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Abstract

We present results obtained from a study of the structure of hadronic events recorded by the L3 detector at a
centre-of-mass energy of 183 GeV. The data sample corresponds to an integrated luminosity of 55.3 pby1. The distributions
of event shape variables and the energy dependence of their mean values are measured. From a comparison with resummed
Ž 2. Ž . Ž . Ž .OO a QCD calculations, we determine the strong coupling constant a 183 GeV s0.1086" 0.0026 exp " 0.0054 th .s s

The charged particle multiplicity distribution and momentum spectrum are studied and the energy dependence of the peak
Ž .position of the j syln x distribution is compared with lower energy measurements and QCD expectations. q 1998p

Elsevier Science B.V.

1. Introduction

Hadronic events produced in eqey annihilation
offer a good environment to test the predictions of
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Ž . w xthe theory of the strong interaction QCD 1 . Each
time a new collision energy is available it is impor-
tant to study the main characteristics of the hadronic
events not only for testing QCD predictions but also
for checking the validity of the QCD models very
often used in particle searches and other studies. In
1997 the centre-of-mass energy of LEP was in-
creased to 183 GeV. We report here on the studies of
several event shape variables for the high energy
hadronic final states from the data, corresponding to
an integrated luminosity of 55.3 pby1, collected with

w xthe L3 detector 2,3 . To allow a direct comparison
with our earlier QCD tests done at lower energies
w x4,5 , we follow an identical analysis procedure.

The first part of the work consists of comparing
measured event shape variable distributions with
QCD models with parameters tuned using hadronic

w xZ decays 6 .
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The strong coupling constant is then determined
at 183 GeV by comparing the measured distributions
of event shape variables with the predictions of a
second order QCD calculation with resummed lead-
ing and next-to-leading terms. The experimental un-
certainty obtained at this new energy is smaller than
for previous high energy measurements done above
the Z, due to the higher luminosity collected.

We include the measurement of the charged parti-
cle multiplicity distributions and the peak position,
w Ž .j , of the charged particle j syln x spectrum atp

183 GeV together with similar measurements at 133,
161 and 172 GeV.

2. Selection of hadronic events

The selection of eqey™hadrons events is based
on the energy measured in the electromagnetic
calorimeter composed of BGO crystals and in the
uranium hadron calorimeter with proportional wire

w xchamber readout 2,3 . We use energy clusters in the
calorimeters with a minimum energy of 100 MeV.
The number of clusters is denoted by N . We mea-cl

Ž .sure the total visible energy E and the energyvis
Ž . Ž .imbalance parallel E and perpendicular E toI H

the beam direction. The hadronic event selection is
' w xidentical to the selection at s s 172 GeV 5 .

q y Ž .Monte Carlo events of the process e e ™q q g

have been generated by the parton shower program
w xPYTHIA 5.7 7 and passed through the L3 detector
w xsimulation 8 .

Above the Z pole a large fraction of the events are
accompanied by a photon from hard initial state

Ž .radiation ISR . The fraction of such events in our
sample is about 55%. To reduce this contamination,
we apply the two cuts used at 172 GeV which are:

'Ž . Ž .Ø E r s )2.0 NE NrE q0.5vis I vis
Ø energy of the most energetic photon, E ,-30g

GeV.
'The first cut uses the correlation between E r svis

and NE NrE to discriminate well balanced eventsI vis
from unbalanced events arising from an ISR photon
lost in the beam pipe. The events where the photon
from initial state radiation is seen in the detector are
removed by the second cut. A sample of 2010 events
is selected. Applying these cuts to the simulated

events we find that 88% of the events with no hard
initial state radiation greater than 30 GeV are ac-
cepted. The dominant source of background at this
energy comes from hadronic decays of W pairs. It
amounts to about 25% at this level of selection.
Before doing a background subtraction, a substantial

Ž .fraction of this contamination more than 50% is
removed using a specific WqWy event selection

w xsimilar to the one described in Ref. 5 . The selec-
tion, based on the 4 jet topology, has been optimised
for 183 GeV and the new cuts are:

N G40, N )15,cl tr

' 'E -0.405 s , E )0.055 s ,jet1 jet4

Dy G0.006, NE NrE -0.2,34 I vis

where yD is the jet resolution parameter in Durham34
w xalgorithm 9 for which the event goes from a four-jet

to a three-jet topology and N is the number oftr
tracks measured in the central tracking chamber. The
tracks are required to have at least 30 hits and a
transverse momentum greater than 100 MeV. Ejet1
and E are the rescaled energies of the most andjet4
the least energetic jets when the events are forced to
form four jets using the Durham algorithm.

After this additional rejection the final sample at
183 GeV contains 1619 events. This corresponds to
an efficiency of 84.4% to select hadronic events with
no hard ISR with energy greater than 30 GeV and a
purity of 74.1%. Contaminations from ISR and
WqWy events have been estimated to be 10.2% and
11.7% respectively. Table 1 summarises the back-
ground content of the remaining event sample. For
the background studies the following Monte Carlo

w x Ž q yprograms were used: KORALZ 10 e e ™
q yŽ .. w x Ž q y q yt t g , KORALW 11 e e ™ W W ™
X X. w x Ž q y q yŽ ..f f f f , BHAGENE3 12 e e ™e e g , PY-

Ž q y q y q y.THIA e e ™ZZ, e e ™Ze e , PYTHIA and
w x Ž q y q y.PHOJET 13 e e ™ hadrons e e .

Table 1
Expected background fraction of the selected event sample

ISR G 30 GeV 10.2%
X Xq y q ye e ™W W ™f f f f 11.7%

q ye e ™ 2-photon 2.6%
q y q ye e ™t t 0.2%

X Xq ye e ™ZZ™ f f f f 0.6%
Xq y q y q ye e ™Ze e ™f f e e 0.6%
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3. Measurement of event shape variables

Ž .We measure five variables, thrust T , scaled
Ž . Ž . Ž .heavy jet mass r , total B and wide B jetT W

broadening variables and the C-parameter, for which
improved analytical QCD calculations are available
w x14–18 .
Thrust: The global event shape variable thrust, T

w x19 , is defined as:

< <p PnÝ i TTsmax ,
< <pÝ i

where p is the momentum vector of thei
particle i. The thrust axis n is the unitT
vector which maximises the above expres-
sion. The value of the thrust can vary
between 0.5 and 1.

w xScaled The heavy jet mass M is defined as 20 :H
heavy jet
mass:

M smax M n , M n ,Ž . Ž .H q T y T

where M are the invariant masses in the"

two hemispheres, S , defined by the plane"

normal to the thrust axis:

2
2M s p ,Ý" iž /

igS"

where p is the four momentum of parti-i
cle i. The scaled heavy jet mass r is
defined as:

rsM 2rs .H

w xJet These variables are defined 16 by comp-
broade- uting in the hemispheres S the quanti-"

ning var- ties:
iables:

< <p =nÝ i T
igS"B s ." < <2 pÝ i

i

The observables used to study a ares

B sB qB and B smax B , BŽ .T q y W q y

referred to as ‘total jet broadening’ and
‘wide jet broadening’, respectively.

C- The C parameter is derived from the
w xpara- eigenvalues of the spherocity tensor 21 :

meter:

pi p jrNp NÝ a a a
ai ju s i , js1,2,3 ,

Np NÝ a
a

It is defined in terms of the eigenvalues of
u i j, l , l , and l , as:1 2 3

Cs3 l l ql l ql l .Ž .1 2 2 3 3 1

For Monte Carlo events, the global event shape
Ž .variables are calculated before particle level and

Ž .after detector level detector simulation. The calcu-
lation before detector simulation takes into account
all stable charged and neutral particles. The mea-
sured distributions at detector level differ from the
ones at particle level because of detector effects,
limited acceptance and resolution.

After subtracting the background events according
to standard cross sections the measured distributions
are corrected for detector effects, acceptance and
resolution on a bin-by-bin basis by comparing the
detector level results with the particle level results.
We also correct the data for initial and final state

w xphoton radiation bin-by-bin using PYTHIA 7 Monte
Carlo distributions at particle level with and without
radiation.

Fig. 1 shows the corrected thrust and wide jet
'broadening distributions obtained at s s 183 GeV.

w xThe data are compared with JETSET 7.4 22 , HERWIG
w x w x w x5.6 23 , ARIADNE 4.06 24 and COJETS 6.23 25

QCD models at particle level without ISR. The
agreement is good. The figure also shows the various
corrections applied at detector level to obtain the
final distribution. Typical correction factors for reso-
lution as well as for acceptance and initial state
radiation are between 0.5 and 1.5.

The systematic errors in the distributions of event
shape variables arise mainly due to uncertainties in
detector calibration and those in estimating the back-
ground.
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' Ž . Ž .Fig. 1. Corrected distributions at s s 183 GeV of a thrust, T , and b wide jet broadening, B , in comparison with QCD modelW
predictions. The errors shown are statistical only. The correction factors due to resolution, C , acceptance, C , and overall are also shown.R A

The effect of detector calibration is studied by
changing the definition of reconstructed objects used
in the detector to calculate the observables. Instead
of using only calorimetric clusters, the analysis has
been repeated with objects obtained from a non-lin-
ear combination of energies of charged tracks and
calorimetric clusters. The effect due to possible inho-
mogeneities in the detector response is estimated by
comparing the results with those obtained by restrict-
ing the events to the central part of the detector

Ž < Ž . <where the resolution is better cos u -0.7, whereT
u is the polar angle of the thrust axis relative to theT

.beam direction .
The uncertainty on the background composition

of the selected event sample has been estimated by
repeating the analysis with:
Ø an alternative criterion to reject the hard initial

state photon events based on a cut on the effec-
tive centre-of-mass energy reconstructed from
kinematical considerations. The cut corresponds

X'to s rs )0.92
Ø an alternative WqWy background treatment

based on subtraction without the WqWy rejec-
tion cuts.

Ø variation of the estimated 2-photon interaction
background by " 30%.

Ž w xWe also vary the MC model HERWIG 23 instead of
w x.JETSET 22 used to correct the distributions. The

final systematic error is taken as the sum in quadra-
ture of all the contributions mentioned above.

4. Energy dependence of mean values

An important test of QCD models is a comparison
of the energy evolution of the event shape variables.
The measured mean values of thrust, scaled heavy jet
mass, total jet broadening, wide jet broadening and
C-parameter are summarised in Table 2. The energy
dependence of the mean event shape variables arises
mainly from two sources: the logarithmic energy
scale dependence of a and the power law behaviours
of the non-perturbative effects. As an example, the

Ž .mean values of 1yT and wide jet broadening BW
are shown in Fig. 2, together with those measured at

Table 2
Mean values of thrust, T , scaled heavy jet mass, r, total
jet broadening, B , wide jet broadening, B , and C parameterT W'measured at s s 183 GeV. The first error is statistical and the
second is systematic
² :1yT 0.0547 "0.0016" 0.0015
² :r 0.0440 "0.0014" 0.0009
² :B 0.0936 "0.0017" 0.0018T
² :B 0.0670 "0.0014" 0.0013W
² :C 0.2189 "0.0051" 0.0074
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² : ² :Fig. 2. Distribution of mean 1y thrust, 1yT and wide jet broadening, B as a function of the centre-of-mass energy, compared toW
several QCD models.

w x w xthe Z resonance 26,27 , above the Z 4,5,28 , and at
q y w xlow energy e e machines 29 . Also shown are the

energy dependences of these quantities as predicted
w xby JETSET 7.4 PS 22 , HERWIG 5.6, ARIADNE 4.06,

COJETS 6.23 and JETSET 7.4 ME Monte Carlo models
with constant parameter values over the entire en-

w xergy range. These models have been tuned 6 to
global event shape distributions and charged particle
multiplicity distributions measured at 91.2 GeV. They
use different approaches to describe the perturbative

and non-perturbative phase of QCD evolution. For
both the distributions all the models, with the excep-
tion of JETSET ME, agree well with the data.

5. a determinations

In order to derive a , we fit the measured distri-s
butions of the event shape variables to theoretical

Ž 2 .calculations based on OO a perturbative QCD withs
resummed leading and next-to-leading order terms.

Table 3
Ž .a 183 GeV from the fits to the event shape variables together with the estimated experimental and theoretical errors, fit ranges and fits

qualities. The fit range for checking the fit qualities is also given in the last row
Ž .1yT r B B CT W

Ž .a 183 GeV 0.1135 0.1070 0.1112 0.1028 0.1072s
Fit range 0.00–0.30 0.00–0.20 0.00–0.25 0.00–0.20 0.05–0.50

2x rd.o.f. 4.8 r 11 4.2 r 13 18.3 r 13 4.9 r 13 6.1 r 8

Statistical error "0.0024 "0.0023 "0.0018 "0.0016 "0.0032
Systematic error "0.0018 "0.0023 "0.0012 "0.0011 "0.0015
Overall experimental error "0.0030 "0.0033 "0.0022 "0.0019 "0.0035

Overall theoretical error "0.0055 "0.0038 "0.0065 "0.0058 "0.0052

Ž .Fit range for checking 0.025–0.300 0.015–0.225 0.040–0.240 0.030–0.210 0.10–0.50
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Fig. 3. Measured distributions of thrust, T , scaled heavy jet mass,
r, total, B , and wide, B , jet broadening, and C parameter inT W
comparison with QCD predictions at 183 GeV. The experimental
errors include statistical and systematic uncertainties.

These calculations are performed at parton level and
do not include heavy quark mass effects. To compare
the analytical calculations with the experimental dis-

tributions, the effect of hadronisation and decays has
been corrected using Monte Carlo programs.

For the fit, we need to define ranges that take into
account the limited statistics at LEP2 as well as the
reliability of the resummation calculation. The fit
ranges given in Table 3 are the same as those in our

w xearlier analyses 4,5 . We carry out fits to the C-
parameter for the first time to extract the value of
a .s

Fig. 3 shows the experimental data together with
the QCD fits for the five variables T , r, B , B andT W
C. The corresponding a values obtained from thes
fits to the distributions are presented in Table 3 with
the experimental and theoretical errors.

The experimental error corresponds to the statisti-
cal errors together with the experimental systematic
uncertainties estimated by varying the energy cali-
bration and background content as mentioned earlier.

The theoretical error is obtained from an estimate
of the hadronization uncertainty and of the errors
coming from the uncalculated higher orders in the
QCD predictions. The first part of Table 4 shows the
variation in the fitted value of a due to differents
hadronisation corrections. The hadronisation correc-
tion using JETSET has been taken as a reference point.
a has been determined using different hadronisations

Ž .models HERWIG, ARIADNE and changing several
parameters of JETSET. For all variables but the wide

Ž .jet broadening B , the most important variationW
comes from the change in the fragmentation models.
We use this as an estimate of the overall hadronisa-
tion uncertainty.

Table 4
Contributions to the estimated theoretical errors for a determination. a has been determined from the C-parameter using log-R and Rs s
matching schemes and are found to differ by 0.0012. The other matching schemes have not been tried out and so the matching scheme
uncertainty cannot be determined for a as determined from C-parameters

Ž .Uncertainty due to 1yT r B B CT W

Fragmentation model "0.0028 "0.0016 "0.0024 "0.0014 "0.0034
Model parameters "0.0019 "0.0016 "0.0013 "0.0038 "0.0013
Hadronisation "0.0028 "0.0016 "0.0024 "0.0038 "0.0034

QCD scale "0.0047 "0.0034 "0.0060 "0.0040 "0.0040
Matching scheme "0.0026 "0.0028 "0.0043 "0.0044 –
Higher orders "0.0047 "0.0034 "0.0060 "0.0044 "0.0040

Overall "0.0055 "0.0038 "0.0065 "0.0058 "0.0052
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The second part of the table summarises the errors
coming from uncalculated higher orders in the QCD
predictions. The scale error is obtained by repeating
the fit for different values of the renormalisation

' 'scale in the interval 0.5 s FmF2 s . For all these
scales a good fit is obtained. The matching scheme
uncertainty is obtained from half of the maximum
spread due to the variation of the matching algorithm
w x30 . The systematic errors due to uncalculated higher
order terms have been estimated independently from
the scale uncertainty and the matching scheme uncer-
tainty. The largest of these is taken as the theoretical
uncertainty due to uncalculated higher orders. The
overall theoretical error for each event shape variable
is obtained by adding to this in quadrature the hadro-
nisation uncertainty.

One should note that this estimate of the theoreti-
cal error may not always reflect on the true size of
uncalculated higher order terms. It is better to com-
pare a measurements from many event shape vari-s
ables which are affected differently by higher order
corrections and hadronisation effects. To obtain a
combined value for the strong coupling constant we
take the unweighted average of the five a values.s
We estimate the overall theoretical error from the
simple average of the five theoretical errors or from
half of the maximum spread in the five a values.s
Both these estimates yield similar results. The com-
bined results are:

a 183 GeV s0.1083" 0.0028 expŽ . Ž .s

" 0.0054 thŽ .

where the first error is experimental and the second
error is theoretical.

We have examined the dependence of the value of
a on the fit range. We repeated the a determina-s s
tion with a new set of ranges also given in Table 3
where we excluded the extreme 2-jet region. We find

Ž . Ž .a 183 GeV s 0.1083 " 0.0093 exp " 0.0046s
Ž .th in agreement with the earlier number. The num-
ber of events contributing to the new fits is drasti-
cally reduced resulting in a large statistical error. The
estimated experimental systematic error also in-
creases.

To compare the a value with our earlier mea-s
w xsurements done at lower energies 32,31,4,5 , we use

the mean a value measured from four event shapes
variables, T , r, B and B :T W

a 183 GeV s0.1086" 0.0026 expŽ . Ž .s

" 0.0054 thŽ .

The most precise measurements of a come froms'the determination at s s M and at 183 GeV. ItZ
should be noted that the theoretical errors are strongly
correlated between these measurements. The higher
order uncertainties should be the same and the uncer-
tainties due to hadronisation corrections are compa-
rable at these energies. The error appropriate to a
measurement of the energy dependence of a cans
then be considered to be purely experimental.

The experimental systematic errors on a ares
dominated by the background uncertainties. These
are similar for all the individual low energy or high
energy data points but differ between the low energy,
Z peak and high energy data sets. The experimental
systematic errors are then different and uncorrelated
between the three data sets, but are taken as fully
correlated between individual low energy or high
energy measurements. The eleven measurements in
Fig. 4 are shown with experimental errors only,
together with a fit to the QCD evolution equation

Ž . 2with a M as a free parameter. The fit gives a xs Z

Fig. 4. a measurements from event shape distributions as as
function of the centre-of-mass energy. The errors shown are only
experimental. The points below 91 GeV have been obtained from
radiative hadronic events. The solid and dashed lines are fits of
the data points with the energy dependence of a as given bys
QCD and with constant a , respectively.s
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'Fig. 5. Measured charged particle multiplicity distribution at s
s 183 GeV compared with expectation from signal and back-
ground processes.

of 16.9 for 10 degrees of freedom corresponding to a
confidence level of 7.6% with a fitted value of a :s

a M s0.1216" 0.0017 exp " 0.0058 th .Ž . Ž . Ž .s Z

On the other hand, a model with constant a gives as
x 2 of 91.4.

6. Charged particle multiplicity

The dynamics of hadron production can be probed
using the charged particle multiplicity distribution
which has been found to be sensitive to the parame-
ters of the QCD models. Fig. 5 shows the measured
multiplicity distribution at detector level compared
with Monte Carlo predictions for signal and back-

'ground processes at s s 183 GeV.

² :Fig. 6. The mean charged particle multiplicity, n , as a func-ch
tion of the centre-of-mass energy, compared to several QCD
models.

The measured distributions are corrected for the
remaining estimated background using Monte Carlo
on a bin-by-bin basis. The distributions are then
corrected for resolution and acceptance, using a ma-
trix unfolding method. In this correction procedure,
we assume all weakly decaying light particles with
mean lifetime larger than 3.3=10y10 s to be stable.

The systematic errors have been determined in the
same manner as for the global event shape variables
with one additional contribution corresponding to a
variation of the quality criteria for track selection.

The first three moments of charged particle multi-
plicity distribution are summarised in Table 5 to-
gether with the dispersion and skewness variable.

Fig. 6 shows the evolution of mean charged parti-
cle multiplicity with centre-of-mass energy com-

Table 5
Moments of charged multiplicity distribution together with dispersion and skewness

Variable Value Error

Statistical Systematic

Ž ² :.First moment m s N 27.04 0.24 0.431 ch
2Ž ² :.Second moment m s N 802 15 252 ch
3 3 3 3Ž ² :.Third moment m s N 25.9=10 0.7=10 1.3=103 ch

2Ž .Dispersion D s m ym 8.43 0.18 0.18( 2 1
3Ž w x .Skewness S s m y3m m q2m rD 0.58 0.18 0.093 1 2 1
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pared to several QCD models. We also include
measurements done by other eqey experiments at

w x w xsimilar 33,4,5,27,28 and lower 29 centre-of-mass
energies. The parameters of these models are the
same at all energies. We find that the energy depen-
dence of the multiplicity distribution is in agreement
with the predictions of parton shower models like

w x w x w xJETSET 22 , HERWIG 23 , ARIADNE 24 which in-
clude QCD coherence effects. However, parton
shower models with no QCD coherence effects like

w xCOJETS 25 or matrix element models as imple-
mented in JETSET cannot explain the energy depen-
dence. COJETS predicts a faster energy evolution,
while the matrix element model, which has low
parton multiplicity before fragmentation due to the
Ž 2 .OO a calculation, needs retuning at each centre-of-s

mass energy.

7. Inclusive particle spectrum

The phenomenon of colour coherence in QCD
implies destructive interference in soft gluon emis-
sion. This gives rise to a suppression of hadron
production at small momenta. We study the charged
particle momentum spectrum in terms of the variable

Ž .js ln 1rx , where x is the momentum scaled byp p
the beam energy. The observed distribution is cor-

'Fig. 7. Corrected j-spectrum at s s 183 GeV together with the
fits to Gaussian and skewed Gaussian distributions. The fit range
is between the vertical lines.

Table 6
j w values determined at different centre-of-mass energies

w w's j Value Error on j

Statistical Systematic

133 GeV 3.90 0.04 0.05
163 GeV 3.92 0.05 0.04
172 GeV 4.06 0.05 0.05
183 GeV 4.08 0.02 0.04

rected for the effect of background, detector resolu-
tion and acceptance on a bin-by-bin basis using
Monte Carlo events. The corrected spectrum is shown
in Fig. 7. The asymptotic behaviour of the j spec-

w xtrum is predicted to be Gaussian 34,35 . Next-to-
w xleading order corrections 36 distort the gaussian

shape of the j distribution. This implies a narrower
j-peak shifted towards lower x-values, skewed and
flattened towards higher x-values, with the tail falling
off faster than Gaussian. The smooth lines in Fig. 7
are fits to the corrected distributions to a Gaussian
and a skewed Gaussian function restricting the fit
range to values of j where the distribution falls to
60% of its maximum value. During the fit, the
statistical errors on the measurements are taken to be
uncorrelated whereas the systematic errors are taken
to be maximally correlated. Both the distributions
give reasonable description of the data around the
peak position suggesting that the next-to-leading cor-
rections do not influence the determination of peak
position at high energies. The fit to the skewed
Gaussian distribution yields a x 2 of 8.8 for 13
degrees of freedom and the peak position j w in the
j distribution is determined to be:

j w 183 GeV s4.075" 0.022" 0.038Ž .
where the first error is statistical and the second error
is due to systematics. To estimate the systematic

Ž .errors, we have repeated the fits changing a the
Žfunctional form Gaussian instead of skewed Gauss-

. Ž . Ž .ian ; b the quality cuts on track selection; c the
hadronic selection criteria to vary the backgrounds

Ž . Ž w x.within one s ; d the model HERWIG 23 used for
Ž .detector corrections the default being PYTHIA . Half

of the maximum spread is assigned as the systematic
error. The j w analysis has been repeated on the L3
data at lower centre-of-mass energies. The values
obtained are summarised in Table 6.
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Fig. 8. Energy evolution of j w : the solid and dashed lines are fits
to the L3 and TASSO data with Modified Leading Log Approxi-

Ž . Ž .mation MLLA and Double Leading log Approximation DLA
of QCD.

Fig. 8 shows the measured values of j w together
w xwith earlier measurements 37–41 as a function of

centre-of-mass energy. The energy evolution of j w

w xhas been fitted using the QCD prediction 42 :

1 a Y a YŽ . Ž .s sw 2j s sY qa ya ,Ž . (ž /2 32N p 32N pc c

'Ž . Ž .where Y s ln s r2L , a s 11r3N qc
Ž 2 . Ž . Ž .2N r3N , a Y s2prbY with bs 11N r3 yf c s c
Ž .2N r3 , N and N are number of colours andf c f
active flavours respectively. The first term is given

Ž .by the double logarithm approximation DLA , and
the correction terms arise in the next-to-leading order
Ž .MLLA QCD predictions. In the fits, we have taken
the statistical error as fully uncorrelated and the
systematic errors from the same experiment as fully
correlated. The correlation of systematic errors
among different experiments has been ignored.

We find that the data are in better agreement with
QCD predictions computed to the next-to leading
orders. The fit of the L3 and TASSO data to the
DLA parametrisation gives a x 2 of 34.7 for 8

Ž y5 .degree of freedom CL s 3.0=10 whereas the
MLLA predictions give a fit with x 2 of 7.7 for 8

Ž .degrees of freedom CL s 0.46 .

It should be recalled that the suppression of hadron
production at very small momenta resulting in a bell
shape of the j distribution is expected on purely
kinematical grounds due to finite hadron masses.
Soft gluon coherence, however, increases this sup-
pression and is manifested in the energy dependence
of j w. The change with energy would be approxi-
mately two times larger without any destructive in-
terference.

8. Summary

We have measured distributions of event shape
variables in hadronic events from eqey annihilation
'at s s 183 GeV. The distributions of the event

shape variables as well as the energy dependence of
the mean are well described by QCD parton shower
models.

The event shape distributions are compared to
second order QCD calculations together with re-
summed leading and next-to-leading log terms. The
data are well described by these calculations with a

Ž .value of a s 0.1086 " 0.0026 exp " 0.0054s'Ž .th at s s 183 GeV. This measurement together
with our earlier measurements at lower centre-of-
mass energies clearly demonstrates the running of as
as expected in QCD.

The energy evolution of the charged particle mul-
tiplicity as well as the inclusive charged particle
momentum spectrum give evidence of soft gluon
suppression. The energy evolution of the peak posi-
tion j w of inclusive j spectrum is described ade-
quately by the next-to-leading order QCD calculation
including interference effects.
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