holds for a displaced spectrum

Ek = E0 + 2πk/N , for an arbitrary spectrum {Ek}
it will hold approximately if the overlaps T 〈k̃|k̃′〉T =
1
N

∑
t e

−i(Ek−Ek′ )t are sufficiently small for k 6= k′. In
general we actually have the strict bound

E(S, T ) ≤ −
∑

k

|ck|2 log2 |ck|2, (24)

since |ck|2 =
∑

k′ pk′ |〈k|k′〉S |2, with |k〉 the eigenstates
of H and |k′〉S the Schmidt states in (14), which implies
that the |ck|2’s are majorized [19] by the pk’s:

{|ck|2} ≺ {pk} , (25)

where {|ck|2} and {pk} denote the sets sorted in decreas-

ing order. Eq. (25) (meaning
∑j

k=1 |ck|2 ≤ ∑j
k=1 pk for

j = 1 . . . , N−1) implies that the inequality (24) actually
holds for any Schur-concave function of the probabilities
[19], in particular for any entropic form Sf (ρ) = Tr f(ρ)
with f(p) concave and satisfying f(0) = f(1) = 0 [16, 20],
such as the von Neumann entropy (f(ρ) = −ρ log2 ρ) and
the previous S2 entropy (f(ρ) = 2ρ(1 − ρ)):

Ef (S, T ) =
∑

k

f(pk) ≤
∑

k

f(|ck|2), (26)

as can be easily verified. Eqs. (23)–(26) then indicate
that the entropy of the spread over Hamiltonian eigen-
states of the initial state provides an upper bound to the
corresponding system-time entanglement entropy than
can be generated by any Hamiltonian diagonal in the
states |k〉. The bound is always reached for an equally
spaced spectrum Ek = 2πk/N ∈ [0, 2π] leading to a cyclic
evolution, which therefore generates the highest possi-

ble system-time entanglement for a given initial spread

{|ck|2}.

E. Energy-time uncertainty relations

For the aforementioned equally spaced spectrum, we
may also expand the state |ψ0〉 of S in an orthogonal set

of uniformly spread states,

|ψ0〉 =
∑N

l=0 c̃l|l̃〉S , |l̃〉S = 1√
N

∑
k e

i2πkl/N |k〉 , (27)

with c̃l =
1√
N

∑
k e

−i2πk/N ck the FT of the ck’s in (22).

Since U t|l̃〉S = |l̃ − t〉S , it is verified that these maximally

spread states |l̃〉S (which according to Eq. (23) lead to
maximum system-time entanglement E(S, T ) = log2N)

indeed evolve through N orthogonal states |l̃ − t〉S .
Moreover, Eq. (22) becomes

|Ψ〉 =
∑

l,t

c̃l|l̃ − t〉S |t〉 =
∑

l

|l̃〉S(
∑

t

c̃t|t− l〉) , (28)

showing that c̃l determines the distribution of time states
|t〉 assigned to each state |l̃〉S , i.e., the uncertainty in its
time location. Being related through a finite FT, {ck}
and {c̃l} satisfy various uncertainty relations, such as [21–
23]

E(S, T ) + Ẽ(S, T ) ≥ log2N , (29)

where Ẽ(S, T ) = −∑
l |c̃l|2 log2 |c̃l|2 is the entropy char-

acterizing the time uncertainty and E(S, T ) the energy
uncertainty (23). If localized in energy (|ck| = δkk′ ,
E(S, T ) = 0), Eq. (29) implies maximum time uncer-

tainty (|c̃l| = 1√
N
, Ẽ(S, T ) = log2N) and viceversa. We

also have n({ck})n({c̃l}) ≥ N [24], where n({αk}) de-
notes the number of non-zero αk’s. Bounds for the prod-
uct of variances in the discrete FT are discussed in [25].

F. Mixed states

Let us now consider that S is a bipartite system A+B.
By taking the partial trace of (1),

ρBT = TrA |Ψ〉〈Ψ| =
∑

j

A〈j|Ψ〉〈Ψ|j〉A , (30)

we see that the system-time state for a subsystem is a
mixed state. Of course, the state of B at time t, setting
now Πt = IB ⊗ |t〉〈t|, is given by the standard expression

ρBt =
TrT ρBTΠt
Tr ρBTΠt

= TrA|ψt〉〈ψt| . (31)

If the initial state of S is |ψ0〉 =
∑
j

√
qj |j〉A|j〉B

(Schmidt decomposition), Eqs. (30)–(31) determine the
evolution of an initial mixed state ρB0 =

∑
j qj |j〉B〈j| of

B, considered as a subsystem in a purified state under-
going unitary evolution. For instance, if just subsystem
B evolves, such that Ut = IA⊗UBt ∀ t, Eq. (30) leads to

ρBT =
∑

j

qj |Ψj〉BT 〈Ψj| , (32)

where |Ψj〉BT = 1√
N

∑n−1
t=0 UBt|j〉B|t〉. Eq. (31) is then

the mixture of the pure B + T states associated with
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each eigenstate of ρB0, and implies the unitary evolution

ρBt = UBtρB0U
†
Bt.

Since the state (30) is in general mixed, the correla-
tions between T and a subsystem B can be more complex
than those with the whole system S. The state (30) can
in principle exhibit distinct types of correlations, includ-
ing entanglement [26, 27], discord-like correlations [28–
31] and classical-type correlations. The exact evaluation
of the quantum correlations is also more difficult, being
in general a hard problem [32, 33]. We will here consider
just the entanglement of formation [27] E(B, T ) of the
state (30), which, if nonzero, indicates that (30) cannot
be written as a convex mixture of pure product states [26]
|Ψα〉BT = |ψα〉B|φα〉T . In this context the latter repre-
sent essentially stationary states. Separability with time
would then indicate that ρBT can be written as a convex
mixture of such states, requiring no quantum interaction
with the clock system for its formation.

III. EXAMPLES

A. The qubit clock

As illustration, we examine the basic case of a qubit
clock (N = 2). Eq. (1) becomes

|Ψ〉 = (|ψ0〉|0〉+ |ψ1〉|1〉)/
√
2

=
√
p+|++〉+√

p−| − −〉 , (33)

p± = (1 ± |〈ψ0|ψ1〉|)/2 ,
where |ψ1〉 = U |ψ0〉 and (33) is its Schmidt decompo-
sition, with |±〉S = (|ψ0〉 ± e−iγ |ψ1〉)/

√
4p±, |±〉T =

(|0〉 ± eiγ |1〉)/
√
2 and eiγ = 〈ψ0|ψ1〉

|〈ψ0|ψ1〉| . Hence, E(S, T ) =

−
∑
ν=± pν log pν will be fully determined by the overlap

or fidelity |〈ψ0|ψ1〉| between the initial and final states,
decreasing as the fidelity increases and becoming maxi-
mum for orthogonal states. The quadratic entanglement
entropy E2(S, T ) becomes just

E2(S, T ) = 4p+p− = 1− |〈ψ0|ψ1〉|2 . (34)

These results hold for arbitrary dimension M of S.
The operator (4) becomes U = U ⊗|1〉〈0|+U †⊗|0〉〈1|,

and is directly hermitian, with eigenvalues ei2kπ/2 = ±1
for k = 0 or 1, M -fold degenerate. Hence, in this case

J = π(U − 1)/2 , (35)

involving coupling between S and T unless U † ∝ U .
For |ψ1〉 close to |ψ0〉, Eq. (34) becomes proportional

to the Fubini-Study metric [34]. If U = exp[−iǫh], an
expansion of |ψ0〉 in the eigenstates of h, |ψ0〉 =

∑
k ck|k〉

with h|k〉 = εk|k〉, leads to

E2(S, T ) = 1−|
∑

k

|ck|2e−iǫεk |2 ≈ ǫ2(〈h2〉−〈h〉2) , (36)

where the last expression holds up to O(ǫ2). Hence, for
a “small” evolution the system-time entanglement of a

single step is determined by the energy fluctuation 〈h2〉−
〈h〉2 in |ψ0〉 (〈O〉 ≡ 〈ψ0|O|ψ0〉), with E2(S, T ) directly
proportional to it. For instance, if S is also a single qubit
and ε1 − ε0 = ε, the exact expression becomes

E2(S, T ) = 4 sin2(
ǫε

2
)|c0|2|c1|2 (37)

= 4 sin2(
ǫε

2
)
〈h2〉 − 〈h〉2

ε2
, (38)

which reduces to (36) for small ǫ. It is also verified that
E2(S, T ) ≤ S2(|c0|2, |c1|2) = 4|c0|2|c1|2, i.e., it is upper
bounded by the quadratic entropy of the energy spread
(Eq. 26), reaching the bound for E = ǫε = π, in agree-
ment with the general result (23)–(24. Returning to the
case of a general S, we also note that E2(S, T ) determines
the minimum time required for the evolution from |ψ0〉 to
|ψ1〉 in standard continuous time theories [34], which de-
pends on the fidelity |〈ψ0|ψ1〉| and can then be expressed

in terms of E2 as ~ sin−1(
√
E2(S, T ))/

√
〈h2〉 − 〈h〉2.

Let us now assume that S = A + B is a two qubit-
system, with U = IA⊗UB. As previously stated, starting
from an initial entangled pure state of A+B (purification
of ρB0), the state (33) will determine the evolution of the
reduced state of B, leading to

ρBt = p|ψ0
t 〉〈ψ0

t |+ q|ψ1
t 〉〈ψ1

t | , t = 0, 1 (39)

where p + q = 1, 〈ψ0
0 |ψ1

0〉 = 0 and |ψj1〉 = UB|ψj0〉 for
j = 0, 1. The reduced state (32) of B + T becomes

ρBT = p|Ψ0〉〈Ψ0|+ q|Ψ1〉〈Ψ1| , (40)

with |Ψj〉 = 1√
2
(|ψj0〉|0〉 + |ψj1〉|1〉). Since (40) is a two-

qubit mixed state, its entanglement of formation can be
obtained through the concurrence [18] C(B, T ), whose
square is just the entanglement monotone associated with
the quadratic entanglement entropy E2 (C2(B, T ) =
E2(B, T ) for a pure B + T state). It adopts here the
simple expression

C2(B, T ) = (p− q)2(1− |〈ψj0|ψj1〉|2) , (41)

where |〈ψj0|ψj1〉| = |〈ψj0|UB|ψj0〉| is the same for j = 0
or 1 in a qubit system if 〈ψ0

0 |ψ1
0〉 = 0. Eq. (41) is then

the pure state result (34) for any of the eigenstates of
ρB0 diminished by the factor (p− q)2, vanishing if ρB0 is
maximally mixed (p = q). Remarkably, Eq. (41) can be
also written as

C2(B, T ) = 1− F 2(ρB0, ρB1) , (42)

where F (ρB0, ρB1) = Tr

√
ρ
1/2
B0 ρB1ρ

1/2
B0 is again the fi-

delity between the initial and final reduced mixed states
of B (F = |〈ψ0|ψ1〉| if ρB0, ρB1 are pure states). Note
also that the total quadratic entanglement entropy is here

E2(S, T ) = 1− |p〈ψ0
1 |ψ0

0〉+ q〈ψ1
1 |ψ1

0〉|2,

satisfying E2(S, T ) ≥ C2(B, T ) in agreement with the
monogamy inequalities [14, 35], coinciding iff pq = 0
(pure case).
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B. The continuous limit

Let us now assume that system S is a qubit, with T
of dimension N (t = 0, . . . , N − 1). This case can also
represent the evolution from an initial state |ψ0〉 to an
arbitrary final state |ψf 〉 in a general system S of Hilbert
space dimension M if all intermediate states |ψt〉 belong
to the subspace generated by |ψ0〉 and |ψf 〉, such that
the whole evolution is contained in a two-dimensional
subspace of S. Writing the system states as

|ψt〉 = αt|0〉+ βt|1〉 , t = 0, . . . , N − 1, (43)

with 〈0|1〉 = 0 and |αt|2+ |βt|2 = 1, we may rewrite state
(1) as

|Ψ〉 = 1√
N

[|0〉(
∑

t

αt|t〉) + |1〉(
∑

t

βt|t〉)]

= α|0〉|φ0〉+ β|1〉|φ1〉 , (44)

where |φ0〉 = 1√
Nα

∑
t αt|t〉, |φ1〉 = 1√

Nβ

∑
t βt|t〉, are

normalized (but not necessarily orthogonal) states of T
and all sums over t are from 0 to N − 1, with

α2 =
1

N

∑

t

|αt|2, β2 =
1

N

∑

t

|βt|2 = 1− α2 . (45)

The Schmidt coefficients of the state (44) are given by

p± =
1

2
(1±

√
1− 4α2β2(1− |〈φ1|φ0〉|2)) . (46)

We then obtain

E2(S, T ) = 4p+p− = 4α2β2(1− |〈φ1|φ0〉|2)

= 4(α2β2 − γ2), γ =
1

N
|
∑

t

β∗
t αt| , (47)

a result which also follows directly from Eq. (21).
Let us consider, for instance, the states

|ψt〉 = cos(
φt

N − 1
)|0〉+ sin(

φt

N − 1
)|1〉 , (48)

such that S evolves from |ψ0〉 = |0〉 to

|ψf 〉 = cosφ|0〉+ sinφ|1〉 ,

in N−1 steps through intermediate equally spaced states
contained within the same plane in the Bloch sphere of
S. The S−T entanglement of this N -time evolution can
be evaluated exactly with Eqs. (45)–(47), which yield

E2(S, TN ) = 1−
sin2

(
Nφ
N−1

)

N2 sin2
(

φ
N−1

) . (49)

For N = 2 (single step) we recover Eq. (34) (E2(S, T2) =
1− cos2 φ = 1− |〈ψ0|ψf 〉|2). If φ ∈ [0, π/2], E2(S, TN ) is
a decreasing function of N (and an increasing function of

φ), but rapidly saturates, approaching a finite limit for

N → ∞, namely,

E2(S, T∞) = 1− sin2 φ

φ2
. (50)

Therefore, system-time entanglement decreases as the
number of steps through intermediate states between |ψ0〉
and |ψf 〉 is increased, reflecting the lower average dis-
tinguishability between the evolved states, but remains
finite for N → ∞. In this limit it is still an increasing
function of φ for φ ∈ [0, π/2], reaching 1 − 4/π2 ≈ 0.59
for φ = π/2, i.e., when the system evolves to an or-
thogonal state (|ψf 〉 = |1〉), and reducing to ≈ φ2/3 for
φ → 0. Hence, as compared with a single step evolution
(N = 2), the ratio E2(S, T∞)/E2(S, T2) increases from
1/3 for φ→ 0 to ≈ 0.59 for φ→ π/2.
If φ is increased beyond π/2, the coefficients αt, βt

cease to be all positive and entanglement can increase
beyond ≈ 0.59 due to the decreased overlap γ, reflecting
higher average distinguishability between evolved states.
Entanglement E2(S, T∞) reaches in fact 1 at φ = π (and
also kπ, k ≥ 1 integer), i.e., when the final state is propor-
tional to the initial state after having covered the whole
circle in the Bloch sphere, since for these values the time
states |φ0〉 and |φ1〉 become orthogonal and with equal
weights. Note also that for φ > π/2, E2(S, TN ) is not
necessarily a decreasing function of N , nor an increas-
ing function of φ, exhibiting oscillations: E2(S, TN ) = 1
for φ = kπ(N − 1)/N , k 6= lN , and E2(S, TN ) → 0 for
φ→ lπ(N − 1), l integer.

IV. CONCLUSIONS

We proposed a parallel-in-time discrete model of quan-
tum evolution based on a finite dimensional clock entan-
gled with the system. The ensuing history state satis-
fies a discrete Wheeler-DeWitt-like equation and can be
generated through a simple circuit, which for a constant
evolution operator can be efficiently implemented with
just O(n) qubits and control gates for 2n time intervals.
We then showed that the system-clock entanglement

E(S, T ) is a measure of the actual distinguishable evo-
lution undergone by one of the systems relative to the
other. A natural interpretation of the Schmidt decompo-
sition in terms of permanence in distinguishable evolved
states is also obtained. For a constant Hamiltonian lead-
ing to a cyclic evolution, this entanglement is a measure
of the energy spread of the initial state and satisfies an en-
tropic uncertainty inequality with a conjugated entropy
which measures the time spread. Such Hamiltonian was
rigorously shown to provide the maximum entanglement
E(S, T ) compatible with a given distribution over Hamil-
tonian eigenstates. For other Hamiltonians, E(S, T ) (and
also general entanglement entropies Ef (S, T )) are strictly
bounded by the corresponding entropy of this distribu-
tion. We have also considered the evolution of mixed
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states. Although in this case the evaluation and inter-
pretation of system-clock entanglement and correlations
become more involved, in the simple yet fundamental
case of a qubit clock coupled with a qubit subsystem,
such entanglement was seen to be directly determined
by the fidelity between the initial and final states of the
qubit. A direct relation between this entanglement and
energy fluctuation was also derived for the pure case. Fi-
nally, we have also shown that E(S, T ) does remain finite
and non-zero in the continuous limit, i.e., when the sys-
tem evolves from an initial to a final state through an
arbitrarily large number of closely lying equally spaced
intermediate states.
The present work opens the way to various further de-

velopments, starting from the definition of proper time

basis according to the Schmidt decomposition. It could
be also possible in principle to incorporate other effects
such as interaction between clocks [7], explore possibil-
ities of an emergent space-time or a qubit model for
quantum time crystals [36]. At the very least, it pro-
vides a change of perspective, allowing to identify a qubit
clock as a fundamental “building block” of a discrete-time
based quantum evolution.
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