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Abstract

The process ete™ — ny with n > 2 is studied at centre-of-mass energies ranging from /s = 192 to 209 GeV. The data
sample corresponds to a total integrated luminosity of 427 pb~1. The total and differential cross sections are found to be in
agreement with the QED expectations. Using all the data collected with the L3 detector above the Z pole, limits on deviations
from QED, excited electrons, contact interactions, extra space dimensions and excited spin-3/2 leptons are set. © 2002 Elsevier

Science B.V. All rights reserved.

1. Introduction

The process ete™ — yy receives its main contri-
bution from QED by means of the exchange of an elec-
tron via r-channel. The lowest order contribution to the
Cross section is:

do a? (1 +cos?6)
<d9>QED_ s (1 —cos?0)’
where 6 is the polar angle of the photon, « the
electromagnetic coupling constant and /s the centre-
of-mass energy of the collision.

The experimental signature of the final state is
clean, allowing the analysis of event samples with neg-
ligible background. The sensitivity of this process to
deviations with respect to the QED predictions grows
with /s and, in addition, non-QED contributions are
small. Any deviation can be therefore interpreted as
a sign of new physics. In this Letter, results of the
study of the process ete™ — ny (n > 2) are pre-
sented. The analysis is performed on the data collected
by the L3 detector [1] at centre-of-mass energies from
191.6 to 209.2 GeV, for a total integrated luminosity
of 427 pb~L. The luminosities as a function of /s are
detailed in Table 1. L3 results at /s = 91-189 GeV

(1)
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Table 1
Centre-of-mass energies, luminosities and selection efficiencies.
Statistical uncertainties from the Monte Carlo sample are quoted

V5 (GeV) Named as £ (pb 1) Efficiency (%)
191.6 192 28.8 64.2+0.5
195.5 196 82.4 64.840.2
199.5 200 67.5 64.7+0.2
201.7 202 35.9 64.34+0.5

202.5-205.5 205 74.3 64.14+0.2
205.5-209.2 207 138.1 63.6 £0.2

[2-5] are included in the interpretations. Similar stud-
ies at /s up to 202 GeV were reported by other exper-
iments [6].

2. Event selection

The event selection proceeds from photon candi-
dates, defined as:

o A shower in the electromagnetic calorimeter with
an energy above 5 GeV having a profile consistent
with that of a photon or an electron.

o The number of hits in the vertex chamber within
an azimuthal angle of +8° around the path of the
photon candidate must be less than the 40% of that
expected for a charged particle.

There must be at least two photon candidates with
polar angles 6,, between 16° and 164°, for the shower
to be fully contained in the electromagnetic calorime-
ter and to ensure a sufficient number of hits in the ver-
tex chamber in order to reject electrons. The angular
separation between the two photons must be more than
15°. In addition, to reject e e~ — viyy and cosmic
ray, events the sum of the energies of the photon can-
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didates is required to be larger than /s /2. Events con-
taining any track with momentum larger than 0.1 GeV
pointing in a cone of 2.5° around any additional calori-
metric cluster are rejected. A scintillator signal in co-
incidence with the beam crossing time and associated
to a photon is also required.

The background in the sample selected with these
cuts, estimated from Monte Carlo simulations, is neg-
ligible. The efficiencies to detect at least two photons
in the angular region 16° < 6, < 164° are computed
from a Monte Carlo generator [7] of eTe™ — yy ()
events of order 3, passed through the L3 simulation
[8] and reconstruction programs. They are presented
in Table 1. Trigger inefficiencies, as estimated using
Bhabha events, which have an independent trigger for
charged particles, are found to be negligible.

3. Analysis of the sample

After the selection criteria described above, events
are classified according to the number of isolated
photons in the angularrange 16° < 6,, < 164°. Table 2
lists the number of observed and expected events.
No events with four or more photons are observed
while 0.3 are expected [3]. One event with four
photons was observed at /s = 130 GeV [3] and
another one at /s = 183 GeV [5]. Integrating in the
range /s = 130-209 GeV, 0.7 of such events are
expected. The distributions of the acollinearity, the
sum of the energies of the two most energetic photons
and the polar angles of the most and least energetic
photons are presented in Fig. 1. These distributions are
obtained combining all data at \/s = 192-209 GeV.

The total cross sections are measured from the
number of observed events. They are presented in

Table 2
Observed and expected number of events with two and three photons

Vs (GeV)

Number of events

2y 3y
Observed Expected Observed Expected
192 193 207 7 6
196 555 575 17 16
200 424 453 15 13
202 223 236 4 6
205 459 464 11 13

207 863 845 29 23

Table 3 together with the QED expectations [7]. Good
agreement is observed. The uncertainty in the QED
prediction, due to the missing contribution of higher
order corrections, is estimated to be 1%. These mea-
surements and the previously measured values [2-5]
are presented in Fig. 2 as a function of the centre-of-
mass energy and compared to the QED expectations.
The global x2 of the data with respect to the theoret-
ical prediction is 5.8 for 12 degrees of freedom, and
the average ratio between the measured cross section,
omeasured, and the QED predicted cross section, oqEp,
is: omeasured/0QED = 0.986+0.012+0.010, where the
first uncertainty is experimental and the second theo-
retical.

The statistical uncertainty dominates the measure-
ments. The main systematic source is the efficiency of
the selection procedure. It is evaluated varying the se-
lection criteria and taking into account the finite Monte
Carlo statistics. The systematic effects due to the un-
certainties in the measured luminosity and to the resid-
ual background are found to be negligible.

The differential cross sections as a function of
the polar angle are computed. The event polar angle,
cosd, is defined as cosg = |sin(%5%)/sin(43%2)),
where 601 and 6, are the polar angles of the two most
energetic photons in the event. They are compared
with the lowest order QED predictions for each /s
in Fig. 3. A finer binning is presented in Table 4.
The table includes the bin-by-bin efficiencies and the
multiplicative factors used to bring the cross section to
the lowest order.

The agreement between data and expectations al-
lows to constrain new physics models. They are dis-
cussed in what follows.

Table 3

Measured and expected cross sections in the angular region 16° <
6y < 164°. For the measured values, the first uncertainty is
statistical and the second systematic. For the expected values
the uncertainty due to the missing higher order contributions is
estimated to be 1%

V5 (GeV) Omeasured (PD) Oexpected (pb)
192 10.834+0.74 +0.13 11.54+0.1
196 10.70 +0.44 +0.10 11.1+0.1
200 10.0540.46 +0.10 10.7+0.1
202 9.82+0.63+£0.13 10.5+0.1
205 9.874+0.45+0.10 10.0+£0.1
207 10.16 £0.34 +0.10 9.9+0.1
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Fig. 1. Distributions of (a) the acollinearity angle between the two most energetic photons, (b) the total energy normalized to the centre-of-mass

energy and cos6 for (c) the most and (d) the least energetic photon. Points are data and the histogram is the Monte Carlo prediction. The data
sample collected at /s = 192-209 GeV is presented.
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estimated to be 1%.
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order QED prediction.



Table 4

Number of events, efficiency and radiative correction factor applied to the data as a function of /s and of the event polar angle, cos . The
values at /s = 183 and 189 GeV [5] are also listed. The uncertainty on the radiative correction factor ranges from 5% (first cos6 bin) to 1%
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(last cos & bin) and is due to the finite Monte Carlo statistics

cos o Data events/Efficiency [%] (/s in GeV) Radiative correction

183 189 192 196 200 202 205 207 factor
0.00-0.05  15/91.7 35/87.9 5/81.0 13/88.4 12/87.6 10/90.9 17/89.1 24/88.6 0.78
0.05-0.10  14/89.0 21/87.7 9/91.7 15/85.6 14/88.1 5/96.7 14/85.3 28/86.0 0.79
0.10-0.15  10/85.9 37/88.1 4/82.5 10/87.6 7/88.8 7/86.0 11/84.7 28/88.7 0.80
0.15-0.20 9/89.4 37/87.1 7/817.8 15/89.6 10/85.3 5/87.9 14/84.3 25/88.8 0.81
0.20-0.25  10/90.2 46/88.6 5/92.1 16/88.7 15/86.1 5/91.4 14/86.9 15/85.2 0.81
0.25-0.30  18/88.5 48/88.4 6,/80.2 20/89.5 11/89.7 5/91.2 12/90.8 14/88.7 0.82
0.30-0.35  16/90.7 35/86.0 0/82.9 16/89.0 13/86.8 8/82.5 9/87.4 27/89.4 0.82
0.35-0.40  13/88.5 45/86.7 4/91.6 23/89.2 16/89.0 9/89.6 13/92.4 24/89.9 0.82
0.40-0.45  13/87.7 41/86.0 8/77.8 19/87.5 10/87.2 9/92.0 17/88.4 31/87.9 0.83
0.45-0.50  12/88.5 57/88.6  10/93.2 20/90.3 12/89.5 7/83.3 16/86.8 37/89.4 0.84
0.50-0.55  23/88.8 74/88.4 5/85.2 23/87.8 14/92.7 7/85.5 21/88.6 47/88.4 0.84
0.55-0.60  17/86.6 50/86.6 8/84.4 20/88.8 18/86.1 11/84.6 27,844 41/87.7 0.85
0.60-0.65  31/82.5 73/82.9  10/82.6 31/84.1 26/85.1 15/82.9 24/86.4 47/82.1 0.86
0.65-0.70  21/77.7 66/77.9 9/76.8 29/77.5 32/78.3 15/76.7 28/76.3 61/75.2 0.87
0.70-0.75 8/17.0 27/16.3 2/15.4 11/17.3 7/17.8 6/16.0 9/16.5 10/16.7 0.87
0.75-0.80 5/14.3 20/13.5 2/11.6 11/12.3 10/14.7 3/14.9 5/13.2 20/12.6 0.88
0.80-0.85 38/53.5  103/52.5  19/55.8 41/53.2 27/49.7 20/47.1 40/52.1 61/50.4 0.89
0.85-0.90 78/79.8  223/80.7  26/73.6 92/74.9 74/74.3 33/74.9 72/76.3  137/76.7 0.91
0.90-0.95 73/66.8  258/66.6  45/65.6  114/66.0 83/66.0 36/67.4 83/63.9  154/63.7 0.95
0.95-0.96  35/69.1 78/67.2  16/67.4 33/66.7 28/66.3 11/66.1 24/63.7 61/62.9 1.00

4. Limits on deviations from QED

The possible deviations from QED are parametrised
in terms of effective Lagrangians. Their effect on the
observables is expressed as a multiplicative correction
term to the QED differential cross section. Depending
on the type of parametrisation two general forms are
considered [9]:

do (da> < 21 )
—=— 1+ ——sin“H (2)
as2 as2 QED o A4

and

do do 53 1 sin’e
a2 (E) <1+ 32nazﬁl+00529>’ 3)
QED

which depend on the centre-of-mass energy, the polar
angle 0 and the scale parameters A or A’. A simple
and convenient way of parametrising the deviations
from QED is the introduction of the cut-off parameters
Az [10]. The differential cross section in this case is
obtained from Eq. (2) replacing A* by +(2/a)A%.

The effects of deviations of this type on the differential
cross section are presented in Fig. 4.

Combining the present results with those obtained
in our previous analyses [3-5], the estimated parame-
ters are:

1

= (—0.01+303) x 1071 Gev—,

1
%= (—0.037398) x 10716 Gev .

Normalising the corresponding probability density
function over the physically allowed range of the
parameters, the following limits at the 95% confidence
level (CL) are obtained:

A>1.6TeV,
Ay >04TeV,
A_>0.3TeV,

A > 0.8 TeV.



36 L3 Collaboration / Physics Letters B 531 (2002) 28-38

6 i f
i
ik
R |

5t .

e Data,<\s>=202GeV [ (|

— Lowest Order QED I ‘f

""" A,,Mg(+)=0.15,0.39 TeV / ¢
4w AL Mg(-)=0.25,0.64 TeV / |

— AN =0.5TeV 7 j

----- m_. =0.12 TeV Ao

o : :
== Mg,, =0.09 TeV / /I
I M3/2,T =0.12 Tev//' l

do/dQ (pb/srad)
w

0 02 04 06 08 1
|cos 0|

Fig. 4. Differential cross sections as a function of cosé. Points are
data from /s = 192 to 208 GeV, corresponding to a luminosity
weighted average of (,/s) = 202 GeV. Lines show the different
predictions for the models discussed in the text at a centre-of-mass
energy of (y/s) =202 GeV. The width of the lowest order QED
prediction takes into account the theoretical uncertainty, estimated
to be 1%. The x2 with respect to the QED prediction is 1.6 per
degree of freedom.

5. Search for excited electrons

Another way to study possible deviations from
QED is to postulate the existence of an excited elec-
tron e* of mass me+, which couples to the electron
and the photon via chiral magnetic interactions. This
coupling is described by the phenomenological La-
grangian [11]:

e
2A

The parameter Ae+ is related to the effective scale
of the interaction. The effect on the differential cross
section due to the presence of an excited electron with

L=

Ve (1 £ y°)We Fyy +hoc. 4)
e*

Agx = meg= is depicted in Fig. 4. From a fit to the data,
we obtain:

1

1
AL,
Fixing the interaction scale A+ to me+, we derive a
95% CL lower limit of:

= (—0.097320) x 1079 Gev 1.

me+ > 0.31 TeV.

No excited electron mass limit with a purely mag-
netic interaction [12] is given, since the limits derived
from g, — 2 measurements already exclude [13] the
scales accessible at LEP.

6. Low scale gravity effects

The differential cross section for photon pair pro-
duction in eTe~ collisions is modified in the pres-
ence of Low Scale Gravity and extra space dimensions
[14,15]. From Ref. [15] it follows:

d d As?
49 _ (—0> <1 — %(1 —cos? )
dQ dQ QED 27TO(MS

A2t 2

+——"  _(1-cos?h )
16n2a2M§3( )

(5)

The deviations are weighted by a factor A which
absorbs the full dependence on the details of the
theory. The parameter A = #1 is chosen to allow
for the different signs of the interference. The pure
gravitational part in the third term never exceeds 1%
of the second term, the interference one, and is thus
neglected. From a comparison of Egs. (2) and (5) it
follows

A To

The modified differential cross section is shown in
Fig. 4. Lower limits at 95% CL on the value of the
scale Mg, derived from the limits on A4, are:

Ms(h=+1) > 0.84 TeV,
Ms(h=-1)>0.99 TeV.
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7. Search for excited spin-3/2 leptons

Supersymmetry and composite models [16] predict
the existence of spin-3/2 particles, and ete™ — yy
production is a suitable process to search for their
effect. Field theories for spin-3/2 particles are known
to be non-renormalizable, but two effective interaction
Lagrangians [17], with vector or tensor interactions,
can be used to describe this contribution:

€)] € N7 v
int = ivleryr + cryr) FHY,
int M3/2,V nrv
e _
LR = L TrouscLys + cr¥r)*FF,  (6)
M3 ¢

where ¥, refers to the spin-3/2 lepton, y; and
wr are the left and right handed electron fields,
respectively, ¢, and cg are the corresponding coupling
strengths, and F*¥ the electromagnetic field tensor.
The parameters M3, ; (i = V, T) are the masses of
the excited lepton for each hypothesis, and are also

95% CL
200} @)

s

Q
o

> EXCLUDED

o 100
=

0 05 T, 15 2
LR
95% CL
200 b)

s
[4]
)

-

o 100f EXCLUDED
=

0 05 1 ) 15
CLr

Fig. 5. Excluded regions at 95% CL in the plane (a) (M2 /2,vv‘%)

for the vector coupling case and (b) (M% 1 T,c%) for the tensor
coupling hypothesis in the search for excited spin-3/2 leptons. The
result is independent of the interchange between ¢;, and cg [17].

identified with the scale of new physics. The presence
of such lepton modifies the differential cross section
of the eTe™ — yy process as presented in Fig. 4.

A search for excited spin-3/2 leptons is performed
using all data collected with L3 above the Z pole
under the assumption cg = 0. Deviations from QED
are invariant under the interchange between c¢; and
cg [17]. Fig. 5 presents the 95% CL excluded regions
inthe (¢2, M3,2,;) planes. The 95% CL limits obtained
for ¢2 =1 are:

M3z v > 0.19 TeV,
M3z 7 > 0.20 TeV.
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