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Abstract

A search, in e+e− collisions, for chargino, neutralino, scalar lepton and scalar quark pair-production is performed, without
assuming R-parity conservation in decays, in the case that only one of the coupling constants λ or λ00 is non-negligible. No
signal is found in data up to a centre-of-mass energy of 208 GeV. Limits on the production cross sections and on the masses of
supersymmetric particles are derived.  2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The most general superpotential of the Minimal Su-
persymmetric Standard Model (MSSM) [1], which de-
scribes a supersymmetric, renormalizable and gauge-
invariant theory, with minimal particle content, in-
cludes the term WR [2,3]:

WR = λijkLiLj
SEk + λ0

ijkLiQj
SDk + λ00

ijk
SUi

SDj
SDk,

(1)

where λijk , λ0
ijk and λ00

ijk denote the Yukawa couplings
and i, j and k the generation indices;Li and Qi are the
left-handed lepton- and quark-doublet superfields, SEi ,SDi and SUi are the right-handed singlet superfields for
charged leptons, down- and up-type quarks, respec-
tively. TheLiLj

SEk andLiQj
SDk terms violate the lep-

tonic quantum number L, while the SUi
SDj

SDk terms vi-
olate the baryonic quantum number B .
R-parity is a multiplicative quantum number de-

fined as:

(2)R = (−1)3B+L+2S,

where S is the spin. For ordinary particles R is
+1, while it is −1 for their supersymmetric part-
ners. R-parity conservation implies that supersymmet-

1 Supported by the German Bundesministerium für Bildung,
Wissenschaft, Forschung und Technologie.

2 Supported by the Hungarian OTKA fund under contract
numbers T019181, F023259 and T024011.

3 Also supported by the Hungarian OTKA fund under contract
number T026178.

4 Supported also by the Comisión Interministerial de Ciencia y
Tecnología.

5 Also supported by CONICET and Universidad Nacional de La
Plata, CC 67, 1900 La Plata, Argentina.

6 Supported by the National Natural Science Foundation of
China.

ric particles can only be produced in pairs and then de-
cay in cascade to the lightest supersymmetric particle
(LSP), which is stable [4]. This hypothesis is formu-
lated in order to prevent a fast proton decay [5], dis-
favoured by present limits [6]. However, the absence
of either the B- or the L-violating terms is enough to
prevent such a decay, and the hypothesis of R-parity
conservation can be relaxed. As a consequence, two
new kinds of processes are allowed: single production
of supersymmetric particles [7,8], or LSP decays into
Standard Model particles via scalar lepton or scalar
quark exchange. For these decays, the MSSM pro-
duction mechanisms are unaltered by the operators in
Eq. (1). In this Letter the cases in which either a neu-
tralino or a scalar lepton is the LSP are considered.

In this Letter we describe the search for pair-
produced neutralinos (e+e− → χ̃0

mχ̃
0
n , with m = 1,2

and n= 1, . . . ,4), charginos (e+e− → χ̃+
1 χ̃−

1 ), scalar
leptons (e+e− → ˜̀+

R
˜̀−
R , where ˜̀±

R represents scalar
electrons, muons or tau and e+e− → ν̃ν̃) and scalar
quarks (e+e− → q̃q̃) with subsequent R-parity vio-
lating decays, assuming that only one of the cou-
pling constants λijk or λ00

ijk is non-negligible. Only the
supersymmetric partners of the right-handed charged
leptons, ˜̀

R , are considered, as they are expected to be
lighter than the corresponding left-handed ones.

Supersymmetric particles can either decay directly
into two or three fermions according to the dominant
interaction term, or indirectly via the LSP. The differ-
ent decay modes are detailed in Table 1. Four-body
decays of the lightest scalar lepton are also taken into
account in the case of λ00

ijk . In the present analysis,
the dominant coupling is assumed to be greater than
10−5 [9], which corresponds to decay lengths below
1 cm.

Previous L3 results at centre-of-mass energies (
√
s )

up to 189 GeV are reported in Refs. [10] and [11],
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Table 1
R-parity violating decays of the supersymmetric particles considered in this analysis. Charged conjugate states are implied. Indirect decays via
scalar leptons are relevant only for neutralinos when the scalar lepton is the LSP. Only supersymmetric partners of the right-handed charged
leptons are taken into account. Decays to more than three fermions are not listed. Z∗ and W∗ indicate virtual Z and W bosons

Particle Direct decays Indirect decays

λijk λ00
ijk via χ̃0

1 via ˜̀

χ̃0
1 `−

i
νj `

+
k

, νi `+j `
−
k

ūi d̄j d̄k − ` ˜̀

χ̃0
n (n> 2) `−

i
νj `

+
k

, νi `+j `
−
k

ūi d̄j d̄k Z∗χ̃0
m (m< n), ` ˜̀
W∗χ̃±

1

χ̃+
1 νiνj `

+
k , `+i `

+
j `

−
k d̄i d̄j d̄k , uiuj dk , W∗χ̃0

1 , W∗χ̃0
2

uidjuk

˜̀−
kR

νi`
−
j

, νj `−i − `−
k
χ̃0

1 −

ν̃i , ν̃j `−
j
`+
k

, `−
i
`+
k

− νi χ̃
0
1 , νj χ̃0

1

ũiR − d̄j d̄k ui χ̃0
1 −

d̃jR, d̃kR − ūi d̄k , ūi d̄j dj χ̃0
1 ,dkχ̃0

1 −

where also λ0
ijk couplings are discussed. Two new

analyses are presented in this letter: e+e− → ν̃ν̃

and e+e− → q̃q̃ in the case of λ00
ijk couplings. New

interpretations for scalar leptons and scalar quarks in
the MSSM framework are also performed.

Searches for R-parity violating decays of supersym-
metric particles were also reported by other LEP ex-
periments [8,12].

2. Data and Monte Carlo samples

The data used correspond to an integrated luminos-
ity of 450.6 pb−1 collected with the L3 detector [13] at√
s = 192–208 GeV. For the search for scalar quarks

and scalar neutrinos decaying via λ00
ijk couplings, also

the data sample collected at
√
s = 189 GeV is used.

This corresponds to an additional integrated luminos-
ity of 176.4 pb−1.

The signal events are generated with the program
SUSYGEN [14] for different mass values and for all
possible choices of the generation indices.

The following Monte Carlo generators are used
to simulate Standard Model background processes:
PYTHIA [15] for e+e− → Ze+e− and e+e− →

ZZ, BHWIDE [16] for e+e− → e+e−, KK2F [17]
for e+e− → µ+µ−, e+e− → τ+τ− and e+e− →
qq̄, PHOJET [18] and PYTHIA for e+e− → e+e−
hadrons,DIAG36 [19] for e+e− → e+e−`+`− (`= e,
µ, τ ), KORALW [20] for e+e− → W+W− and EX-
CALIBUR [21] for e+e− → qq̄0 `ν and e+e− →
`ν`0ν. The number of simulated events corresponds to
at least 50 times the luminosity of the data, except for
Bhabha and two-photon processes, where the Monte
Carlo samples correspond to 2 to 10 times the lumi-
nosity.

The detector response is simulated using the GEANT
package [22]. It takes into account effects of energy
loss, multiple scattering and showering in the detec-
tor materials. Hadronic interactions are simulated with
the GHEISHA program [23]. Time-dependent detector
inefficiencies are also taken into account in the simu-
lation procedure.

Data and Monte Carlo samples are reconstructed
with the same program. Isolated leptons (` = e, µ,τ )
are identified as described in Ref. [11]. Remaining
clusters and tracks are classified as hadrons. Jets are
reconstructed with the DURHAM algorithm [24]. The
jet resolution parameter ymn is defined as the ycut value
at which the event configuration changes from n to m
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jets. At least one time of flight measurement has to
be consistent with the beam crossing to reject cosmic
rays.

3. λijk analysis

The different topologies arising when λijk cou-
plings dominate are shown in Table 2 and can be clas-
sified into four categories: 2` + /E , 4` + /E, 6`, > 4`
plus possible jets and /E. The missing energy /E in-
dicates final state neutrinos escaping detection. After
a common preselection [11], based on the visible en-
ergy, the event multiplicity and the number of iden-
tified leptons, a dedicated selection is developed for
each group, taking into account lepton flavours, parti-
cle boosts and virtual W and Z decay products.

After the preselection is applied, 2567 events are
selected in the data sample and 2593 ± 12 events
are expected from Standard Model processes. The
main contributions are: 44.5% from W+W−, 21.5%
from qq̄, 14.7% from qq̄0 eν, 6.6% from two-photon
processes (3.9% from e+e−`+`− and 2.7% from e+e−
hadrons), and 5.6% from τ+τ− events.

Fig. 1 shows the distributions of the number of
leptons, thrust, normalised visible energy and ln(y34)

Table 2
Processes considered in the λijk analysis and corresponding selec-
tions [11]. χ̃0

mχ̃
0
n indicates neutralino pair-production with m= 1,2

and n = 1, . . . ,4. “Cascades” refers to all possible final state com-
binations of Table 1

Direct decays Selections

e+e− → χ̃0
mχ̃

0
n → ````νν 4`+/E

e+e− → χ̃+
1 χ̃−

1 → `````` 6`

````νν 4`+/E
``νννν 2`+/E

e+e− → ˜̀+
R

˜̀−
R → `ν`ν 2`+/E

e+e− → ν̃ν̃ → ```` 4`+/E

Indirect decays Selections

e+e− → χ̃0
mχ̃

0
n(n>2) → cascades > 4`+ (jets)+/E

e+e− → χ̃+
1 χ̃−

1 → χ̃0
1(2)χ̃

0
1(2)W

∗W∗ > 4`+ (jets)+/E
e+e− → ˜̀+

R
˜̀−
R

→ ``````νν > 4`+ (jets)+/E
e+e− → ν̃ν̃ → ````νννν 4`+/E

after the preselection. The data are in good agreement
with the Monte Carlo expectations.

The final selection criteria are discussed in Ref. [11]
and yield the efficiencies for direct and indirect de-
cays of the supersymmetric particles summarized in
Tables 3 and 4, respectively. Here and in the follow-
ing sections we discuss only the results obtained for
those choices of the generation indices which give the
lowest selection efficiencies. The quoted results will
thus be conservatively valid for any ijk combination.
In the case of direct R-parity violating decays, the effi-
ciencies are estimated for different mass values of the
pair-produced supersymmetric particles. In the case of
indirect decays, the efficiencies are estimated for dif-
ferent masses and 1M ranges. 1M is defined as the
mass differenceMsusy −Mχ̃0

1
, where Msusy is the mass

of the supersymmetric particle under investigation.
For direct neutralino or chargino decays, as well as

for all indirect decays studied, the lowest efficiencies
are found for λijk = λ133, due to the presence in the
final state of taus, whose detection is more difficult.

In the case of pair-production of scalar charged
leptons, followed by direct decays via λijk , the final
state contains two leptons plus missing energy. The
lepton flavours are given by the indices i and j ,
independently of the value of k. The lowest selection
efficiency is found for λijk = λ12k , i.e., for events with
electrons and muons in the final state, since these low
multiplicity events require a tight selection to suppress
the large background from lepton pair-production.

Direct decays of scalar neutrinos yield four leptons
in the final state. The 4`+/E selections are used as they
provide a good analysis sensitivity comparable to that
of the dedicated selections for scalar electrons, muons
and taus. Scalar neutrino decays into electrons and
muons are selected with lower efficiency than decays
into taus, due to the missing energy requirements. In
particular, the lowest efficiency is obtained for λ121,
which can give rise to the decays ν̃e →µ−e+ and
ν̃µ → e−e+.

4. λ00
ijk

analysis

When the λ00
ijk couplings dominate, the flavour

composition depends on the generation indices. In
the case of neutralino and chargino pair-production,



L3 Collaboration / Physics Letters B 524 (2002) 65–80 71

Fig. 1. Data and Monte Carlo distributions of (a) the number of leptons, (b) thrust, (c) the normalised visible energy and (d) ln(y34) after the λijk
preselection. The solid histograms show the expectations for Standard Model processes. The dotted and dashed histograms show two examples
of signal, with dominant coupling λ133. The dotted histograms represent the process e+e− → χ̃0

1 χ̃
0
1 , for M

χ̃0
1

= 42 GeV, corresponding to two

hundred times the luminosity of the data. The dashed ones represent e+e− → χ̃+
1 χ̃−

1 , with M
χ̃±

1
= 92 GeV and 1M =M

χ̃±
1

−M
χ̃0

1
= 50 GeV,

corresponding to twenty times this luminosity.

the different topologies can be classified into two
groups: multijets and multijets with leptons and/or
missing energy, as shown in Table 5. After a common
preselection [11], dedicated selections are developed
for each group, depending on the particle boosts, the
1M values and the virtual W decay products.

In the case of neutralino, chargino, scalar charged
lepton and scalar quark pair-production, the preselec-
tion aims at selecting well balanced hadronic events
and yields 11770 events in the data sample to be com-
pared with 11719 ± 31 expected from Standard Model
processes, of which 62.0% are from qq̄ and 32.8%
W+W−. Fig. 2 shows the distributions of thrust,

ln(y34), ln(y45) and width of the most energetic jet af-
ter the preselection. The width of a jet is defined as
p

jet
T /Ejet, where the event is clustered into exactly two

jets, and p
jet
T is the sum of the projections of the par-

ticle momenta on to a plane perpendicular to the jet
axis, and Ejet is the jet energy. There is good agree-
ment between data and Monte Carlo expectations. The
efficiencies for direct and indirect decays of the super-
symmetric particles after the selections discussed in
Ref. [11] are summarized in Tables 3 and 4, respec-
tively.

Scalar quarks and scalar neutrinos, not studied in
our previous papers, are searched for as follows. Scalar
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Fig. 2. Data and Monte Carlo distributions of (a) thrust, (b) ln(y34), (c) ln(y45) and (d) width of the most energetic jet after the λ00
ijk preselection.

The solid histograms show the expectations for Standard Model processes. The dashed and dotted histograms show two examples of signal,
with dominant coupling λ00

212, corresponding to decays into c, d and s quarks. The dotted histograms represent the process e+e− → χ̃0
1 χ̃

0
1 ,

with M
χ̃0

1
= 40 GeV, corresponding to one hundred times the luminosity of the data. The dashed ones represent e+e− → χ̃+

1 χ̃−
1 , with

M
χ̃±

1
= 90 GeV and 1M =M

χ̃±
1

−M
χ̃0

1
= 60 GeV, corresponding to fifteen times this luminosity.

quark pairs can decay directly into 4 or indirectly
into 8 quarks, as shown in Table 1. In the first case, the
main background sources are qq̄ events and W+W−
decays. For low masses of the primary scalar quarks,
the signal configuration is more similar to two back-
to-back jets, due to the large jet boost. In this case
we use the least energetic jet width to reject the qq̄
background, which is the dominant one at low masses.
For larger scalar quark masses (Mq̃ > 50 GeV),
the signal events are better described by a 4-jet
configuration and selection criteria are applied on y34
and the χ2 of a kinematical fit, which imposes four-

momentum conservation and equal mass constraints.
In the case of indirect decays into 8 quarks, the
same selections as for χ̃0

1 χ̃
0
1 decays into 6 quarks are

used [11].
For scalar neutrino pair-production, a different pres-

election is performed, to take into account the missing
momentum in the final state. Low multiplicity events,
such as leptonic Z and W decays, are rejected by re-
quiring at least 13 calorimetric clusters. At least one
charged track has to be present. The visible energy has
to be greater than 0.2

√
s. In order to remove back-

ground contributions from two-photon interactions,
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Table 3
Efficiency values (�, in %) and 95% C.L. cross section upper limits (σ , in pb) for direct decays of the supersymmetric particles, as a function of
their mass (M , in GeV). As an example the efficiencies at

√
s = 206 GeV are shown, for the most conservative choice of the couplings. At the

other centre-of-mass energies they are compatible within the uncertainties. Typical relative errors on the signal efficiencies, due to Monte Carlo
statistics, are between 2% and 5%. χ̃0

mχ̃
0
n indicates neutralino pair-production with m = 1,2 and n = 1, . . . ,4. For direct neutralino decays

we quote the χ̃0
1 χ̃

0
1 efficiencies. The upper limits on the pair-production cross sections are calculated using the full data sample, with a total

luminosity of 627 pb−1, except for the last mass point, where only the data collected at
√
s > 204 GeV are used, corresponding to a luminosity

of 216 pb−1. Chargino and scalar lepton pair-production via λijk couplings are not investigated for mass values excluded in Ref. [11]. For the
processes marked with * we refer to four-body decays, as described in Section 4

Coupling Process M

30 40 50 60 70 80 90 102

Direct decays

λ133 χ̃0
mχ̃

0
n � 15 24 32 37 40 42 45 46

σ 0.07 0.05 0.04 0.03 0.03 0.03 0.02 0.07

λ133 χ̃+
1 χ̃−

1 � – – – – 38 40 43 43

σ – – – – 0.07 0.06 0.06 0.17

λ12k ˜̀+
R

˜̀−
R � – – – – 6 6 8 6

σ – – – – 0.39 0.36 0.27 1.16

λ121 ν̃ν̃ � – – – – 6 8 7 5

σ – – – – 0.20 0.15 0.17 0.68

λ00
212 χ̃0

mχ̃
0
n , χ̃+

1 χ̃−
1 � 39 49 40 44 42 43 46 56

σ 0.11 0.10 0.08 0.12 0.12 0.11 0.10 0.18

λ00
212 ẽ+

R
ẽ−
R

*, µ̃+
R
µ̃−
R

* � 39 49 40 44 42 43 46 56

σ 0.11 0.10 0.08 0.12 0.12 0.11 0.10 0.18

λ00
212 τ̃

+
R τ̃

−
R * � 39 49 38 44 42 19 14 13

σ 0.11 0.10 0.15 0.12 0.11 0.18 0.22 0.28

λ00
212 ν̃ν̃ * � 7 14 29 21 21 22 25 56

σ 0.66 0.16 0.13 0.18 0.18 0.17 0.15 0.18

λ00
212 q̃q̃ � 27 26 22 32 31 34 34 34

σ 0.10 0.13 0.07 0.05 0.28 0.27 0.16 0.13

the energy in a cone of 12◦ half-opening angle around
the beam axis has to be below 20% of the total visible
energy. Furthermore, the thrust axis is required to be
well contained in the detector. Unbalanced events with
an initial state radiation photon in the beam pipe are re-
moved. Semileptonic W+W− decays are rejected by
the requirement that neither the dijet invariant mass
nor that of any identified lepton and the missing four-
momentum should be in a 5 GeV interval around the
W mass. This preselection yields 13 950 events in the
data at

√
s = 189–208 GeV where 13662 ± 45 are ex-

pected from Standard Model processes and the main
contributions are 50.6% from qq̄, 32.8% from W+W−,

9.2% from e+e−qq̄ and 4.0% from qq̄0eν. The differ-
ence in the number of found and expected data appears
in the region where the visible energy is below 0.5

√
s,

where an important contribution from two-photon in-
teractions and `ν`0ν events is expected. Such events
are afterwards rejected by the optimization procedure,
which requires a high visible energy.

In the case of indirect decays of scalar neutrinos, the
only visible decay products are the jets coming from
neutralino decays. Therefore, we have derived five se-
lections according to the neutralino mass value, re-
flecting the different boost and jet broadening config-
urations. The final selection criteria are optimized [11]
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Table 4
Efficiency values (�, in %) and 95% C.L. cross section upper limits (σ , in pb) for indirect decays of the supersymmetric particles, as a function
of 1M (in GeV). As an example the efficiencies at

√
s = 206 GeV are shown, for the most conservative choice of the couplings. At the other

centre-of-mass energies they are compatible within the uncertainties. Typical relative errors on the signal efficiencies, due to Monte Carlo
statistics, are between 2% and 5%. χ̃0

mχ̃
0
n indicates neutralino pair-production with m = 1,2 and n = 2, . . . ,4. The efficiencies correspond to

M
χ̃0
m

+M
χ̃0
n

= 206 GeV. For indirect decays of charginos, scalar leptons and scalar quarks, the selection efficiencies correspond to a mass of

102 GeV. The upper limits on the pair-production cross sections are calculated using the data at
√
s > 204 GeV, with an integrated luminosity

of 216 pb−1

Coupling Process 1M

10 20 30 40 50 60 70 80 90 100

Indirect decays

λ133 χ̃0
mχ̃

0
n(n>2) � 49 48 48 47 45 43 41 38 36 35

σ 0.09 0.09 0.09 0.09 0.10 0.10 0.11 0.12 0.12 0.13

λ133 χ̃+
1 χ̃−

1 � 47 43 39 34 31 25 20 – – –

σ 0.08 0.09 0.10 0.11 0.12 0.15 0.18 – – –

λ133 ẽ+
R ẽ−

R � 61 62 63 54 46 35 24 – – –

σ 0.06 0.06 0.06 0.07 0.08 0.11 0.15 – – –

λ133 µ̃+
R
µ̃−
R

� 71 76 80 77 75 70 65 – – –

σ 0.05 0.05 0.05 0.05 0.05 0.05 0.06 – – –

λ133 τ̃+
R
τ̃−
R

� 52 59 66 65 64 60 56 – – –

σ 0.07 0.06 0.06 0.06 0.06 0.06 0.07 – – –

λ133 ν̃ν̃ � 50 49 49 43 41 39 36 – – –

σ 0.07 0.07 0.07 0.08 0.08 0.09 0.10 – – –

λ00
212 χ̃0

mχ̃
0
n(n>2) � 57 60 63 68 66 64 62 58 54 46

σ 0.18 0.17 0.16 0.15 0.15 0.16 0.17 0.18 0.20 0.23

λ00
212 χ̃+

1 χ̃−
1 � 65 70 69 73 72 70 71 – – –

σ 0.16 0.15 0.15 0.14 0.15 0.15 0.15 – – –

λ00
212 ẽ+

R
ẽ−
R

� 29 51 56 63 66 69 56 46 36 –

σ 0.18 0.09 0.05 0.05 0.05 0.05 0.05 0.06 0.08 –

λ00
212 µ̃+

Rµ̃
−
R � 20 28 41 49 52 55 52 42 27 –

σ 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.09 –

λ00
212 τ̃+

R
τ̃−
R

� 53 57 63 56 46 40 29 17 13 –

σ 0.15 0.13 0.13 0.13 0.15 0.16 0.22 0.23 0.24 –

λ00
212 ν̃ν̃ � 41 43 44 39 37 32 40 50 35 –

σ 0.13 0.12 0.12 0.12 0.14 0.15 0.08 0.11 0.12 –

λ00
212 q̃q̃ � 55 59 64 65 63 58 47 45 43 –

σ 0.18 0.16 0.15 0.15 0.16 0.17 0.22 0.22 0.23 –

by taking into account the following variables: jet
widths, ln(y34) and ln(y45), visible energy and polar
angles of the missing momentum vector and of the
thrust axis.

Supersymmetric partners of the right-handed lep-
tons have no direct two-body decays via λ00

ijk cou-
plings. However, when scalar leptons are lighter than
χ̃0

1 , the four-body decay ˜̀
R → `qqq can occur [3]
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Table 5
Processes considered in the λ00

ijk
analysis and corresponding selec-

tions [11]. For masses below 50 GeV or small 1M values not all
jets in the event can be resolved. χ̃0

mχ̃
0
n indicates neutralino pair-

production with m = 1,2 and n = 1, . . . ,4. For final states with
neutrinos we use selections with no explicit missing energy require-
ment, because for those topologies /E is small, except for the scalar
neutrino decays

Direct decays Selections

e+e− → χ̃0
mχ̃

0
n → qqqqqq multijets

e+e− → χ̃
+
1 χ̃

−
1 → qqqqqq multijets

Indirect decays Selections

e+e− → χ̃0
mχ̃

0
n(n>2) → qqqqqq qq multijets

qqqqqq `` multijets + lepton(s)

qqqqqq νν multijets

e+e− → χ̃+
1 χ̃−

1 → qqqqqq qqqq multijets

qqqqqq qq `ν multijets + lepton(s)

qqqqqq ``νν multijets + lepton(s)

e+e− → ˜̀+
R

˜̀−
R → qqqqqq `` 6 jets + 2`

e+e− → ν̃ν̃ → qqqqqq νν 6 jets +/E
e+e− → q̃q̃ → qqqqqq qq multijets

providing the same final state as that resulting from
indirect decays, but with virtual χ̃0

1 production. The
non-resonant four-body decay is not implemented in
the generator. For this reason, we use the results of
the indirect decay analysis, performing a scan over all
neutralino mass values up to M ˜̀

R
. The resulting low-

est efficiency is conservatively quoted in the follow-
ing for four-body decays. It is found in most cases for
Mχ̃0

1
'M ˜̀

R
, as the resulting low energy lepton can not

be resolved from the nearby jet. For scalar taus with
masses above 70 GeV, the lowest efficiency is found
for high 1M values, as in the case of indirect decays.

5. Model-independent results

Table 6 and Table 7 show the overall numbers
of candidates and expected background events for
the different selections and processes, respectively.
The same process may give rise to different final
states (such as chargino direct decays via λijk ) or
the same final state (like “multijets”) can be present
as a decay product of more than one process. No

Table 6
Number of observed data (Ndata) and expected background (Nback)
events for the different selections in the sample at

√
s = 192–

208 GeV. A process can give rise to several topologies, or the same
topology may occur for more than a final state. The uncertainty on
the expected background is due to Monte Carlo statistics. The deficit
in the number of observed data in the multijet and scalar lepton λ00

ijk
selections is correlated among the channels

Coupling Selection Nback Ndata

λijk 4`+/E 4.9 ± 0.5 6

(> 4)`+ (jets) +/E 10.1 ± 0.3 10

2`+/E 31 ± 2 34

6` 0.85 ± 0.09 1

λ00
ijk

Multijets (M
χ̃0

1
= 30–40 GeV) 146 ± 2 147

Multijets (M
χ̃0

1
= 40–50 GeV) 100 ± 2 109

Multijets 446 ± 3 404

Multijets + lepton(s) (semileptonic) 11.8 ± 0.7 9

Multijets + lepton(s) (leptonic) 6.1 ± 0.7 5

6 jets + 2 leptons 413 ± 2 361

6 jets +/E 671 ± 6 669

4 jets 3387 ± 13 3411

Table 7
Number of observed data (Ndata) and expected background (Nback)
events for the different processes in the sample at

√
s = 192–

208 GeV. Details on the selection of each topology are given in
Table 6. The uncertainty on the expected background is due to
Monte Carlo statistics. The deficit in the number of observed data
in the neutralino, chargino and slepton λ00

ijk
analyses is correlated

among the channels

Coupling Process Nback Ndata

λijk χ̃0
1 χ̃

0
1 4.9 ± 0.5 6

χ̃0
mχ̃

0
n 14.7 ± 0.6 15

χ̃+
1 χ̃−

1 (indirect) 10.1 ± 0.3 10

χ̃+
1 χ̃−

1 (direct) 37 ± 3 40
˜̀+
R

˜̀−
R (indirect) 10.1 ± 0.3 10

˜̀+
R

˜̀−
R (direct) 31 ± 2 34

ν̃ν̃ 4.9 ± 0.5 6

λ00
ijk χ̃0

1 χ̃
0
1 661 ± 4 605

χ̃+
1 χ̃−

1 446 ± 3 404
˜̀+
R

˜̀−
R

413 ± 2 361

ν̃ν̃ 671 ± 6 669

q̃q̃ 3387 ± 13 3411
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significant excess of events is observed. Therefore,
upper limits are set on the neutralino, chargino and
scalar lepton pair-production cross sections assuming
direct or indirect R-parity violating decays.

In the case of λijk couplings, upper limits are set
for each process, independently of the mass value
of the supersymmetric particle considered. For λ00

ijk

couplings, upper limits are derived for each process
depending on the mass range of the supersymmetric
particles, since this procedure improves the sensitivity
of analyses with high background level.

These limits take into account the estimated back-
ground contamination. Systematic uncertainties on the
signal efficiency are dominated by Monte Carlo statis-
tics. The typical relative error is between 2% and 5%
and it is included in the calculations of the signal upper
limits [26].

Tables 3 and 4 show the 95% confidence level
(C.L.) upper limits on supersymmetric particle pair-
production cross sections. For each mass point, all
data collected at centre-of-mass energies above the
production threshold are combined. For low mass
values, the data at

√
s = 189 GeV are also used.

Therefore, these upper limits should be interpreted
as a limit on the luminosity-weighted average cross
section.

6. Interpretation in the MSSM

In the MSSM framework, neutralino and chargino
masses, couplings and cross sections depend on the
gaugino mass parameter, M2, the higgsino mass mix-
ing parameter, µ, the ratio of the vacuum expectation
values of the two Higgs doublets, tanβ , and the com-
mon mass of the scalar particles at the GUT scale, m0.
The results presented in this section are obtained by
performing a scan in the ranges: 0 6M2 6 1000 GeV,
−500 GeV 6 µ 6 500 GeV, 0 6 m0 6 500 GeV and
0.7 6 tanβ 6 40. They do not depend on the value of
the trilinear coupling in the Higgs sector, A.

6.1. Mass limits from scalar lepton and scalar quark
searches

For scalar lepton and scalar quark pair-production,
mass limits are derived by direct comparison of the
95% C.L. cross section upper limits with the scalar

particle pair-production cross sections, which depend
on the scalar particle mass.

We assume no mixing in the scalar lepton sector.
Scalar electron and scalar electron neutrino pair-
production have an additional contribution from the
t-channel exchange of a neutralino or chargino, whose
mass spectrum depends on the MSSM parameters.
In this case the mass limits are derived at a given
value of tanβ and µ, here chosen to be tanβ = √

2
and µ = −200 GeV. For scalar quarks, mixing is
taken into account for the third generation. The cross
section depends on the scalar quark mass and on
the mixing angle θLR. For

√
s = 189–208 GeV the

production cross section for scalar top pairs is minimal
for cosθLR ∼ 0.51 and for scalar bottom pairs for
cosθLR ∼ 0.36. These values are conservatively used
in this analysis.

Figs. 3 and 4 show the excluded 95% C.L. contour
for different scalar lepton and scalar quark masses, as a
function of the neutralino mass. Indirect decays of the
scalar leptons dominate over direct ones in the region
with 1M > 2 GeV. For 0 6 1M < 2 GeV 100%
branching ratio either into direct or indirect decays is
assumed and the worst result is shown. In the negative
1M region only direct decays contribute. For λ00

ijk

direct decays of the scalar leptons we quote the results
from four-body processes. The 95% C.L. lower mass
limits are shown in Table 8, for both direct and indirect
decays.

6.2. Mass limits from combined analyses

A point in the MSSM parameter space is excluded
if the total number of expected events is greater than
the combined upper limit at 95% C.L. on the number
of signal events. Neutralino, chargino, scalar lepton
and scalar quark analyses are combined since several
processes can occur at a given point. Gaugino and
scalar mass unification at the GUT scale is assumed.
The constraints from the L3 lineshape measurements
at the Z pole [25] are also taken into account [11].
We derive lower limits at 95% C.L. on the neutralino,
chargino and scalar lepton masses, as detailed in
Table 9.

Fig. 5 shows the 95% C.L. lower limits on neu-
tralino and scalar lepton masses as a function of tanβ .
The χ̃0

1 and χ̃0
2 mass limits are shown for m0 =

500 GeV and the ˜̀
R ones for m0 = 0. These values
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Fig. 3. MSSM exclusion contours, at 95% C.L., for the masses of (a) ẽR , (b) µ̃R , (c) τ̃R and (d) ν̃µ,τ as a function of the neutralino mass. The
solid and dashed lines, show the λ and λ00 exclusion contours, respectively. The dotted line corresponds to 1M = 0. For 1M < 0, above this
line, the exclusion contours from direct decays are shown.

Fig. 4. MSSM exclusion contours, at 95% C.L., for the masses of (a) up-type (b) down-type scalar quarks (c) b̃1 and (d) t̃1 as a function of
the neutralino mass, for λ00 coupling. The solid and dashed lines show the exclusion contours for (a) ũL , ũR and (b) d̃L , d̃R , respectively. For
1M < 0, above the dotted line, the exclusion contours from direct decays are shown.
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Table 8
Lower limits at 95% C.L. on the masses of the scalar leptons and scalar quarks. The limits result from direct comparison of the 95% C.L. cross
section upper limits with the scalar particle pair-production cross sections. ũR , ũL , d̃R and d̃L refer to any type of up and down supersymmetric
partners of the right-handed and left-handed quarks. t̃1 and b̃1 limits are quoted in the case of minimal production cross section. For λ00

ijk
direct

decays of scalar leptons we refer to four-body processes

Coupling Mass limit (GeV)

MẽR Mµ̃R
Mτ̃R

Mν̃µ,τ Mν̃e MũR MũL Md̃R
Md̃L

Mt̃1
M
b̃1

λijk (direct) 69 61 61 65 95 – – – – – –

λijk (indirect) 79 87 86 78 99 – – – – – –

λ00
ijk

(direct) 96 86 75 70 99 80 87 56 86 77 55

λ00
ijk (indirect) 96 86 75 70 99 79 87 55 86 77 48

Fig. 5. MSSM mass limits from combined analyses. The solid and dashed lines, labelled with the corresponding coupling, show the 95% C.L.
lower limits on the masses of (a) χ̃0

1 , (b) χ̃0
2 and (c) ˜̀

R , as a function of tanβ, for 0 6 M2 6 1000 GeV and −500 GeV 6 µ 6 500 GeV.
m0 = 500 GeV in (a) and (b) and m0 = 0 in (c). For those values of m0 the global minima on the mass limit are obtained.

of m0 correspond to the absolute minima from the
complete scan on M2, µ, m0 and tanβ . The chargino
mass limit is almost independent of tanβ , and is close
to the kinematic limit for any value of tanβ and m0.
For high m0 values, neutralino and scalar lepton pair-
production contributions are suppressed and the mass

limits are given mainly by the chargino exclusion. For
low m0, the possible production of intermediate real
scalar particles does not affect our limits.

For 0 6 m0 < 50 GeV and 1 6 tanβ < 2, the light-
est scalar lepton, the supersymmetric partner of the
right-handed electron, can be the LSP. Therefore, in
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Table 9
Lower limits at 95% C.L. on the masses of the supersymmetric par-
ticles considered in this analysis. The limits result from combined
analysis at each MSSM point and from a global scan in the parame-
ter space, as detailed in Section 6. The limits on M ˜̀

R
hold for ẽR ,

µ̃R and τ̃R

Coupling Mass limit (GeV)

M
χ̃0

1
M
χ̃0

2
M
χ̃0

3
M
χ̃±

1
M ˜̀

R
Mν̃

λijk 40.2 84.0 107.2 103.0 82.7 152.7

λ00
ijk 39.9 80.0 107.2 102.7 88.7 149.0

this region only the scalar lepton analysis contributes
to the limit on the scalar lepton mass. For higher val-
ues of tanβ , χ̃0

1 is the LSP and the lower limit on the
scalar lepton mass is mainly given by the χ̃0

1 χ̃
0
1 exclu-

sion contours. The absolute limit on M ˜̀
R

is found at
tanβ = 0.8 in the case of λijk and at tanβ = 0.7 for
λ00
ijk . The difference in the limits is due to the lower

cross section upper limit of λ00
ijk for scalar lepton direct

decays, since the limit on M ˜̀
R

is found when the ˜̀
R is

the LSP. The same limits are obtained without the as-
sumption of a common scalar mass at the GUT scale.
For λijk the bounds on the scalar lepton masses are
found in the case in which the ˜̀

R is the LSP. For λ00
ijk

the limits are found when the ˜̀
R and χ̃0

1 are nearly de-
generate in mass. In both cases, the neutralino analy-
ses give the main contribution to the exclusion in the
regions of the parameter space around the limit. The
remaining sensitivity is due to searches for direct slep-
ton decays via λijk . As these searches are equally sen-
sitive to scalar electron, muon or tau signals, as shown
in Table 3, the limits are unchanged. The scalar neu-
trino mass limit is also mainly due to neutralino exclu-
sions, resulting in a 95% C.L. lower limit on the scalar
neutrino mass above the kinematic limit.

The search for R-parity violating decays of super-
symmetric particles reaches at least the same sensitiv-
ity as in the R-parity conserving case [27]. Therefore,
the supersymmetry limits obtained at LEP are inde-
pendent of R-parity conservation assumptions.
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