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Abstract

A search is performed for a Higgs boson produced in association with a Z boson and decaying into two photons, using
the L3 data collected at LEP at a centre-of-mass energy of 189 GeV. All decay modes of the Z are considered. No signal is
observed and limits on the branching fraction of the Higgs boson decay into two photons as a function of the Higgs mass are
derived assuming a Standard Model production rate. A lower limit on the mass of a fermiophobic Higgs is set at 94.9 GeV at
95% confidence level. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In the Standard Model, the decay of a Higgs
boson h into a photon pair occurs at the one loop

w xlevel and its branching fraction is small 1 . For
example, for Higgs masses in the range 80 - M -h
110 GeV, this decay rate lies between 0.1% and
0.2%. However, several extended models predict

w xenhancements of this branching fraction 2 . In Two
w xHiggs Doublet Models of Type I 3 , with an appro-

priate choice of the model parameters, the lightest

Ž .E-mail address: Salvatore.Mele@cern.ch S. Mele .
1 Supported by the German Bundesministerium fur Bildung,¨

Wissenschaft, Forschung und Technologie.
2 Supported by the Hungarian OTKA fund under contract num-

bers T019181, F023259 and T024011.
3 Also supported by the Hungarian OTKA fund under contract

numbers T22238 and T026178.
4 Supported also by the Comision Interministerial de Ciencia y´

Tecnologıa.´
5 Also supported by CONICET and Universidad Nacional de

La Plata, CC 67, 1900 La Plata, Argentina.
6 Also supported by Panjab University, Chandigarh-160014,

India.
7 Supported by the National Natural Science Foundation of

China.

CP even Higgs boson does not couple to fermions at
tree level. Such a Higgs is expected to decay domi-
nantly into a pair of photons if its mass is below

w x90 GeV 4 .
We search for a Higgs boson produced in associa-

tion with a Z boson through the process eqey™ Zh,
followed by the decay h ™gg , in all decay modes
of the Z boson.

These results supersede previous limits obtained
by the L3 Collaboration from data at lower centre-

w xof-mass energies 5 . Similar analyses were pub-
w x w xlished by the OPAL 6 and the DELPHI 7 Collabo-

rations.

2. Data and Monte Carlo samples

w xThe data were collected with the L3 detector 8 at
'a centre-of-mass energy s s 189 GeV and amount

to an integrated luminosity of 176.4 pb-1.
The Standard Model Higgs production cross sec-

w xtion is calculated using the HZHA generator 9 .
Monte Carlo samples were generated using PYTHIA
w x10 for Higgs masses between 50 and 100 GeV. For
background studies the following Monte Carlo pro-
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q yw x Ž Ž ..grams were used: KK2f 11 e e ™qq g , PY-
Ž q y q y q y.THIA e e ™ZZ and e e ™Ze e , KORALW

w x Ž q y q y. w x Ž q y12 e e ™W W , PHOJET 13 e e ™
q y q y. w x Ž Ž .. w xe e qq , KORALZ 14 e e ™nn g , GGG 15
Ž q y Ž .. w x Ž q y q yŽ ..e e ™gg g , BHWIDE 16 e e ™e e g ,

w x Ž q y q y Ž .. w xTEEGG 17 e e ™e e g g , DIAG36 18
Ž q y q y q y. w x Ž q ye e ™e e e e and EXCALIBUR 19 e e

q y .™e e nn . The number of simulated events for the
most important background channels is at least 100
times higher than the number of expected data events,
while this factor is 200 for the expected signal.

The L3 detector response is simulated using the
w xGEANT 3.15 program 20 , which takes into account

the effects of energy loss, multiple scattering and
w xshowers in the detector. GHEISHA 21 is used to

simulate hadronic interactions in the detector. Time
dependent inefficiencies, as monitored during the
data taking, are also simulated.

3. Analysis procedures

A cut-based selection is performed in order to
select events with photons and to identify the Z in its
various decay modes. This gives rise to qqgg , nngg
and llqllygg , with llse,m,t , final states. The se-
lection criteria for each final state are described in
the following sections and rely on a common photon
identification.

Photons are identified as clusters in the electro-
Ž .magnetic calorimeter BGO with an energy greater

than 1 GeV and a shower shape compatible with that
of an electromagnetic shower. The ratio of energies
deposited in a 3=3 crystal matrix and a 5=5
matrix, centred on the shower axis, must be greater
than 0.95. The energy deposition in the hadron
calorimeter must not exceed 20% of the energy
deposited in the electromagnetic calorimeter.

In addition, the clusters must not be associated
with a charged track within 50 mrad in the plane
perpendicular to the beam axis. To suppress photons
from initial state radiation, only photons in the polar
angle range 458-u-1358, 258-u-358 or 1458-
u-1558 are accepted, which corresponds to the
barrel and end-cap regions of the BGO.

In the following selections we require at least two
photons. To ensure that the pair of photons arise
from the decay of a heavy resonance we require the

energy of the most energetic photon to be larger than
10 GeV and the energy of the second most energetic
photon to be larger than 6 GeV.

The angular distribution of the di-photon system
with respect to the beam direction is flat for photons
coming from the Higgs decay, while it peaks at low
polar angles for those photons originating from dou-
ble initial state radiation. Therefore, we require the
absolute value of the cosine of the polar angle of the
di-photon system not to exceed 0.966.

3.1. The qqgg final state

The signature for the qqgg final state is a pair of
isolated photons accompanied by two jets. To select
these events, we first apply a hadronic preselection
requiring high multiplicity events. The visible energy
normalised to the centre-of-mass energy is required
to be larger than 0.5 and the energy imbalances
parallel and perpendicular to the beam direction,
normalised to the visible energy, are required to be
below 0.4. In order to reduce the background from
the photon-photon interaction events, we require the
energy in a 308 cone around the beam pipe to be less
than half of the visible energy. The yield of this
preselection is reported in Table 1.

From this sample we select those events which
contain at least two photons. All other particles are
clustered in two jets using the DURHAM jet algo-

w xrithm 22 . To reject photons coming from neutral
hadron decays we require them to be isolated: the
energy in a 108 cone around the photon direction
must be less than 1.5 GeV, and in a 208 cone less
than 3.5 GeV. The number of charged tracks and
calorimeter clusters in a 208 cone around the photon
direction must be below four. The opening angle
between the photons must be larger than 508 and the
angle between the photon direction and the nearest
jet must exceed 258.

Table1
Number of events expected from Standard Model processes com-
pared to the observed number of events, after the preselection and
selection steps, for the qqgg final state

q yŽ .Data S Bkg. qq g WW Ze e ZZ

preselection 8146 8221.7 5745.9 2309.8 58.2 109.8
selection 10 16.2 16.0 0.0 0.1 0.1
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Ž .Fig. 1. Distributions for the qqgg final state of a the energy E1
Ž .of the most energetic photon and b the recoil mass against the

di-photon system in data, background and for a Higgs boson
signal with the mass M s 95 GeV. The signal, corresponding toh

Ž .the Standard Model cross section and a BR h™gg s 1, is
superimposed and normalised to the integrated luminosity.

Ž .Fig. 2. Distributions for the nngg final state of a the energy of
the second most energetic photon normalised to the beam energy

Ž .and b the recoil mass against the two photons in data, back-
ground and for a Higgs boson signal with the mass M sh
95GeV. The signal, corresponding to the Standard Model cross

Ž .section and a BR h™gg s 1, is superimposed and normalised
to the integrated luminosity.
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Table2
Number of events expected from the Standard Model process
q y Ž .e e ™nn g compared to the observed number of events, for

the nngg final state
Ž .Data nn g

selection 3 4.3

The energy spectrum of the most energetic photon
before any cut is applied on the photon energies is

Ž . Ž .presented in Fig. 1 a . Fig. 1 b shows the distribu-
tion of the recoil mass against the di-photon system
after the selection requirements on the photon ener-
gies.

We also require the recoil mass against the di-
photon system to be consistent with the Z mass,
< <M yM -15 GeV. This requirement reducesrecoil Z

q y Ž .the background from the e e ™qq g process
where either a neutral hadron from the Z decay
mimics a photon or a photon in the final state is
emitted; in both cases the recoil mass against the
photons would be smaller than the Z mass.

The efficiency of this analysis for selecting qqgg
events is 43% for a Higgs boson mass of 95 GeV.
The number of selected data and background events
are presented in Table 1. The dominant background

q y Ž .arises from the process e e ™qq g .

3.2. The nngg final state

The nngg final state is characterised by the pres-
ence of two photons and missing energy in the event.
The event selection follows the criteria described in

w x q yRef. 23 . To reduce the background from the e e
Ž .™gg g process and from double radiative events

with final state particles escaping detection, we re-
quire the photon acoplanarity to be greater than 2.58,
the total transverse momentum of the di-photon sys-
tem to be greater than 3 GeV and the absolute value
of the cosine of the polar angle of the missing
momentum not to exceed 0.96.

The energy of the second most energetic photon
normalised to the beam energy, E rE , is pre-2 beam

Ž . Ž .sented in Fig. 2 a . Fig. 2 b shows the recoil mass
against the two most energetic photons after the
selection requirements on the photon energies and
the di-photon polar angle.

Furthermore, the recoil mass must be consistent
with the Z boson mass within "10 GeV. The num-
bers of data and expected background events left
after this selection is applied are listed in Table 2.
The signal efficiency is 34% for a Higgs boson of
95 GeV mass. The background is due to the eqey™

Ž .nn g process.

3.3. The ll qll y
gg final state

The llqllygg final state is characterised by the
presence of two photons and a pair of same type
leptons in the event. First low multiplicity events
with a photon pair and a lepton pair are preselected.

Electrons are identified as clusters in the BGO
with an energy greater than 3 GeV and a matched
track. The energy deposited in the hadron calorime-
ter must be consistent with the tail of an electromag-
netic shower. Moreover there must be less than
3 GeV energy deposited in the BGO in a 108 cone
around the electron direction.

Muons must have a reconstructed track in the
muon chambers with a miss distance to the interac-
tion vertex in the r - f plane smaller than 300 mm
and a momentum greater than 3 GeV. The energy in
a 108 cone around the muon direction must not
exceed 3 GeV. Also events with one muon and one
minimum ionising particle in the calorimeters are
accepted. Background events from cosmic rays are
removed by requiring at least one hit in the scintilla-
tion counters in a "5 ns time window around the
beam crossing time.

Taus are identified as jets with one or three tracks
in a 108 cone with an energy greater than 3 GeV. The

Table 3
Number of events expected from Standard Model processes compared to the observed number of events, after the preselection and selection
steps, for the llqllygg final state

q y q y q yŽ . Ž . Ž .Data S Bkg. e e g m m g t t g 4 fermion

preselection 86 93.8 66.4 14.1 9.9 3.4
selection 5 2.5 1.1 0.7 0.7 0.0
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energy in the 108–308 cone must not exceed 30% of
the energy in the 08–108 cone around the tau direc-

Fig. 4. The distribution of the reconstructed di-photon invariant
mass for all Z final states combined, after the final selection, in
data, background and for a Higgs boson signal with the mass Mh
s 95 GeV. The signal, assuming the Standard Model cross

Ž .section and a BR h™gg s 1, is superimposed and normalised
to the integrated luminosity.

tion. In order to maintain a high efficiency, events
with only one identified tau are also accepted.

The energy of the most energetic lepton is re-
quired to be less than 80 GeV to further reject double
radiative di-lepton events. The result of this preselec-
tion is reported in Table 3.

The distribution of the cosine of the polar angle,
cosu , of the di-photon system is shown in Fig.gg

Ž . Ž .3 a . Fig. 3 b shows the recoil mass against the
photons after the cuts on the photon energies and on
the polar angle of the di-photon system.

q y Ž .Fig. 3. Distributions for the ll ll gg final state of a the cosine
Ž .of u for the di-photon system after the preselection and b thegg

recoil mass against the two photons in data, background and for a
Higgs boson signal with the mass M s 95 GeV. The signal,h

Žcorresponding to the Standard Model cross section and a BR h™
.gg s 1, is superimposed and normalised to the integrated

Ž .luminosity. A further scale factor of 10 is applied in a .
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Ž .Fig. 5. Excluded values of the BR h™gg as a function of the
Higgs mass, in the assumption of a Standard Model production
cross section. The expected 95% confidence level limit and the
theoretical prediction are also presented.

In addition, we require the recoil mass to be
< <consistent with the Z mass, M yM -15 GeV.recoil Z

The number of events selected in data and expected
from background processes is presented in Table 3.
The signal efficiency in the lepton channel is 29%
for a Higgs boson with the mass M s 95 GeV. Theh
main backgrounds are due to radiative di-lepton
events.

4. Results

The overall efficiency for selecting Zh events
varies between 36% and 42% for Higgs boson masses
between 50 GeV and 95 GeV, and drops to 30% at
the kinematic limit.

Since no signal is observed in the data, we evalu-
w xate the confidence level 24 for the absence of a

Higgs signal using the reconstructed di-photon in-
variant mass as final discriminant variable. This
distribution is shown in Fig. 4 for all Z final states
combined.

The calculation of the limits takes into account
systematic uncertainties of 1% from the signal Monte

Carlo statistics, 1.5% from the simulation of the
photon isolation criteria and 4% on the number of
expected background events. The effects from the
energy and angular resolution of the photons and the
systematic uncertainty on the integrated luminosity
are found to be negligible.

Fig. 5 shows the measured upper limits on the
Ž .BR h™gg as a function of the Higgs mass assum-

ing a Standard Model rate for the Zh production,
along with the expected limits as calculated from a
large sample of Monte Carlo experiments. The theo-
retical prediction is also shown for a fermiophobic
Higgs boson as calculated with the HDECAY pro-

w x Ž .gram 25 . The observed limit for BR h™gg s 1
is 98 GeV. The lower limit on the mass of a fermio-
phobic Higgs boson is set at

M )94.9 GeV at 95% confidence level.h
The expected mass limit is 95.1 GeV.
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