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Abstract

The reactions e+e− → e+e−π0 X and e+e− → e+e−K0
S X are studied using data collected at LEP with the L3 detector

at centre-of-mass energies between 189 and 202 GeV. Inclusive differential cross sections are measured as a function of the
particle transverse momentum pt and the pseudo-rapidity. For pt 6 1.5 GeV, the π0 and K0

S differential cross sections are
described by an exponential, typical of soft hadronic processes. For pt > 1.5 GeV, the cross sections show the presence of
perturbative QCD processes, described by a power-law. The data are compared to Monte Carlo predictions and to NLO QCD
calculations.  2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Two-photon collisions are the main source of hadron
production in the high-energy regime of LEP via the
process e+e− → e+e−γ ∗γ ∗ → e+e− hadrons. In the
Vector Dominance Model, each photon can transform
into a vector meson with the same quantum num-
bers, thus initiating a strong interaction process with
characteristics similar to hadron–hadron interactions.
This process dominates in the “soft” interaction re-
gion, where hadrons are produced with a low trans-
verse momentum pt . Hadrons with high pt are pro-
duced by the direct QED process γ ∗γ ∗ → qq̄ or by
QCD processes originating from the partonic content
of the photon. QCD calculations are available for sin-
gle particle inclusive production in two-photon inter-
actions at next-to-leading order (NLO) [1,2].

In this Letter, inclusive π0 and K0
S production

from quasi-real photons is studied for a centre-of-
mass energy of the two interacting photons, Wγ γ ,
greater than 5 GeV. The π0’s are measured in the
transverse momentum range 0.2 6 pt 6 20 GeV
and in the pseudo-rapidity 7 intervals |η| 6 2.3 and
3.4 6 |η| 6 4.3. The K0

S’s are measured in the range
0.4 6 pt 6 4 GeV and |η| 6 1.5.

The data used for this analysis were collected by the
L3 detector [3] at centre-of-mass energies from

√
s =

189 GeV to 202 GeV, with a luminosity weighted
average value of

√
s = 194 GeV. The integrated

luminosity is 414 pb−1. Previous measurements of

7 η = − ln tan(θ/2), where θ is the polar angle of the particle
relative to the beam axis.

inclusive charged hadron and K0
S production were

performed at LEP [4] at
√

s = 161–172 GeV.

2. Monte Carlo simulation

The process e+e− → e+e− hadrons is modelled
with the PHOJET [5] and PYTHIA [6] event gener-
ators with, respectively, 2 and 3 times more luminos-
ity than the data. Default options are used for the two
generators. The following generators are used to simu-
late background processes: PYTHIA and KK2f [7] for
e+e− → qq̄(γ ); KORALZ [8] for e+e− → τ+τ−(γ );
KORALW [9] for e+e− → W+W− and DIAG36 [10]
for e+e− → e+e−τ+τ−. The events are simulated in
the L3 detector using the GEANT [11] and GEISHA
[12] programs and passed through the same recon-
struction program as the data. Time dependent detec-
tor inefficiencies, as monitored during the data taking
period, are also simulated.

3. Event selection

The selection of e+e− → e+e− hadrons events
is based on information from the central tracking
detectors and from the electromagnetic (BGO) and
hadronic calorimeters, as described in Ref. [13]. In
order to restrict the Q2 interval, we exclude events
with a cluster in the small-angle calorimeter with
energy greater than 30 GeV. About 2 million hadronic
events are selected. The level of background is less
than 1% and is mainly due to the e+e− → qq̄(γ ) and
e+e− → e+e−τ+τ− processes.
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The particle identification proceeds from charged
tracks and electromagnetic clusters. The inner tracking
detector extends up to |η| = 1.64. The electromagnetic
calorimeters extend up to |η| 6 0.96 for the barrel,
and cover 1.15 6 |η| 6 2.25 for the endcaps and
3.37 6 |η| 6 4.38 for the small-angle detector. A track
must have a transverse momentum above 100 MeV
and a distance of closest approach to the primary
vertex in the transverse plane below 10 mm. An
electromagnetic cluster must have an energy greater
than 100 MeV formed by the energy deposited in
at least 2 neighbouring BGO crystals. There should
be no charged track within an angle of 200 mrad
and the associated energy in the hadron calorimeter
must be less than 20% of the electromagnetic energy.
Clusters in the small-angle detector must have an
energy greater than 2 GeV and restrictions on the
energy profile in each cluster are applied to distinguish
well reconstructed photons from those at the edges of
the detector or from residual hadrons.

For pt < 5 GeV, the inclusive π0 production is mea-
sured via the decay of the π0 into two photons as-
sociated to two electromagnetic clusters. The distri-
bution of the effective mass of the reconstructed γ γ

system shows a clear π0 peak in all the detector re-
gions. Examples for the central region and the small-
angle detector are given in Figs. 1(a) and (b), respec-
tively. Over the entire range of |η| and pt , the resolu-
tion varies between 6.6 and 13.5 MeV, and is well re-
produced by Monte Carlo simulation. For pt > 4 GeV
and |η| < 0.5, the two final photons are unresolved
and the π0 is associated to a single electromagnetic
cluster. To avoid double-counting in the region 4 <

pt < 5 GeV and |η| < 0.5, where both methods are
applied, only clusters which do not contribute to com-
binations in a 3-σ mass band around the π0 peak are
taken into account. In this region, we have checked
that the two methods applied separately agree within
errors.

Inclusive K0
S production is measured using the

decay K0
S → π+π− that produces two oppositely

charged tracks. The K0
S’s are selected by reconstruct-

ing the secondary decay vertex. The projected dis-
tance, in the transverse plane, between the secondary
vertex and the primary e+e− interaction point is re-
quired to be greater than 3 mm. The angle between
the projected flight direction of the K0

S candidate sec-
ondary vertex in the transverse plane, and the to-

tal transverse momentum vector of the two outgoing
tracks must be less than 75 mrad. After these cuts,
about 5 × 105 events are selected. The distribution
of the effective mass of the reconstructed π+π− sys-
tem shows a clear K0

S peak. Examples for different pt

bins are given in Figs. 1(c) and (d). The resolution
varies from 8 MeV for pt < 1 GeV to 10 MeV around
4 GeV, and is well reproduced by Monte Carlo simu-
lation.

4. Differential cross sections

Differential cross sections as a function of the trans-
verse momentum pt and of the absolute pseudorapid-
ity |η| are calculated using the number of π0 and K0

S
candidates and the overall efficiency for each bin of
pt or |η|. The overall efficiency includes reconstruc-
tion and trigger efficiencies and takes into account the
branching fraction of the K0

S into π+π−. The recon-
struction efficiency includes the effects of the accep-
tance and selection cuts and is calculated with the
Monte Carlo generators PHOJET and PYTHIA. As
both generators reproduce well the shapes of the ex-
perimental distributions of hadronic two-photon pro-
duction [13], their average is used.

Two-photon events are collected predominantly by
the track triggers [14]. The trigger efficiency is de-
rived from each year’s data sample by comparing the
number of events accepted by the independent track
and calorimetric energy [15] triggers. The efficiencies
of higher level triggers are measured using prescaled
events. For the π0, it varies from 80% at low pt to
100% at high pt . For the K0

S, it is 85% independently
of pt . Those factors are used to correct the data in each
bin of the spectra.

The cross sections are calculated for Wγ γ > 5 GeV,
with a mean value of 30 GeV and a photon virtuality
Q2 6 8 GeV2. The overall efficiency does not depend
on the Q2 cutoff.

4.1. e+e− → e+e−π0X analysis

To evaluate the number of π0’s when the two
photons are well separated in the detector, fits are
made to the γ γ mass distribution in the interval 50 <

Mγγ < 200 MeV using a Gaussian to describe the
signal and a third degree Chebyshev polynomial for
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Fig. 1. Two photon effective mass for (a) 1 < pt < 1.5 GeV in the central region and (b) for pt > 0.2 GeV in the small angle detector. Two
charged pion effective mass for (c) 0.2 < pt < 0.4 GeV and (d) 0.8 < pt < 1.0 GeV. The π0 and K0

S peaks are fitted with a Gaussian and the
background with a Chebyshev polynomial. Values of the π0 and K0

S masses are also indicated.

the background. All the parameters, including mass
and width of the peak, are left free.

When single clusters are identified as a π0, the con-
tamination coming from the decays of other mesons
(η,ω,η0, . . .) is on average 15.1±1.2% over the entire
pt and |η| ranges. Single photon production (γ q →
γ q, qq̄ → γ g, gq → γ q) is predicted to be more than
one order of magnitude below our measurements [16].
In addition, a study of the energy profile of each clus-
ter reveals no significant background from this source.

The background due to annihilation events increases
with pt up to a maximum of 11%.

The reconstruction efficiency varies between 15%
and 50% in the different pt and |η| ranges. The
efficiency increases from pt ' 0.2 GeV, where a low
energy photon can go undetected, up to pt ' 2 GeV.
In the region 2 < pt < 4 GeV, the efficiency decreases
due to the increasing percentage of events in which
the two photons merge. For pt > 4 GeV, the addition
of the single-cluster analysis gives a higher efficiency.
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Table 1
The π0 overall efficiency and differential cross sections as a function of pt for |η| < 0.5. Average pt values, hpt i, after efficiency corrections
are given. For pt < 4 GeV, the π0 is only reconstructed from its decay into two photons. Above 5 GeV, the π0 is only detected as a single
cluster. In the 4–5 GeV bin, both methods are used yielding a higher efficiency. The first uncertainty on cross sections is statistical and the
second one systematic. The cross sections are calculated for Wγ γ > 5 GeV and Wγ γ > 10 GeV and coincide for pt > 3 GeV

pt hpt i Efficiency dσ/dpt for Wγ γ > 5 GeV dσ/dpt for Wγ γ > 10 GeV

[GeV] [GeV] [%] [pb/GeV] [pb/GeV]

0.2–0.4 0.28 12.9 ± 1.2 (89 ± 1 ± 8) × 102 (62 ± 0.8 ± 6) × 102

0.4–0.6 0.48 24.3 ± 2.2 (44 ± 0.3 ± 4) × 102 (35 ± 0.3 ± 3) × 102

0.6–0.8 0.68 30.7 ± 2.8 (18 ± 0.1 ± 2) × 102 (15 ± 0.1 ± 1) × 102

0.8–1.0 0.88 35.4 ± 3.2 (73 ± 0.8 ± 7) × 101 (59 ± 0.7 ± 6) × 101

1.0–1.5 1.14 37.2 ± 3.4 (22 ± 0.3 ± 2) × 101 (18 ± 0.3 ± 2) × 101

1.5–2.0 1.68 37.4 ± 3.5 (46 ± 1 ± 4) (40 ± 1 ± 4)

2.0–3.0 2.31 35.8 ± 3.5 (11 ± 0.5 ± 1) (95 ± 5 ± 11) × 10−1

3.0–4.0 3.36 23.5 ± 4.1 (30 ± 6 ± 5) × 10−1

4.0–5.0 4.39 47.5 ± 8.5 (76 ± 14 ± 1) × 10−2

5.0–7.5 5.79 26.7 ± 3.0 (26 ± 4 ± 3) × 10−2

7.5–10.0 8.46 26.4 ± 3.7 (73 ± 18 ± 10) × 10−3

10.0–15.0 11.98 21.7 ± 3.9 (27 ± 9 ± 5) × 10−3

15.0–20.0 17.36 15.6 ± 3.8 (14 ± 8 ± 4) × 10−3

Table 2
The number of reconstructed π0, overall efficiency and differential cross section as a function of pseudorapidity for pt > 1 GeV and
Wγ γ > 5 GeV. The first uncertainty on the cross section is statistical and the second one systematic

Detector |η| Number of π0 Efficiency [%] dσ/d|η| [pb]

Barrel 0.0–0.2 8914 35.6 ± 4.0 303 ± 8 ± 33
0.2–0.4 9263 36.7 ± 4.1 305 ± 8 ± 33
0.4–0.6 8965 34.2 ± 3.8 317 ± 8 ± 34
0.6–0.8 8094 31.7 ± 3.6 308 ± 8 ± 33

Barrel + Endcap 0.8–1.4 8688 12.4 ± 2.1 282±10±47

Endcap 1.4–1.6 3443 16.6 ± 2.9 251±15±42
1.6–1.8 3050 16.4 ± 3.0 225±15±37
1.8–2.0 2313 15.2 ± 2.8 184±15±31
2.0–2.2 2294 12.7 ± 2.5 217±23±36

Small-angle 3.4–4.3 1410 16.4 ± 3.5 23 ± 2 ± 5

The efficiency decreases with polar angle due to the
acceptance of the calorimeters. In the endcaps and
small-angle detectors, the efficiency takes into account
the region pt > 1 GeV.

Sources of systematic uncertainties on the cross-
section measurements are selection criteria, Monte
Carlo modelling, background subtraction and accu-
racy of the trigger efficiency measurement. The un-
certainty due to selection criteria is dominated by

the e+e− → e+e− hadrons selection, estimated to be
7.5% [13]. The Monte Carlo modelling uncertainty,
taken as half the relative difference between PHOJET
and PYTHIA, increases with pt from 1% to 24%. The
background uncertainty varies from 5% to 15% for
pt < 5 GeV. It is estimated using different background
parametrisations during the fitting procedure. In the
high pt region, the uncertainty on the annihilation
background subtraction is taken as half the difference
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Table 3
The K0

S overall efficiency and differential cross sections as a function of pt for |η| < 1.5. Average pt values, hpt i, after efficiency corrections
are given. The first uncertainty on cross section is statistical and the second one systematic. The cross section is calculated for Wγ γ > 5 GeV
and Wγ γ > 10 GeV

pt hpt i Efficiency dσ/dpt for Wγ γ > 5 GeV dσ/dpt for Wγ γ > 10 GeV

[GeV] [GeV] [%] [pb/GeV] [pb/GeV]

0.4–0.6 0.49 13.6 ± 0.1 1522 ± 20 ± 81 1262 ± 21 ± 65

0.6–0.8 0.69 17.8 ± 0.2 947 ± 14 ± 53 786 ± 16 ± 40

0.8–1.0 0.89 20.0 ± 0.3 521 ± 11 ± 27 428 ± 12 ± 22

1.0–1.5 1.16 22.2 ± 0.4 180 ± 5 ± 9 151 ± 4 ± 8

1.5–2.0 1.67 22.4 ± 1.0 46 ± 3 ± 3 42 ± 2 ± 2

2.0–3.0 2.29 16.1 ± 1.3 10 ± 1 ± 0.6 11 ± 1 ± 0.6

3.0–4.0 3.35 14.8 ± 4.8 2.1 ± 0.8 ± 0.2 1±0.5±0.3

Table 4
The number of reconstructed K0

S, overall efficiency and differential cross section as a function of pseudorapidity for pt > 1.5 GeV and
Wγ γ > 5 GeV. The first uncertainty on the cross section is statistical and the second one systematic

|η| Number of K0
S Efficiency [%] dσ/d|η| [pb]

0.0–0.3 744 23.3 ± 0.8 25.9 ± 2.0 ± 1.3

0.3–0.6 759 24.5 ± 0.8 25.1 ± 1.9 ± 1.2

0.6–1.5 1473 14.7 ± 1.2 27.1 ± 2.4 ± 3.2

between PYTHIA and KK2f and varies from 0.1%
to 5%. The uncertainty on the trigger efficiency varies
from 0.1% to 1.1% due to the statistical accuracy of
its determination.

The overall efficiencies and differential cross sec-
tions dσ/dpt and dσ/d|η| are given in Tables 1
and 2. The cross sections are also calculated for
Wγ γ > 10 GeV. The π0 multiplicity in the range
0.2 < pt < 20 GeV and |η| < 0.5 is 0.275 ± 0.001 ±
0.025 per e+e− → e+e− hadrons event, in agreement
with Monte Carlo predictions, 0.281 for PHOJET and
0.285 for PYTHIA.

4.2. e+e− → e+e−K0
SX analysis

The number of K0
S is evaluated by means of a

fit to the π+π− mass distribution in the interval
400 < Mπ+π− < 600 MeV. A Gaussian describes the
signal and a third degree Chebyshev polynomial the
background. All parameters, including the mass and
width of the peak, are left free.

The reconstruction efficiency is of the order of 20%.
Systematic uncertainties, estimated as in the π0 case,
are selection criteria (7.5%), Monte Carlo modelling
(1–6%), background subtraction (1–7%) and trigger
efficiency measurement accuracy (2%). In addition, a
2.5% uncertainty arises from the K0

S selection criteria.
The overall efficiencies and differential cross sec-

tions dσ/dpt and dσ/d|η| are given in Tables 3 and 4.
Cross sections for Wγ γ > 10 GeV are also given. The
multiplicity of K0

S in the range 0.4 < pt < 4 GeV and
|η| < 1.5 is 0.060 ± 0.006 ± 0.003 per e+e− → e+e−
hadrons event, in agreement with Monte Carlo predic-
tions, 0.067 for PHOJET and 0.056 for PYTHIA.

5. Results

Differential cross sections of π0 and K0
S production

with respect to pt and |η| are shown in Figs. 2, 3 and 4.
The behaviour of dσ/dpt in the range 0.2 < pt <

1.5 GeV for π0 and 0.6 < pt < 1.5 GeV for K0
S is
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Fig. 2. Inclusive differential cross section dσ/dpt compared to Monte Carlo predictions and exponential and power law behaviour for: (a) π0

production for |η| < 0.5 and (b) K0
S production for |η| < 1.5. Ratio of the differential cross section dσ/dpt to Monte Carlo predictions for:

(c) π0 production and (d) K0
S production.

described by an exponential of the form Ae−pt/hpt i
with a mean value of hpt i ' 230 MeV for the π0

and hpt i ' 290 MeV for the K0
S. This behaviour is

characteristic of hadrons produced by soft interactions
and is similar to that obtained in hadron–hadron
and photon–hadron collisions [17]. Due to the direct
γ γ → qq̄ process and to hard QCD interactions, two-
photon collisions exhibit a cross section higher than
the expected exponential behaviour at high pt values.

For pt > 1.5 GeV, the differential cross sections are
better represented by a power law function Ap−B

t .
The value of the power B is compatible with 4 for
both π0 and K0

S. In the framework of Ref. [18], this
value is expected in the case of 2 → 2 hard scattering
processes at the parton level.

The differential cross sections are also compared
to Monte Carlo predictions in Fig. 2. In the π0 case,
the high pt region is not reproduced by PYTHIA
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Fig. 3. Inclusive differential cross section dσ/dpt compared to NLO QCD predictions for: (a) π0 production for |η| < 0.5 and (b) K0
S production

for |η| < 1.5. The NLO calculations are given for the QCD scale equal to pt (full line) and for the scales 0.5pt (upper dashed line) and 2pt

(lower dashed line). The contribution of the direct QED process is indicated as a dashed dotted line. For the π0 case the estimation of the
single photon production [16] is indicated as a dotted line. The structure at 3 GeV in (b) is due to the charm threshold in the fragmentation
function [3,23].

Fig. 4. Inclusive differential cross sections dσ/d|η| compared to NLO QCD predictions for: (a) π0 production for pt > 1 GeV and (b) K0
S

production for pt > 1.5 GeV. The NLO calculations are given for the QCD scale equal to pt (full line) and for the scales 0.5pt (upper dashed
line) and 2pt (lower dashed line). The contribution of the direct QED process is indicated as a dotted line.
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nor by PHOJET. We verify that the shapes of the |η|
distributions of π0 and K0

S are well reproduced by
both models. Qualitative agreement with earlier data
on charged hadrons [4] and neutral pions [19] is found.

In Figs. 3(a) and (b) the data are compared to an-
alytical NLO QCD predictions [20]. For this calcu-
lation, the flux of quasi-real photons is obtained us-
ing the Equivalent Photon Approximation, taking into
account both transverse and longitudinal virtual pho-
tons. The interacting particles can be photons or par-
tons from the γ → qq̄, which evolves into quarks
and gluons. The NLO parton density functions of
Ref. [21] are used and all elementary 2 → 2 and 2 → 3
processes are considered. New NLO fragmentation
functions (FF) [22] are used assuming that FF(π0) =
(FF(π+) + FF(π−))/2. The renormalization, factori-
sation and fragmentation scales are taken to be equal:
µ = M = MF = ξpt [2]. The scale uncertainty in the
NLO calculation is estimated by varying the value of ξ

from 0.5 to 2.0. The structure in the pt spectrum for
the K0

S calculation is due to the charm threshold in the
fragmentation function [2,23]. The agreement with the
data is satisfactory in the K0

S case, but it is poor for the
π0 case in the high-pt range.

The dσ/d|η| differential cross sections, are also
compared to QCD calculations as shown in Fig. 4. The
shape of the data, and in particular the measurement
of the π0 production at h|η|i = 3.85, is reproduced by
NLO QCD predictions.
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