Spectrum and normal modes of non-hermitian quadratic boson operators

Javier Garcia¹ and R. Rossignoli^{1,2} 1 IFLP-CONICET and Depto. de Física, Universidad Nacional de La Plata, C.C.67, La Plata 1900, Argentina 2 Comisión de Investigaciones Científicas (CIC), La Plata (1900), Argentina

We analyze the spectrum and normal mode representation of general quadratic bosonic forms H not necessarily hermitian. It is shown that in the one-dimensional case such forms exhibit either an harmonic regime where both H and H^{\dagger} have a discrete spectrum with biorthogonal eigenstates, and a coherent-like regime where either H or H^{\dagger} have a continuous complex two-fold degenerate spectrum, while its adjoint has no convergent eigenstates. These regimes reflect the nature of the pertinent normal boson operators. Non-diagonalizable cases as well critical boundary sectors separating these regimes are also analyzed. The extension to N -dimensional quadratic systems is as well discussed.

I. INTRODUCTION

The introduction of parity-time (\mathcal{PT}) -symmetric Quantum Mechanics [\[1,](#page-9-0) [2](#page-9-1)] has significantly enhanced the interest in non-hermitian Hamiltonians. When possessing PT symmetry, such Hamiltonians can still exhibit a real spectrum if the symmetry is unbroken in all eigenstates, undergoing a transition to a regime with complex eigenvalues when the symmetry becomes broken [\[1,](#page-9-0) [2\]](#page-9-1). A generalization based on the concept of pseudohermiticity was then developed [\[3](#page-9-2)[–5](#page-9-3)], which provides a complete characterization of diagonalizable Hamiltonians with real discrete spectrum and is equivalent to the presence of an antilinear symmetry. A similar approach had been already put forward in [\[6](#page-9-4)] in connection with the non-hermitian bosonization of angular-momentum and fermion operators introduced by Dyson [\[7](#page-9-5), [8](#page-9-6)]. An equivalent formulation of the general formalism based on biorthogonal states can also be made [\[4,](#page-9-7) [9,](#page-9-8) [10\]](#page-9-9).

Non-hermitian Hamiltonians were first introduced as effective Hamiltonians for describing open quantum sys-tems [\[11\]](#page-9-10). Non-hermitian Hamiltonians with \mathcal{PT} symmetry have recently provided successful effective descriptions of diverse systems and processes, specially in open regimes with balanced gain and loss. Examples are laser absorbers [\[12\]](#page-9-11), ultralow threshold phonon lasers [\[13\]](#page-9-12), defect states and special beam dynamics in optical lattices [\[14\]](#page-9-13) and other related optical systems [\[15,](#page-9-14) [16](#page-9-15)]. \mathcal{PT} -symmetric properties have been also observed and investigated in simulations of quantum circuits based on nuclear magnetic resonance [\[17\]](#page-9-16), superconductivity experiments [\[18](#page-9-17), [19\]](#page-9-18), microwave cavities [\[20\]](#page-9-19), Bose-Einstein condensates [\[21\]](#page-9-20), spin systems [\[22\]](#page-9-21), and vacuum fluctuations [\[23\]](#page-9-22). Evolution under timedependent non-hermitian Hamiltonians has also been discussed in [\[24,](#page-9-23) [25\]](#page-9-24).

Of particular interest are non-hermitian Hamiltonians which are quadratic in coordinates and momenta, or equivalently, boson creation and annihilation operators. They include the so-called Swanson models [\[26](#page-9-25), [27\]](#page-9-26), based on one-dimensional \mathcal{PT} -symmetric Hamiltonians

with real spectra, which have been examined and extended in different ways [\[28](#page-9-27)[–31](#page-9-28)]. Effective quadratic nonhermitian Hamiltonians have also arisen in the description of LRC circuits with balanced gain and loss [\[32\]](#page-9-29), coupled optical resonators [\[33\]](#page-9-30), optical trimers [\[34](#page-9-31)] and the interpretation of the electromagnetic self-force [\[35\]](#page-9-32).

The aim of this article is to examine the normal modes, spectrum and eigenstates of general, not necessarily hermitian, quadratic bosonic forms in greater detail, extending the methodology of [\[36,](#page-9-33) [37\]](#page-9-34) to the present general situation. Such quadratic forms can represent basic systems like a harmonic oscillator with a discrete spectrum, a free particle Hamiltonian with a continuous real spectrum, the square of an annihilation operator, in which case it has a continuous complex spectrum with coherent states [\[38\]](#page-9-35) as eigenvectors, and the square of a creation operator, in which case it has no convergent eigenstates. We will here show that a general quadratic one-dimensional form belongs essentially to one of these previous categories, as determined by the nature of the normal boson operators, i.e., as whether one, both or none of them possesses a convergent vacuum. Explicit expressions for eigenstates are provided, together with an analysis of border and "nondiagonalizable" regimes. The extension to N-dimensional quadratic systems is then also discussed.

II. THE ONE-DIMENSIONAL CASE

A. Normal mode representation

We consider a general quadratic form in standard boson creation and annihilation operators a, a^{\dagger} ([a, a^{\dagger}] = 1),

$$
H = A\left(a^{\dagger}a + \frac{1}{2}\right) + \frac{1}{2}\left(B_{+}a^{\dagger}{}^{2} + B_{-}a^{2}\right) \tag{1}
$$

$$
= \frac{1}{2} \begin{pmatrix} a^{\dagger} & a \end{pmatrix} \mathcal{H} \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix}, \quad \mathcal{H} = \begin{pmatrix} A & B_{+} \\ B_{-} & A \end{pmatrix}, \quad (2)
$$

where A and B_{\pm} are in principle arbitrary complex numbers. By extracting a global phase we can always assume, nonetheless, A real non-negative $(A \geq 0)$, while by a phase transformation $a \to e^{i\phi}a$, $a^{\dagger} \to e^{-i\phi}a^{\dagger}$, we can set equal phases on B_{\pm} , such that $B_{\pm} = |B_{\pm}|e^{i\theta}$. The hermitian case corresponds to ${\mathcal H}$ hermitian and the original Swanson Hamiltonian to B_{\pm} real [\[26\]](#page-9-25).

Our first aim is to write H in the normal form

$$
H = \lambda \left(\bar{b}^{\dagger} b + \frac{1}{2} \right) , \qquad (3)
$$

where b, \bar{b}^{\dagger} are related to a and a^{\dagger} through a generalized Bogoliubov transformation

$$
b = ua + va^{\dagger}, \quad \bar{b}^{\dagger} = \bar{v}^*a + \bar{u}^*a^{\dagger}.
$$
 (4)

Here \bar{b}^{\dagger} may differ from b^{\dagger} although they still satisfy the bosonic commutation relation

$$
[b, \bar{b}^{\dagger}] = 1, \tag{5}
$$

which implies

$$
u\bar{u}^* - v\bar{v}^* = 1.
$$
 (6)

If H is hermitian and positive definite $(|B_+| < A)$, such that H represents a stable bosonic mode, we can always choose u, v, \bar{u} and \bar{v} such that $\bar{b}^{\dagger} = b^{\dagger}$. This choice is no longer feasible in the general case.

The transformation [\(4\)](#page-1-0) can be written as

$$
\begin{pmatrix} b \\ \bar{b}^{\dagger} \end{pmatrix} = \mathcal{W} \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix} , \quad \mathcal{W} = \begin{pmatrix} u & v \\ \bar{v}^* & \bar{u}^* \end{pmatrix} , \tag{7}
$$

with W satisfying Det $W = 1$. We can then rewrite H as

$$
H = \frac{1}{2} \left(\bar{b}^{\dagger} \ \ bright) \mathcal{H}' \left(\frac{b}{\bar{b}^{\dagger}} \right) \,, \tag{8}
$$

$$
\mathcal{H}' = \mathcal{M}\mathcal{W}\mathcal{M}\mathcal{H}\mathcal{W}^{-1} = \begin{pmatrix} A' & B'_+ \\ B'_- & A' \end{pmatrix},\tag{9}
$$

where $A' = A(u\bar{u}^* + v\bar{v}^*) - B_+u\bar{v}^* - B_-\bar{u}^*v$, $B'_+ = B_+u^2 +$ $B_{-}v^2 - 2Auv, B'_{-} = B_{-}\bar{u}^{*2} + B_{+}\bar{v}^{*2} - 2A\bar{u}^{*}\bar{v}^{*}$ and

$$
\mathcal{M} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} . \tag{10}
$$

It is then seen from Eq. [\(9\)](#page-1-1) that a *diagonal* \mathcal{H}' ($B'_{\pm} = 0$, $A = \lambda$) and hence a diagonal representation [\(4\)](#page-1-0) can be obtained if and only if i) the matrix

$$
\mathcal{MH} = \begin{pmatrix} A & B_+ \\ -B_- & -A \end{pmatrix},\tag{11}
$$

whose eigenvalues are $\pm \lambda$ with

$$
\lambda = \sqrt{A^2 - B_+ B_-} \,,\tag{12}
$$

is diagonalizable, i.e. $\lambda \neq 0$ if rank $(\mathcal{H}) > 0$, and ii) \mathcal{W}^{-1} is a matrix with unit determinant diagonalizing \mathcal{MH} , such

that $WMHW^{-1} = \lambda M$ and $\mathcal{H}' = \lambda \mathbb{1}$. For instance, assuming $\lambda \neq 0$, we can set

 \overline{v}

$$
u = \bar{u}^* = \sqrt{\frac{A + \lambda}{2\lambda}},
$$

$$
= \sqrt{\frac{A - \lambda}{2\lambda}} \sqrt{\frac{B_+}{B_-}}, \quad \bar{v}^* = \sqrt{\frac{A - \lambda}{2\lambda}} \sqrt{\frac{B_-}{B_+}},
$$
(13)

where signs of v, \bar{v}^* are such that $2\lambda u \bar{v}^* = B_{-,2} 2\lambda \bar{u}^* v =$ B_+ . Any further rescaling $b \to \alpha b$, $\overline{b}^{\dagger} \to \alpha^{-1} \overline{b}^{\dagger}$, $\alpha \neq 0$, remains feasible, since it will not affect their commutator nor Eq. [\(3\)](#page-1-2), although the choice [\(13\)](#page-1-3) directly leads to $\overline{b}^{\dagger} = \overline{b}^{\dagger}$ when H is hermitian and positive definite (in which case $0 < \lambda \leq A$). Eqs. [\(13\)](#page-1-3) remain also valid for $B_+ \to 0$ or $B_- \to 0$, in which case $\lambda \to A$, $u = \bar{u}^* \to 1$ and $(v, \bar{v}^*) \to (0, \frac{B_-}{2A})$ or $(\frac{B_+}{2A}, 0)$.

If no further conditions are imposed on b, \bar{b}^{\dagger} , the sign chosen for λ is irrelevant, since [\(3\)](#page-1-2) can be rewritten as $-\lambda(\bar{b}'^{\dagger}b' + \frac{1}{2})$ for $\bar{b}'^{\dagger} = -b$, $b' = \bar{b}^{\dagger}$ (also satisfying $[b', \bar{b}'^{\dagger}] = 1$). The sign can be fixed by imposing the condition that b (rather than \bar{b}^{\dagger}) has a proper vacuum, as discussed in the next section, in which case the right choice for $A \geq 0$ is $\text{Re}(\lambda) \geq 0$.

The matrix \mathcal{MH} determines the commutators of H with a and a^{\dagger} , $[H, a] = -Aa - B_+a^{\dagger}$, $[H, a^{\dagger}] = Aa^{\dagger} + B_-a$:

$$
[H, \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix}] = -\mathcal{M}\mathcal{H} \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix} . \tag{14}
$$

The normal boson operators b, \bar{b}^{\dagger} satisfying [\(3\)](#page-1-2) are then those diagonalizing this semialgebra:

$$
[H, b] = -\lambda b, \ \ [H, \bar{b}^{\dagger}] = \lambda \bar{b}^{\dagger}.
$$
 (15)

Therefore, if $|\alpha\rangle$ is an eigenvector of H with energy E_{α} ,

$$
H|\alpha\rangle = E_{\alpha}|\alpha\rangle ,\qquad (16)
$$

then $\bar{b}^{\dagger}|\alpha\rangle$ and $b|\alpha\rangle$ are, respectively, eigenvectors with eigenvalues $E_{\alpha} \pm \lambda$, provided $\bar{b}^{\dagger}|\alpha\rangle$ and $b|\alpha\rangle$ are non zero:

$$
H\bar{b}^{\dagger}|\alpha\rangle = (\bar{b}^{\dagger}H + \lambda \bar{b}^{\dagger})|\alpha\rangle = (E_{\alpha} + \lambda)\bar{b}^{\dagger}|\alpha\rangle, \quad (17)
$$

$$
Hb|\alpha\rangle = (bH - \lambda b)|\alpha\rangle = (E_{\alpha} - \lambda)b|\alpha\rangle.
$$
 (18)

As in the standard case, these operators then allow one to move along the spectrum, even if it is continuous, as discussed in sec. [II D.](#page-4-0)

The case where MH is nondiagonalizable corresponds here to $\mathcal H$ of rank 1, and hence to an operator H which is just the square of a linear combination of a and a^{\dagger} :

$$
H_{nd} = (\sqrt{B_{-}} a \pm \sqrt{B_{+}} a^{\dagger})^{2} / 2. \tag{19}
$$

Such H leads to $A = \pm \sqrt{B_+ B_-}$ and $\lambda = 0$. This case, which includes the free particle case $H \propto P^2$, will be discussed in sec. [II F.](#page-5-0)

B. The harmonic case

Let $|0_a\rangle$ be the vacuum of a, $a|0_a\rangle = 0$, and let us assume a vacuum $|0_b\rangle$ exists such that $b |0_b\rangle = 0$. Then, $|0_b\rangle$ is necessarily a gaussian state of the form [\[39](#page-9-36)]

$$
|0_b\rangle \propto \exp\left(-\frac{v}{2u}a^{\dagger 2}\right)|0_a\rangle = \sum_{n=0}^{\infty} \left(-\frac{v}{2u}\right)^n \frac{\sqrt{(2n)!}}{n!} |2n_a\rangle.
$$
\n(20)

Recalling that $\sum_{n=0}^{\infty} (\frac{z}{4})^n \frac{2n!}{(n!)^2}$ converges to $\frac{1}{\sqrt{1}}$ $\frac{1}{1-z}$ iff $|z|$ ≤ 1 and $z \neq 1$ [\[40\]](#page-9-37) we see that $|0_b\rangle$ has a finite standard norm $\langle 0_b|0_b \rangle$ only if $|v| < |u|$, implying

$$
\frac{|B_+|}{|B_-|} < \left| \frac{A + \lambda}{A - \lambda} \right| \,. \tag{21}
$$

Eq. [\(21\)](#page-2-0) imposes an upper bound on $|B_{+}/B_{-}|$ for given values of A and B_+B_- . Similarly, assuming a vacuum $|0_{\bar{b}}\rangle$ exists such that $\bar{b}|0_{\bar{b}}\rangle = 0$, then

$$
|0_{\bar{b}}\rangle \propto \exp\left(-\frac{\bar{v}}{2\bar{u}}{a^{\dagger}}^{2}\right)|0_{a}\rangle = \sum_{n=0}^{\infty} \left(-\frac{\bar{v}}{2\bar{u}}\right)^{n} \frac{\sqrt{(2n)!}}{n!} |2n_{a}\rangle ,
$$
\n(22)

with $\langle \bar{0}_b | \bar{0}_b \rangle$ convergent only if $|\bar{v}| < |\bar{u}|$, i.e.,

$$
\frac{|B_-|}{|B_+|} < \left| \frac{A + \lambda}{A - \lambda} \right| \,. \tag{23}
$$

Eqs. (21) – (23) determine a common convergence window

$$
\frac{|A - \lambda|}{|A + \lambda|} < \frac{|B_+|}{|B_-|} < \frac{|A + \lambda|}{|A - \lambda|} \,,\tag{24}
$$

equivalent to $|A-\lambda| < |B_{\pm}| < |A+\lambda|$, within which both $|0_b\rangle$ and $|0_{\bar{b}}\rangle$ are well defined. For $A \geq 0$, such window can exist only if $A > 0$ and $\text{Re}(\lambda) > 0$, which justifies our previous sign choice of λ . This window corresponds to region \bf{I} in Figs. [1–](#page-3-0)[2.](#page-3-1)

On the other hand, their overlap $\langle 0_{\bar{b}} | 0_b \rangle$ converges iff

$$
\left|\frac{v\bar{v}^*}{u\bar{u}^*}\right| = \left|\frac{A-\lambda}{A+\lambda}\right| \le 1,\tag{25}
$$

and $v\bar{v}^* \neq u\bar{u}^*$, but these conditions are always satisfied due to Eq. [\(6\)](#page-1-4) and the choice $\text{Re}(\lambda) \geq 0$ (for $A \geq 0$). In particular, if Eq. [\(24\)](#page-2-2) holds, Eq. [\(25\)](#page-2-3) is always fulfilled.

It is now natural to define, for $m, n \in \mathbb{N}$, the states

$$
|n_b\rangle = \frac{(\bar{b}^{\dagger})^n}{\sqrt{n!}}|0_b\rangle, \quad |m_{\bar{b}}\rangle = \frac{(b^{\dagger})^m}{\sqrt{m!}}|0_{\bar{b}}\rangle, \tag{26}
$$

which, since $[\bar{b}^{\dagger}b, \bar{b}^{\dagger}] = \bar{b}^{\dagger}$ and $[b^{\dagger}\bar{b}, b^{\dagger}] = b^{\dagger}$, satisfy

$$
\bar{b}^{\dagger}b|n_b\rangle = n|n_b\rangle \,, \quad b^{\dagger}\bar{b}|m_{\bar{b}}\rangle = m|m_{\bar{b}}\rangle \,, \tag{27}
$$

with

$$
\langle m_{\bar{b}} | n_b \rangle = \delta_{mn} \langle 0_{\bar{b}} | 0_b \rangle, \tag{28}
$$

implying that $\{|n_b\rangle\}$ and $\{|n_{\bar{b}}\rangle\}$ form a *biorthogonal set* [\[9\]](#page-9-8). Adding "normalization" factors $u^{-1/2}$ and $\bar{u}^{-1/2}$ in (20) – (22) directly leads to $\langle 0_b | 0_{\bar{b}} \rangle = 1$. Note, however, that the $|n_b\rangle$ are not orthogonal among themselves, nor are the $|m_{\bar{b}}\rangle$. Since $\bar{b}^{\dagger} = C^{-1}[b^{\dagger} + (u\bar{v} - v\bar{u})^*b]$, with $C = |u|^2 - |v|^2 = [b, b^{\dagger}],$ the $|n_b\rangle$ are linear combinations of standard Fock states $\propto (b^{\dagger})^k |0_b\rangle$ with $k = n, n - 2...$ Similar considerations hold for the $|m_{\bar{b}}\rangle$.

We can then write, in agreement with Eqs. (17) – (18) ,

$$
H|n_b\rangle = \lambda \left(n + \frac{1}{2}\right)|n_b\rangle, \qquad (29)
$$

and also,

$$
H^{\dagger} |m_{\bar{b}}\rangle = \lambda^* \left(m + \frac{1}{2} \right) |m_{\bar{b}}\rangle , \qquad (30)
$$

where $H^{\dagger} = \lambda^* (b^{\dagger} \bar{b} + \frac{1}{2})$. Hence, in the interval [\(24\)](#page-2-2) there is a lower-bounded *discrete spectrum* of both H and H^{\dagger} , as corroborated in section [II D.](#page-4-0)

This discrete spectrum will be proportional to λ . Assuming A real, λ is real and nonzero iff B_+B_- is real and satisfies

$$
B_+ B_- < A^2 \,. \tag{31}
$$

For equal phases of B_{\pm} , it then comprises two cases:

i) B_{\pm} real $(\theta = 0, \pi)$ satisfying [\(31\)](#page-2-6), in which case $\lambda = \sqrt{A^2 - |B_+B_-|} < A$ and u, v, \bar{v} in Eq. [\(13\)](#page-1-3) are real. Here H is invariant under time reversal, since $\mathcal{T}a\mathcal{T} = a$ and $\mathcal{T}a^{\dagger}\mathcal{T} = a^{\dagger}$. This is the Swanson case [\[26](#page-9-25)]. $\sqrt{A^2 + |B_+B_-|} > A$, with u real and v, \bar{v}^* imaginary. ii) B_{\pm} imaginary $(\theta = \pm \pi/2)$, in which case $\lambda =$ Here H has the antiunitary (or generalized \mathcal{PT}) sym-metry [\[41](#page-9-38)[–43](#page-9-39)] UT , with U the phase transformation $(a, a^{\dagger}) \rightarrow (-ia, ia^{\dagger}).$

For λ real, Eq. [\(24\)](#page-2-2) implies $|B_+ + B_-| < 2A$ in case i) and $|B_{+}-B_{-}| < 2A$ in case ii), which can be summarized, for any case with real λ , as

$$
|B_+ + B_-^*| < 2A \,. \tag{32}
$$

Eq. [\(32\)](#page-2-7) is equivalent to $\mathcal{H} + \mathcal{H}^{\dagger}$ positive definite, i.e.,

$$
\mathcal{H} + \mathcal{H}^{\dagger} > 0 \,, \tag{33}
$$

such that $\text{Re}[Z^{\dagger}HZ] > 0 \ \forall \ Z = (z_1, z_2)^T \neq 0$. Therefore, both H and H^{\dagger} will exhibit a discrete real positive spec-trum iff Eq. [\(33\)](#page-2-8) holds. Eq. [\(32\)](#page-2-7) then leads to region I in Fig. [1,](#page-3-0) i.e., the stripe $|B_+ + B_-| \leq 2A$ when B_{\pm} are real.

On the other hand, when λ is complex the spectrum of H can be made real just by multiplying H by a phase $\lambda^*/|\lambda|$, as seen from [\(29\)](#page-2-9). The ensuing operator H' has the antiunitary symmetry $U\mathcal{T}$, with U the Bogoliubov transformation $\binom{a}{a^{\dagger}} \rightarrow U\binom{a}{a^{\dagger}}U^{-1} = (\mathcal{W}^*)^{-1}\mathcal{W}\binom{a}{a^{\dagger}}$. For complex λ , the stable sector adopts the form depicted in Fig. [2](#page-3-1) (sector I). For a common phase $\theta = 0$ (B_{\pm} real

FIG. 1. Regions of distinct spectrum for the operator [\(1\)](#page-0-0) in the case of B_{\pm} real (and $A > 0$). I denotes the region with discrete positive spectrum $(Eq. (32))$ $(Eq. (32))$ $(Eq. (32))$, II that with continuous complex twofold degenerate spectrum (Eq. [\(46\)](#page-4-1)) and III that with no convergent eigenfunctions (Eq. [\(60\)](#page-5-1)). The dashed curves depict the set of points where $M\mathcal{H}$ is nondiagonalizable. The hermitian case corresponds to the line $B_ - = B_+$.

FIG. 2. Regions of distinct spectrum for the operator [\(1\)](#page-0-0) with complex $B_{\pm} = |B_{\pm}|e^{i\theta}$ and $\theta = \pi/6$. Same details as Fig. [1:](#page-3-0) In I , H has a discrete complex spectrum, while in II it has a continuous complex spectrum and in III no convergent eigenfunctions. The dotted segment $|B_+| + |B_-| = 2A$ indicates the upper limit of region **I** for $\theta = 0$ (B_{\pm} real and positive) whereas dotted lines $|B_+| - |B_-| = \pm 2A$ indicate the border of **I** for $\theta = \pi/2$ (B_{\pm} imaginary); For general $\theta \in (0, \pi/2]$ and $|B_{\pm}| \gg A$, **I** is limited by lines $|B_{+}| - |B_{-}| = \pm 2A \sin \theta$.

and positive) it is just the triangle $|B_+| + |B_-| < 2A$, while for $\theta = \pi/2$ (B_{\pm} imaginary, equivalent through a phase transformation to B_{\pm} real with opposite signs) it corresponds to $||B_+| - |B_-|| < 2A$ (sectors delimited by dotted lines). The union of these two sectors leads to the stripe of Fig. [1](#page-3-0) for B_{\pm} arbitrary real numbers.

For intermediate phases the stable region is essentially the union of the previous triangle with a narrower stripe, asymptotically delimited by the lines $||B_+| - |B_-||$ = $2A \sin \theta$ for $|B_{\pm}| \gg A$. A similar type of diagram for a non-quadratic system was provided in [\[6\]](#page-9-4).

C. The coordinate representation

We now turn to the representation of H and its eigenstates in terms of coordinate and momentum operators

$$
Q = \frac{a + a^{\dagger}}{\sqrt{2}}, \ \ P = \frac{a - a^{\dagger}}{i\sqrt{2}}, \tag{34}
$$

satisfying $[Q, P] = i$. The Hamiltonian [\(2\)](#page-0-0) becomes

$$
H = \frac{1}{2} \left[\tilde{A} - P^2 + \tilde{A} + Q^2 + \tilde{B} \left(QP + PQ \right) \right]
$$
 (35)

$$
= (Q \ P) \tilde{\mathcal{H}} \begin{pmatrix} Q \\ P \end{pmatrix}, \ \tilde{\mathcal{H}} = \mathcal{S}^{\dagger} \mathcal{H} \mathcal{S} = \begin{pmatrix} \tilde{A}_{+} & \tilde{B} \\ \tilde{B} & \tilde{A}_{-} \end{pmatrix}, (36)
$$

where $S = \left(\frac{1}{1} - i\right) / \sqrt{2}$ and

$$
\tilde{A}_{\pm} = A \pm \frac{B_+ + B_-}{2}, \quad \tilde{B} = \frac{B_+ - B_-}{2i}.
$$
 (37)

The hermitian case corresponds to \ddot{A}_{\pm} and \ddot{B} real, while the generalized discrete positive spectrum case [\(33\)](#page-2-8) to $\tilde{\mathcal{H}} + \tilde{\mathcal{H}}^{\dagger} > 0$. Thus, for B_{\pm} real the border $|B_{+} + B_{-}^*| = 2A$ corresponds to $\ddot{A}_- = 0$ or $\ddot{A}_+ = 0$, i.e. infinite mass or no quadratic potential, while for B_{\pm} imaginary to $|\dot{B}| = A$.

The diagonal form [\(3\)](#page-1-2) can then be rewritten as

$$
H = \frac{\lambda}{2} \left(P'^2 + Q'^2 \right), \tag{38}
$$

where $Q' = \frac{b+\bar{b}^{\dagger}}{\sqrt{2}}$ and $P' = \frac{b-\bar{b}^{\dagger}}{i\sqrt{2}}$ $\frac{p-b^*}{i\sqrt{2}}$ satisfy $[Q', P'] = i$ but are in general no longer hermitian. They are related to Q, P through a general canonical transformation

$$
\begin{pmatrix} Q' \\ P' \end{pmatrix} = \tilde{\mathcal{W}} \begin{pmatrix} Q \\ P \end{pmatrix} , \quad \tilde{\mathcal{W}} = \mathcal{S}^{\dagger} \mathcal{W} \mathcal{S} = \begin{pmatrix} \frac{\alpha + \bar{\alpha}^*}{2} & -\frac{\beta - \bar{\beta}^*}{2i} \\ \frac{\alpha - \bar{\alpha}^*}{2i} & \frac{\beta + \beta^*}{2} \end{pmatrix} , \tag{39}
$$

where $\binom{\alpha}{\beta} = u \pm v$, $\left(\frac{\bar{\alpha}}{\beta}\right) = \bar{u} \pm \bar{v}$ and $Det(\tilde{W}) = 1$. Here λ can be expressed as

$$
\lambda = \sqrt{\tilde{A}_{+}\tilde{A}_{-}-\tilde{B}^{2}},\qquad(40)
$$

with $\pm \lambda$ the eigenvalues of $\tilde{\mathcal{M}}\tilde{\mathcal{H}} = \mathcal{S}^{\dagger} \mathcal{M} \mathcal{H} \mathcal{S}.$

Setting $Q|x\rangle = x|x\rangle$, the coordinate representations $\psi_0^b(x) \equiv \langle x|0_b\rangle$, $\psi_0^{\bar{b}}(x) \equiv \langle x|0_{\bar{b}}\rangle$ of the vacua can be found from Eqs. [\(20\)](#page-2-4) and [\(22\)](#page-2-5). They can also be derived by solving the corresponding differential equations $\langle x|b|0_b\rangle = 0, \langle x|\overline{b}|0_{\overline{b}}\rangle = 0, \text{ i.e.,}$

$$
[\alpha x + \beta \partial_x] \psi_0^b(x) = 0, \quad [\bar{\alpha}x + \bar{\beta}\partial_x] \psi_0^{\bar{b}}(x) = 0, \quad (41)
$$

and read

$$
\psi_0^b(x) \propto \exp\left[-\frac{\alpha}{2\beta}x^2\right], \quad \psi_0^{\bar{b}}(x) \propto \exp\left[-\frac{\bar{\alpha}}{2\bar{\beta}}x^2\right].(42)
$$

Since $\text{Re}[\frac{z_1+z_2}{z_1-z_2}] = \frac{|z_1|^2-|z_2|^2}{|z_1-z_2|^2}$ $\frac{|z_1|^2-|z_2|^2}{|z_1-z_2|^2}$ $\forall z_1 \neq z_2 \in \mathbb{C}$, it is verified that they have finite standard norms if $|v| < |u|$ and $|\bar{v}| < |\bar{u}|$. The wave functions of the excited states $|n_b\rangle$ and $|m_{\bar{b}}\rangle$ can be similarly obtained by applying \bar{b}^{\dagger} and b^{\dagger} to the functions (42) , according to Eq. (26) :

$$
\psi_n^b(x) = \frac{1}{\sqrt{n!}} \left[\sqrt{\frac{\bar{\beta}^*}{2\beta}} \right]^n H_n\left(\frac{x}{\gamma}\right) \psi_0^b(x), \quad (43)
$$

$$
\psi_m^{\bar{b}}(x) = \frac{1}{\sqrt{m!}} \left[\sqrt{\frac{\beta^*}{2\bar{\beta}}} \right]^m H_m\left(\frac{x}{\gamma^*}\right) \psi_0^{\bar{b}}(x), \quad (44)
$$

where $\gamma = \sqrt{\beta \bar{\beta}^*}$ and $H_n(x)$ is the Hermite polynomial of degree n. These functions satisfy the biorthogonal-ity relation [\(28\)](#page-2-11), i.e., $\int_{-\infty}^{\infty} \psi_m^{\bar{b}*}(x) \psi_n^b(x) dx = \delta_{mn} \langle 0_b \rangle$ with $\langle 0_{\bar{b}} | 0_{b} \rangle = 1$ if normalization factors $(\sqrt{\pi}\beta)^{-1/2}$ and $(\sqrt{\pi}\overline{\beta})^{-1/2}$ are added in [\(42\)](#page-4-2). They are verified to be the finite norm solutions to the Schrödinger equations associated with H and H^{\dagger} respectively. In the case of $\psi_n^b(x)$, the latter reads

$$
-\frac{1}{2}\tilde{A}_{-}\psi'' - i\tilde{B}\left[x\psi' + \frac{\psi}{2}\right] + \frac{1}{2}\tilde{A}_{+}x^{2}\psi = E\psi, \quad (45)
$$

with $E = \lambda(n + 1/2)$, while in the case of $\psi_m^{\bar{b}}(x)$, \tilde{A}_{\pm} , \tilde{B} are to be replaced by \tilde{A}^*_{\pm} and \tilde{B}^* , with $E = \lambda^*(m + 1/2)$.

D. The case of continuous spectrum

If $|v/u| < 1$ but $|\bar{v}/\bar{u}| > 1$, the vacuum $|0_{\bar{b}}\rangle$ of \bar{b} is no longer well defined, since the coefficients of its expansion in the states $|n_a\rangle$, Eq. [\(22\)](#page-2-5), become increasingly large for large *n*, and the associated eigenfunction $\psi_0^{\bar{b}}(x)$, Eq. [\(42\)](#page-4-2), becomes divergent. This situation occurs whenever

$$
\frac{|B_+|}{|B_-|} < \frac{|A - \lambda|}{|A + \lambda|},\tag{46}
$$

i.e. below the window [\(24\)](#page-2-2), and corresponds to regions II in Figs. [1](#page-3-0) and [2.](#page-3-1) The same occurs with the excited states $|n_{\bar{b}}\rangle$ defined in Eq. [\(26\)](#page-2-10).

Instead, it is now the operator \bar{b}^{\dagger} which has a convergent vacuum, namely

$$
|0_{\bar{b}\uparrow}\rangle \propto \sum_{n=0}^{\infty} \left(-\frac{\bar{u}^*}{2\bar{v}^*}\right)^n \frac{\sqrt{2n!}}{n!} |2n_a\rangle ,\qquad (47)
$$

satisfying $\bar{b}^{\dagger} |0_{\bar{b}^{\dagger}} \rangle = 0$. Since we can write H as

$$
H = -\lambda \left[(-b)\overline{b}^{\dagger} + 1/2 \right],\tag{48}
$$

it becomes clear that $H |0_{\bar{b}\dagger}\rangle = -\lambda/2 |0_{\bar{b}\dagger}\rangle$. Moreover, due to the commutation relation $[\bar{b}^{\dagger}, -b] = 1$, we may as well consider $-b$ as a creation operator and \bar{b}^{\dagger} as an annihilation operator, and define the states

$$
|n_{\bar{b}^{\dagger}}\rangle = \frac{(-b)^n |0_{\bar{b}^{\dagger}}\rangle}{\sqrt{n!}},\tag{49}
$$

which then satisfy $-b\bar{b}^{\dagger} |n_{\bar{b}\dagger}\rangle = n |n_{\bar{b}\dagger}\rangle$, and hence

$$
H|n_{\bar{b}\dagger}\rangle = -\lambda \left(n + \frac{1}{2}\right)|n_{\bar{b}\dagger}\rangle. \tag{50}
$$

Since the previous states $|0_b\rangle$ and $|n_b\rangle$ remain convergent, and Eq. (29) still holds, it is seen that H possesses in this case two sets of discrete eigenstates constructed from the vacua of b and \bar{b}^{\dagger} , with *opposite energies*. The wave functions of the "negative" band are given by

$$
\psi_0^{\bar{b}^{\dagger}}(x) \propto \exp\left[\frac{\bar{\alpha}^*}{2\bar{\beta}^*}x^2\right],
$$

$$
\psi_n^{\bar{b}^{\dagger}}(x) \propto \frac{1}{\sqrt{n!}} \left[\sqrt{\frac{\beta}{2\bar{\beta}^*}}\right]^n H_n\left(\frac{ix}{\gamma}\right) \psi_0^{\bar{b}^{\dagger}}(x),
$$
\n(51)

which are convergent since now $\text{Re}(\bar{\alpha}^*/\bar{\beta}^*)$ < 0.

However, these eigenvalues do not exhaust, remarkably, the entire spectrum. The Schrödinger equation (45) has in the present case two linearly independent bounded eigenstates $|\nu_b\rangle$ and $|\nu_{\bar{b}\uparrow}\rangle$, for any complex energy

$$
E_{\nu} = \lambda \left(\nu + \frac{1}{2} \right), \tag{52}
$$

with $\nu \in \mathbb{C}$. As demonstrated in the appendix, the associated eigenfunctions $\psi^b_\nu(x) = \langle x | \nu_b \rangle$ and $\psi^{\bar{b}^{\dagger}}_\nu(x) =$ $\langle x | \nu_{\bar{b}\dagger} \rangle$ are given explicitly by:

$$
\psi_{\nu}^{b}(x) = \Xi(\nu) \left(\sqrt{\frac{\bar{\beta}^{*}}{2\beta}} \right)^{n} \exp\left(-\frac{i\tilde{B} + \lambda}{2\tilde{A}_{-}} x^{2} \right) \left[H_{\nu} \left(\frac{x}{\gamma} \right) + (-1)^{n} H_{\nu} \left(-\frac{x}{\gamma} \right) \right],
$$
\n(53)

$$
\psi_{\nu}^{\bar{b}^{\dagger}}(x) = \Xi(\nu) \left(\sqrt{\frac{\beta}{2\bar{\beta}^*}} \right)^n \exp\left(-\frac{i\tilde{B} - \lambda}{2\tilde{A}_-} x^2 \right) \left[H_{\nu} \left(\frac{ix}{\gamma} \right) + (-1)^n H_{\nu} \left(-\frac{ix}{\gamma} \right) \right],\tag{54}
$$

where $n = |\text{Re}(\nu)|$, with |x| the greatest integer lower than x (floor function), and

$$
\Xi(\nu) = \begin{cases} \frac{\sqrt{(|\nu|-1)!}}{1} & \nu = -1, -2, \dots \\ \frac{1}{\sqrt{\Gamma(\nu+1)}} & \text{otherwise} \end{cases}
$$
(55)

For integer $\nu \geq 0$, these functions are proportional to the previous expressions [\(43\)](#page-4-4) and [\(51\)](#page-4-5). For general $\nu \in \mathbb{C}$, they satisfy

$$
H \left| \nu_b \right\rangle = \lambda \left(\nu + \frac{1}{2} \right) \left| \nu_b \right\rangle, \tag{56}
$$

$$
H \left| \nu_{\bar{b}\uparrow} \right\rangle = -\lambda \left(\nu + \frac{1}{2} \right) \left| \nu_{\bar{b}\uparrow} \right\rangle , \qquad (57)
$$

with

$$
b |\nu_b\rangle \propto \sqrt{\nu} |\nu - 1_b\rangle, \bar{b}^{\dagger} |\nu_b\rangle \propto \begin{cases} \sqrt{\nu + 1} |\nu + 1_b\rangle & (\nu \neq -1) \\ |0_b\rangle & (\nu = -1) \end{cases},
$$
(58)

$$
\bar{b}^{\dagger} | \nu_{\bar{b}\dagger} \rangle \propto \sqrt{\nu} | \nu - 1_{\bar{b}\dagger} \rangle ,
$$

\n
$$
(-b) | \nu_{\bar{b}\dagger} \rangle \propto \begin{cases}\n\sqrt{\nu + 1} | \nu + 1_{\bar{b}\dagger} \rangle & (\nu \neq -1) \\
| 0_{\bar{b}\dagger} \rangle & (\nu = -1)\n\end{cases}
$$
\n(59)

where the proportionality constant is a phase factor. Expressions (56) – (59) are in agreement with Eqs. (17) – (18) . They are valid in this region for both real or complex λ .

Note that if \overline{b}^{\dagger} |-1_b) would vanish, then $|{-1}_b\rangle$ would be proportional to $|0_{\bar{b}\dagger}\rangle$, which is not the case. A similar argument holds for $b \mid -1_{\bar{b}^{\dagger}}$. It is also verified that in the case of discrete spectrum (region I), such state $|-1_b\rangle$ does not exist, i.e., the solution of the first order differential equation $\langle x | \hat{b}^{\dagger} | -1_b \rangle = \langle x | 0_b \rangle$ is divergent. In addition, we remark that Eqs. [\(53\)](#page-4-6) and [\(54\)](#page-4-6) are always linearly in-dependent solutions of the Schrödinger equation [\(45\)](#page-4-3), but in region I the function (54) is always divergent whereas [\(53\)](#page-4-6) is divergent except for $\nu = n = 0, 1, 2, \ldots$

E. The case of no convergent eigenstates

If now
$$
|\bar{v}/\bar{u}| < 1
$$
 but $|v/u| > 1$, i.e.,
\n
$$
\frac{|B_+|}{|B_-|} > \frac{|A + \lambda|}{|A - \lambda|},
$$
\n(60)

neither b nor \bar{b} have a convergent vacuum, so that the eigenstates $|n_b\rangle$ and $|n_{\bar{b}\uparrow}\rangle$ of sec. [II B](#page-2-12) are not well defined. In fact, Eqs. [\(53\)](#page-4-6) and [\(54\)](#page-4-6) become *divergent for* any ν , so that H has no convergent eigenfunctions for *any* value of E . This case corresponds to regions III in Figs. [1–](#page-3-0)[2.](#page-3-1)

On the other hand, it is the operator b^{\dagger} which now has a well defined vacuum $|0_{b} \rangle$, in addition to \bar{b} , which preserves its vacuum $|0_{\bar{b}}\rangle$. Therefore, one can define the states $|n_{b} \rangle$ and $|n_{\bar{b}} \rangle$ in the same way as the treatment of previous section, and also $|\nu_{b\uparrow}\rangle$ and $|\nu_{\bar{b}}\rangle$ for any $\nu \in \mathbb{C}$, which will be eigenstates of H^{\dagger} . Hence, in this case H^{\dagger} , rather than H , has two linearly independent bounded eigenfunctions for every complex value of E . In contrast, in II H^{\dagger} has no bounded eigenstate.

F. Non diagonalizable case

The matrix \mathcal{MH} becomes non diagonalizable when $\lambda =$ 0, i.e. rank $\mathcal{H} = 1$. This case occurs whenever $B_+B_ A²$ and corresponds to the dashed curve in Fig. [1,](#page-3-0) which lies in regions II and III . The operator H takes here the single square form [\(19\)](#page-1-6).

We first analyze the sector lying in region II. In the limit $B_+ \to 0$, with $B_- = A^2/B_+ \to \infty$, H becomes proportional to a^2 . Its eigenstates then become the well known coherent states

$$
|\alpha_a\rangle \propto \exp[\alpha a^\dagger]|0_a\rangle, \qquad (61)
$$

satisfying $a |\alpha_a\rangle = \alpha |\alpha_a\rangle$, $\alpha \in \mathbb{C}$, with $\frac{2B_+}{A^2} H |\pm \alpha_a\rangle \rightarrow$ $\alpha^2 \ket{\pm \alpha_a}$. This implies a *continuous two-fold degenerate* spectrum, as in the rest of region II. The spectrum of H in II is then similar to that of a^2 , reflecting the fact that here both b and \bar{b}^{\dagger} have a convergent vacuum and are then annihilation operators.

In fact, for $\lambda \to 0$ and $A > 0$, the operators b and \overline{b}^{\dagger} of Eq. [\(4\)](#page-1-0) become proportional, i.e. $\bar{b}^{\dagger} \rightarrow \sqrt{B_-/B_+} b$, such that $H \propto b^2$ at leading order. At the curve $\lambda = 0$ and within region II , H takes the exact form

$$
H = \frac{|B_-| - |B_+|}{2} \tilde{b}^2, \quad \tilde{b} = \frac{\sqrt{B_-} a + \sqrt{B_+} a^{\dagger}}{\sqrt{|B_-| - |B_+|}}, \qquad (62)
$$

where \tilde{b} fulfills $[\tilde{b}, \tilde{b}^{\dagger}] = 1$ and has a *convergent* vacuum $\left|0_{\tilde{b}}\right\rangle$ since here $|B_{+}| < |B_{-}|$. It then represents a proper $aninilation$ operator. The eigenstates of H become its coherent states $|\alpha_{\tilde{b}}\rangle \propto \exp[\alpha \tilde{b}^{\dagger}] |\mathbf{0}_{\tilde{b}}\rangle$ satisfying $\tilde{b} |\alpha_{\tilde{b}}\rangle =$ $\alpha \vert \alpha_{\tilde{b}}\rangle$, such that

$$
H\left|\pm\alpha_{\tilde{b}}\right\rangle = \frac{|B_-|-|B_+|}{2}\,\alpha^2\left|\pm\alpha_{\tilde{b}}\right\rangle\,,\tag{63}
$$

with $\alpha \in \mathbb{C}$. The spectrum is then complex continuous and two-fold degenerate, as in the rest of sector II. The eigenfunctions become

$$
\psi_{\alpha}(x) = \langle x | \alpha_{\tilde{b}} \rangle \propto e^{-\frac{1}{2} \frac{\sqrt{B_{-}} + \sqrt{B_{+}}}{\sqrt{B_{-}} - \sqrt{B_{+}}}} \left(x - \sqrt{2} \alpha \frac{\sqrt{B_{-}} - |B_{+}|}{\sqrt{B_{-}} + \sqrt{B_{+}}} \right)^{2}.
$$
\n(64)

On the other hand, in region III, $|B_+| > |B_-|$ and along the curve $\lambda = 0$ we have instead

$$
H = \frac{|B_+| - |B_-|}{2} \tilde{b}^{\dagger 2}, \quad \tilde{b}^{\dagger} = \frac{\sqrt{B_-} a_+ \sqrt{B_+} a^{\dagger}}{\sqrt{|B_+| - |B_-|}}, \tag{65}
$$

with \tilde{b}^{\dagger} a proper *creation* operator satisfying $[\tilde{b}, \tilde{b}^{\dagger}] = 1$ and having no bounded vacuum. Hence, here H has no bounded eigenstates while H^{\dagger} has has a continuous complex spectrum.

Finally, in the hermitian limit $|B_+| = |B_-| = A$, i.e. when the curve $\lambda = 0$ crosses the border between II and III, $H \to \frac{A}{2} (e^{-i\phi} a + e^{i\phi} a^{\dagger})^2$, becoming proportional to Q^2 (or equivalently, to P^2 if $\phi = \pi/2$). It then possesses a continuous two-fold degenerate nonnegative real spectrum, although with non normalizable eigenstates $(|x\rangle)$ or $|p\rangle$). This case corresponds in Fig. [1](#page-3-0) to the two "critical" points where all three regions I, II, III merge, i.e., $|v/u| = |\bar{v}/\bar{u}| = 1$. Thus, at the non-diagonalizable curve $\lambda = 0$, H is proportional to the square of: an annihilation operator inside region II, a creation operator inside region III, and a coordinate or momentum operator at the crossing with the Hermitian case.

G. Intermediate regions

We finally discuss the border between regions I and II or III. These intermediate lines have either $|v/u|=1$ or $|\bar{v}/\bar{u}| = 1$. When crossing from I to II (III), b (b) undergoes an *annihilation* \rightarrow *creation* transition, loosing its bounded vacuum and becoming at the crossing a coordinate or momentum.

As can be verified from Eqs. [\(53\)](#page-4-6) and [\(54\)](#page-4-6) when $A_-\neq 0$, at the border between I and II H has still a discrete spectrum and satisfies Eq. [\(29\)](#page-2-9), since [\(53\)](#page-4-6) remains convergent just for $\nu = n$. On the other hand, [\(54\)](#page-4-6) has no longer a finite norm since $(iB - \lambda)/(2A_{-})$ is an imaginary number. However, the dual states $|0_{\bar{b}}\rangle$ and $|n_{\bar{b}}\rangle$, while also lacking a finite norm $\langle n_{\bar{b}} | n_{\bar{b}} \rangle$, still have finite biorthogonal norms $\langle m_{\bar{b}} | n_b \rangle$, fulfilling Eq. [\(28\)](#page-2-11). In contrast, at the border I-III H ceases to have convergent eigenfunctions for any value of ν , since $|n_b\rangle$ stops being convergent, while dual states $|n_{\bar{b}}\rangle$ remain convergent.

When $A_$ = 0, which corresponds to the case $B_$ ± real and $B_+ + B_- = 2A$ (the border between I and regions **II–III** in Fig. [1\)](#page-3-0), we have $\bar{v} = \bar{u}$. In this case, and for $A \neq B_$, Eq. [\(45\)](#page-4-3) becomes of first order and has a unique solution given by

$$
\psi_{\nu}^{b}(x) \propto e^{-\frac{Ax^{2}}{2(B_{-}-A)}}x^{\nu},
$$
\n(66)

where we have set $E = \lambda(\nu + 1/2)$, with $\lambda = B_- - A$, along this line. Hence, at the border with region III $(B_ - < A)$ Eq. [\(66\)](#page-6-0) is always divergent for $|x| \to \infty$, while at the border with II it is always convergent for $|x| \to \infty$ yet regular at $x = 0$ just for $\nu = n = 0, 1, 2, \ldots$, as in the previous case. For these values, Eq. [\(66\)](#page-6-0) becomes proportional to Eq. [\(43\)](#page-4-4).

Regarding the dual states, at this line $\bar{b} = \bar{b}^{\dagger} = \sqrt{2} \bar{u} Q$, (since \bar{u} is real) and as such $|0_{\bar{b}}\rangle$ is the state with $Q=0$, i.e., $\langle x | 0_{\bar{b}} \rangle \propto \delta(x)$. In fact, for $\bar{v} \to \bar{u}$ the coordinate representation of the state $|0_{\bar{b}}\rangle$ in [\(22\)](#page-2-5) becomes a delta function, as also seen from Eq. [\(42\)](#page-4-2):

$$
\langle x | 0_{\bar{b}} \rangle \to \frac{e^{-x^2/2}}{\pi^{1/4}} \sum_{n=0}^{\infty} \frac{H_{2n}(x) H_{2n}(0)}{2^{2n}(2n)!} = \pi^{1/4} \delta(x), \quad (67)
$$

where we have used $\delta(x) = \langle x | 0_{\bar{b}} \rangle = \sum_{n=0}^{\infty} \langle x | n_a \rangle \langle n_a | 0_{\bar{b}} \rangle$. It is then still verified that $\langle 0_{\bar{b}} | 0_b \rangle$ is a finite number. The same holds for the remaining states $|n_{\bar{b}}\rangle$, with $\langle x | n_{\bar{b}}\rangle$ involving derivatives of the delta function, such that Eq. [\(28\)](#page-2-11) still holds.

III. THE GENERAL N-DIMENSIONAL CASE

We now discuss the main features of the N-dimensional case. We consider a general N-dimensional quadratic form in boson operators a_i , a_j^{\dagger} satisfying $[a_i, a_j^{\dagger}] = \delta_{ij}$, $[a_i, a_j] = 0, i, j = 1, \ldots, N:$

$$
H = \sum_{i,j} A_{ij} a_i^{\dagger} a_j + \frac{1}{2} (B_{ij}^{\dagger} a_i^{\dagger} a_j^{\dagger} + B_{ij}^- a_i a_j)
$$
(68)

$$
= \frac{1}{2} \begin{pmatrix} a^{\dagger} & a \end{pmatrix} \mathcal{H} \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix}, \quad \mathcal{H} = \begin{pmatrix} A & B_{+} \\ B_{-} & A^{T} \end{pmatrix}. \quad (69)
$$

Here B_{\pm} are *symmetric* $N \times N$ matrices of elements B_{ij}^{\pm} , such that H satisfies

$$
\mathcal{H}^T = \mathcal{R} \mathcal{H} \mathcal{R}, \ \ \mathcal{R} = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix} . \tag{70}
$$

Following the treatment of [\[36](#page-9-33)] for the general hermitian case, we define new operators b_i , \overline{b}_i^{\dagger} through a generalized Bogoliubov transformation

$$
\begin{pmatrix} b \\ \bar{b}^{\dagger} \end{pmatrix} = \mathcal{W} \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix}, \ \mathcal{W} = \begin{pmatrix} U & V \\ \bar{V}^* & \bar{U}^* \end{pmatrix}, \tag{71}
$$

where again \bar{b}_i^{\dagger} may not coincide with b_i^{\dagger} although the bosonic commutation relations are preserved:

$$
[b_i, \bar{b}_j^{\dagger}] = \delta_{ij}, \ \ [b_i, b_j] = [\tilde{b}_i^{\dagger}, \tilde{b}_j^{\dagger}] = 0. \tag{72}
$$

These conditions imply [\[36](#page-9-33), [37](#page-9-34)]

$$
WMRW^{T}R = M, \qquad (73)
$$

(*M* is the matrix [\(10\)](#page-1-7) extended to $2N \times 2N$) i.e.,

$$
U(\bar{U}^*)^T - V(\bar{V}^*)^T = 1,
$$

\n
$$
VU^T - UV^T = 0, \ \bar{V}\bar{U}^T - \bar{U}\bar{V}^T = 0.
$$
 (74)

We can then rewrite H exactly as in Eqs. $(8)-(9)$ $(8)-(9)$:

$$
H = \frac{1}{2} \left(\bar{b}^{\dagger} \; b \right) \mathcal{H}' \left(\frac{b}{\bar{b}^{\dagger}} \right) , \; \mathcal{H}' = \mathcal{M} \mathcal{W} \mathcal{M} \mathcal{H} \mathcal{W}^{-1} , \; (76)
$$

where \mathcal{H}' has again the form [\(69\)](#page-6-1) and satisfies [\(70\)](#page-6-2) due to Eq. [\(73\)](#page-6-3). The problem of obtaining a normal mode representation

$$
H = \sum_{i} \lambda_i (\bar{b}_i^{\dagger} b_i + \frac{1}{2}), \qquad (77)
$$

leads then to the diagonalization of the matrix

$$
\mathcal{MH} = \begin{pmatrix} A & B_+ \\ -B_- & -A^T \end{pmatrix},\tag{78}
$$

which is that representing the commutation relations of Eq. [\(14\)](#page-1-8) in the present general case: $[H, \begin{pmatrix} a \\ a^{\dagger} \end{pmatrix}] = \mathcal{MH}(\begin{pmatrix} a \\ a^{\dagger} \end{pmatrix})$.

A basic result is that the eigenvalues of [\(78\)](#page-6-4) always come in pairs of opposite sign, as in the hermitian case

[\[36\]](#page-9-33) (see also [\[44\]](#page-9-40)): Noting that $\mathcal{RM} = -\mathcal{MR}$ and $\mathcal{M}^2 =$ $\mathcal{R}^2 = 1$, Eq. [\(70\)](#page-6-2) implies

$$
(\mathcal{M}\mathcal{H} - \lambda \mathbb{I})^T = \mathcal{R}\mathcal{H}\mathcal{R}\mathcal{M} - \lambda \mathbb{I} = \mathcal{R}\mathcal{M}(\mathcal{M}\mathcal{H} + \lambda \mathbb{I})\mathcal{R}\mathcal{M}
$$

and hence $\text{Det}[\mathcal{MH} - \lambda \mathbb{1}] = \text{Det}[\mathcal{MH} + \lambda \mathbb{1}],$ entailing that if λ is an eigenvalue of \mathcal{MH} , so is $-\lambda$.

From Eq. [\(70\)](#page-6-2) we also see that if Z_i are eigenvectors of \mathcal{MH} satisfying $\mathcal{MHZ}_i = \lambda_i Z_i$, then $Z_i^T \mathcal{RMZ}_j(\lambda_i +$ λ_i) = 0, implying the orthogonality relations

$$
Z_i^T \mathcal{R} \mathcal{M} Z_j = 0 \quad (\lambda_i \neq -\lambda_j). \tag{79}
$$

The pairs $(b_i, \bar{b}_i^{\dagger})$ emerge then from the eigenvectors $Z_i, Z_{\bar{i}}$ associated to *opposite* eigenvalues $\pm \lambda_i$, which are to be scaled such that

$$
Z_i^T \mathcal{R} \mathcal{M} Z_{\bar{i}} = 1. \tag{80}
$$

Writing $Z_i = (\bar{U}^* - \bar{V}^*)_i^T$ and $Z_{\bar{i}} = (-V \ U)_i^T$, we can form with them the eigenvector matrix W^{-1} , with Eqs. (79) – (80) ensuring that W will satisfy Eq. [\(73\)](#page-6-3).

Therefore, if MH is *diagonalizable*, a diagonalizing matrix W satisfying (73) will exist such that H can be written in the diagonal form (77) . The N-dimensional H can then be reduced to a sum of N commuting onedimensional systems (complex normal modes) described by operators $H_i = \lambda_i(\bar{b}_i^{\dagger} b_i + \frac{1}{2})$. The normal operators $b_i, \, \overline{b}_i^{\dagger}, \, \text{satisfy}$

$$
[H, b_i] = -\lambda_i b_i, \ \ [H, \bar{b}_i^{\dagger}] = \lambda_i \bar{b}_i^{\dagger}, \tag{81}
$$

diagonalizing the commutator algebra with H and satis-fying then Eqs. [\(17\)](#page-1-5)–[\(18\)](#page-1-5) $\forall b = b_i$.

Now, if a common vacuum $|0_b\rangle$ exists such that

$$
b_i|0_b\rangle = 0\,,\tag{82}
$$

for $i = 1, \ldots, N$, it must necessarily be of the form [\[39\]](#page-9-36)

$$
|0_b\rangle \propto \exp[-\frac{1}{2} \sum_{i,j} (U^{-1}V)_{ij} a_i^{\dagger} a_j^{\dagger}] |0_a\rangle , \qquad (83)
$$

where $U^{-1}V$ is a *symmetric* matrix due to Eq. [\(75\)](#page-6-6). Eq. (83) can be directly checked by application of b_i . Similarly, assuming a common vacuum $|0_{\bar{b}}\rangle$ exists such that

$$
\bar{b}_i |0_{\bar{b}}\rangle = 0 , \qquad (84)
$$

for $i = 1, \ldots, N$, it must be of the form

$$
|0_{\bar{b}}\rangle \propto \exp[-\frac{1}{2}\sum_{i,j} (\bar{U}^{-1}\bar{V})_{ij} a_i^{\dagger} a_j^{\dagger}]|0_a\rangle. \tag{85}
$$

Assuming these series are convergent, which implies that $U^{-1}V$ and $\bar{U}^{-1}\bar{V}$ have both all singular values $\sigma_i < 1$, $\bar{\sigma}_i$ < 1, we can define the states

$$
|n_1,\ldots,n_N|_b\rangle = \left(\prod_i \frac{(\bar{b}_i^\dagger)^{n_i}}{\sqrt{n_i!}}\right)|0_b\rangle,\tag{86}
$$

$$
|m_1, \dots, m_N|_{\bar{b}}\rangle = \left(\prod_i \frac{(b_i^{\dagger})^{m_i}}{\sqrt{m_i!}}\right)|0_{\bar{b}}\rangle. \tag{87}
$$

Due to the commutation relations [\(72\)](#page-6-7), these states form again a biorthogonal set,

$$
\langle m_1, \ldots, m_N \bar{b} | n_1, \ldots, n_N b \rangle = \delta_{m_1 n_1} \ldots \delta_{m_N n_N} \langle 0_{\bar{b}} | 0_b \rangle,
$$
\n(88)

and satisfy

$$
H||n_1, \ldots, n_{N b}\rangle = \sum_i \lambda_i \left(n_i + \frac{1}{2}\right) |n_1, \ldots, n_{N b}\rangle, (89)
$$

$$
H^{\dagger} | m_1, \ldots, m_N | \bar{b} \rangle = \sum_i \lambda_i^* \left(m_i + \frac{1}{2} \right) | m_1, \ldots, m_N | \hat{b} \rangle 0
$$

Thus, both H and H^{\dagger} possess in this case a *discrete* spectrum. Such spectrum can be real if H has some antilinear (generalized \mathcal{PT}) symmetry (for instance, \mathcal{H} real).

In a general situation, a common vacuum may exist just for a certain subset of operators b_i and \bar{b}_i , leading to terms H_i with behaviors similar to those encountered in the previous section. An important difference is to be found in the non-diagonalizable cases: The corresponding modes may not necessarily be of the form [\(19\)](#page-1-6), and are not necessarily associated with vanishing eigenvalues $\lambda_i = 0$, since Jordan forms of higher dimension can arise, as was already shown in two-dimensional systems [\[37,](#page-9-34) [45\]](#page-9-41), in the context of hermitian yet unstable Hamiltonians. Besides, \mathcal{MH} may remain diagonalizable in the presence of vanishing eigenvalues [\[37,](#page-9-34) [46\]](#page-9-42).

IV. CONCLUSIONS

We have first analyzed the spectrum and normal modes of a general one-dimensional quadratic bosonic form, showing that it can exhibit three distinct regimes:

i) An harmonic phase characterized by a discrete spectrum of both H and H^{\dagger} , with bounded eigenstates constructed from gaussian vacua, which form a biorthogonal set. Such phase, which comprises the cases considered in [\[26](#page-9-25), [27\]](#page-9-26), arises when the deviation from the stable hermitian case is not "too large" (Eq. [\(24\)](#page-2-2), equivalent to [\(32\)](#page-2-7)–[\(33\)](#page-2-8) for $\lambda > 0$), in which case the generalized normal boson operators \overline{b}^{\dagger} , *b* can be considered as creation and annihilation operators respectively. According to the phase of λ , the discrete spectrum can be real or complex, but in the latter it can be made real by applying a trivial phase factor (as opposed to discrete regimes in nonquadratic Hamiltonians [\[47](#page-9-43)]).

ii) A coherent-like phase where H exhibits a complex twofold degenerate continuous spectrum while H^{\dagger} has no bounded eigenstates. It corresponds to large deviations from the hermitian harmonic case. The normal operators \bar{b}^{\dagger} , *b* can be considered as a pair of annihilation operators, each with a convergent vacuum yet still satisfying a bosonic commutator. The spectrum is then similar to that of a square of a bosonic annihilation operator.

iii) An adjoint coherent phase where H^{\dagger} has a continuous complex spectrum while H has no bounded eigenstates. Here the normal modes are a pair of creation operators. While ii) and iii) might be considered as having no proper biorthogonal eigenstates, the convergent eigenstates (of H or H^{\dagger}) constitute a generalization of the standard coherent states, which arise here in the particular case of a non-diagonalizable matrix MH. These regimes may be considered to correspond to a broken generalized \mathcal{PT} symmetry, since there are complex eigenvalues. Nonetheless, the latter do not emerge from the coalescence of two or more real eigenvalues [\[2](#page-9-1)] but from the onset of convergence of eigenstates with complex quantum number ν .

We have also analyzed the transition curves between these previous regimes, where one of the operators changes from creation to annihilation (or viceversa). At these curves such operator is actually a coordinate (or momentum), and even though there is just a discrete spectrum (with bounded eigenstates) of either H or H^{\dagger} , the biorthogonality relations are still preserved. Explicit expressions for eigenfunctions were provided in all regimes.

The normal mode decomposition of the N-dimensional non-hermitian case has also been discussed, together with the corresponding harmonic regime. It opens the way to investigate in detail along these lines the spectrum of more complex specific non-hermitian quadratic systems.

Appendix: Solutions of the Schrödinger equation in the case of continuous spectrum

The solutions to the Schrödinger equation (45) can be obtained by making the substitution

$$
\psi(x) = \exp\left[-\frac{i\tilde{B} + \lambda}{2\tilde{A}_-}x^2\right]\phi\left(\frac{x}{\gamma}\right). \tag{A.1}
$$

We obtain the Hermite equation [\[48](#page-9-44)]:

$$
\phi''(z) - 2z\phi'(z) + 2\nu\phi(z) = 0,
$$
 (A.2)

with $z = x/\gamma$ and $\nu = (2E - \lambda)/(2\lambda)$. For complex ν , four solutions are:

$$
\phi_{\nu}^{(1)}(z) = H_{\nu}(z), \quad \phi_{\nu}^{(2)}(z) = H_{\nu}(-z)
$$

$$
\phi_{\nu}^{(3)}(z) = e^{z^2} H_{-\nu-1}(iz), \quad \phi_{\nu}^{(4)}(z) = e^{z^2} H_{-\nu-1}(-iz), \tag{A.3}
$$

where H_{ν} are the Hermite functions [\[48\]](#page-9-44). Since the Hermite equation is of second order, any of these solutions can be written as a linear combination of two others. For 9

instance, for real $A, B_+, B_- > 0$:

$$
H_{\nu}(z) = \frac{2^{\nu} \Gamma(\nu + 1)}{\sqrt{\pi}} e^{z^2} \left[e^{\nu \pi i/2} H_{-\nu-1}(iz) + e^{-\nu \pi i/2} H_{-\nu-1}(-iz) \right].
$$
\n(A.4)

Additionaly, note that for integer $\nu \geq 0$, $\phi_1 = (-1)^{\nu} \phi_2$ whereas for integer $\nu < 0$, $\phi_3 = (-1)^{\nu+1} \phi_4$.

The asymptotic behaviour of the Hermite functions for $|\arg z|$ < 3/4 goes as follows:

$$
H_{\nu}(z) \sim (2z)^{\nu} + O(|z|^{\nu - 2}), \tag{A.5}
$$

and for $\pi/4 + \delta \leq \arg z \leq 5\pi/4 - \delta$ (which includes z on the real negative axis):

$$
H_{\nu}(z) \sim (2z)^{\nu} \left[1 + O(|z|^{-2}) \right] - \frac{\sqrt{\pi} e^{\nu \pi i}}{\Gamma(-\nu)} e^{z^2} z^{-\nu - 1} \left[1 + O(|z|^{-2}) \right]. \tag{A.6}
$$

Note that:

$$
e^{z^2} \exp\left[-\frac{i\tilde{B} + \lambda}{2\tilde{A}_{-}}x^2\right] = \exp\left[-\frac{i\tilde{B} - \lambda}{2\tilde{A}_{-}}x^2\right].
$$
 (A.7)

For hermitian H, \tilde{B} is either a real number or zero, and λ determines whether the eigenfunctions are bounded or not (i.e., if λ is real and positive then there are *some* bounded eigenfunctions, whereas for λ negative or imaginary every eigenfunction is divergent). In such case, for positive, integer ν only $\phi_{\nu}^{(1)}$ (and $\phi_{\nu}^{(2)}$, since they are linearly dependent) may be bounded (see Eq. [\(A.6\)](#page-8-0)), and for other values of ν there are no bounded eigenfunctions. On the other hand, for non-Hermitian H , the convergence of both linearly independent eigenstates may be assured provided that $\text{Re}[(i\tilde{B} - \lambda)/\tilde{A}_-] > 0$, which is fulfilled in region II, i.e., when both b and \bar{b}^{\dagger} have convergent vacua. Moreover, both linearly independent eigenstates may be convergent even if λ is an imaginary number or zero, which implies for real A, B_{\pm} , that region II extends into the imaginary part of the spectrum in Fig. [1.](#page-3-0)

The eigenfunctions of H must then be constructed from [\(A.3\)](#page-8-1) in such a way that they behave as the eigenstates $|n_b\rangle$ and $|n_{\bar{b}\uparrow}\rangle$, i.e., they satisfy Eqs. [\(26\)](#page-2-10) and [\(27\)](#page-2-13), and they must be even or odd with respect to coordinate inversion $x \to -x$ (since the Hamiltonian is parity invariant). These considerations lead to the eigenfunctions [\(53\)](#page-4-6) and [\(54\)](#page-4-6).

ACKNOWLEDGMENTS

The authors acknowledge support from CONICET (JG and Grant No. PIP 112201501-00732) and CIC (R.R.) of Argentina.

- [1] C. M. Bender and S. Boettcher, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/physrevlett.80.5243) 80, 5243 (1998).
- [2] C. M. Bender, [Rep. Prog. Phys.](http://dx.doi.org/10.1088/0034-4885/70/6/R03) 70, 947 (2007).
- [3] A. Mostafazadeh, [J. Math. Phys.](http://dx.doi.org/10.1063/1.1418246) 43, 205 (2002); [J. Math. Phys.](http://dx.doi.org/10.1063/1.1461427) 43, 2814 (2002);
	- [J. Math. Phys.](http://dx.doi.org/10.1063/1.1489072) 43, 3944 (2002).
-
- [5] F. Bagarello, J.-P. Gazeau, F. H. Szafraniec, and M. Znojil, eds., [Non-Selfadjoint Operators in Quantum Physics](http://www.ebook.de/de/product/23687576/non_selfadjoint_operators_in_quantum_physics.html) (John Wiley & Sons Inc, 2015).
- [6] F. G. Scholtz, H. B. Geyer, and F. J. W. Hahne, [Ann. Phys.](http://dx.doi.org/10.1016/0003-4916(92)90284-s) 213, 74 (1992).
- [7] F. J. Dyson, Phys. Rev. **102**[, 1217 \(1956\);](http://dx.doi.org/10.1103/physrev.102.1217) Phys. Rev. 102[, 1230 \(1956\).](http://dx.doi.org/10.1103/physrev.102.1230)
- [8] D. Janssen, F. Dönau, S. Frauendorf, and R. Jolos, [Nucl. Phys. A](http://dx.doi.org/10.1016/0375-9474(71)90122-9) 172, 145 (1971).
- [9] D. C. Brody, [J. Phys. A: Math. Theor.](http://dx.doi.org/10.1088/1751-8113/47/3/035305) 47, 035305 (2013).
- [10] D. C. Brody, [J. Phys. A: Math. Theor.](http://dx.doi.org/10.1088/1751-8113/49/10/10LT03) 49, 10LT03 (2016).
- [11] H. Feshbach, Ann. Phys. 5[, 357 \(1958\).](https://doi.org/10.1016/0003-4916(58)90007-1)
- [12] S. Longhi, Phys. Rev. A **82**[, 031801\(R\) \(2010\).](http://dx.doi.org/10.1103/physreva.82.031801)
- $[13]$ H. Jing, S. Ozdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, [Phys. Rev. Lett](http://dx.doi.org/ 10.1103/PhysRevLett.113.053604) 113, 053604 (2014).
- [14] A. Regensburger, M.-A. Miri, C. Bersch, J. Nger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, [Phys. Rev. Lett.](http://dx.doi.org/ 10.1103/PhysRevLett.110.223902) **110**, 223902 (2013); K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Phys. Rev. Lett. [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.100.103904) 100, 103904 (2008).
- [15] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, [Phys. Rev. Lett.](http://dx.doi.org/ 10.1103/PhysRevLett.103.093902) 103, 093902 (2009).
- [16] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6[, 192 \(2010\);](http://dx.doi.org/ 10.1038/nphys1515) Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, [Phys. Rev. Lett.](http://dx.doi.org/ 10.1103/PhysRevLett.106.213901) 106, 213901 (2011); L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, Science 333[, 729 \(2011\);](http://dx.doi.org/10.1126/science.1206038) J. Schnabel, H. Cartarius, J. Main, G. Wunner, and W. D. Heiss, Phys. Rev. A 95, 053868 (2017).
- [17] C. Zheng, L. Hao, and G. L. Long, [Philos. Trans. R. Soc. A](http://dx.doi.org/10.1098/rsta.2012.0053) 371, 20120053 (2013).
- [18] J. Rubinstein, P. Sternberg, and Q. Ma, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.99.167003) 99, 167003 (2007).
- [19] N. M. Chtchelkatchev, A. A. Golubov, T. I. Baturina, and V. M. Vinokur, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.109.150405) 109, 150405 (2012).
- [20] S. Bittner, B. Dietz, U. Günther, H. L. Harney, M. Miski-Oglu, A. Richter, and F. Schäfer, [Phys. Rev. Lett.](http://dx.doi.org/ 10.1103/PhysRevLett.108.024101) 108, 024101 (2012).
- [21] M. Kreibich, J. Main, H. Cartarius, and G. Wunner, Phys. Rev. A 93, 023624 (2016); L. Schwarz, H. Cartarius, Z. H. Musslimani, J. Main, and G. Wunner, Phys. Rev. A 95, 053613 (2017).
- [22] X. Z. Zhang and Z. Song, Phys. Rev. A 87, 012114 (2013); X. Z. Zhang, L. Jin, and Z. Song, Phys. Rev. A 95, 052122 (2017); C. Li, G. Zhang, and Z. Song, Phys. Rev. A 94, 052113 (2016).
- [23] S. Pendharker, Y. Guo, F. Khosravi, and Z. Jacob, Phys. Rev. A 95, 033817 (2017).
- [24] M. Znojil, Phys. Rev. D **78**[, 085003 \(2008\);](http://dx.doi.org/10.1103/physrevd.78.085003) SIGMA 5[, 001 \(2009\).](http://dx.doi.org/10.3842/sigma.2009.001)
- [25] M. Znojil, Ann. Phys. 385[, 162 \(2017\);](http://dx.doi.org/10.1016/j.aop.2017.08.009) A. Fring and T. Frith, Phys. Rev. A 95[, 010102\(R\) \(2017\).](http://dx.doi.org/10.1103/physreva.95.010102)
- [4] A. Mostafazadeh, [Int. J. Geom. Methods Mod. Phys.](http://dx.doi.org/10.1142/s0219887810004816) 07 , $119[26]2010$ S. Swanson, [J. Math. Phys.](http://dx.doi.org/10.1063/1.1640796) 45 , 585 (2004) .
	- [27] H. F. Jones, [J. Phys. A: Math. Gen.](http://dx.doi.org/10.1088/0305-4470/38/8/010) 38, 1741 (2005). [28] F. G. Scholtz and H. B. Geyer,
	- [J. Phys. A: Math. Gen.](http://dx.doi.org/10.1088/0305-4470/39/32/S19) 39, 10189 (2006); D. P. Musumbu, H. B. Geyer, and W. D. Heiss, [J. Phys. A: Math. Theor.](http://dx.doi.org/10.1088/1751-8113/40/2/F03) 40, F75 (2007).
	- [29] A. Sinha and P. Roy, [J. Phys. A: Math. Theor.](http://dx.doi.org/10.1088/1751-8113/40/34/015) 40, 10599 (2007); A. Sinha and P. Roy, [J. Phys. A: Math. Theor.](http://dx.doi.org/10.1088/1751-8113/42/5/052002) 42, 052002 (2009).
	- [30] F. Bagarello, [Phys. Lett. A](http://dx.doi.org/10.1016/j.physleta.2010.07.044) **374**, 3823 (2010); F. Bagarello and A. Fring, J. Math. Phys. 56, 103508 (2015); Int. J. Mod. Phys. B 31, 1750085 (2017).
	- [31] A. Fring and M. H. Y. Moussa, Phys. Rev. A 94, 042128 (2016).
	- [32] H. Ramezani, J. Schindler, F. M. Ellis, U. Günther, and T. Kottos, Phys. Rev. A 85[, 062122 \(2012\);](http://dx.doi.org/ 10.1103/PhysRevA.85.062122) F. M. Fernández, Ann. Phys. 369[, 168 \(2016\);](http://dx.doi.org/10.1016/j.aop.2016.03.002) J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Phys. Rev. A 84[, 040101 \(2011\).](http://dx.doi.org/ 10.1103/PhysRevA.84.040101)
	- [33] C. M. Bender, M. Gianfreda, Ş. K. Özdemir, B. Peng, and L. Yang, Phys. Rev. A 88[, 062111 \(2013\).](http://dx.doi.org/ 10.1103/PhysRevA.88.062111)
	- [34] L. F. Xue, Z. R. Gong, H. B. Zhu, and Z. H. Wang, Opt. Express 25, 17249 (2017).
	- [35] C. M. Bender and M. Gianfreda, [J. Phys. A: Math. Theor.](http://dx.doi.org/10.1088/1751-8113/48/34/34FT01) 48, 34FT01 (2015).
	- [36] R. Rossignoli and A. M. Kowalski, Phys. Rev. A 72[, 032101 \(2005\).](http://dx.doi.org/10.1103/PhysRevA.72.032101)
	- [37] R. Rossignoli and A. M. Kowalski, Phys. Rev. A 79[, 062103 \(2009\).](http://dx.doi.org/10.1103/PhysRevA.79.062103)
	- [38] R. J. Glauber, Phys. Rev. 131, 2766 (1963).
	- [39] P. Ring and P. Schuck, [The Nuclear Many-Body Problem](http://www.springer.com/la/book/9783540212065) (Springer, New York, 1980); J. P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, MA, 1986).
	- [40] It conditionally converges for $|z|=1$ if $z\neq 1$, as ensured by Dirichlet criterion: $\sum_{n=0}^{\infty} a_n b_n$ converges if $\lim_{n \to \infty} b_n = 0$ and $|\sum_{n}^{k} a_n| \leq M \forall k \ (b_n = \frac{(2n)!}{4^n (n!)^2} \approx \frac{1}{\sqrt{\pi n}}$ for large n.).

[41] E. P. Wigner, [J. Math. Phys.](http://dx.doi.org/10.1063/1.1703672) 1, 409 (1960).

- [42] C. M. Bender and P. D. Mannheim, [Phys. Lett. A](http://dx.doi.org/10.1016/j.physleta.2010.02.032) **374**, 1616 (2010).
[43] F. M. Fernández
- M. Fernández and J. Garcia, Ann. Phys. **342**[, 195 \(2014\);](http://dx.doi.org/10.1016/j.aop.2014.01.002) P. Amore, F. M. Fernández, and J. Garcia, Ann. Phys. 350[, 533 \(2014\);](http://dx.doi.org/10.1016/j.aop.2014.07.026) Ann. Phys. 353[, 238 \(2015\);](http://dx.doi.org/10.1016/j.aop.2014.11.018) F. M. Fernández J. Garcia, Ann. Phys. 363[, 496 \(2015\).](http://dx.doi.org/10.1016/j.aop.2015.10.011)
- [44] F. M. Fernández, ArXiv:1605.01662 (2016).
- [45] L. Rebón, N. Canosa, and R. Rossignoli, Phys. Rev. A 89[, 042312 \(2014\).](http://dx.doi.org/10.1103/PhysRevA.89.042312)
- [46] J. H. P. Colpa, Physica A **134**[, 417 \(1986\).](http://dx.doi.org/10.1016/0378-4371(86)90057-9)
- [47] F. M. Fernández and J. Garcia, [App, Math. Comp.](http://dx.doi.org/10.1016/j.amc.2014.08.083) 247, 141 (2014).
- [48] N. N. Lebedev, [Special Functions & Their Applications](http://store.doverpublications.com/0486606244.html) (Prentice-Hall, Englewood Cliffs, N. J., 1965).